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We establish that boundary degrees of freedom associated with a generic codimension one null surface in
D-dimensional pure Einstein gravity naturally admit a thermodynamical description. We expect the null
surface thermodynamics to universally follow as a result of the diffeomorphism invariance of the theory,
not relying on other special features of the null surface or the gravity theory. Using standard surface charge
analysis and covariant phase-space method, we formulate laws of null surface thermodynamics which are
local equations over an arbitrary null surface paralleling local versions of the zeroth- and first laws and the
Gibbs-Duhem equation. This thermodynamical system is generally an open system and can be closed only
when there is no flux of gravitons through the null surface. Our analysis extends the usual black hole
thermodynamics to a universal feature of any area element on a generic null surface. We discuss the
relevance of our study for the membrane paradigm and black hole microstates.
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I. INTRODUCTION

Despite apparent differences, there are various hints that
gravity, as formulated by Einstein’s general relativity (GR),
and thermodynamics are closely related to each other, both at
conceptual and formulation levels. Perhaps, the first hint was
already in the statement of Einstein’s equivalence principle
and the universality of GR and thermodynamics. In the
context of black hole physics the resemblance between laws
of black hole mechanics and laws of thermodynamics [1] was
gradually completed into the equivalence of the two [2–10].
The connection is not limited to black holes. In a seminal

paper [11], Unruh showed that there is a nonzero temper-
ature associated with a generic accelerated observer, as
required by the equivalence principle. The next remarkable
step was provided by Wald, who showed that black hole
entropy is a conserved charge associated with bifurcate
Killing horizons [12] and derived the first law of

thermodynamics for generic probes around such black holes
as a direct consequence of diffeomorphism invariance [13].
And finally, Jacobson derived Einstein’s field equations from
the first law of thermodynamics adapted around a null
surface [14]; see also [15,16] and [17–19]. The connection
between gravity and thermodynamics was also reinforced
through the holographic principle [20] and the AdS=CFT
duality [21] and presented bluntly in [22].
Thermodynamics aspects of black holes are generically

attributed to black hole microstates and to the horizon.
Horizon is typically a null surface which is the boundary of
the spacetime as viewed by non-free- fall observers outside
the hole. Presence of boundaries leads to existence of
“boundary degrees of freedom” which reside only at the
(timelike or null) boundaries and interact with bulk (grav-
iton) modes. Black hole microstates may be sought among
these boundary degrees of freedom.With this motivation, we
study gravity theory on spacetimes with a null boundary.
This boundary can be an arbitrary one in spacetime and is
not necessarily horizon of a black hole. This has been the
research program pursued in some recent works [23–26] and
in particular in [27–42]. It has been established that (see
[24,27] and references therein) the most general solution
phase space of D-dimensional pure Einstein gravity theory
around a given null surface besides the bulk graviton modes
involves boundary modes parametrized by D arbitrary
functions over the D − 1 dimensional null boundary.
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In this work we show that the thermodynamics
description is not limited to (black hole) horizons. We
recast the equations used in boundary symmetry and
charge analysis for a pure D-dimensional Einstein gravity
in presence of a null boundary as the local first law of
thermodynamics and the Gibbs-Duhem equation. We
construct the solution phase space governing the boun-
dary degrees of freedom and show it can be naturally
viewed as an open thermodynamic phase space. This
open thermodynamics system can be closed if we turn off
the graviton flux passing through the null surface. The
latter, together with an extra relation among the chemical
potentials and associated surface charges (3.9), yields the
statement of the local zeroth law. These relations are
universal and independent of details of gravitational
theory or the null surface. Our derivation only relies
on diffeomorphism invariance of the theory and we
expect our thermodynamical description to be true for
any generally invariant theory of gravity.

