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We perform the manifestly covariant quantization of a scale invariant gravity with a scalar field, which is
equivalent to the well-known Brans-Dicke gravity via a field redefinition of the scalar field, in the
de Donder gauge condition (or harmonic gauge condition) for general coordinate invariance. First, without
specifying the expression of a gravitational theory, we write down various equal-time (anti)commutation
relations (ETCRs), in particular, those involving the Nakanishi-Lautrup field, the Faddeev-Popov (FP)
ghost, and the FP antighost only on the basis of the de Donder gauge condition. It is shown that choral
symmetry, which is a Poincaré-like IOSpð8j8Þ supersymmetry, can be derived from such a general action
with the de Donder gauge. Next, taking the scale invariant gravity with a scalar field as a classical theory,
we derive the ETCRs for the gravitational sector involving the metric tensor and scalar fields. Moreover, we
account for how scale symmetry is spontaneously broken in quantum gravity, thereby showing that the
dilaton is a massless Nambu-Goldstone particle.

DOI: 10.1103/PhysRevD.105.066001

I. INTRODUCTION

A residual symmetry which is left behind after taking a
certain gauge-fixing condition for the gauge invariance, has
thus far played an important role in quantum field theory.
For instance, in string theory, conformal symmetry on the
world sheet can be thought as the fundamental symmetry in
perturbative regime where strings are weakly interacting
[1]. The conformal symmetry is a typical residual sym-
metry, which is left in a theory after taking the conformal
gauge for the world-sheet diffeomorphism [or general
coordinate transformation (GCT)] and the Weyl symmetry
(or a local scale transformation) [2].
Recently, we have elucidated various aspects of such

residual symmetries existing in some gravitational theories.
In particular, in the most recent study, we have shown that
using the simplest scalar-tensor gravity [3] the restricted
Weyl symmetry (RWS) and general coordinate invariance
generate conformal symmetry in four dimensions in a flat
Minkowski background [4–6].
Also about Einstein gravity, in a pioneering work by

Nakanishi [7,8], on the basis of the Einstein-Hilbert action
in the de Donder gauge (harmonic gauge) for general
coordinate invariance, it has been shown that there remains

a huge residual symmetry, which is a Poincaré-like
ISOpð8j8Þ supersymmetry, called “choral symmetry,”
including the BRST symmetry and GLð4Þ symmetry etc.
It is of interest that in this formulation the graviton can be
identified with a Nambu-Goldstone particle associated with
spontaneous symmetry breakdown of GLð4Þ symmetry to
the Lorentz symmetry SOð1; 3Þ, thereby proving the
exact masslessness of the graviton in a nonperturbative
manner [9].
However, in this formulation, the Einstein equation was

critically used in obtaining the equal-time commutation
relation ½bμ; _b0ν� ¼ if̃ð∂μbν þ ∂νbμÞδ3, which is needed in
proving the closure of the ISOpð8j8Þ algebra among the
generators, so the formulation depends on the Einstein-
Hilbert term in a classical action. One of our motivations is
to relax this situation and show that the choral symmetry
does not depend on the expression of the classical gravity
but completely comes from the de Donder gauge condition
for GCT in the BRST formalism [10]. For this purpose,
without the knowledge of the classical Lagrangian we
derive various equal-time (anti-)commutation relations
(ETCRs) for the Nakanishi-Lautrup field, the Faddeev-
Popov (FP) ghost, and the FP antighost only on the basis of
the de Donder gauge condition.
Another motivation behind the study at hand is to

construct a quantum theory of the well-known Brans-
Dicke gravity [11] by constructing its manifestly covariant
BRST formalism since many of studies of the Brans-Dicke
gravity have been limited to a classical analysis. As a
concrete advantage of our quantum theory where the
gravity as well as a scalar field are quantized, we will
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show that scale invariance is spontaneously broken and
consequently “dilaton” is exactly massless thanks to the
Nambu-Goldstone theorem even in quantum gravity.
We close this section with an overview of this article.

In Sec. II, we discuss a quantum gravity for which the
de Donder gauge is adopted as a gauge condition for
the general coordinate invariance. In Sec. III, we calculate
the ETCRs for the Nakanishi-Lautrup auxiliary field, the
FP ghost and the FP antighost based on the quantum gravity
made in Sec. II. In Sec. IV, we calculate the ETCRs
involving among the Nakanishi-Lautrup field and its time
derivative without using the information on a classical
gravitational action, and then comment on choral sym-
metry. In Sec. V, a scale invariant scalar-tensor gravity is
briefly reviewed. In Sec. VI, by selecting the scale invariant
scalar-tensor gravity as a classical theory we calculate the
ETCRs for the gravitational sector, and in Sec. VII we
discuss spontaneous symmetry breakdown of the scale
invariance and show that the dilaton is exactly massless
owing to the Nambu-Goldstone theorem in quantum
gravity. The final section is devoted to the conclusion.
Two Appendixes are put for technical details. In
Appendix A, a derivation of the tensorlike ETCR is given,
and in Appendix B we have derived the scale current via the
Noether theorem.

II. QUANTUM GRAVITY
WITH DE DONDER GAUGE

We wish to consider a manifestly covariant canonical
formalism of general gravitational theories where general
coordinate invariance is fixed by the de Donder gauge
condition. To take a more general theory into consideration,
without specifying the concrete expression of the gravita-
tional Lagrangian, we will start with the following classical
Lagrangian1:

Lc ¼ Lcðgμν;ϕÞ; ð1Þ

which includes the metric tensor field gμν and a scalar field
ϕ as dynamical fields, and is invariant under the general
coordinate transformation (GCT). We assume that Lc does
not involve more than first order derivatives of the metric
and matter fields.
Let us fix the general coordinate symmetry by the de

Donder gauge condition (or harmonic gauge condition):

∂μg̃μν ¼ 0; ð2Þ

where we have defined g̃μν ≡ ffiffiffiffiffiffi−gp
gμν ≡ hgμν. Then, the

BRST transformation is of the form:

δBc̄ρ ¼ iBρ; δBcρ ¼ −cλ∂λcρ; δBϕ ¼ −cλ∂λϕ;

δBgμν ¼ −ð∇μcν þ∇νcμÞ
¼ −ðcα∂αgμν þ ∂μcαgαν þ ∂νcαgμαÞ;

δBg̃μν ¼ hð∇μcν þ∇νcμ − gμν∇ρcρÞ: ð3Þ

Using this BRST transformation, the Lagrangian for the
gauge-fixing condition and FP ghosts can be constructed in
a standard manner

LGFþFP¼δBðig̃μν∂μc̄νÞ
¼−g̃μν∂μBν−i∂μc̄ν½g̃μρ∂ρcνþ g̃νρ∂ρcμ−∂ρðg̃μνcρÞ�:

