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We present the first numerical calculation of the 4D Euclidean spin foam vertex amplitude for vertices
with hypercubic combinatorics. Concretely, we compute the amplitude for coherent boundary data peaked
on cuboid and frustum shapes. We present the numerical algorithms to explicitly compute the vertex
amplitude and compare the results in different cases to the semiclassical approximation of the amplitude.
Overall we find good qualitative agreement of the amplitudes and evidence of convergence of the
asymptotic formula to the full amplitude already at fairly small spins, yet also differences in the frequency
of oscillations and a phase shift absent in the 4-simplex case. However, due to rapidly growing numerical
costs, we cannot reach sufficiently high spins to prove agreement of both amplitudes. Lastly, this setup
allows us to explore nonuniform vertex amplitudes, where some representations are small while others are
large; we find indications that scenarios might exist in which the semiclassical amplitude is a valid
approximation even if some spins remain small. This suggests that the transition of the quantum to the
semiclassical regime (for a single vertex amplitude) is intricate.
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I. INTRODUCTION

Spin foam quantum gravity [1,2] aims at defining a
nonperturbative, background independent quantization of
general relativity as a path integral over geometries closely
related to canonical loop quantum gravity [3]. The cur-
rently most advanced and most frequently used spin foam
model in 4D is the so-called Engle-Pereira-Rovelli-Livine/
Freidel-Krasnov model [4–7], EPRL-FK for short. One of
its advantages is that it makes direct contact to the
kinematical Hilbert space of loop quantum gravity, via
projected spin network states [8], and defines an evolution
of spin network states. To do so, the boundary graph is
extended one dimension higher to a 2-complex, which is
colored by the same group theoretic data as the spin
network, i.e. group representations and intertwiners. We
implement a dynamics by locally assigning an amplitude to
each spin foam state and then summing over the bulk
geometries encoded in the bulk data. Originally, the EPRL-
FKmodel is defined for 2-complexes dual to triangulations,
but Kaminski, Kiesilowski and Lewandowski (KKL)
extended the theory to arbitrary 2-complexes in [9] to
allow for arbitrary boundary graphs.

A key role in any spin foam calculation is played by the
vertex amplitude assigned to (vertices dual to) the four-
dimensional building blocks of the theory. This amplitude
is thoroughly studied and well understood in the so-called
semiclassical regime: if all group representations assigned
to a vertex are “large,” the vertex amplitude is well
approximated by a stationary phase approximation. The
critical points dominating this approximation correspond to
Regge geometries, triangulations fully prescribed by the
lengths of their edges, and weighted by the exponential of
the Regge action [10], a discretization of general relativity.
With the exception of so-called vector geometries1 [12,13],
all other geometries are exponentially suppressed in this
limit. These results are universally derived in spin foams,
e.g. for different Euclidean models [14–16], Lorentzian
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1The coherent 4-simplex amplitude is labeled by ten spins and
20 3D normal vectors. If all tetrahedra close, we have so-called
twisted geometries [11] parametrized by (gauge-invariant) 20
variables. Additionally, if the tetrahedra can be individually
rotated such that their normals on shared triangles are pairwise
antiparallel, we have a vector geometry; these span a 15-
dimensional subspace. Note that the triangles seen from different
tetrahedra need not have the same shape. Enforcing shape
matching leads to the 10-dimensional subspace of Regge geom-
etries, from which flat Euclidean 4-simplices are reconstructed.
See [12] for a thorough explanation of these geometries in the
Euclidean setting.
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signature (with spacelike and timelike tetrahedra and
triangles) [17–20] and for vertices more general than
4-simplices [12,21–24].
Unfortunately, for small representations, which we will

call the quantum regime, the asymptotic expansion breaks
down without other analytical methods to replace it. In
recent years there has been significant progress to close this
gap using numerical methods [12,25–27]: these articles
describe in detail the development and optimization of a
numerical package SL2CFOAM

2 (and SLC2FOAM-NEXT3),
which computes the 4-simplex vertex amplitude of the
Lorentzian EPRL model making use of an important
identity of SLð2;CÞ group elements derived in [28].
These algorithms furthermore lead to first studies of
2-complexes with several 4-simplices [29], e.g. to explore
the so-called flatness problem in spin foams [30–35],
yet they remain challenging due to rapidly growing
numerical costs as the representation labels are increased.
Additionally, these promising results are complemented by
developments that will help to unlock larger 2-complexes:
effective spin foam models [34,36,37] bypass this
numerical challenge by directly starting from the asymp-
totic formula to investigate under which conditions rea-
sonable semiclassical physics emerge, while Lefshetz
thimbles enable the use of Monte Carlo methods
to compute expectation values of observables on larger
2-complexes [38].
In this article we present, to our knowledge, the

first calculation of Euclidean 4D vertex amplitudes for a
2-complex more general than a triangulation, here with
combinatorics of a hybercubic lattice. We numerically
compute the amplitude for specific coherent boundary data
corresponding to cuboids and frusta; the corresponding
asymptotic expansions were computed in [21,22], respec-
tively.4 In both cases, the vertex amplitude is defined as the
contraction of eight 6-valent intertwiners. In the cuboid
case, the intertwiners are peaked on the shape of cuboids,
resulting in a vertex dual to a (not necessarily shape-
matching [12,21]) hypercuboid. For frusta, we have differ-
ent types of intertwiners: two cubes of different size
connected by frusta.5 This model can thus describe expand-
ing or contracting cubulations. The cuboid or frustum data
were chosen specifically to define restricted models:
instead of summing over all possible intertwiners, the
models were restricted by hand in order to explore a subset
of the full gravitational path integral. The restrictions,
together with using the semiclassical approximation and
the regular combinatorics of the 2-complex, opened the
door to numerically derive the first renormalization group

flow of 4D spin foam models [40–42], which revealed
indications for UV-attractive fixed point at which diffeo-
morphism symmetry could be restored. Furthermore, the
spectral dimension of the cuboid model was investigated in
[43] for periodic spin foams, which revealed a mechanism
for how the superposition of geometries of different size
can lead to a reduction in this effective dimension measure.
This article is organized as follows: in Sec. II we give a

brief introduction to spin foam models, more precisely the
Euclidean EPRL-FKmodel. We discuss the KKL extension
to more general 2-complexes and introduce the coherent
cuboid and frustum states for the intertwiners. We close the
section by recapping the derivation of the asymptotic
formula of the vertex amplitude. Section III details the
numerical computation of the vertex amplitude, from the
definition of the intertwiners in cuboid and frustum case
and their contraction giving the vertex amplitude.
Furthermore, we describe the optimization of the code
and its parallelization. In Sec. IV we present the results for
various examples in both cuboid and frustum cases
and compare the full amplitude to its asymptotic expansion.
We conclude with a discussion and outlook in Sec. V. As
supplementary materials, the code6 and data from simu-
lations7 are openly available.

II. RESTRICTED SPIN FOAM MODELS

The goal of this article is to numerically compute the
vertex amplitude of restricted spin foam models defined in
[21,22] and compare it to its semiclassical approximation.
These models were defined for the Euclidean EPRL-FK
model for Barbero-Immirzi parameter γ < 1 on a hyper-
cubic 2-complex, following the KKL extension [9]. In the
following, we give a brief introduction to spin foam
models, present the restricted models and set the scope
of this article.
The EPRL-FK model [4–7] is originally defined on

2-complexes dual to 4D triangulations. Such a 2-complex
consists of vertices v, edges e and faces f, which are dual to
4-simplices, tetrahedra and triangles, respectively, in the
dual triangulation. Part of the definition is equipping the
2-complex with fiducial orientations on its edges and faces,
which do not influence the results.
A spin foam state is given by a coloring of the 2-complex

with group theoretic data [here for SU(2)]: to each face f of
the 2-complex one assigns an irreducible representation of
the symmetry group, e.g. SUð2Þ representations labeled by
a spin jf ∈ N

2
. Each edge e carries an intertwiner ιe, an

invariant tensor under the action of the group in the product
space of representation vector spaces, e.g. Vj1 ⊗ … ⊗ Vj4
for a 4-valent SU(2) intertwiner dual to a tetrahedron. The
spins j1 to j4 are associated to the faces, which share the

2https://github.com/qg-cpt-marseille/sl2cfoam.
3https://github.com/qg-cpt-marseille/sl2cfoam-next.
4See [39] for an inclusion of a nonvanishing cosmological

constant into the frustum model.
5A frustum can be imagined as a pyramid with a square base,

whose tip has been cut off parallel to its base.

6https://github.com/CourtA96/SpinfoamAmplitudesOfCuboids
AndFrustra.