II. NULL SURFACE SOLUTION PHASE SPACE:
A REVIEW

We start with a D-dimensional (D ≥ 3) generic metric
adopting v; r; xA coordinates,

ds2¼−Vdv2þ2ηdvdrþgABðdxAþUAdvÞðdxBþUBdvÞ;
ð2:1Þ

such that r ¼ 0 is the null surfaceN and metric coefficients
admit the near- N expansion,

V ¼ −η
�
Γ −

2

D − 2

DvΩ
Ω

þDvη

η

�
rþOðr2Þ

UA ¼ UA − r
η

Ω
J A þOðr2Þ

gAB ¼ ΩAB þOðrÞ; ð2:2Þ

where all the fields are functions of v; xA and

ΩAB¼Ω2=ðD−2ÞγAB; Ω≔
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detΩAB

p
; detγAB¼1: ð2:3Þ

We use the definition

Dv ≔ ∂v − LU ; ð2:4Þ

whereLU is the Lie derivative along the UA direction. LetΘ
be the expansion of vector field generating the null surface
N and NAB be the news tensor associated with flux of
gravitons through N :

Θ ≔ Dv lnΩ; NAB ≔
1

2
Ω2=ðD−2ÞDvγAB: ð2:5Þ

We use ΩAB andΩAB, respectively, for raising and lowering
capital Latin indices. Note that NAB as defined above is a
symmetric-traceless tensor.
The coefficients appearing in the metric are subject

to Einstein field equations. In particular, there are
Raychaudhuri and Damour equations which play a crucial
role in our analysis; see [27] for a more detailed treatment.
These two equations, respectively, are

DvΘþ 1

2

�
Γ −

Dvη

η

�
Θþ NABNAB ¼ 0; ð2:6aÞ

DvJ AþΩΘ
∂Aη

η
þΩ∂AðΓ−2ΘÞþ2Ω∇̄BNAB¼0: ð2:6bÞ

Here ∇̄A denotes the covariant derivative with respect to the
metric ΩAB. The new variable P, defined as

P ≔ ln
η

Θ2
; ð2:7Þ

may substitute η and in terms of which (2.6) simplifies to

DvΩ ¼ ΩΘ; ð2:8aÞ

DvP ¼ Γþ 2

Θ
NABNAB; ð2:8bÞ

DvJ A þ ΩΘ∂AP þ Ω∂AΓþ 2Ω∇̄BNAB ¼ 0: ð2:8cÞ

A. Off-shell presymplectic form

Starting from the Einstein-Hilbert action,

SEH¼
1

16πG

Z
drdvdD−2xη

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detgAB

p
LEH; LEH¼R−2Λ;

ð2:9Þ

one can compute the usual Lee-Wald presymplectic form
[43] over the set of geometries (2.1), yielding

ΩLW ¼ 1

16πG

Z
N
dvdD−2x½δUA ∧ δJ A − δΓ ∧ δΩ

þ δðΩΘÞ ∧ δP þ δΩAB ∧ δðΩNABÞ�: ð2:10Þ

While the above expression clearly shows which variables
are canonical conjugate of each other, the functions appearing
there are subject to Eqs. (2.8) and not all of them are
independent. In other words, the solution phase space is
obtained after imposing the constraints (2.8) upon the
parameter space and the symplectic form, e.g., using
the Dirac bracket method or going to the reduced phase
space.
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B. Null boundary symmetry generators

The vector field

ξ ¼ T∂v þ rðDvT −WÞ∂r þ ðYA − rη∂ATÞ∂A þOðr2Þ;
ð2:11Þ

preserves the form of metric (2.1), keeps r ¼ 0 a null
surface, and generates the following variations over the
solution phase-space functions:

δξη ¼ T∂vηþ 2ηDvT −Wηþ YA∂Aη; ð2:12aÞ

δξΓ ¼ −DvðW − ΓTÞ þ ðYA þ UATÞ∂AΓ; ð2:12bÞ

δξðΩΘÞ ¼ DvðTΩΘÞ þ LðYþTUÞðΩΘÞ; ð2:12cÞ

δξUA ¼ DvðYA þ TUAÞ; ð2:12dÞ

δξΩAB¼2TNABþLðYþTUÞΩABþ
2

D−2
TΘΩAB; ð2:12eÞ

where LY denote the Lie derivative along YA, and for
associated conjugate charges (see below)