ð4Þ

To simplify this expression, let us introduce a new auxiliary
field bρ defined as

bρ ¼ Bρ − icλ∂λc̄ρ; ð5Þ

and its BRST transformation reads

δBbρ ¼ −cλ∂λbρ: ð6Þ

Then, the Lagrangian (4) can be cast to the form:

LGFþFP¼−g̃μν∂μbν−ig̃μν∂μc̄ρ∂νcρþi∂ρðg̃μν∂μc̄ν ·cρÞ: ð7Þ

As a result, up to a total derivative, the gauge-fixed and
BRST-invariant quantum Lagrangian is given by

Lq ¼ Lc − g̃μν∂μbν − ig̃μν∂μc̄ρ∂νcρ

≡ Lc þ LGF þ LFP; ð8Þ

where we have defined

LGF ≡ −g̃μν∂μbν; LFP ≡ −ig̃μν∂μc̄ρ∂νcρ: ð9Þ

By performing the integration by parts once, let us rewrite
the Lagrangian (8) as

Lq ¼ Lc þ ∂μg̃μνbν − ig̃μν∂μc̄ρ∂νcρ þ ∂μVμ

≡ Lc þ L̄GF þ LFP þ ∂μVμ; ð10Þ

where a surface term Vμ and L̄GF are defined as

Vμ ≡ −g̃μνbν; L̄GF ≡ ∂μg̃μνbν: ð11Þ

From this Lagrangian, we can obtain field equations by
taking the variation with respect to gμν, ϕ, bν, c̄ρ, and cρ in
order:

1We follow the notation and conventions of MTW textbook
[12]. Greek little letters μ; ν; � � � and Latin ones i; j; � � � are used
for space-time and spatial indices, respectively; for instance,
μ ¼ 0, 1, 2, 3 and i ¼ 1, 2, 3. Furthermore, the Riemann
curvature tensor and the Ricci tensor are respectively defined
by Rρ

σμν ¼ ∂μΓ
ρ
σν þ Γρ

λμΓλ
σν − ðμ ↔ νÞ and Rμν ¼ Rρ

μρν.
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1ffiffiffiffiffiffi−gp δLc

δgμν
−
1

2

�
Eμν−

1

2
gμνE

�
¼ 0;

δLc

δϕ
¼ 0;

∂μg̃μν ¼ 0; gμν∂μ∂νcρ ¼ 0; gμν∂μ∂νc̄ρ¼ 0; ð12Þ

where we have defined

Eμν ¼ ∂μbν þ i∂μc̄ρ∂νcρ þ ðμ ↔ νÞ;
E ¼ gμνEμν: ð13Þ

Next, in order to find the field equation for the bρ field,
let us take a covariant derivative of the first Einstein
equation in Eq. (12). The result reads

∇μ

�
Eμν −

1

2
gμνE

�
¼ 0; ð14Þ

where we have used the equation

∇μ δLc

δgμν
¼ 0: ð15Þ

This equation can be shown as follows: Using the GCT
invariance of the classical action, we have

0 ¼ δεSc ≡
Z

d4xδεLc ¼
Z

d4x

�
δLc

δgμν
δεgμν þ

δLc

δϕ
δεϕ

�

¼
Z

d4x
δLc

δgμν
δεgμν ¼

Z
d4x

δLc

δgμν
ð∇μεν þ∇νεμÞ

¼ −2
Z

d4x

�
∇μ δLc

δgμν

�
εν; ð16Þ

where we have used the field equation for ϕ.
Generally for a symmetric tensor Sμν, we have a formula:

∇νSνμ ¼ h−1∂νðhSνμÞ þ
1

2
Sαβ∂μgαβ: ð17Þ

Using this, we can show an equality:

∇νEν
μ ¼ h−1∂αg̃αν · Eνμ þ ∂2bμ

þ ið∂2c̄λ · ∂μcλ þ ∂μc̄λ · ∂2cλÞ þ 1

2
∂μE; ð18Þ

where ∂2 ≡ gμν∂μ∂ν. Then Eq. (14), together with the help
of the other field equations in Eq. (12), is seen to lead to the
field equation for the bρ field:

gμν∂μ∂νbρ ¼ 0: ð19Þ

In other words, the bρ field, the ghost field cρ and the
antighost field c̄ρ all satisfy the d’Alembert equation.
Furthermore, it is of interest to see that the space-time

coordinates xλ obey the d’Alembert equation, gμν∂μ∂νxλ¼0

as well.2

III. EQUAL-TIME COMMUTATION RELATIONS

In this section, after introducing the canonical commu-
tation relations (CCRs), we will evaluate the equal-time
commutation relations (ETCRs) among fundamental var-
iables, in particular, the Nakanishi-Lautrup field bμ, the FP
ghost cμ and the FP antighost c̄μ in detail. To simplify
various expressions, we will obey the following abbrevia-
tions adopted in the textbook of Nakanishi and Ojima [8]:

½A;B0� ¼ ½AðxÞ; Bðx0Þ�jx0¼x00 ; δ3 ¼ δðx⃗ − x⃗0Þ;

f̃ ¼ 1

g̃00
¼ 1ffiffiffiffiffiffi−gp

g00
¼ 1

hg00
; ð20Þ

where we assume that g̃00 is invertible.
Now let us set up the canonical (anti)commutation

relations:

½gμν; πρλ0g � ¼ i
1

2
ðδρμδλν þ δλμδ

ρ
νÞδ3; ½ϕ; π0ϕ� ¼ þiδ3;

fcσ; π0cλ; g ¼ fc̄λ; πσ0c̄ g ¼ þiδσλδ
3; ð21Þ

where the other (anti)commutation relations vanish. Here
the canonical variables are gμν;ϕ; cρ; c̄ρ and the corre-
sponding canonical conjugate momenta are πμνg ; πϕ; πcρ; π

ρ
c̄,

respectively and the bμ field is regarded as not a canonical
variable but a conjugate momentum of g̃0μ.
Based on the Lagrangian (10), the expressions for

canonical conjugate momenta read

πμνg ¼ ∂L
∂ _gμν ;

πϕ ¼ ∂L
∂ _ϕ ;

πcσ ¼
∂L
∂ _cσ ¼ −ig̃μ0∂μc̄σ;

πσc̄ ¼
∂L
∂ _̄cσ ¼ ig̃μ0∂μcσ; ð22Þ

where we have defined the time derivative such as

_gμν ≡ ∂gμν
∂t ≡ ∂0gμν, and differentiation of ghosts is taken

from the right.
From now on, we would like to evaluate various non-

trivial equal-time commutation relations (ETCRs) in order.
Let us first work with the ETCR in Eq. (21):

2Using the de Donder condition, these d’Alembert equations
can be rewritten as ∂μðg̃μν∂νΦÞ ¼ 0 where Φ≡ fxλ; bρ; cσ ; c̄τg.
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½πα0g ; g0μν� ¼ −i
1