7https://doi.org/10.5281/zenodo.6006163.
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edge e. Geometrically, we interpret these data as follows: in
the orthonormal spin network basis, a 4-valent intertwiner
is labeled by five SU(2) spins, four assigned to its faces and
one recoupling label. These correspond to the areas of the
four triangles of the tetrahedron as well as the area of a
parallelogram inside the tetrahedron determined by the
recoupling scheme. In contrast to classical tetrahedra,
which are uniquely specified (up to rotations, translations,
etc.) by six edge lengths, these polyhedra are quantum [44].
Using coherent states [45] we can define intertwiners that
are sharply peaked on classical polyhedra, which play a
central role in the definition of the restricted spin foam
models and the computation of their asymptotic
amplitudes.
The assignment of amplitudes to spin foam states defines

a spin foam model; this assignment is local, i.e. we assign
an amplitude to each face, edge and vertex of the
2-complex, which then only depends on the group theoretic
data adjacent to that object. For example, the face ampli-
tude solely depends on the representation associated to that
face. Given all these ingredients, the spin foam partition
function is then given as a sum over all spin foam states, i.e.
all irreducible representations and intertwiners, weighted
by the spin foam amplitudes:

Z ¼
X
jf;ιe

Y
f

Af

Y
e

Ae

Y
v

Av: ð2:1Þ

The symbols Af, Ae and Av denote the face, edge and
vertex amplitudes, respectively, where our main focus is on
the vertex amplitude in this article.
The Euclidean EPRL-FK model [4,6,7] is derived by

imposing simplicity constraints onto Spinð4Þ ≃ SUð2Þ ×
SUð2Þ BF theory to break the topological symmetry of this
theory. In this model, these constraints restrict the Spin(4)
representations ðjþ; j−Þ, where j� label SU(2) spins. j�
must satisfy the condition

j� ¼ 1

2
ð1� γÞj; ð2:2Þ

where we choose the Barbero-Immirzi parameter γ < 1 and
j ∈ 1

2
N is an SU(2) representation. Since also j� ∈ 1

2
N γ is

restricted to a rational number, which is considered a
peculiarity of the Euclidean model. Note that alternative
impositions in the Euclidean theory avoiding this condition
exits [46]. Moreover, this condition is absent in the
Lorentzian theory [6].
For the intertwiners one defines a boosting mapΦ, which

maps an SU(2) intertwiner to a SUð2Þ × SUð2Þ intertwiner.
This map consists of two parts: first, starting from an SU(2)
intertwiner, we isometrically embed each vector space Vj

into the unique component appearing in the Clebsch-
Gordan decomposition of Vjþ;j− ≃ Vjþ ⊗ Vj− by the
map βγj. Since the resulting tensor is not invariant under

the action of SUð2Þ × SUð2Þ, one furthermore acts with the
Haar projector P on this tensor. In conclusion, the map Φ
for a 4-valent intertwiner reads

Φ∶ InvSUð2ÞðVj1 ⊗ … ⊗ Vj4Þ
→ InvSUð2Þ×SUð2ÞðVjþ

1
;j−
1
⊗ … ⊗ Vjþ

4
;j−
4
Þ; ð2:3Þ

Φ ≔ Pðβγj1 ⊗ … ⊗ βγj4Þ: ð2:4Þ

With these ingredients, the vertex amplitude is defined as
the contraction of intertwiners according to the combina-
torics of the 2-complex, often expressed as the vertex trace:

Av ≔ Tre⊃vðΦðιeÞÞ: ð2:5Þ

The numerical computation of the Euclidean vertex ampli-
tude and the comparison to its semiclassical approximation
are the objectives of this article. The numerical evaluation
of the EPRL vertex amplitude defined on triangulations has
received a lot of attention over the last few years, in
particular for the Lorentzian theory, and has seen signifi-
cant progress [25,27]. In this article, we extend this
discussion to more general 2-complexes, namely those
with the combinatorics of a hypercubic lattice, where we
compute the vertex amplitude for specific types of inter-
twiners. These are so-called cuboid and frustum inter-
twiners, which we will discuss next.

A. Cuboid and frustum spin foams

To define intertwiners that are sharply peaked on
classical discrete geometries we use coherent states, more
precisely Perelomov coherent states [45] for SU(2), which
are then boosted SUð2Þ × SUð2Þ ones. These states jj; n⃗i
are maximumweight states and are labeled by a normalized
vector n⃗ ∈ S2. They satisfy the following equations:

n⃗ · J⃗jj; n⃗i ¼ jjj; n⃗i;
hj; n⃗jJ⃗jj; n⃗i ¼ n⃗; ð2:6Þ

where J⃗ denotes the vector of generators of SU(2). Starting
from the state jj; ji≕ jj; e⃗zi (or alternatively jj;−ji), we
obtain jj; n⃗i by acting with a SU(2) group element on it,
which corresponds to the rotation of e⃗z to n⃗.

jj; n⃗i ≔ DjðgÞjj; ji; ð2:7Þ

where Dj denotes the Wigner-D matrix of representation j,
and g ∈ SUð2Þ encodes the before-mentioned rotation. This
notation is often abbreviated in the literature as g ⊳ jj; ji,
where ⊳ denotes the action of the group. Note that these
coherent states are only defined up to a phase.
A coherent intertwiner is defined as the group averaged

tensor product of several such SU(2) coherent states
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fjji; n⃗ig, with as many coherent states as the valency of the
intertwiner. For it to correspond to a classical polyhedron
its normals and representations must satisfy the closure
condition

X
i

jin⃗i ¼ 0; ð2:8Þ

which guarantees by Minkowski’s theorem [47] that a
unique, Euclidean convex polyhedron with the same faces
and outward pointing normals exists. A coherent inter-
twiner, here for a tetrahedron, is then defined as follows:

ιn⃗iji ≔
Z
SUð2Þ

dg ⊗
4

i¼1
g⊳ jji; n⃗ii: ð2:9Þ

The restricted spin foam models introduced in [21,22]
are defined on 2-complexes with regular hypercubic
combinatorics: each spin foam vertex is 8-valent, each
intertwiner is 6-valent and a vertex is shared by 24 faces. To
control this added complexity compared to a triangulation
case, the key idea is to restrict the sum over intertwiners
in the model to specific coherent intertwiners, which
furthermore restrict the representations assigned to the
faces. In this article we focus on the cuboid and frustum
intertwiners.

1. Cuboid intertwiners

Cuboids are straightforward to imagine in terms of face
areas and normals, see also Fig. 1: opposite faces have the
same area and antiparallel normals. Each face is connected
to four neighboring faces, where its normal vector is
orthogonal to all normal vectors of adjacent faces. In short,
we define this intertwiner by assigning three spins to its

three pairs of faces, and choose their normal vectors as the
Cartesian basis vectors e⃗i ¼ e⃗x; e⃗y; e⃗z:

ιj1;j2;j3 ≔
Z
SUð2Þ

dg ⊗
3

i¼1
g⊳ jji; e⃗ii ⊗

3

i¼1
g⊳ jji;−e⃗ii: ð2:10Þ

A hypercuboid built from eight such cuboid intertwiners
then depends on six representations due to the symmetry of
each cuboid intertwiner, see Fig. 2. Note that while we can
compute the three edge lengths of each cuboid from its face
areas (if all ji > 0), the edge lengths derived from different
cuboids may not agree. These configurations are called
angle matched [12,23,48], since the area and the angles of
the shared face agree, but the face’s shape does not. This
explains the apparent discrepancy between a classical
hypercuboid described by four edge lengths and the vertex
amplitude depending on six spins/areas. In [21] it is
discussed that these additional degrees of freedom allow
for torsionful configurations,8 and their appearance can be
related to the nonimplementation of the volume simplicity
constraint for the EPRL model defined on 2-complexes
more general than triangulations [24,49]. Shape-matching
configurations exist, for which the representation must
satisfy the condition (see again Fig. 2):

j1j6 ¼ j2j5 ¼ j3j4: ð2:11ÞFIG. 1. Left side: a cuboid characterized by three spins ji and
its outward pointing normals. Spins on opposite faces agree and
their normals are antiparallel. Normals on neighboring faces are
orthogonal, here described by Cartesian basis vectors e⃗i. Right
side: a frustum, also characterized by three spins j1, j2, and k. j1
and j2 give the area of top and bottom, respectively, which each
come with antiparallel normals, here �e⃗z. The four remaining
side faces carry spin k; their normals r⃗l enclose the angle ϕ with
the top normal, which is determined by the spins j1, j2, and k.
From r⃗1, we obtain the remaining normal vectors by rotations of
multiples of π

2
around the z direction.

FIG. 2. The boundary of a 4D cuboid, consisting of eight 3D
cuboids. The cuboids are glued along faces that have the same
area. Due to the symmetry of cuboids, i.e. opposite faces have the
same area, one configuration is determined by six spins/face
areas, where we have four types of cuboids.