δξΩ ¼ TΩΘþ LðYþTUÞΩ; ð2:13aÞ

δξP ¼ TDvP þ LðYþTUÞP −W; ð2:13bÞ

δξJ A ¼ TDvJ A þ LðYþTUÞJ A

þΩ½∂AW − Γ∂AT − 2NAB∂BT�; ð2:13cÞ

δξNAB ¼ DvðTNABÞ þ LðYþTUÞNAB: ð2:13dÞ

C. Surface charge variation

One may compute the charge variation associated with
the boundary symmetry generators using covariant phase-
space method [13,43]. Detailed analysis yields [27]

=δQξ ¼
1

16πG

Z
N v

dD−2x½ðW − ΓTÞδΩþ ðYA þ UATÞδJ A

þ TΩΘδP − TΩΩABδNAB�; ð2:14Þ

where N v is a constant v section on N . This charge
variation is an integral over

P
4
i¼1 GiδQi, where Qi para-

metrizes the solution phase space. Among the four families,
NAB corresponds to the bulk degrees of freedom while
three others Ω;J A;P parametrize boundary information.
Γ;UA functions which appear in Gi are subject to field

equations (2.8) and δQi subject to linearized equations of
motion.
The Gi are “field-dependent” linear combinations of

symmetry generators T;W; YA, notably Gi depend on Γ;UA

as well as ΩΘ and ΩAB and δξGi ≠ 0. The charge variation
=δQξ, as stressed in the notation =δ, is hence not integrable.
Γ;UA may be, respectively, solved for in terms of the
charges using (2.8b) and (2.8c) and therefore all these
coefficients may be represented through the charges. Note
also that there are three symmetry generators and four
towers of charges and these are functions over the null
surface N . We crucially note that δΩ; δJ A; δP; δNAB
denote generic variations around solutions of equations
of motion (EoM) and are subject to linearized field
equations. These linearized equations may be viewed as
equations for variations δΓ; δUA. The solution phase space
is hence parametrized by the four tower of charges and their
variations.
We close this part by giving expressions for three “zero-

mode” charges, ξ ¼ −r∂r, ξ ¼ ∂A, and ξ ¼ ∂v. One may
readily observe that the first two are integrable and the latter
is not:

Q−r∂r
≔

S
4π

¼ 1

16πG

Z
N v

dD−2xΩ;

Q∂A ≔ JA ¼ 1

16πG

Z
N v

dD−2xJ A;

=δQ∂v ≔ =δH ¼ 1

16πG

Z
N v

dD−2xð−ΓδΩþ UAδJ A

þΩΘδP −ΩΩABδNABÞ: ð2:15Þ

D. Surface charges and flux in thermodynamics slicing

The charge variation may be split into Noether (integrable)
part QN and the “flux” part F: =δQξ ¼ δQN

ξ þ Fξðδg; gÞ. QN

may be computed for the Einstein-Hilbert action using the
standard Noether procedure, yielding

QN
ξ ¼

1

16πG

Z
N v

dD−2x½WΩþ YAJ A þ Tð−ΓΩþUAJ AÞ�;

ð2:16Þ

and nonintegrable flux part:

Fξðδg; gÞ ¼
1

16πG

Z
N v

dD−2xTðΩδΓ − J AδUA

þ ΩΘδP −ΩΩABδNABÞ: ð2:17Þ

Here we are assuming symmetry generators T;W; YA to be
field independent, i.e., δT ¼ δW ¼ 0 ¼ δYA.
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For later use, we also present the expressions for the
zero-mode Noether charges:

QN
−r∂r

¼ 1

16πG

Z
N v

dD−2xΩ;

QN∂A ¼ 1

16πG

Z
N v

dD−2xJ A;