2
ðδαμδ0ν þ δ0μδ

α
νÞδ3: ð23Þ

The canonical conjugate momentum πα0g has a structure

πα0g ¼ Aα þ Bαβ∂βϕþ Cαβbβ; ð24Þ

where Aα; Bαβ, and Cαβ ≡ − 1
2
g̃00gαβ have no _gμν, and

Bαβ∂βϕ does not have _ϕ since πα0g does not include the
dynamics of the metric and the scalar fields. Then, we find
that Eq. (23) produces

½gμν; b0ρ� ¼ −if̃ðδ0μgρν þ δ0νgρμÞδ3: ð25Þ

From this ETCR, we can easily derive ETCRs:

½gμν; b0ρ� ¼ if̃ðgμ0δνρ þ gν0δμρÞδ3;
½g̃μν; b0ρ� ¼ if̃ðg̃μ0δνρ þ g̃ν0δμρ − g̃μνδ0ρÞδ3: ð26Þ

Here we have used the following fact; since a commutator
works as a derivation, we can have formulas:

½gμν;Φ0� ¼ −gμαgνβ½gαβ;Φ0�;

½g̃μν;Φ0� ¼ −
�
g̃μαgνβ −

1

2
g̃μνgαβ

�
½gαβ;Φ0�; ð27Þ

where Φ is a generic field.
As for the ETCRs involving ghosts, let us first consider

the anti-ETCRs, fπcλ;cσ0g¼fπσc̄ ;c̄0λg¼iδσλδ
3. These ETCRs

lead to the same ETCR:

f _̄cλ; cσ0g ¼ −f̃δσλδ3; ð28Þ

where we have used a useful identity for generic variables
Φ and Ψ:

½Φ; _Ψ0� ¼ ∂0½Φ;Ψ0� − ½ _Φ;Ψ0�; ð29Þ

which also holds for the anticommutation relation. Next, it
is easy to see that the ETCRs, ½πα0g ; cσ0� ¼ ½πα0g ; c̄0λ� ¼ 0

produce

½bρ; cσ0� ¼ ½bρ; c̄0λ� ¼ 0: ð30Þ

Finally, the ETCRs, ½πcλ; πα00g � ¼ ½πσc̄ ; πα00g � ¼ 0 give us

½ _̄cλ; b0ρ� ¼ −if̃∂ρc̄λδ3; ½_cσ; b0ρ� ¼ −if̃∂ρcσδ3: ð31Þ

In this article, we make use of the following ETCR:

½_gμν;b0ρ� ¼−iff̃ð∂ρgμνþδ0μ _gρνþδ0ν _gρμÞδ3
þ½ðδkμ−2δ0μf̃g̃0kÞgρνþðμ↔ νÞ�∂kðf̃δ3Þg: ð32Þ

This ETCR can be in general shown to hold when the
system has the translational invariance and the general
coordinate transformation is fixed by the de Donder gauge
as follows: The translational invariance requires the validity
of the following equation for a generic field ΦðxÞ:

½ΦðxÞ; Pρ� ¼ i∂ρΦðxÞ; ð33Þ

where Pρ is the generator of the translation which is now
given by3

Pρ ¼
Z

d3xg̃0λ∂λbρ: ð34Þ

Now let us consider the specific case ΦðxÞ ¼ gμνðxÞ:

½gμνðxÞ;Pρ�¼½gμνðxÞ;
Z

d3x0g̃0λ0∂λb0ρ�¼ i∂ρgμνðxÞ: ð35Þ

Taking x0 ¼ x00 and using ½gμν; g̃0λ0� ¼ 0, we have

Z
d3x0g̃0λðx0Þ½gμν; ∂λb0ρ� ¼ i∂ρgμνðxÞ: ð36Þ

Using the de Donder gauge condition (2) and Eq. (25), this
equation can be rewritten as

Z
d3x0g̃00ðx0Þ½gμν; _b0ρ� ¼ i

�
∂ρgμν −

1

f̃
∂0f̃ðδ0μgρν þ δ0νgρμÞ

�
;

ð37Þ

which is easily solved for ½gμν; _b0ρ� to be

½gμν; _b0ρ� ¼ i½f̃∂ρgμν − ∂0f̃ðδ0μgρν þ δ0νgρμÞ�δ3
þ FðμνÞρk∂kðf̃δ3Þ; ð38Þ

where FðμνÞρk is an arbitrary function which is symmetric
under the exchange of μ ↔ ν.
Next, to fix the function FðμνÞρk, let us take account of the

consistency with the de Donder gauge condition (2):

½∂μg̃μν; b0ρ� ¼ 0: ð39Þ

After some calculations, Eq. (39) leads to an equation for
FðμνÞρk:�
g̃0αgνβ −

1

2
g̃0νgαβ

�
FðαβÞρk ¼ −iðg̃0kδνρ þ g̃0νδkρ − g̃kνδ0ρÞ:

ð40Þ

3This translation generator belongs to the generators of choral
symmetry as will be seen in Eq. (62).
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This equation has the unique solution given by

FðμνÞρk ¼ i½ðδkμ − 2δ0μf̃g̃0kÞgρν þ ðμ ↔ νÞ�: ð41Þ

We can therefore obtain

½gμν; _b0ρ� ¼ if½f̃∂ρgμν−∂0f̃ðδ0μgρνþδ0νgρμÞ�δ3
þ½ðδkμ−2δ0μf̃g̃0kÞgρνþðμ↔ νÞ�∂kðf̃δ3Þg: ð42Þ

Finally, using Eqs. (25) and (29), we can arrive at the
desired equation (32). It is of interest that Eq. (32) can be
derived from only the translational invariance and the de
Donder gauge condition without reference to the classical
Lagrangian Lc which knows information of the dynamics
of the gravitational field gμν and the scalar field ϕ.
Then, using Eq. (32) together with Eqs. (25) and (26), we

can easily show that

½Γρ
μν; b0λ� ¼ if̃ðδρλΓ0

μν − δ0μΓ
ρ
λν − δ0νΓ

ρ
μλÞδ3

þ iδρλð2δ0μδ0νf̃g̃0k − δ0μδ
k
ν − δ0νδ

k
μÞ∂kðf̃δ3Þ: ð43Þ

Incidentally, this ETCR is also needed in deriving the
ETCR ½bμ; _b0ν� in the next section and the tensorlike ETCR

½Rμν; b0ρ� ¼ −if̃ðδ0μRρν þ δ0νRρμÞδ3; ð44Þ

which will be derived in the Appendix A.
Finally, for later convenience we derive the ETCRs,

½ϕ; b0ρ�, ½ _ϕ; b0ρ� and ½ _ϕ; _b0ρ�. To do so, we begin by consid-
ering ½ϕ; c̄0ρ� ¼ 0 and take its BRST transformation as
follows4:

0 ¼ fiQB; ½ϕ; c̄0ρ�g ¼ f½iQB;ϕ�; c̄0ρg þ ½ϕ; fiQB; c̄0ρg�
¼ f−cλ∂λϕ; c̄0ρg þ ½ϕ; iB0

ρ� ¼ ½ϕ; iðb0ρ þ icλ0∂λc̄0ρÞ�
¼ i½ϕ; b0ρ�; ð45Þ

where together with ½ _ϕ; c̄0ρ� ¼ 0, Eqs. (3) and (5) have been
used. Thus, we have shown

½ϕ; b0ρ� ¼ 0: ð46Þ

In a perfectly similar way, we can calculate ½ _ϕ; b0ρ� by

starting with ½ _ϕ; c̄0ρ� ¼ 0 as follows:

0 ¼ fiQB; ½ _ϕ; c̄0ρ�g ¼ f½iQB; _ϕ�; c̄0ρg þ ½ _ϕ; fiQB; c̄0ρg�
¼ f−∂0ðcλ∂λϕÞ; c̄0ρg þ ½ _ϕ; iðb0ρ þ icλ0∂λc̄0ρÞ�
¼ −f_cλ; c̄0ρg∂λϕþ i½ _ϕ; b0ρ�; ð47Þ

from which, using Eq. (28) we can obtain

½ _ϕ; b0ρ� ¼ −if̃∂ρϕδ
3: ð48Þ

The calculation of ½ _ϕ; _b0ρ� proceeds as follows: First, we
utilize the formula [cf. Eq. (29)]

½ _ϕ; _b0ρ� ¼ ∂0ð½ϕ; _b0ρ�Þ − ½ϕ; b̈0ρ�: ð49Þ

Since the b field obeys the d’Alembert equation as in
Eq. (19), b̈0ρ can be described in terms of _bρ and bρ like

b̈ρ ¼ −f̃ð2g̃0k∂k
_bρ þ g̃kl∂k∂lbρÞ: ð50Þ

Then, we are ready to evaluate

½ϕ; b̈0ρ� ¼ −2f̃0g̃0k0∂ 0
k½ϕ; _b0ρ� ¼ −2if̃0g̃0k0∂ 0

kðf̃∂ρϕδ
3Þ

¼ 2if̃∂ρϕ½f̃−1∂0f̃δ3 þ g̃0k∂kðf̃δ3Þ�: ð51Þ

Thus, we reach a result

½ _ϕ; _b0ρ� ¼ if̃ð∂ρ
_ϕ − f̃−1∂0f̃∂ρϕÞδ3 − 2if̃∂ρϕg̃0k∂kðf̃δ3Þ:

ð52Þ

Note that Eqs. (46), (48), and (52) hold as well when we
replace ϕ by φ.

IV. DERIVATION OF ETCRS INVOLVING bμ
FIELD AND CHORAL SYMMETRY

We are now in a position to address the novel part of our
formulation and discuss a huge residual symmetry called
“choral symmetry” which emerges in adopting the de
Donder gauge for the general coordinate invariance.
In order to derive the commutation relations among the

bμ field in terms of the BRST transformation, let us start
with the latter equation in Eq. (30) and take the BRST
transformation:

0 ¼ fiQB; ½bμ; c̄0ν�g
¼ f½iQB; bμ�; c̄0νg þ ½bμ; fiQB; c̄0νg�
¼ −fcρ∂ρbμ; c̄0νg þ i½bμ; b0ν� − ½bμ; cρ0∂ρc̄0ν�; ð53Þ

where Eqs. (3), (5), and (6) have been used. Using Eq. (31),
the first and third terms precisely cancel so we can obtain

½bμ; b0ν� ¼ 0: ð54Þ

Next, let us turn our attention to the derivation of the
ETCR:

½bμ; _b0ν� ¼ if̃ð∂μbν þ ∂νbμÞδ3: ð55Þ
4We define the BRST transformation as δBΦ≡ ½iQB;Φg

where Φ is a generic field and ½; g denotes the graded bracket.
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To do that, let us start with the ETCR

½πcμ; b0ν� ¼ 0; ð56Þ

which can be easily shown. Taking its BRST transforma-
tion leads to an equation:

½fiQB; πcμg; b0ν� − fπcμ; ½iQB; b0ν�g ¼ 0: ð57Þ

The first term on the left-hand side (lhs) can be calculated
to be

½fiQB;πcμg;b0ν�
¼−i½ðg̃ρσ∇σc0þ g̃0σ∇σcρ− g̃ρ0∇λcλÞ∂ρc̄μ;b0ν�
þ i∂νbμ ·δ3− g̃00½bμ; _b0ν�þ i½g̃ρ0∂ρðcλ∂λc̄μÞ;b0ν�; ð58Þ

where Eqs. (3), (5), (22), (26), and (54) have been used.
The second term on the lhs in Eq. (57) can be also
calculated to be

fπcμ; ½iQB; b0ν�g ¼ −i∂μbν · δ3 þ cλ0½πcμ; ∂λb0ν�: ð59Þ

Then, Eq. (57) together with Eqs. (58) and (59) gives us an
equation:

½bμ; _b0ν� ¼ if̃ð∂μbν þ ∂νbμÞδ3
− if̃½ðg̃ρσ∇σc0 þ g̃0σ∇σcρ − g̃ρ0∇λcλÞ∂ρc̄μ; b0ν�
þ if̃½g̃ρ0∂ρðcλ∂λc̄μÞ; b0ν� − f̃cλ0½πcμ; ∂λb0ν�

≡ if̃ð∂μbν þ ∂νbμÞδ3 þ Kμν: ð60Þ

After some calculations, we can prove Kμν ¼ 0, which
implies that Eq. (55) is certainly valid. Note that in proving
Kμν ¼ 0, it is necessary to make use of Eq. (43) and the

field equation for the antighost c̄μ, i.e., g̃μν∂μ∂νc̄ρ ¼ 0.
In particular, we must use the following ETCRs:

½ ̈̄cμ;b0ν� ¼−2if̃½∂ν _̄cμδ3− g̃0k∂νc̄μ∂kðf̃δ3Þ�;
½∇σcρ;b0ν� ¼ if̃ð−δ0σ∇νcρþδρνΓ0

σλc
λ−Γρ

σνc0Þδ3
þ iδρνð2δ0σc0f̃g̃0k−δ0σck−δkσc0Þ∂kðf̃δ3Þ: ð61Þ

We end this section with the argument of choral sym-
metry, which is a huge residual symmetry IOSpð8j8Þ
involving the BRST symmetry, the rigid translation
and GLð4Þ symmetry etc. Via the Noether theorem, the
IOSpð8j8Þ generators can be constructed out of LGF þ LFP
in Eq. (9) as [8]