8The edge lengths of each 3D cuboid are uniquely determined
by its areas, yet the edge lengths of neighboring cuboids may not
agree, such that their face shapes do not match. Thus it is possible
to go around a minimal rectangle in the boundary, which does not
close due to the mismatch of edge lengths in neighboring
cuboids, matching the definition of torsion in classical continuum
gravity.
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2. Frustum intertwiners

A frustum can be imagined as a pyramid with square
base, whose tip has been cut off (parallel to its base).
Moreover, it is a generalization of cuboids, see again Fig. 1.
Consider a cuboid in which two opposite faces carry spin j,
without loss of generality top and bottom, and all other
faces have spin k. If we shrink the top spin to j1, then we
find a frustum as the 3D analog of a trapezoid, where we
require that top and bottom face are squares. Given the face
areas of a frustum, i.e. j1, j2, and k, its shape is completely
specified and can be translated into three edge lengths (one
for each square and one for sides of the trapezoids).
Such polyhedra are straightforward to translate into

coherent boundary data: for top and bottom square, we
choose antiparallel normals. Without loss of generality we
choose e⃗z for the top and −e⃗z for the bottom. We call the
normals of the four “side faces” r⃗l. For this setup to be
symmetric,we require that the dihedral angle between e⃗z and
all r⃗l is equal and call itϕ.Wederive the angleϕ as a function
of the spins j1, j2, and k from the closure constraint:

j1e⃗z − j2e⃗z þ k
X4
l¼1

r⃗l ¼ 0: ð2:12Þ

We take the scalar product of this vector equationwith e⃗z and
demand e⃗z · r⃗l ¼ cosðϕÞ ∀ l:

j1 − j2 þ 4k cosðϕÞ ¼ 0 ⇔ cosðϕÞ ¼ j2 − j1
4k

: ð2:13Þ

This equation readily implies restrictions on the spins for the
angle ϕ to be well defined, i.e. −1 ≤ j2−j1

4k ≤ 1.
Given the angle ϕ, we fix the remaining normal vectors

r⃗l: we obtain them by a rotation of e⃗z around the x axis by ϕ
and a consecutive rotation around the z axis by ðl − 1Þ π

2
:

jj; r⃗li ¼ eiðl−1Þπ2JzeiϕJx ⊳ jj; e⃗zi; ð2:14Þ

where l ∈ f1; 2; 3; 4g. Eventually, the frustum intertwiner
is defined as

ιj1;j2;k ≔
Z
SUð2Þ

dg g⊳ jj; e⃗zi ⊗ g⊳ jj;−e⃗zi ⊗
4

l¼1
g⊳ jj; r⃗li:

ð2:15Þ

In the frustum case, the vertex amplitude is associated to
a hyperfrustum, which is built from two cubes of different
size9 and six frusta that interpolate between them, see
Fig. 3. The cubes have face areas j1 and j2, respectively,
and the frusta are additionally described by the area of their
side faces k. So, in total the hyperfrustum is described by
three spins.

Compared to cuboids, frusta are more interesting from a
physical point of view. On the one hand, they do allow for
curved configurations, which leads to an amplitude with
oscillatory behavior. On the other hand, they describe a
simple cosmological model: “spatial” slices are cubulated
by identical cubes and can expand or contract under
evolution via the frusta [22].
For both restricted models, the vertex amplitude is

computed by contracting the intertwiners according to
the vertex amplitude’s spin network graph, see Fig. 4.
This graph is obtained by drawing a 2-sphere around the
vertex in the 2-complex. Edges of the 2-complex pierce the
sphere in a point, which become the nodes of the spin
network, while the faces pierce the sphere along a line,

FIG. 4. Spin network graph corresponding to the vertex
amplitude of a hypercubic 2-complex. Each node represents a
6-valent intertwiner, which get contracted according to the
combinatorics of the graph.

FIG. 3. The boundary of a frustum, consisting of a small, a large
cube and six identical frusta. The top and bottom faces of each
frusta are glued to the small and large cube, respectively, which
are given by face areas j1 and j2, respectively. The only
remaining degree of freedom is the size of the side faces of
the frusta k.

9If the two cubes agree, then the hyperfrustum simplifies to a
(shape-matched) hypercuboid.
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which become the links of the spin network. These links
come with a fiducial orientation: above we defined the
intertwiners for all links outgoing. For opposite orientation,
we choose the dual state peaked on −n⃗ for convenience. We
discuss this and the semiclassical amplitude in the next
section.

B. Brief review of semiclassical amplitude

Coherent intertwiners play a crucial role in deriving the
asymptotic expansion of spin foam vertex amplitudes,
which are also often referred to as their semiclassical limit.
For coherent boundary data the vertex amplitude can be
written as an integral over several copies of the symmetry
group with an integrand given by inner products of
coherent states:

Av ¼
Z
SUð2ÞN

YN
i¼1

dgi
Y
a<b

h−n⃗bajg−1b gajn⃗abi2jab ; ð2:16Þ

where a and b denote intertwiners, and pairs ab the links
connecting intertwiner a to b. jn⃗i is the coherent state in the

fundamental spin-1
2

representation and hj; n⃗1jj; n⃗2i ¼
hn⃗1jn⃗2i2j is a property of the maximal weight states.
To study the asymptotic expansion of the vertex ampli-

tude in the Euclidean EPRL model we must consider
SUð2Þ × SUð2Þ coherent states. As mentioned above, for
γ < 1 the SU(2) representation vector space Vj is
embedded into the unique Clebsch-Gordan decomposition
of Vjþ ⊗ Vj− . For the maximum weight states and thus the
coherent states this implies

jj;n⃗i↦ jjþ;n⃗i⊗ jj−;n⃗i; with j�¼1

2
ð1�γÞj: ð2:17Þ

The same applies for the intertwiners, which in the end can
be written as the tensor product of two SU(2) intertwiners
with appropriate representations; the SU(2) integration of
the initial SU(2) intertwiner can be absorbed due to the
invariance of the Haar measure. Thus, we eventually find
the expression for the coherent vertex amplitude, which
factorizes into two expressions for “þ” and “−” variables:

Av ¼ Aþ
v A−

v ¼
�Z

SUð2ÞN

YN
i¼1

dgþi
Y
a<b

h−n⃗bajðgþb Þ−1gþa jn⃗abi2j
þ
ab

��Z
SUð2ÞN

YN
i¼1

dg−i
Y
a<b

h−n⃗bajðg−b Þ−1g−a jn⃗abi2j
−
ab

�
: ð2:18Þ

Due to the factorization of the amplitude, we can approxi-
mate each integral individually in a stationary phase
approximation.
In a nutshell, the idea of a stationary phase approxima-

tion is that highly oscillatory integrals are dominated by
stationary and critical points, for which the integral
oscillates the least. For the amplitudes in question, we
exponentiate the inner products of the coherent states and
define the action:

S� ≔
X
a<b

2jab lnh−n⃗bajðgþb Þ−1gþa jn⃗abi: ð2:19Þ

As we increase jab, e.g. by uniform scaling
fjabg → fλjabg,10 the integral oscillates faster and faster
and is dominated by the contributions from critical points.
These are determined by demanding the real part of the
action to vanish as well as its variation with respect to
the group elements ga. The latter demands closure of the
polyhedra, see Eq. (2.8), while the former determines how
these polyhedra are glued together. If these conditions are
not satisfied, then the amplitude is exponentially sup-
pressed. Configurations that are peaked on Regge

geometries, e.g. corresponding to a Euclidean 4-simplex,
possess two critical points, which differ by a phase given by
the Regge action [10]. Since these types of analyses were
performed in great detail for various cases, we just briefly
report the results relevant for this article and refer interested
readers to the detailed literature [15,16] (here for the
Euclidean 4-simplex amplitude of the EPRL model).

1. Asymptotic hypercuboid vertex amplitude

For cuboid intertwiners, the following semiclassical
formula was derived in [21]:

A�
v ¼

�
1� γ

2

�21
2

Bv; ð2:20Þ

where

Bv ¼
�

2

16π2

�
7

ð2πÞ212
�

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det−H

p þ c:c:

�
: ð2:21Þ

det−H denotes the determinant of the Hessian matrix,
which is a rational function of the six spins characterizing
the vertex amplitude. The prefactors denote the integration
volume of SU(2) times the multiplicity of critical points,
here for seven integrations, and the usual stationary phase
prefactor for integrating over 21 variables. Under uniform

10The limit λ → ∞ is often called semiclassical because the
areas in Planck units diverge. This corresponds to sending
lp → 0.
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scaling of all spins j → λj, detH → λ21 detH, such that the
amplitude scales as λ−

21
2 . Note that this amplitude is non-

oscillatory and positive, i.e. the Regge action associated to
hypercuboids vanishes identically independent of the spins.

2. Asymptotic frustum vertex amplitude

For frustum intertwiners the formula is of a similar form
but more intricate [22]. Again the vertex amplitude fac-
torizes into two amplitudes for “þ” and “−” variables:

A�
v ¼

�
1� γ

2

�21
2

B�
v ; ð2:22Þ

where the overall scaling comes again from the determinant
of the Hessian matrix. In contrast to the cuboid case, the
Regge action does not vanish, thus the amplitude Bv retains
a dependence on the Immirzi parameter γ.