QN∂v ≔ E ¼ 1

16πG

Z
N v

dD−2xð−ΓΩþ UAJ AÞ; ð2:18Þ

E. Balance or “generalized charge conservation”
equation

In our general setup charges and the flux are given by
integrals over codimension two surfaceN v. They are hence
functions of “lightcone time” coordinate v and the charges
are not conserved. From the expressions above, one can
deduce

d
dv

QN
ξ ≈ −F∂vðδξg; gÞ; ð2:19Þ

where ≈ denotes on-shell equality. Equation (2.19) may be
viewed as (i) manifestation of the boundary EoM written in
terms of charges; (ii) a generalized charge conservation
equation as it relates to time dependence, or nonconserva-
tion, of the charge (as viewed by the null boundary observer)
to the flux passing through the boundary; (iii) how the
passage of flux through the null boundary is “balanced” by
the rearrangements in the charges. In this respect, it is very
similar to the usual balance equation used at asymptotic null
surfaces, which is now written for an arbitrary null surface in
the bulk. Note also that the third viewpoint yields null
surface memory effects discussed in [27].

III. NULL SURFACE THERMODYNAMICS

Consider a usual thermodynamical system with chemical
potentials μiði ¼ 1; 2;…; NÞ and temperature T. This
system is specified with charges Qi, the entropy S, and
the energy E; that is, there are N þ 2 charges and N þ 1
chemical potentials. The distinction between charges and
associated chemical potentials is by convention and is
specified with/specifies the ensemble. In microcanonical
ensemble (which we have already assumed), the first law
takes the form

dE ¼ TdSþ
XN
i¼1

μidQi: ð3:1Þ

This equation implies that the lhs is an exact one-form over
the thermodynamic space. Moreover, chemical potentials
and the charges are related by the Gibbs-Duhem relation:

SdT þ
XN
i¼1

Qidμi ¼ 0: ð3:2Þ

Together with the first law (3.1) this yields E ¼ TSþP
i μiQi. This equation relates E to the other charges and

chemical potentials, e.g., E ¼ EðS;QiÞ (in microcanonical
description) or E ¼ EðT; μiÞ (in grandcanonical descrip-
tion). Depending on the ensemble chosen, N þ 1 number
of chemical potentials and/or charges may be taken to be
“independent” variables parametrizing the thermodynam-
ical configuration space and the rest of N þ 1 of
them as functions of the former N þ 1 variables. In other
words, the thermodynamic configuration space is (N þ 1)-
dimensional and the change of ensemble is basically a
canonical transformation, the generator of which is the
difference between various “energy” functions associated
with each ensemble.

A. Null boundary thermodynamical phase space

Staring at the expression of the charge variation (2.14),
one can recognize that functions parametrizing the solution
space come in two categories: the bulk modes NAB (and its
conjugate “chemical potential” determinant-free part of
ΩAB; γAB) and the boundary modes. The latter may also be
separated into those whose variation appearsΩ;P, and J A,
and those which appear only in the coefficients, in chemical
potentials Γ;UA. There are hence D ¼ 1þ 1þ ðD − 2Þ
charges and D − 1 ¼ 1þ ðD − 2Þ chemical potentials.
We crucially note that if we treat Γ;UA and associated

charges Ω;J A as independent variables, P is special as it
does not appear in the integrable part of the charges (2.16)
and only appears in the expression for the flux (2.17)
through ΩΘδP term. Moreover, as already remarked
[cf. discussions below (2.14)], the chemical potentials
may be expressed in terms of the charges using field
equations. Again we note at Θ ¼ 0, P dependence com-
pletely drops out of the analysis.
Given all the above, we are led to the following picture

for the generic case.
(I) Null boundary solution space relevant to the null

boundary thermodynamics consists of three parts:
(I.1) (D − 1) dimensional “thermodynamic sector”

parametrized by ðΓ;UAÞ and conjugate charges
ðΩ;J AÞ;

(I.2) P, which only appears in the flux (2.17) and not
in the Noether charge (2.16);

(I.3) the bulk mode parametrized by determinant-free
part of ΩAB and its “conjugate charge” NAB
which appear in the flux (2.17).

(II) NAB parametrizes effects of the bulk and how they
take the boundary system out-of-thermal equilib-
rium (OTE), whereasP parametrizes OTE within the
boundary dynamics. Put differently, OTE may come
from inner boundary dynamics and/or from the
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gravity waves passing through the null boundary,
parametrized by NAB.