MMN ≡
Z

d3xg̃0νðXM∂↔νXNÞ

≡
Z

d3xg̃0νðXM∂νXN − ∂νXM · XNÞ;

PM ≡
Z

d3xg̃0νð1∂↔νXNÞ≡
Z

d3xg̃0ν∂νXM; ð62Þ

where XM ≡ fxμ; bμ; cμ; c̄μg. The IOSpð8j8Þ algebra takes
the graded form:

½iMMN;MRSg ¼ −MMSη̃NR þ ð−ÞjRjjSjMMRη̃NS

− ð−ÞjMjjNjðM ↔ NÞ;
½iMMN; PRg ¼ −PMη̃NR þ ð−ÞjMjjNjPN η̃MR;

½PM; PNg ¼ 0; ð63Þ

where η̃MN is a 16 × 16 IOSpð8j8Þ metric [13].
Since the generators MMN and PM could have one time

derivative, calculating the algebra requires us to use the
ETCRs including two time derivatives such as

½ _bμ; _b0ν� ¼ if̃

�
∂μ

_bν þ ∂ν
_bμ − 2f̃g̃0ρ∂ρ∂μbν −

∂0f̃

f̃
ð∂μbν þ ∂νbμÞ

�
δ3; −2if̃g̃0kð∂μbν þ ∂νbμÞ∂kðf̃δ3Þ

½_cμ; _b0ν� ¼ if̃

��
∂ν _cμ −

∂0f̃

f̃
∂νcμ

�
δ3 − 2g̃0k∂νcμ∂kðf̃δ3Þ

�
;

½ _̄cμ; _b0ν� ¼ if̃
��

∂ν _̄cμ −
∂0f̃

f̃
∂νc̄μ

�
δ3 − 2g̃0k∂νc̄μ∂kðf̃δ3Þ

�
: ð64Þ

These ETCRs can be all derived from the field equations
and the ETCRs obtained so far, for instance, Eqs. (12), (19),
(29), (30), and (31) without specifying the expression of a
classical gravitational Lagrangian. This situation should be
contrasted with the previous formulation [8] where Eq. (55)
has been derived by using the Einstein-Hilbert Lagrangian.
Thus, it is said that the choral symmetry uniquely

characterizes the expression of LGF þ LFP [8]. By contrast,
we can mention that the origin of the choral symmetry
purely lies in the de Donder gauge and the corresponding
FP ghost Lagrangian irrespective of a specific choice
of a classical gravitational theory as long as there
exists the general coordinate invariance in the classical
theory.
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V. A SCALE INVARIANT
SCALAR-TENSOR GRAVITY

In this section, as a classical Lagrangian, we will take the
simplest scalar-tensor gravity [3] whose Lagrangian is
given by

Lc ¼
ffiffiffiffiffiffi
−g

p �
1

2
ξϕ2R −

1

2
gμν∂μϕ∂νϕ

�
; ð65Þ

where ξ is a constant called the nonminimal coupling
constant, ϕ a real scalar field with a normal kinetic term
(i.e., not a ghost), and R the scalar curvature. In addition to
the general coordinate transformation (GCT) and a global
scale transformation with Ω ¼ constant, this Lagrangian is
also invariant under the restricted Weyl transformation
[14–16], [4–6]:

gμν → g0μν ¼ Ω2ðxÞgμν; ϕ → ϕ0 ¼ Ω−1ðxÞϕ; ð66Þ

where the gauge transformation parameter ΩðxÞ obeys a
constraint □Ω ¼ 0. In order to prove the invariance, we
need to use the following transformation of the scalar
curvature under (66):

R → R0 ¼ Ω−2ðR − 6Ω−1
□ΩÞ: ð67Þ

For the sake of simplicity, in what follows we will put

φ≡ 1

2
ξϕ2: ð68Þ

It is worth recalling that we can rewrite (65) as the
Lagrangian of the well-known Brans-Dicke theory [11]:

Lc ¼
ffiffiffiffiffiffi
−g

p �
φR − ω

1

φ
gμν∂μφ∂νφ

�
; ð69Þ

where ω≡ 1
4ξ is known as the Brans-Dicke parameter.

Thus, our classical Lagrangian (65) is at least classically
equivalent to that of Brans-Dicke theory.
Taking the de Donder condition as a gauge-fixing

condition for GCT, the gauge-fixed and BRST-invariant
quantum Lagrangian is given by

Lq ¼
ffiffiffiffiffiffi
−g

p �
φR −

1

2
gμν∂μϕ∂νϕ

�
− g̃μν∂μbν − ig̃μν∂μc̄ρ∂νcρ: ð70Þ

From this Lagrangian, we can obtain field equations by
taking the variation with respect to gμν, ϕ, bν, c̄ρ, and cρ in
order:

φGμν − ð∇μ∇ν − gμν□Þφ−
1

2
Tμν −

1

2

�
Eμν −

1

2
gμνE

�
¼ 0;

ξϕRþ□ϕ ¼ 0; ∂μg̃μν ¼ 0;

gμν∂μ∂νcρ ¼ 0; gμν∂μ∂νc̄ρ ¼ 0; ð71Þ

where we have defined

Tμν ¼ ∂μϕ∂νϕ −
1

2
gμνð∂ρϕÞ2: ð72Þ

Of course, even in this case the bρ field satisfies the
d’Alembert equation (19).

VI. EQUAL-TIME COMMUTATION RELATIONS
IN GRAVITATIONAL SECTOR

Since we have introduced the classical Lagrangian (65)
in a theory at hand, we are now ready to evaluate the equal-
time commutation relations (ETCRs) involving the metric
tensor and the scalar fields in the gravitational sector.
For later convenience, here let us take account of the

de Donder gauge condition (2), from which we have
identities:

gμνΓλ
μν ¼ 0; gλμ∂λgμν ¼ Γλ

λν: ð73Þ

Moreover, since the equation gμνΓλ
μν ¼ 0 reads

ð2gλμgνρ − gμνgλρÞ∂ρgμν ¼ 0; ð74Þ

it is possible to express the time derivative of the metric
field in terms of its spacial one as

Dλμν _gμν ¼ ð2gλμgνk − gμνgλkÞ∂kgμν; ð75Þ

where the operator Dλμν is defined by

Dλμν ¼ g0λgμν − 2gλμg0ν: ð76Þ

To remove second order derivatives of the metric
involved in R, we perform the integration by parts once
and rewrite the Lagrangian (70) as5

L¼−φg̃μνðΓσ
μνΓα

σα−Γσ
μαΓα

σνÞ−∂μφðg̃αβΓμ
αβ− g̃μνΓα

ναÞ

−
1

2
g̃μν∂μϕ∂νϕþ∂μg̃μνbν− ig̃μν∂μc̄ρ∂νcρþ∂μVμ; ð77Þ

where a surface term Vμ is defined as

Vμ ¼ φðg̃αβΓμ
αβ − g̃μνΓα

ναÞ − g̃μνbν: ð78Þ

5See Appendix B.
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From the Lagrangian (77), the concrete expressions for
canonical conjugate momenta for the metric tensor and the
scalar fields read