B�
v ¼

�
1

8π2

�
7

ð2πÞ212
�
eið1�γÞSRffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det−H

p þ c:c:

�
; ð2:23Þ

where SR denotes the Regge action of a hyperfrustum:

SR≔6j1

�
π

2
−Θ

�
þ6j2

�
π

2
−Θ0

�
þ12k

�
π

2
−Θ00

�
; ð2:24Þ

where j1, j2 and k denote the SU(2) spins. The exterior
dihedral angles are functions of the angle ϕ and thus of the
spins.

Θ ¼ θ; ð2:25Þ

Θ0 ¼ π − θ; ð2:26Þ

Θ00 ¼ arccosðcos2θÞ; ð2:27Þ

where θ ¼ arccos 1
tanϕ. These exterior dihedral angles are

located in the hyperfrustum as follows: Θ and Θ0 are
associated to the faces that are shared by the initial final
cube and the frusta. Θ00 is belongs to faces shared between
frusta. When inserting the formula for B� into Av one
obtains an analogous result to [16]: one term corresponds to
the cosine of γSR, whereas the remaining two terms also
oscillate with the Regge action, yet without γ dependence.
Note also that the 4D dihedral angles enforce more strict

constraints on the labels j1, j2, and k than the angle ϕ
already does. For the angle θ to be well defined, we must
demand [22]

−
1ffiffiffi
2

p ≤
j2 − j1
4k

≤
1ffiffiffi
2

p : ð2:28Þ

Thus, there exist spin configurations fj1; j2; kg for which
the intertwiners are well defined, but the semiclassical

amplitude is not; i.e. no critical points exist and the
amplitude is exponentially suppressed for large spins.
This can be checked numerically in principle.
Since the vertex amplitude (for γ < 1) factorizes essen-

tially into the product of the amplitudes B�
v , we will focus

in this article on the numerical evaluation of Bv in both
cuboid in frustum cases. If we find a good agreement (or
convergence) of the full expression to its semiclassical
approximation, then these findings automatically general-
ize to the full amplitude Av, and we can save vital
computational time.
In the following section, we discuss the numerical setup

to calculate the amplitude Bv and the numerical costs.

III. NUMERICAL EVALUATION
OF THE VERTEX AMPLITUDE

The numerical implementation of the calculation of the
vertex amplitude is split into two parts: first, we compute
the intertwiners relevant for computing a particular vertex
amplitude. This is done by defining the tensor product of
coherent SU(2) states and explicit group averaging.
Second, these intertwiners are contracted with respect to
boundary graph of the vertex, i.e. the respective magnetic
indices of the intertwiners are identified and summed over.

A. Definition of coherent intertwiners

An essential ingredient for the definition of the coherent
intertwiners are the Wigner D matrices, which encode the
action of the group on the states. In this article, we define
them in the “z − x − z” convention of Euler angles α, β, and
γ (not to be confused with the Immirzi parameter):

Dj
m0mðα; β; γÞ ≔ hj; m0je−iαJze−iβJxe−iγJz jj; mi�

¼ e−im
0αdjm0mðβÞe−imγ; ð3:1Þ

where j labels the irreducible representation and m0, m are
magnetic indices labeling the basis elements of the
representation vector space Vj. djðβÞ denotes the small
Wigner d matrix, given by the matrix elements of the
exponential of the Jx generator, with α ∈ ½0; 2π�, β ∈ ½0; π�,
and γ ∈ ½0; 4π�.
The coherent intertwiners are defined as group averaged

tensor products of SU(2) coherent states, which are peaked
on a direction n⃗ ∈ S2, i.e. they diagonalize the generator of
rotations Jn⃗ associated with this directions. We define these
states by starting from the same states (jj;−ji for cuboids
and jj; ji for frusta) and act on each with a specific Wigner
D matrix rotating the state into the desired direction. In the
following we specify the angles for each 3D normal vector
in both cuboid and frustum cases.11

11SU(2) coherent states are defined up to a phase. This also
implies that the vertex amplitude is defined up to a global phase.
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Each intertwiner has three ingoing and three outgoing
links. In anticipation of the contraction, we make the
following assignment of states:

jjab; n⃗abi outgoing link a → b; ð3:2Þ

jjab;−n⃗abi† ≡ hjab;−n⃗abj ingoing link a ← b: ð3:3Þ

With this convention, the vertex amplitude is straightfor-
wardly given by identifying the indices of the intertwiners
and summing over them.
Eventually we define the intertwiner by group averaging,

i.e. we act with the same g on all states and integrate g over
SU(2). In practice, we parametrize g by the three Euler
angles α, β and γ introduced above and act with
Dðgðα; β; γÞÞ on “outgoing” states and D†ðgðα; β; γÞÞ on
the dual “ingoing” states. In the parametrization, the SU(2)
Haar measure reads

dg ¼ 1

16π2
sinðβÞdαdβdγ: ð3:4Þ

Combining all these ingredients, the intertwiners are
defined as follows

ιfjig ¼
Z
SUð2Þ

dg ⊗
i outgoing

DjiðgÞjji; n⃗ii ⊗
i ingoing

ðDjiðgÞjji;−n⃗iiÞ†;

¼
Z
SUð2Þ

dg ⊗
i outgoing

DjiðgÞDjiðhÞjji; e⃗zi

⊗
i ingoing

ðDjiðgÞDjiðhiÞjji;e⃗ziÞ†: ð3:5Þ

Here hi ∈ SUð2Þ denotes the group element rotating
e⃗z → n⃗i, which in turn are again parametrized by angles
αi, βi, and γi. We will specify these angles below in both the
cuboid as well as the frustum case.
Numerically we define the intertwiners as an array with

six indices, as many as the node has links. In the Appendix
we define the convention how to enumerate the intertwiners
and their indices. Each component is explicitly defined
following Eq. (3.5) as a three-dimensional integral in α, β,
and γ. We compute each component numerically using the
CUBA

12 package [50,51] in the programming language
JULIA, more precisely the algorithm CUHRE. Since each
component of the intertwiner is independent, its computa-
tion can be straightforwardly parallelized across multiple
cores and nodes.
In the next two subsections we briefly state the defi-

nitions of cuboid and frustum intertwiner explicitly via the
angles αi, βi, and γi chosen to rotate e⃗z → n⃗i.

1. Boundary data of cuboid intertwiners

The outward pointing normals to a cuboid are easy to
parametrize: the normal to one face is orthogonal to all the
normal vectors of its four adjacent faces and it is anti-
parallel to the normal assigned to the opposite face. Hence,
we choose the Cartesian basis vectors as the normal vectors
to the faces of the cuboids. The respective Euler angles are
given in Table I.13

2. Boundary data of frustum intertwiners

Two types of intertwiners are required for the frustum
case: cube intertwiners and frustum intertwiners. The
former are explained in the previous subsection; here we
focus on the frustum case. In particular, we must define the
Euler angles for the normal r⃗l. In addition to these states,
we must also define the angels for the dual states labeled by
−r⃗l. The angles14 are summarized in Table II.15

B. Definition of vertex amplitude

After defining the boundary data for each intertwiner and
performing the SU(2) integration for each, we compute the
vertex amplitude by contracting the indices of the inter-
twiners according to the vertex graph in Fig. 4. In the code,
we concretely define this contraction by picking a notation
for each intertwiner, identifying the shared magnetic
indices and summing over them. This is straightforwardly
possible since we have defined the intertwiners with the
subsequent contraction in mind. In the Appendix we
explain the notation and give the explicit expression of
the vertex amplitude in Eq. (A1).

TABLE I. Table of Euler angles parametrizing the boundary
states for cuboid intertwiners.

n⃗ α β γ

e⃗x − π
2

π
2

π
2

−e⃗x − π
2

− π
2

π
2

e⃗y 0 − π
2

0
−e⃗y 0 π

2
0

e⃗z 0 0 0
−e⃗z 0 π π

12https://github.com/giordano/Cuba.jl.

13We use the so-called z − x − z notation for the Wigner
matrices.

14These choices for the angles give an amplitude with a global
phase exp−iðj2 − j1Þ π2. We correct for this such that the
final amplitude is real.