(III) Expansion parameter Θ is a measure of OTE, from
both bulk and boundary viewpoints. When Θ ¼ 0
the system is completely specified by the D − 1
dimensional thermodynamic phase space.

(IV) The rest of the in-falling graviton modes parame-
trized through OðrÞ terms in gAB do not enter in the
boundary-/thermodynamics, as of course expected
from usual causality and that the boundary is a null
surface.

We start with the local first law, then local Gibbs-Duhem
equation and come to local zeroth law, specifying the

subsectors which can be brought to a (local) equilibrium.
Before moving on, we introduce a piece of useful notation.
By X we will denote the density of the quantity X,

X ≔
Z
N v

dD−2xX : ð3:3Þ

B. Local first law at null boundary

Defining P ≔ P=ð16πGÞ and N AB ≔ ð16πGÞ−1NAB,
(2.15) implies

=δH ¼ TN δS þ UAδJ A þ ΩΘδP −ΩΩABδN AB; TN ≔ −
Γ
4π

: ð3:4Þ

The above is true at each v; xA over the null surface and
represents the local null boundary first law. The lhs, unlike
the usual first law (3.1), is not a complete variation, as the
system is describing an open thermodynamic system due to
the existence of the expansion and the flux. The above
reduces to a usual first law for closed systemswhenNAB ¼ 0
or in the nonexpanding Θ ¼ 0 case.
Note that Γ ¼ −2κ þDv lnðηΩ 2

D−2Þ, where κ is the non-
affinity parameter (surface gravity) associated the vector
field generating the null surface N [27]: − Γ=2 is the local
acceleration of an observer for whom r ¼ 0 is locally the
Rindler horizon. So, TN ¼ κ

2π −
1
4πDv lnðηΩ 2

D−2Þ. For non-
expandingΘ ¼ 0 casewhere onemay put η ¼ 1 or whenwe
have aKilling horizon,TN equals the usual Unruh/Hawking
temperature; cf. Sec. III D for more discussions.

C. Local extended Gibbs-Duhem equation at
null boundary

Gibbs-Duhem equation (3.2) is a relation among the
thermodynamic charges. Given the expressions for the zero
mode charges (2.18) and for the densities in the same
notation as in (3.3), we have

E ¼ TNS þ UAJ A : ð3:5Þ

The above is an analog of the Gibbs-Duhem equation if E is
viewed as energy, S as entropy, andJ A as other conserved
charges andΓ;UA as the respective chemical potentials. This
of course manifests the picture we outlined in Sec. III A.
However, one should note that (3.5) is a local equation at the
null boundary, unlike its usual thermodynamic counterpart.
This equation also holds for nonstationary/nonadiabatic
cases when the system is OTE. So, we call (3.5) “local
extended Gibbs-Duhem” (LEGD) equation at the null
boundary.

LEGD equation, like the local first law (3.4), is a
manifestation of diffeomorphism invariance of the theory.
While the explicit expressions for the charges do depend on
the theory, we expect (3.5) to be universally true for any
diff-invariant theory of gravity in any dimension. This
equation is on par with the first law of thermodynamics but
extends it in two important ways: it is a local equation in
v; xA and holds also for OTE.
Since the integrable parts of the charge are (by defi-

nition) independent of the bulk flux NAB and also of P, the
LEGD equation (3.5), also do not involve P and NAB.
Nonetheless, the chemical potentials in (3.5), Γ and UA,
implicitly depend onNAB andP throughRaychaudhuri and
Damour equations.

D. Local zeroth law

Zeroth law in the usual thermodynamics is a statement of
thermal equilibrium: as a consequence of the zeroth law, two
(sub)systems with the same temperature and chemical
potentials are in thermal equilibrium. In the usual thermo-
dynamics flow of charges is proportional to the gradient of
associated chemical potentials and hence the absence of
such fluxes can be taken as a statement of the zeroth law. In
our case, we are dealing with a system parametrized by
chemical potentials Γ;UA and γAB which are functions of
charges Qα ∈ fΩ;P;J A; NABg. This system is not in
general in equilibrium but there could be special subsectors
which are. The zeroth law is to specify such subsectors.
Recalling (2.19), flow of charges vanishes on subsystems