πμνg ¼ ∂L
∂ _gμν

¼−
1

2

ffiffiffiffiffiffi
−g

p
φ

�
−g0λgμνgστ − g0τgμλgνσ − g0σgμτgνλ

þ g0λgμτgνσ þ g0τgμνgλσ þ 1

2
ðg0μgνλþ g0νgμλÞgστ

�
∂λgστ

−
ffiffiffiffiffiffi
−g

p �
1

2
ðg0μgρνþ g0νgρμÞ− gμνgρ0

�
∂ρφ

−
1

2

ffiffiffiffiffiffi
−g

p ðg0μgνρþ g0νgμρ− g0ρgμνÞbρ;

πϕ ¼
∂L
∂ _ϕ¼−g̃0μ∂μϕþ ξϕð−g̃αβΓ0

αβ þ g̃0νΓα
ναÞ: ð79Þ

From now on, we would like to evaluate several non-
trivial equal-time commutation relations (ETCRs) relevant
to the gravitational Lagrangian (77). For this purpose, let us
first write down some equations to be solved in order. Since
πϕ in Eq. (79) is rewritten as

πϕ ¼ −g̃00 _ϕ − g̃0k∂kϕþ ξϕ½ðg̃00gρσ − g̃0ρg0σÞ_gρσ
þ ðg̃0kgρσ − g̃0ρgkσÞ∂kgρσ�; ð80Þ

½πϕ;ϕ0� ¼ −iδ3 in Eq. (21) gives rise to an equation:

−g̃00½ _ϕ;ϕ0� þ ξϕðg̃00gρσ − g̃0ρg0σÞ½_gρσ;ϕ0� ¼ −iδ3: ð81Þ

Next, ½πϕ; g0μν� ¼ 0 produces an equation:

−g̃00½ _ϕ; g0μν� þ ξϕðg̃00gρσ − g̃0ρg0σÞ½_gρσ; g0μν� ¼ 0: ð82Þ

Moreover, ½Dλρσ _gρσ; g0μν� ¼ 0, which stems from the
D-equation (75), reads

ðg0λgρσ − 2gλρg0σÞ½_gρσ; g0μν� ¼ 0: ð83Þ

Similarly, ½Dλρσ _gρσ;ϕ0� ¼ 0 gives us an equation:

ðg0λgρσ − 2gλρg0σÞ½_gρσ;ϕ0� ¼ 0: ð84Þ

Now we are willing to solve Eqs. (81)–(84). First of all,
let us focus on Eq. (84). From the argument of symmetry,
½_gρσ;ϕ0� must be of form:

½_gρσ;ϕ0� ¼ a1ðgρσ þ a2δ0ρδ0σÞδ3; ð85Þ

where a1, a2 are certain coefficients to be determined
sooner. Indeed, from Eq. (84), we find that a2 ¼ 2

g00, so the

ETCR (85) reads

½_gρσ;ϕ0� ¼ a1

�
gρσ þ

2

g00
δ0ρδ

0
σ

�
δ3: ð86Þ

Next, let us solve Eq. (83). In this case, we also find that
½_gρσ; g0μν� has a symmetry under the simultaneous exchange
of ðμνÞ ↔ ðρσÞ and primed ↔ unprimed in addition to the
usual symmetry μ ↔ ν and ρ ↔ σ. Then, we can write
down its general expression like

½_gρσ; g0μν� ¼ fc1gρσgμν þ c2ðgρμgσν þ gρνgσμÞ
þ hf̃½c3ðδ0ρδ0σgμν þ δ0μδ

0
νgρσÞ

þ c4ðδ0ρδ0μgσν þ δ0ρδ
0
νgσμ þ δ0σδ

0
μgρν þ δ0σδ

0
νgρμÞ�

þ ðhf̃Þ2c5δ0ρδ0σδ0μδ0νgδ3; ð87Þ

where ciði ¼ 1;…; 5Þ are some coefficients. Imposing
Eq. (83) on (87) leads to relations among the coefficients:

c3 ¼ 2ðc1þc2Þ; c4¼−c2; c5¼ 4ðc1þc2Þ: ð88Þ

Furthermore, using Eq. (86), Eq. (81) gives ½ _ϕ;ϕ0�,
which is of form:

½ _ϕ;ϕ0� ¼ ðif̃ þ 3a1ξϕÞδ3: ð89Þ

Finally, with the help of Eqs. (86), (87), and (88), Eq. (82)
leads to a relation:

a1 ¼ ð3c1 þ 2c2Þξϕ: ð90Þ

In order to fix the coefficients a1, c1, and c2 completely,
we need to have two independent relations among them.
Such relations can be provided by calculating ½_gkl; g0mn�
explicitly in terms of ½πklg ; g0mn� ¼ −i 1

2
ðδkmδln þ δlmδ

k
nÞδ3 in

Eq. (21) and the concrete expression of πklg in Eq. (79). To
do that, from Eq. (79), let us write

πklg ¼ Âkl þ B̂klρbρ þ Ĉklmn _gmn þ D̂kl _φ: ð91Þ

Here Âkl; B̂klρ; Ĉklmn, and D̂kl commute with gmn, and Ĉ
klmn

and D̂kl are defined as6

Ĉklmn ¼ 1

2
hφKklmn; D̂kl ¼ g̃00gkl − g̃0kg0l; ð92Þ

where the definition of Kklmn and its property are
given by

6It turns out that the concrete expressions of Âkl and B̂klρ are
irrelevant to the calculation of ½_gkl; g0mn�.
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Kklmn ¼
������
g00 g0l g0n

gk0 gkl gkn

gm0 gml gmn

������;
Kklmn 1

2
ðg00Þ−1ðgijgmn − gimgjn − gingjmÞ ¼

1

2
ðδki δlj þ δliδ

k
jÞ:

ð93Þ

From Eq. (91), we can calculate

½_gkl;g0mn� ¼ Ĉ−1
klpqð½πpqg ;g0mn�− B̂pqρ½bρ;g0mn�− D̂pq½ _φ;g0mn�Þ:

ð94Þ

Then, using Eqs. (21), (25), (86), and (93), we find

½_gkl; g0mn� ¼ f̃φ−1½ð−i − a1g̃00ξϕÞgklgmn

þ iðgkmgln þ gknglmÞ�δ3
¼ ½c1gklgmn þ c2ðgkmgln þ gknglmÞ�δ3; ð95Þ

where the last equality comes from Eq. (87). In this way, we
have succeeded in getting two independent relations among
a1, c1, and c2:

c1 ¼ f̃φ−1ð−i − a1g̃00ξϕÞ; c2 ¼ if̃φ−1: ð96Þ

Using Eqs. (90) and (96), we can fix completely the
coefficients as

c1 ¼−i
4ξþ1

6ξþ1
f̃φ−1; c2¼ if̃φ−1; a1¼−i

2

6ξþ1
f̃ϕ−1:

ð97Þ

Accordingly, we can obtain the following ETCRs:

½_gρσ;ϕ0� ¼ −
2

6ξþ 1
if̃ϕ−1

�
gρσ þ

2

g00
δ0ρδ

0
σ

�
δ3: ð98Þ

½ _ϕ;ϕ0� ¼ 1

6ξþ 1
if̃δ3: ð99Þ

½_gρσ; g0μν� ¼ if̃φ−1
�
−
4ξþ 1

6ξþ 1
gρσgμν þ gρμgσν þ gρνgσμ

þ hf̃

�
4ξ

6ξþ 1
ðδ0ρδ0σgμν þ δ0μδ

0
νgρσÞ

− ðδ0ρδ0μgσν þ δ0ρδ
0
νgσμ þ δ0σδ

0
μgρν þ δ0σδ

0
νgρμÞ

�

þ ðhf̃Þ2 8ξ

6ξþ 1
δ0ρδ

0
σδ

0
μδ

0
ν

	
δ3: ð100Þ

It is worthwhile to notice that these ETCRs have two
peculiar features, one of which is the presence of the factor

6ξþ 1 in the denominator, thereby implying that they do
not make sense in a theory with a local scale (or Weyl)
symmetry. In other words, in the case of 6ξþ 1 ¼ 0
corresponding to the Weyl invariant scalar-tensor gravity,
we need to introduce one more gauge condition such as
R ¼ 0 or ϕ ¼ constant to fix the Weyl symmetry. The other
important feature is the existence of the field ϕ (or φ) in the
denominator, which means that an unbroken phase
hϕðxÞi ¼ 0 cannot be dealt with in the present formalism.
This fact might suggest that a (global) scale invariance
would be broken spontaneously even in quantum gravity as
in classical gravity in order to construct a consistent
quantum theory of the scale invariant scalar-tensor gravity.
However, there could be the other possibilities. For
instance, the present formulation is unable to treat with
the symmetric phase. Anyway, we need more study about
this problem in the future.

VII. SPONTANEOUS SYMMETRY BREAKDOWN
OF SCALE INVARIANCE

In the previous work, we have shown that the scale
invariance is in fact spontaneously broken in classical
gravity where the gravitational sector is not quantized
[4–6]. In this section, we wish to investigate whether a
(global) scale invariance is spontaneously broken even in
quantum gravity or not.
Taking Ω in Eq. (66) to be a constant, we can define a

scale transformation as

gμν → g0μν ¼ Ω2gμν; ϕ → ϕ0 ¼ Ω−1ϕ;

bρ → b0ρ ¼ Ω−2bρ; c̄ρ → c̄0ρ ¼ Ω−1c̄ρ;

cρ → cρ0 ¼ Ω−1cρ; ð101Þ

where we have added the scale transformation for the
Nakanishi-Lautrup field and the FP (anti)ghosts. Then, it is
easy to see that the quantum Langrangian (70) is invariant
under the scale transformation (101). This fact implies that
the de Donder gauge is invariant under the scale trans-
formation. Incidentally, the de Donder gauge is not invari-
ant under a local scale (or Weyl) transformation. To make a
gauge condition for the general coordinate invariance be
invariant under the Weyl transformation requires us to take
a different gauge condition such as ∂μðð−gÞ14gμνÞ ¼ 0 or
∂μð ffiffiffiffiffiffi−gp

ϕ2gμνÞ ¼ 0 from the de Donder gauge.
Since the scale transformation is a global one, we can

construct a conserved Noether current and charge along
the standard procedure. After some calculations, it turns
out that the conserved current for the scale symmetry is
given by7

7See Appendix B.
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Jμ ¼ g̃μν
�
6ξþ 1

2
∂νðϕ2Þ þ 2bν þ i∂νðc̄ρcρÞ

�
: ð102Þ

It is straightforward to verify that this current is conserved,
∂μJμ ¼ 0, in terms of field equations. Note that in the
conformal coupling ξ ¼ − 1

6
, the first term on the right-hand

side (rhs) coming from the classical action is identically
vanishing [17,18] while the second and third terms coming
from the gauge-fixing and FP ghost terms, respectively, do
not so.
The Noether charge Q ¼ R

d3xJ0 turns out to generate
the infinitesimal scale transformation correctly by using the
ETCRs obtained thus far:

δgμν ¼ 2Λgμν; δϕ ¼ −Λϕ; δbρ ¼ −2Λbρ;

δc̄ρ ¼ −Λc̄ρ; δcρ ¼ −Λcρ; ð103Þ

where we have set Ω ¼ eΛ ≈ 1þ Λ. It might be curious
about why no derivative of the metric tensor gμν appears in
Q since it usually generates the transformation of the metric
tensor [3]. This problem can be understood for the first time
in the present formulation since we have successfully
quantized the metric field and the scalar field.
To check that the charge Q indeed generates the scale

transformation (103), let us calculate δgμν and δbρ explic-
itly. As for δgμν,

δgμν ≡ ½iΛQ; gμν�

¼ iΛ
Z

d3x0
�
g̃0ρ0

�
6ξþ 1

2
∂ρðϕ02Þ þ 2b0ρ þ i∂ρðc̄0σcσ0Þ

�
; gμν

�

¼ iΛ
Z

d3x0fð6ξþ 1Þg̃000ϕ0½ _ϕ0; gμν� þ 2g̃0ρ0½b0ρ; gμν�g

¼ 2Λgμν; ð104Þ

where in the third equality we put x0 ¼ x00, and used Eqs. (25) and (98). Against the expectation that the derivative of ϕ
would play a role [3], the b field also does the job in generating the scale transformation. In a similar manner, as for δbρ,
we have

δbρ ≡ ½iΛQ; bρ�

¼ iΛ
Z

d3x0
�
g̃0ν0

�
6ξþ 1

2
∂νðϕ02Þ þ 2b0ν þ i∂νðc̄0σcσ0Þ

�
; bρ

�

¼ iΛ
Z

d3x0
�
½g̃0ν0; bρ�

�
6ξþ 1

2
∂νðϕ02Þ þ 2b0ν þ i∂νðc̄0σcσ0Þ

�
þ g̃000ðð6ξþ 1Þϕ0½ _ϕ0; bρ� þ ið½ _̄c0σ; bρ�cσ0 þ c̄0σ½_cσ0; bρ�ÞÞ

	
¼ −2Λbρ; ð105Þ

where we have used Eqs. (26), (31), and (48). We wish to
mention again that in the case of classical gravity, one
cannot show that the charge Q generates the scale
transformation owing to the absence of the ETCRs relevant
to the Nakanishi-Lautrup field bρ and the FP ghosts c̄σ
and cσ.
Now let us move to the issue of spontaneous symmetry

breakdown of scale symmetry in quantum gravity. From
Eq. (103) and the definition of δΦ≡ ½iΛQ;Φ� for a generic
field Φ, we obtain that