15Attentive readers will notice the slight difference in defi-
nition of rotations. This is due to a slight difference in the
implementation of the codes for cuboids and frusta. For cuboids
we act on maximal states jj;−ji, whereas we act on jj; ji for
frusta. While this does not affect the results, we mention it here
for transparency.
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C. Optimization and (scaling of) numerical costs

Previous attempts to numerically calculate the full spin
foam vertex amplitude focused on the vertex amplitudes of
4-simplices; 4-simplices are the simplest discrete structures
to span a 4D space (or space-time in the Lorentzian setting),
and thus require less data to be fully specified compared to
higher-valent building blocks. By considering cuboids and
frusta we inadvertently have to face larger numerical
costs. Take the computation of a single 4-valent versus a
6-valent intertwiner, where all faces carry spin j. Naïvely, a
4-valent intertwiner has ð2jþ 1Þ4 components while the
6-valent intertwiner has ð2jþ 1Þ6 components. Similarly,
contracting the intertwiners requires us to sum over ten
magnetic indices for a 4-simplex, while we sum over 24
indices for hypercuboids/-frusta. Due to this scaling behav-
ior, optimizations are vital. In the following we explain the
optimizations we use in this work. Optimizations beyond
these are possible, yet require additional work to be
implemented for higher-valent spin foam vertex ampli-
tudes. We discuss those in more detail in the discussion
in Sec. V.
Using the symmetries of intertwiners, we can signifi-

cantly improve the scaling behavior sketched above. As SU
(2)-invariant tensors, intertwiners only span a subspace of
the full tensor product space of representation vector
spaces. Hence, there are components of intertwiners that
always vanish due to symmetry, which need not be
explicitly computed nor summed over. Clearly, implement-
ing these symmetries leads to lower computational costs.
In case of 6-valent intertwiners, where we assume (without
loss of generality) its first three indices as outgoing and its
latter three as ingoing, this condition is given by

m1 þm2 þm3 −m4 −m5 −m6 ¼ 0; ð3:6Þ

where mi denotes the magnetic indices for each link of the
intertwiner. With this condition we determine which com-
ponents of the intertwiners always vanish and thus can be
safely ignored. In practice, we implement this condition in

two different ways. When computing the intertwiners, we
explicitly checkwhether fmig satisfies this condition before
and store the allowed configurations. Then, we compute
only the allowed components explicitly and set all other ones
to zero. For the contraction, we take seven intertwiners and
fix one of their indices as a function of the remaining ones.
Additionally, we checkwhether this solution is permitted by
the representation, i.e.−ji ≤ mi ≤ ji. After this condition is
implemented for seven intertwiners, it is automatically
satisfied for the final remaining one. This optimization
greatly reduces the numerical costs, which allows us to
explore larger representations. However, increasing the
representation labels still leads to a rapid growth of costs,
which can be partially compensated by parallelizing
the code.

1. Parallelization

Our code is split into two parts: first, we compute the
intertwiners component by component performing a three-
dimensional integration over SU(2) for each component.
The final tensor is then stored in a text file; that way we
compute each intertwiner only once and reuse it if it is part
of a different vertex amplitude. Second, we compute the
contraction of the intertwiners: we read in the intertwiners
from the text files and contract them in a FOR-loop over the
nonfixed magnetic indices.
Both parts of the code are parallelizable: when calculat-

ing an intertwiner, each of its components is entirely
independent and thus can be distributed across multiple
cores (and nodes). We used JULIA’s included DISTRIBUTED

package to do so. For the contraction of the intertwiners to
obtain the vertex amplitude, we split the set of 17 FOR-loops
into two. The first one runs over the five nonfixed magnetic
indices of the first intertwiner, which is parallelized using
JULIA’s built-in multithreading functionality. The task to
compute the summands of the vertex amplitude is thus split
across multiple threads and cores. To synchronize the
results we use the ATOMIC sum routine in JULIA.
Despite these efforts, both parts of the algorithm quickly

require substantial computational resources and time.
In Fig. 5, we show the time it takes to compute one cube
intertwiner with all spins j and the time it takes to compute
the contraction of eight cube intertwiners with all spins j,
while using different number of cores on the Ara cluster in
Jena.16 In both cases, the numerical costs scale exponen-
tially as we increase the spin j despite the optimizations
mentioned before. Parallelization substantially reduces the
computational time but cannot overcome the exponential
growth. Thus, the rapidly growing numerical costs imply
that we cannot increase the representations labels indefi-
nitely. Instead, we will focus on the cases that are feasibly
accessible and compare the exact vertex amplitudes to the

TABLE II. Table of Euler angles parametrizing boundary states
of frustum intertwiners.

n⃗ α β γ

e⃗r1 − π
2

−ϕ π
2

−e⃗r1 − π
2

π − ϕ π
2

e⃗r2 0 −ϕ 0
−e⃗r2 0 π − ϕ 0
e⃗r3 − π

2
ϕ π

2

−e⃗r3 − π
2

−π þ ϕ π
2

e⃗r4 0 ϕ 0
−e⃗r4 0 −π þ ϕ 0
e⃗z 0 0 0
−e⃗z 0 π −π

16Each node is equipped with two Intel Xeon Gold 6140
processors (18 Core 2,3 Ghz, Skylake architecture).
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semiclassical approximations for the cuboid [21] and
frustum models [22]. Our code is publicly available17

and we also provide the data from our simulations.18

IV. RESULTS

In this section we present our results for the cuboid and
frusta vertex amplitudes and compare them to their semi-
classical counterparts, the first 4D result for higher-valent
spin foam vertex amplitudes. The semiclassical amplitude
for coherent boundary data is expected to be valid in a limit
where the representation labels are uniformly scaled up to
be large, i.e.AvðfλjigÞ for λ ≫ 1. In our results, we explore
this limit as best as possible, but are limited by the
exponentially growing computational costs. While we
see evidence that the full and semiclassical amplitude
converge as we increase the spins, we cannot reach
sufficiently high spins to show it explicitly, in particular
in the frustum case.

A. Beyond uniform scaling

A flat Euclidean 4-simplex is uniquely determined (up to
rotations, translations...) by its ten edge lengths, which
determine the 4D dihedral angles and areas of triangles and
thus its Regge action. Furthermore, we can translate this
4-simplex into coherent spin foam boundary data, i.e. areas
and 3D normals. Conversely, if we only know the 4D
dihedral angles of the 4-simplex, this fixes the 4-simplex up
to scale, i.e. we exactly know its shape but not its size.

In terms of spin foam boundary data, this fixes the 3D
normals and the relative areas of the triangles; by univer-
sally scaling all spins (areas), we obtain a scaled 4-simplex
of the same shape. Thus, universal scaling is straightfor-
ward to study, since we do not need to change the normal
vectors encoded in the boundary states.
However, if we want to change individual spins/areas in

a 4-simplex, we inevitably change the shape of the
corresponding 4-simplex and must compute the associated
3D normals to find a nonsuppressed vertex amplitude. This
reveals an unexpected advantage of cuboid and frustum
spin foams; due to the high degree of symmetry we can
quite freely change single representations. In the cuboid
case, the 3D normals are fixed by definition and all
assignments of spins satisfy both SU(2) coupling rules
and lead to a nonsuppressed vertex amplitude in the
semiclassical limit. For frusta, the case is a bit more
intricate: SU(2) coupling rules may be violated and depend-
ing on the spin assignments, the 3D normals must be
adapted. Fortunately, the latter are given as simple func-
tions of the spins and are thus straightforwardly realized.
This flexibility gives us the opportunity to kill two birds

with one stone: one the one hand, it gives us the unique
opportunity to study spin foam vertex amplitudes with
highly different spins, e.g. some small and some large.
In these cases, it is not known if and when the semiclassical
approximation becomes accurate. One the other hand, we
can partially tame the numerical costs of computing
intertwiners and the vertex amplitude and still explore
interesting and unknown regions of the theory.

B. Cuboid results

Let us begin by presenting the results for the vertex
amplitude for cuboid intertwiners. Recall that the semi-
classical approximation shows no oscillatory behavior, is
positive and is determined by the scaling behavior from a
stationary phase approximation. In general, we expect that
the semiclassical amplitude cannot be trusted for small
spins, e.g. it generically diverges since it is written as an
expansion in j−1; hence we expect the full amplitude to
have a different scaling behavior in the quantum regime.
Whether the full amplitude also shows no oscillatory
behavior is a priori not clear.
In general, our numerical results confirm our expect-

ations. The semiclassical amplitude overestimates the
amplitude at small spins, while they quickly approach
each other if all spins become large, i.e. if one is
approaching the regime of validity of the stationary phase
approximation. This can be seen for the vertex amplitude
where all spins are chosen equal, see Fig. 6.19 While the
difference is large for all spins j ¼ 1

2
, both amplitudes are

fairly close already at spins j ¼ 4. Its relative error

FIG. 5. Left: time to compute one cube intertwiner with all
spins equal to j. Colors mark different number of cores: one core
(blue), 16 cores (orange), 32 cores (green), and 64 cores on
different nodes (purple). Points omitted for 64 cores and small
spins. Right: time to compute the hypercube vertex amplitude for
all spins j. Colors show different number of cores used: one core
(blue), 16 cores (orange), 32 cores (green), and 72 cores (purple).

17https://github.com/CourtA96/SpinfoamAmplitudesOfCuboids
AndFrustra.

18https://doi.org/10.5281/zenodo.6006163.