over which F∂vðδξg; gÞ vanishes. On a closely related
account, one can show that [44] this flux has the same
expression as theon-shell variation of the action.Nonetheless,
while the charge variation (2.14) is invariant under the
addition of a total derivative term to the Lagrangian, the
Noether charge and hence the flux are not. In particular, upon
addition of a boundary Lagrangian LB ¼ ∂μBμ, the on-shell
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action variation and hence the flux F are shifted by δBr.
For later convenience, let us call Br ¼ G. This opens up the
possibility of (partially) removing the flux by an appropriate
boundary term. The question is hencewhat are the subsectors
in the solution phase space for which flux can be removed by
an appropriate boundary term.
So, we start with the variation of on-shell action. A direct

computation leads to

δSEHjon-shell¼
1

16πG

Z
N
dvdD−2xðΩΘδPþΩδΓ−J AδUA

−ΩNABδΩABÞ¼
Z

dvF∂vðδg;gÞ; ð3:6Þ

where F∂v may be readily read from (2.17). Next, let us
add a boundary term to the Lagrangian upon which
δSEHjon-shell → δSEHjon-shell þ

R
N δG. As the statement of

the zeroth law we require there exists a G ¼
GðΩ;P;J A; NABÞ such that

δG¼−SðδTN −4GΘδPÞ−J AδUAþΩN ABδΩAB ð3:7Þ

admits nonzero solutions. Integrability condition for the
zeroth law (3.7) is δðδGÞ ¼ 0,1 which yields an equation
like

P
α;β CαβδQα ∧ δQβ ¼ 0, where Qα are generic

charges and Cαβ is skew symmetric. This equation is
satisfied only for Cαβ ¼ 0. One can immediately seeNAB ¼
0 ¼ δNAB is a necessary (but not sufficient) condition for
(3.7) to have nontrivial solutions.
Before discussing the solutions in more detail, let us note

that when (3.7) is fulfilled the charge H, which appears in

the lhs of the local first law (3.4), becomes integrable and
we obtain

H ¼ Gþ TNS þ UAJ A : ð3:8Þ

Besides NAB ¼ 0, in terms of H ¼ HðS;J A;PÞ local
zeroth law implies

TN ¼ δH

δS
; UA ¼ δH

δJ A
; DvS ¼ SΘ ¼ 1

4G
δH

δP
;

ð3:9Þ

where the last equation may be seen as the equation of
state. For the special case of Θ ¼ 0, one simply deduces
that H does not depend on P. Equation (3.7) ensures that
total energy and angular momentum are conserved on
shell, d

dvH ¼ d
dv JA ¼ 0, where d

dvX ≔
R
N v

dD−2x∂vX .
Total entropy, on the other hand, is not conserved as
d
dvS ¼ R

N v
dD−2xΘS; d

dvS is zero only when expansion
vanishes, Θ ¼ 0.

E. Generic

Θ ≠ 0 case The zeroth law requires NAB ¼ 0 for which
(2.8) reduce to

TN ¼−4GDvP; Dv½J Aþ4G∇̄AðSPÞ�¼0: ð3:10Þ

The above imply that zeroth law (3.9) is satisfied for any
H ¼ HðS;P;J AÞ, when S;P, and J A have the follow-
ing basic Poisson brackets [27]:

fSðx; vÞ;Pðy; vÞg ¼ 1

4G
δD−2ðx − yÞ; fSðx; vÞ;Sðy; vÞg ¼ fPðx; vÞ;Pðy; vÞg ¼ 0;

fSðx; vÞ;J Aðy; vÞg ¼ Sðy; vÞ ∂
∂xA δ

D−2ðx − yÞ;

fPðx; vÞ;J Aðy; vÞg ¼
�
Pðy; vÞ ∂

∂xA þPðx; vÞ ∂
∂yA

�
δD−2ðx − yÞ;

fJ Aðx; vÞ;J Bðy; vÞg ¼ 1

16πG

�
J Aðy; vÞ

∂
∂xB −J Bðx; vÞ

∂
∂yA

�
δD−2ðx − yÞ; ð3:11Þ

and ∂vX ¼ fH;Xg. That is, H is the Hamiltonian over
this phase space and (3.9) do not impose any restrictions on
H which is a scalar over N .

F. Θ= 0 case

In this case trace of the extrinsic curvature of the null
surface N vanishes, hence it is an extremal null surface.

Vanishing of the expansion Θ has some important conse-
quences. (i) Raychaudhuri equation implies NAB ¼ 0. So,
again we arrive at the vanishing flux; (ii) η drops out from
the charge variation (2.14). (iii) We lose one tower of the
charge P, and the associated symmetry generator becomes
a pure gauge. (iv) We may fix the η ¼ 1 gauge which yields
W ¼ 2DvT. We hence remain with T; YA generators which
form DiffðN Þ symmetry algebra. (v) EoM (2.6) reduces to
DvJ A ¼ S∂ATN and DvS ¼ 0, which may be viewed as
equations for spatial derivatives of the chemical potentials.

1δðδGÞ is the presymplectic two-form (2.10); therefore, (3.7)
implies vanishing symplectic form over the null surface N .
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Local zeroth law (3.9) is satisfied by any scalar
Hamiltonian H ¼ HðS;J AÞ, together with basic
Poisson brackets (3.11) but with P dropped [27] and again
with ∂vX ¼ fH;Xg.

G. Closing remarks

(i) Local zeroth law (3.9) is just defining the Poisson
bracket structure over our charge space and existence of
Hamiltonian dynamics, but does not specify a Hamiltonian.
(ii) Choice of Hamiltonian fixes a boundary Lagrangian and
the boundary dynamical equations which in turn specifies
local dynamics of charges on the null boundary N . (iii) In
analogy with isolated horizon [45] of black holes, if the
zeroth law holds the null surface may be called an “isolated
null surface”.2 (iv) Our zeroth law is a weaker condition than
stationarity as ∂v of the chemical potentials need not vanish.
(v) The usual zeroth law of black hole mechanics (for Killing
horizons) that UA and Γ are constants over the horizon (our
null boundary N ) is a very special case which obeys our
local zeroth law. For the stationary asymptotic flat black hole
solutions to the vacuum Einstein gravity, i.e., the Myers-
Perry solutions, we get E ¼ ðD−3

D−2ÞH, and we have the usual
Smarr formula.

IV. OUTLOOK

Building upon the analyses of [23–26] and in particular
[27], we established that the solution phase space around
an arbitrary null surface in pure D-dimensional Einstein
gravity naturally admits a thermodynamical description
and the charges and corresponding chemical potentials
form a “thermodynamical phase space.” The laws of
thermodynamics are all local equations over the D − 1

dimensional null surface N and our analysis does not fix
the boundary dynamics, boundary Hamiltonian, which
may still be chosen.
As discussed, the zeroth law necessitates vanishing of

the flux of bulk gravitons through N and establishes basic
Poisson brackets on the thermodynamic phase space. The
same condition, absence of NAB, has been discussed as the
condition for the existence of a slicing in the solution phase
space in which the charges become integrable [24,26,27].
The physics of change of phase-space slicing and null
surface thermodynamics developed here is an interesting
direction to for further investigations.
In this work we focused on the zeroth- and first laws and

the Gibbs-Duhem equation. However, the second law of
thermodynamics is an important part of any thermodynamic
description. In the black hole thermodynamics, there is the
“generalized second law” stating that the sum of entropies of
black hole and the outside do not decrease; see [10] and

references therein. A simplified version of the second law is
Hawking’s area theorem that in black hole merger processes
the area of horizon does not decrease which uses
Rachyaudhuri equation (focusing theorem) and null energy
condition for the matter fields; see, e.g., [46]. In our setting,
one may look for a local version of the second law, recalling
that flux of gravitons can only move through the null
boundary to the “inside region” and nothing comes out.
See in particular the analysis in Sec. 8 of [27]. As the first
relevant step towards a local second law we have worked
through “null surface focusing theorem” in the Appendix.
Further analysis and discussion on this very important issue
is left for future work.
Our analysis is based on covariant phase-space formu-