19The amplitude is multiplied with the semiclassical scaling
behavior.
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ϵ ¼ jAfull
v −As:c:

v j
Afull

v
, it drops from 877% to 37%, see also Fig. 6.

Additionally, the full amplitude shows no oscillatory
behavior and is strictly positive. Results for spins
j1; j2; j3 ¼ j and j4; j5; j6 ¼ 2j are similar, see Fig. 7.
Here the relative error drops to 42% for j ¼ 2.5.
Beyond the uniform scaling of all spins, we explore

cases where we keep a few spins fixed and small, while
gradually increasing the remaining ones. The first example
is to keep one spin, e.g. j1 small, while increasing all
remaining ones. This case corresponds to a hypercuboid
with torsion [21]; it is built from cuboids and cubes whose
faces’ shapes do not match. Despite this fact, the results are
comparable to the uniform scaling of a hypercube, see
Fig. 8: the full and semiclassical amplitude quickly
approach each other, the relative error drops to 45% at
j ¼ 4 compared to 36% in the hypercube case. Thus, we
think it is plausible that in this case the semiclassical
amplitude becomes valid at sufficiently large spins despite
the fact that one spin remains small.
The next example is to fix three spins j1; j2; j3 ¼ j at

some small value j and gradually increase the remaining
ones. These are shape-matching configurations: we have
two small cubes which are connected by cuboids, whose
side rectangle become larger and larger. In Fig. 9 we
summarize three plots for j ¼ 1

2
; 1; 3

2
: As in the previous

examples, we do observe a convergence between the full
and semiclassical amplitude, but significantly slower
despite the fact that we can explore larger spins. For
j ¼ 1

2
the relative error remains around 100% and only

slowly decreases, while it rapidly improves to above 60%
for j ¼ 1 and 50% for j ¼ 3

2
. The two latter cases suggest

that a semiclassical regime could be reached even if some
spins remain small as long as other spins become large.

The final set of examples is the most peculiar: we keep
five spins j1;…; j5 small and increase j6 as much as
numerically possible. For the remaining spins fjigi¼1;…;5

we choose different values j ¼ 1
2
; 1;…; 5

2
. The results are

summarized in Fig. 10. Qualitatively we observe a similar
behavior as in the previous examples: full and semiclassical
amplitude both show a similar scaling behavior, where the
semiclassical amplitude generically overestimates the
amplitude for small spins. However, while the gap between
full and semiclassical amplitude closes initially as j6 is
increased, a finite gap remains (in log-scale) for large j6. As
we increase the spins fjigi¼1;…;5 this gap narrows down

FIG. 7. Left side: semiclassical (blue) and full (orange) vertex
amplitudeAv for j1 ¼ j2 ¼ j3 ¼ j and j4 ¼ j5 ¼ j6 ¼ 2j multi-
plied with j

21
2 with logarithmic scale. Green line is the semi-

classical amplitude for continuous values of j. Right side: relative
error ϵ of semiclassical ampltitude to the full one in logarithmic
scale.

FIG. 6. Left side: semiclassical (blue) and full (orange) vertex
amplitude Av for all ji ¼ j multiplied with j

21
2 with logarithmic

scale. Green line is the semiclassical amplitude for continuous
values of j. Right side: relative error ϵ of semiclassical amplitude
to the full one in logarithmic scale.

FIG. 8. Left side: semiclassical (blue) and full vertex amplitude
(orange)Av for j1 ¼ 0.5 and all remaining ji ¼ jmultiplied with
j
20
2 with logarithmic scale. Green line show the semiclassical

amplitude for continuous values of j. Right side: relative error ϵ
of the semiclassical amplitude to the full one in logarithmic scale.
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further, but does not close for the values of j6 that we have
reached. This is reflected also in the relative error, see again
Fig. 10, which drops from roughly 285% for ji ¼ 1

2
to 47%

for j ¼ 5
2
. At large j6, increasing j6 → j6 þ 1 typically

results in a reduction of the relative error in its third digit.
Thus, it appears unlikely that further and further increasing
j6 would lead to a regime in which the semiclassical
amplitude could well approximate the full one unless we
also increase fjigi¼1;…;5.
To summarize the results for the cuboid amplitude: in

agreement with the semiclassical analysis, the full ampli-
tude is strictly positive and shows no oscillatory behavior.
Thus, both amplitudes are determined by their scaling
behavior. Under uniform scaling of all spins, we observe a
quick convergence between the full and the semiclassical
amplitude, but due to high numerical costs we cannot reach
large enough spins to prove their equivalence. Additionally,
we studied cases in which we keep a subset of spins
constant and small, while increasing the remaining ones.
Here, we make a few general observations: in general, the
fewer spins remain small the better the semiclassical
approximation gets in full agreement with the asymptotic
expansion. Moreover, the smallness of a few spins can be
(at least partially) compensated by making the remaining
spins even larger. However, there is also a limit to this,
namely if too many spins remain small, increasing the
remaining ones cannot compensate this and the semi-
classical approximation remains invalid and likely cannot
be reached. These findings suggest that the transition
between the full quantum regime and the semiclassical

one (for a single vertex amplitude) is intricate: it appears
plausible that configurations exist for which the semi-
classical approximation is valid despite the fact that some
spins are small.

C. Frustum results

The vertex amplitude for frustum intertwiners promises
to be more interesting than the cuboid one since we expect
an oscillatory behavior from its semiclassical analysis.
However, frusta are more restrictive than the cuboid case:
in addition to depending on just three spins j1, j2, and k,
these spins cannot be chosen arbitrarily. First, we must
ensure that the angle ϕ, defined by cosðϕÞ ¼ j2−j1

4k , is well
defined. This limits e.g. increasing j2 while keeping j1 and
k fixed. Additionally, frustum intertwiners do not auto-
matically satisfy the SU(2) coupling rules: while we can
choose k freely, both j1 and j2 have to be either half-integer
or integer valued.20 Since the numerical costs are similar to
the cuboid case, uniform scaling of all spins, which is ideal
to showcase the oscillatory behavior of the amplitude, is
limited, such that a meaningful comparison and conclusion
is difficult. Additionally, wewill again explore cases, where
some spins remain small and still show a rich oscillatory
behavior.
Let us first discuss uniform scaling of the arguments of

the frusta vertex amplitude. Here we do not consider the

FIG. 9. Left side: semiclassical and full vertex amplitudeAv for
j1 ¼ j2 ¼ j3 ¼ 0.5, 1, 1.5 and j4 ¼ j5 ¼ j6 ¼ j multiplied with
j
29
4 with logarithmic scale. The plots at the top are for j1 ¼ j2 ¼

j3 ¼ 0.5 followed by j1 ¼ j2 ¼ j3 ¼ 1 and j1 ¼ j2 ¼ j3 ¼ 1.5.
The semiclassical amplitude is always larger than the full one.
Solid lines show the semiclassical amplitudes for continuous
values of j. Right side: relative error ϵ of semiclassical amplitudes
to the full one in logarithmic scale, again j1 ¼ j2 ¼ j3 ¼ 0.5
followed by j1 ¼ j2 ¼ j3 ¼ 1 and j1 ¼ j2 ¼ j3 ¼ 1.5.

FIG. 10. Left side: semiclassical and full vertex amplitudes Av
for ji ¼ 0.5, 1, 1.5, 2, 2.5, i ∈ f1;…; 5g and j6 ¼ j multiplied
with j3 with logarithmic scale. The plots are ordered from top to
bottom by ji ¼ 0.5, ji ¼ 1, etc., to ji ¼ 2.5, i ∈ f1;…; 5g. The
semiclassical amplitude is always larger than the full one. Right
side: relative error ϵ of semiclassical amplitudes to the full one in
logarithmic scale, again ji ¼ 0.5, ji ¼ 1, etc., to ji ¼ 2.5, i ∈
f1;…; 5g from top to bottom.