lation and hence readily generalizes to any diffeomorphism
invariant theory in any dimension. Given all the previous
literature, especially [13], it is reasonably certain that the
same “local” thermodynamical description with exactly the
same equations should also hold for this generic case. In
other words, diffeomorphism invariance yields the local
thermodynamical picture. One may do the reverse and show
that the thermodynamical description results in diffeomor-
phism invariance. We should emphasize that this is already
weaker than Einstein’s equivalence principle and nonmini-
mal coupling and generic modified gravity theories follow
the same analysis. The connection between thermodynamics
and gravity is nothing new, e.g., see [14]. Our analysis here
derives the local thermodynamics relation which is assumed
in [14] from first principles and does not require the null
boundary to have any extra properties. Our approach here, in
contrast to the usual viewpoint, puts the emphasis on the
boundary phase space, rather than the bulk graviton modes.
In our local thermodynamics description, the latter appear as
the flux (news) through the boundary. We hope our new
“boundary-based” viewpoint and framework shed new light
on thermodynamics/gravity relations and can be pushed to
the quantum level.
The local thermodynamical description in its basics and

general ideas reminds one of the membrane paradigm
[47–49]. It is interesting to relate the two more system-
atically. The first steps in this direction were outlined in
[50]. The interesting question is whether the membrane
picture restricts the boundary Hamiltonian.
Among other things, our analysis here very clearly shows

how the boundary and bulk degrees of freedom interact and
that the boundary phase space admits the local thermody-
namical description. This is expected to be very relevant for
the black hole microstate problem in that the boundary
degrees of freedom and quantization thereof can account for
the microstates, whereas the interactions with bulk modes
would be relevant for the information loss problem. Our
analysis permits a semiclassical setting in which boundary
phase space is quantized while bulk modes are treated (semi)
classically and hence potentially gives a better handle on
both microstate and information loss problems.

2One may show by direct computation that, upon zeroth law in
the Θ ¼ 0 sector, DvJ A ¼ S∂ATN and DvS ¼ 0 and also
DvE ¼ −∂vG;DvH ¼ −∂AðUAGÞ.
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APPENDIX: NULL BOUNDARY FOCUSING
THEOREM

From Raychaudhuri equation (2.6) one learns that

DvΘ− κΘþ 1

D− 2
Θ2 ≤ 0; κ ≔−

Γ
2
þ 1

2
Dv lnðηΩ 2

D−2Þ:
ðA1Þ

In terms of variable

XðvÞ≔ exp

�Z
v0

κ

�
; DvX−κX¼0; Xðv0Þ¼1; ðA2Þ

assuming ΘðvÞ ≠ 0, (A1) implies

Θ ≤
Θ0XðvÞ

1þ Θ0

D−2

R
v0
XðvÞ ; ðA3Þ

where Θ0 ¼ Θðv ¼ v0Þ and without loss of generality we
have taken v0 such that the equality is saturated. Since
XðvÞ ≥ 0, then

R
v0
XðvÞ is a growing function of v. If

Θ0 < 0 (that is if we start in a contracting phase) then
there will always be a “trapping time” v1 > v0 whereR
v1
v0

XðvÞ ¼ − 1
Θ0ðD−2Þ, and Θðv1Þ → −∞.

If at some v, v̂0, Θ ¼ 0 then its derivative should be
nonpositive at that point DvΘ ≤ 0. For the case of equality
we have a nonexpanding case and the NAB should also
vanish and if DvΘ < 0 then at v̂0 þ δv, Θ < 0 and again
(A3) implies existence of a trapping time. We should stress
that all the above analysis is local on the codimension 2,
constant v, r surfaces and all quantities are functions of xA.
In the absence of bulk modes, NAB ¼ 0, the above

inequality is replaced with equality. In this case (A3)
shows internal null boundary dynamics which is of course
due to gravity effects. In other words, gravity dynamics is
relating thermodynamical sector of the solution phase space
to the other two parts, the η part and the bulk modes, and
this dynamics is featured in the focusing equation.
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