20The representations at the links of an intertwiner must sum
up to an integer. This is automatically satisfied for k, since four
links carry this spin. The two remaining links carry j1 and j2,
respectively.
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cases where j1 ¼ j2, since then ϕ ¼ π
2
and the amplitude

reduces to a particular cuboid amplitude.21 To move to a
more interesting case, we consider j1 ¼ k ¼ j and j2 ¼ 2j.
This corresponds to a hyperfrustum built from a small cube
and a cube twice as large connected by six frusta. The
results are presented in Fig. 11. Unfortunately, due to high
numerical costs and constraints from coupling rules, we
were not able to compute the vertex amplitude beyond
j ¼ 2.22 Additionally, we study the case j1 ¼ k ¼ j and
j2 ¼ 3j: here the coupling rules are always satisfied such
that we can compute more nonvanishing amplitudes
(despite larger costs). Still, we can only see half a
oscillation of the vertex amplitude. Due to the lack of
data, we cannot draw many conclusions: while we observe
a qualitatively similar behavior between the full and the
semiclassical amplitude, we also observe differences,
namely the scaling behavior (similar to the cuboid case)
and a phase shift in the oscillations. The phase shift is
visible in the nonalignment of the roots in both cases. The
frequency of oscillations look similar in the case j2 ¼ 3j,
but the oscillations are too rapid to be resolved by the spins.
Unfortunately we have too little data to conclude a
convergence of the amplitudes for large spins.
For the next comparison, we keep the spin of the initial

cube j1 fixed at a small value and increase j2 ¼ k ¼ j. The

results for j1 ¼ 0.5 and for j1 ¼ 1 are shown in Fig. 12 left
and right sides, respectively. These cases are interesting,
since the semiclassical amplitude shows a clear oscillatory
behavior and we can feasibly explore larger values of j.
Indeed, the full amplitude shows also an oscillatory
behavior qualitatively similar to the semiclassical ampli-
tude. The frequency of the full and semiclassical amplitude
look similar (as far as one can tell from the data), but we see
a phase shift again. Again, as for the previous cases, the
absolute value of the full amplitude is smaller than the
semiclassical one, yet they approach each other as we
increase j. Note that since we do not uniformly scale all
spins, the frequency of oscillations changes as we increase
j. Unfortunately, increasing j enough to see convergence is
out of reach, but the data look promising.
In the final set of cases, we consider hyperfrusta where

we keep j2 − j1 fixed and increase k, i.e. we keep the size
differences of the areas of squares fixed. For large k, the
frustum intertwiners and the semiclassical amplitude are
well defined, even if j1 and j2 are small. Geometrically,
these cases can be understood as follows: if j2 − j1 ¼ 0,
then we have the cuboid case again with an angle ϕ ¼ π

2
.

Increasing this difference (with 4k ≥ j2 − j1), decreases ϕ,
which in turn leads a nonvanishing Regge action and an
oscillatory behavior; we observe more rapid oscillations as
we increase j2 − j1. Conversely, increasing kwhile keeping
fixed j2 − j1 we approach the cuboid case again as k → ∞,
such that we expect oscillations to seize.
Due to the similarity of these cases, we discuss them

together. We present the results for j2 − j1 ¼ 1 in Fig. 13
for j2 − j1 ¼ 2 in Fig. 14, for j2 − j1 ¼ 3 and j2 − j1 ¼ 4
in Fig. 15 and for j2 − j1 ¼ 5 in Fig. 16. Let us first discuss
the semiclassical amplitude: at small k, we observe
more and more rapid oscillations as we increase the
difference j2 − j1. Moreover, we see that the amplitude

FIG. 11. Left: semiclassical (blue) and full vertex amplitude
(orange) Av multiplied by j

21
2 of a hyperfrustum with j1 ¼ k ¼ j

and j2 ¼ 2j. Green line shows the semiclassical amplitude for
continuous j (ignoring coupling rules). Right: semiclassical
(blue) and full vertex amplitude (orange) Av multiplied by j

21
2

of a hyperfrustum with j1 ¼ k ¼ j and j2 ¼ 3j. Green line shows
the semiclassical amplitude for continuous j (ignoring coupling
rules).

FIG. 12. Both sides show the semiclassical (blue) and full
vertex amplitude in the frustum case, where we keep j1 ¼ i small
and increase j2 ¼ k ¼ j. The green line shows the semiclassical
amplitude for continuous j (ignoring coupling rules). Left side:
i ¼ 0.5. Right side: i ¼ 1.

21We note that the results fully agree with the cuboid amplitude
studied above.

22For j ¼ 3, we need to compute one cube intertwiner with
j2 ¼ 6, which unfortunately proves too costly. The largest
intertwiner we were able to compute was for all j ¼ 5.5, which
took more than six days using 8 nodes with 36 cores=72 threads
each.
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is about to diverge as k → 0, but becomes ill defined and
is set to zero. In contrast, as we send k → ∞ the oscillations
seize, the amplitude becomes positive as in the cuboid
case.
Qualitatively the full amplitude agrees well with the

semiclassical one. At small k it follows the rapid oscil-
lations, i.e. the sign of the amplitude and the sign changes
agree, while it simultaneously cures the divergences as we
approach k → 0. This can be nicely seen already at j2 −
j1 ¼ 2 in Fig. 14. Furthermore, in cases where the semi-
classical amplitude is ill defined because no critical point
exists for this configuration, the full amplitude is well
defined and nonvanishing. Note that since all spins are
small, we cannot expect to observe an exponential

suppression of the full amplitude due to the nonexistence
of critical points. For k → ∞, the frequency of oscillations
is slower for the full amplitude, yet in both cases the
frequency slows down and eventually seizes, such that both
amplitudes approach the cuboid case. As before, the gap for
large k between the semiclassical and the full amplitude
shrinks if the spins of the frustum are larger, see
e.g. Fig. 16.
In a nutshell, the frustum amplitude is significantly more

interesting than the cuboid amplitude, since it tests the
oscillatory behavior of the amplitude in addition to its
scaling behavior. The interpretation of these results are a bit
more subtle, however: in general, we observe a good
qualitative agreement between both amplitudes. In most

FIG. 13. Both sides show the semiclassical (blue) and full
vertex amplitude in the frustum case, where we increase k and
keep j1 ¼ i and j2 small with j2 − j1 ¼ 1. The green line shows
the semiclassical amplitude for continuous k (ignoring coupling
rules). Left side: i ¼ 0.5. Right side: i ¼ 1.

FIG. 14. Plots of the semiclassical (blue) and full vertex
amplitude (orange) in the frustum case for j2 − j1 ¼ 2, where
we keep j1 ¼ i small and increase k. The green line shows the
semiclassical amplitude for continuous k (ignoring coupling
rules). Left side: i ¼ 0.5. Right side: i ¼ 1.

FIG. 15. Left: semiclassical (blue) and full vertex amplitude
(orange) for j2 − j1 ¼ 3, j1 ¼ 0.5 and we increase k. Left:
semiclassical (blue) and full vertex amplitude (orange) for
j2 − j1 ¼ 4, j1 ¼ 0.5 and we increase k. The green line shows
the semiclassical amplitude for continuous k (ignoring coupling
rules).

FIG. 16. Semiclassical (blue) and full vertex amplitude (or-
ange) for j2 − j1 ¼ 5, j1 ¼ 0.5 and we increase k. The green line
shows the semiclassical amplitude for continuous k (ignoring
coupling rules).
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cases the frequency of oscillations is close and we only
observe a small phase shift. Additionally, the scaling
behavior of the amplitudes is comparable to the cuboid
case. Unfortunately, due to the properties of the amplitude,
we cannot fully resolve the oscillations to determine the
frequency more accurately or we lack the data due to high
computational costs. Thus, while we cannot unambigu-
ously prove that the semiclassical amplitude becomes a
viable approximation at large spins, our results look
promising. Moreover, we also see first indications in the
frustum case that the semiclassical approximation might be
valid even if some spins remain small (if the other ones
are large).

V. DISCUSSION AND OUTLOOK

In this article, we present the first numerical calculation
of the vertex amplitude of the 4D Euclidean EPRL-FK [6,7]
in the KKL extension [9] that allows for higher-valent
vertices not dual to a 4-simplex. We compute it for vertices
with hypercubic combinatorics and coherent boundary data
that correspond to cuboids [21] and frusta [22]. We
compare the results to the semiclassical amplitude derived
using a stationary phase approximation valid if all spins are
large and observe overall good qualitative agreement and
convergence of both amplitudes.
If we compare our results to those of the Euclidean

4-simplex in [12], where the equilateral and isosceles
4-simplex are investigated, we observe both similarities
and differences. Under uniform scaling, the 4-simplex
amplitude shows great agreement of both amplitudes. The
frequency of oscillations matches as peaks and roots of the
amplitude align well, no phase shift is visible. For large
spins the scaling of the amplitudes also agree very well.
The expected discrepancy is at small spins, where the full
amplitude cures the divergence of its semiclassical
counterpart. In our results, we also observe a good
convergence of the scaling behavior, in particular in the
cuboid case. From the frusta case, which is the only one
with an oscillating amplitude, we see a qualitative agree-
ment, but also slight differences. Since the roots of the
amplitudes do not align, one could conclude that there is a
phase shift between the amplitudes. However, since we
cannot accurately resolve the frequency due to the rapid
oscillations of the amplitude, this could also be caused
by a difference in frequency (or a combination of both).
Due to the high numerical costs for large spins, we cannot
say whether both amplitudes agree better as spins
increase.
Despite these drawbacks, cuboids and frusta also have

an advantage compared to 4-simplices: given a set of 3D
normals corresponding to a flat Euclidean 4-simplex
together with the ten areas of triangles, one can only
uniformly scale the areas. Changing individual spins
without adapting the 3D normals leads to exponentially
suppressed configurations. In contrast, cuboids and frusta

allow us to more freely change single spins, without
adapting the boundary data. This allows us to straight-
forwardly explore new regimes of the vertex amplitude,
e.g. where some spins remain small and others become
large, to see whether and when the semiclassical ampli-
tude becomes a valid approximation. Additionally, this
comes with the benefit of lower computational costs,
which allows us to further increase the remaining spins.
In particular in the cuboid case, we find several examples
where both full and semiclassical amplitude show signs of
convergence despite that fact that some spins are small.
To compensate for this, the remaining spins need be larger
to achieve the same relative error e.g. compared to
uniform scaling. We partially see this for frusta as well.
Nevertheless, there exists also the opposite situation: if too
many spins remain small, the relative error convergences
to a nonvanishing value and we cannot compensate for the
smallness of spins by increasing the remaining ones. As a
final point, these cases give us further insight into the
properties of the frusta amplitude: while qualitatively both
amplitudes agree well, the full amplitude has a different
frequency than the semiclassical one,23 a feature that is
absent for 4-simplices. We do not know the origin of this
feature and whether the frequencies agree better if all
spins are large. Obtaining these data requires further
numerical optimization.
A great obstacle in numerically computing spin foam

vertex amplitudes is the rapid growth of computational
costs as one increases the representation labels. While the
cases for small spins can be performed quickly on modern
consumer machines, larger spins require the use of dedi-
cated high performance computing facilities. This fact is
already known for spin foam models defined on triangu-
lations [12,25,27], and makes exploring 2-complexes
with multiple vertices challenging. In this work, we have
observed that the scaling of numerical costs for
2-complexes more general than triangulations is more rapid
and severely limits our ability to explore larger spins
despite using considerable computational resources. To
go further and reach the regime in which the semiclassical
amplitude is valid, further optimization is vital, which is
however more intricate to implement compared to the
triangulation case. In the following we briefly discuss
the possibilities.

(i) Orthonormal spin network basis for intertwiners:
the most computationally costly task are the group
integrations to compute the coherent 6-valent inter-
twiners. These group integrations can be avoided by
expressing the coherent intertwiners in the spin
network basis for a choice of recoupling scheme,
which requires three auxiliary SU(2) spins. To do
so one computes the overlap between the spin

23Note that under nonuniform scaling the deficit angles of the
hyperfrusta change as we increase a subset of spins.
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network basis and the coherent intertwiners; the
group integration is then redundant and can be
dropped. The coherent vertex amplitude is then
given as a contraction of spin network intertwiners
times the overlaps of orthonormal and coherent
intertwiners.

(ii) Express contraction in terms of recoupling symbols:
the caveat of the previous point is that it requires us
to perform more contractions of intertwiners,
namely one contraction for each combination of
basis elements of 6-valent intertwiners. Together
with the fact that this is the second most costly step
of the algorithm, this task is daunting and the reason
why we did not pursue this direction in this work.
Nevertheless, using the spin network basis bears the
potential of further optimization as in the 4-simplex
case [12,29]. The SU(2) f15jg symbol can be
expressed as a sum over products of five f6jg
symbols; the computation of f6jg symbols is highly
optimized and the sum runs over a single spin, which
is significantly more efficient than the explicit
contraction of intertwiners. For a 2-complex with
hybercubic combinatorics such a formula can be
derived using SU(2) recoupling theory, but we
expect more internal summations compared to the
4-simplex case.

(iii) Sum over intertwiner labels as tensor contractions:
the final step to derive the coherent vertex amplitude
is to multiply the vertex amplitude in the spin
network basis with the overlaps of coherent and
spin network intertwiners, and sum over all spin
network intertwiner basis elements, here given by
three spins each. This operation can be written as the
contraction of a tensor network: we interpret the
vertex amplitude in the spin network basis as an
8-valent tensor, whose indices label the intertwiner
basis elements; in turn, the overlaps are given as
vectors. The full amplitude is then the contraction of
the vertex amplitude tensor with the eight vectors of
overlaps. Such operations can be highly optimized
using linear algebra techniques, see e.g. the tensor
network community [52]. Such efficient contraction
algorithms can e.g. be found in the package
TENSOROPERATIONS

24 for JULIA including GPU
support.

While these ideas are promising, we cannot estimate how
much we could increase the spins compared to the results
presented in this article. However, all the above-mentioned
optimizations are or can be implemented in the algorithm
for 4-simplices as well, which will still be less costly
computationally compared to more general 2-complexes.
Thus, spin foam models for 4-simplices promise the best
chances to be feasibly numerically explored, such that we

can identify the regime in which the semiclassical approxi-
mation is valid. Additionally there are further arguments in
favor of 4-simplices: in [49], it was explicitly shown that
the EPRL-FK model defined on 2-complexes more general
than triangulations does not impose the so-called volume
simplicity constraint. In a 4-simplex, this constraint
requires that the 4D volume spanned by two bivectors,
which are assigned to triangles that only share one vertex of
the 4-simplex, is the same for any choice of such bivectors.
Indeed, this constraint is automatically implemented clas-
sically once the other constraints (diagonal and cross-
simplicity [5]) are enforced and thus it is not explicitly
implemented in the EPRL-FK model. These works suggest
that the EPRL-FK models defined on triangulations and
nontriangulations are not the same, where the former
appears as a more suitable candidate for a theory of
quantum gravity. Moreover, it is not clear how volume
simplicity could be suitably implemented in spin foams
defined on general 2-complexes [24].
Nevertheless, we can still draw several interesting

conclusions from this work. The original motivation to
define the restricted models was to explore a subset of the
gravitational path integral of spin foam models to study its
renormalization and observables. Indeed, first indications
for a UV-attractive fixed point were found in [40–42]
as well as a study of the spectral dimension of the cuboids
[43]. Both examples are highly sensitive to the scaling
behavior of the spin foam amplitudes (including face
and edge amplitudes), such that the modified scaling
behavior at small spins could modify these results.
For example, the spectral dimension of cuboid spin foams
is solely determined by the scaling behavior of the
amplitude, which we thus expect to change at small spins.
We hope that similar calculations become possible
soon for the full model defined on triangulations
thanks to the development of powerful numerical tools
[12,25,27] as well as using effective spin foam models
[34,36,37] and Lefshetz-thimble Monte Carlo tech-
niques [38].

ACKNOWLEDGMENTS

C. A. would like to thank Erik Schnetter for discussions
on implementing parallelization in JULIA. S. S. would like
to thank Benjamin Bahr and Sebastian Klöser for early
discussions about how to compute the cuboid vertex
amplitude. S. S. is funded by the Deutsche Forschungs
gemeinschaft (DFG, German Research Foundation)—
Projektnummer/Project No. 422809950. This research
was in part supported by Perimeter Institute for
Theoretical Physics. Research at Perimeter Institute is
supported in part by the Government of Canada through
the Department of Innovation, Science and Economic
Development Canada and by the Province of Ontario
through the Ministry of Colleges and Universities.24https://github.com/Jutho/TensorOperations.jl.

ALLEN, GIRELLI, and STEINHAUS PHYS. REV. D 105, 066003 (2022)

066003-16

https://github.com/Jutho/TensorOperations.jl
https://github.com/Jutho/TensorOperations.jl
https://github.com/Jutho/TensorOperations.jl


APPENDIX: NOTATION FOR INTERTWINERS
AND THEIR CONTRACTIONS

In the code we are using the following notation for the
intertwiners and the vertex amplitude: first, we enumerate
the intertwiners as shown on the left of Fig. 17. Second, we

enumerate the indices of each intertwiner as on the right of
Fig. 17. Following this notation, the first index of inter-
twiner 1 gets contracted with the fourth index of inter-
twiner 2.
The final vertex amplitude is then given by

Av¼
X
fmig

ι1ðm1;m2;m3;m4;m5;m6Þι2ðm7;m8;m9;m1;m10;m11Þι3ðm9;m12;m13;m14;m15;m3Þι4ðm8;m16;m12;m17;m2;m18Þ

× ι5ðm7;m19;m13;m20;m16;m21Þι6ðm4;m17;m14;m20;m22;m23Þι7ðm11;m18;m6;m23;m24;m21Þ
× ι8ðm10;m5;m15;m22;m19;m24Þ: ðA1Þ

Here we have written the magnetic indices of the inter-
twiner as arguments to make them more readable. In total
the sum runs over 24 indices, each within the bounds given
by the respective SU(2) representation.
We optimize this summation by using the properties of

intertwiners: for seven intertwiners we can fix one magnetic
index as a function of the others if this solution is within the

allowed bounds. Concretely we fix m1, m7, m12, m16, m20,
m22, and m24.
The calculation is written as a FOR-loop over all nonfixed

magnetic indices. We parallelize this operation by splitting
five variables, m2 to m6, off into an outer loop, which we
parallelize. The results are added up using ATOMIC addition
to synchronize the contributions from different threads.
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