½iQ; gμν� ¼ 2gμν; ½iQ;ϕ� ¼ −ϕ; ½iQ; bρ� ¼ −2bρ;

½iQ; c̄ρ� ¼ −c̄ρ; ½iQ; cρ� ¼ −cρ: ð106Þ

Assuming that the fields take the following vacuum
expectation values:

h0jgμνj0i ¼ ημν; h0jϕj0i ¼ ϕ0; h0jbρj0i ¼ 0;

h0jc̄ρj0i ¼ 0; h0jcρj0i ¼ 0; ð107Þ
with ϕ0 being a constant, Eq. (106) implies that

h0j½iQ; gμν�j0i ¼ 2ημν; h0j½iQ;ϕ�j0i ¼ −ϕ0;

h0j½iQ; bρ�j0i ¼ 0;

h0j½iQ; c̄ρ�j0i ¼ 0; h0j½iQ; cρ�j0i ¼ 0: ð108Þ
The second equation in Eq. (108) shows that the scale
invariance is spontaneously broken at the quantum level as
long as ϕ0 ≠ 0 holds [4,6].
Here three important remarks are in order. First, the first

assumption in Eq. (107), h0jgμνj0i ¼ ημν, comes from our
postulate that the vacuum is invariant under translation [8]:

Pμj0i ¼ 0; ð109Þ
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which means that translational invariance is not broken
spontaneously. It is true that the existence of the non-
vanishing cosmological constant is not consistent with this
assumption, but we have adopted this assumption from
phenomenological considerations. Moreover, with this
assumption the graviton can be identified with a Nambu-
Goldstone (NG) boson corresponding to spontaneous
symmetry breakdown of GLð4Þ symmetry down to
SOð1; 3Þ Lorentz symmetry, thereby proving the exact
masslessness of the graviton [9].
Second, let us pay our attention to the second assumption

in Eq. (107), h0jϕj0i ¼ ϕ0 ≠ 0, which is also physically
plausible by the following argument: As usual, let us
consider to move from the Jordan frame to the Einstein
frame by implementing a local scale transformation only
for the metric tensor field as

gμν → g�μν ¼ ΩðxÞ2gμν ¼
1

M2
Pl

ξϕ2gμν; ð110Þ

where MPl is the reduced Planck mass. Then, in the
Einstein frame, up to a surface term the quantum
Lagrangian (70) is reduced to the form:

Lq ¼
ffiffiffiffiffiffiffiffi
−g�

p �
M2

Pl

2
R� −

1

2
gμν� ∂μσ∂νσ

�

− e−
2ζ
MPl

σðg̃μν� ∂μbν − ig̃μν� ∂μc̄ρ∂νcρÞ; ð111Þ

wherewe have defined a scalar field σðxÞ and a constant ζ as

ϕ ¼ ξ−
1
2MPle

ζ
MPl

σ; ζ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi

ξ

6ξþ 1

s
: ð112Þ

In this way, we can arrive at the Lagrangian in the Einstein
frame by starting with that in the Jordan frame. The key
point for the change of the frames lies in Eq. (110) where
the scale factor ΩðxÞ is proportional to 1

MPl
ϕðxÞ. Namely,

the existence of the nonvanishing “dilaton” ϕ ≠ 0, or more
precisely, h0jϕj0i ≠ 0, makes it possible to move from the
Jordan frame to the Einstein one. In this sense, our
assumption h0jϕj0i ¼ ϕ0 ≠ 0 makes sense physically.
As a final remark, as mentioned in the previous section,

in order to make a consistent quantum gravity based on the
scale invariant scalar-tensor gravity, it is necessary to
require the condition h0jϕj0i ≠ 0. Any physical theories
must be formulated within the framework of quantum field
theories, so it is natural to assume such the condition.
To close this section, let us verify more explicitly that the

spontaneous symmetry breakdown of the scale symmetry
occurs in the Einstein frame where the scale symmetry is
replaced with a shift symmetry. For this purpose, let us
rewrite the charge for the scale symmetry in the Jordan
frame into that in the Einstein frame as

Q¼
Z

d3xg̃0ν�

�
MPl

ζ
∂νσþe−

2ζ
MPl

σð2bνþ∂νðc̄ρcρÞÞ
�
; ð113Þ

where we have used Eqs. (102), (110), and (112). Since Q
has a linear term in σðxÞ, the charge cannot annihilate the
vacuum j0i:

Qj0i ≠ 0; ð114Þ
which means the spontaneous symmetry breakdown of
scale symmetry in the Jordan frame or shift symmetry in the
Einstein frame. Actually, from the Lagrangian (111) the
canonical conjugate momentum for the scalar field σðxÞ
reads

πσ ≡ ∂L
∂∂0σ

¼ −
ffiffiffiffiffiffiffiffi
−g�

p
g0ν� ∂νσ: ð115Þ

Then, Q can be rewritten as

Q ¼ −
MPl

ζ

Z
d3xπσ þ � � � ; ð116Þ

where… denote contributions from the Nakanishi-Lautrup
field and the FP ghosts. Using the equal-time commutation
relation ½σ; π0σ� ¼ iδ3, we obtain

½iQ; σðxÞ� ¼ −
MPl

ζ
: ð117Þ

Taking the vacuum expectation value of this equation yields

h0j½iQ; σðxÞ�j0i ¼ −
MPl

ζ
≠ 0; ð118Þ

which clearly means the spontaneous symmetry breakdown
and the scalar field σðxÞ is the massless NG boson for the
shift symmetry.

VIII. CONCLUSIONS

In this article, we have performed a manifestly covariant
quantization of a scale invariant gravity which is equivalent
to the Brans-Dicke gravity [11] via the field redefinition of
a scalar field. Many of studies of the Brans-Dicke gravity
have been thus far confined to the classical analysis, so it is
expected that our quantum formulation of the Brans-Dicke
gravity could provide us with some useful information on
quantum aspects of the theory.
Actually, we have presented two new results, one of

which is that in classically scale invariant gravitational
theories, we have a quantum scale symmetry in addition to
a huge choral symmetry when we choose the de Donder
gauge for the general coordinate invariance. In this respect,
it is worthwhile to recall that in the manifestly scale
invariant regularization method [19–24], the scale invari-
ance is free of scale anomaly.
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As the second result, we have shown that the scale
symmetry is spontaneously broken by quantum effects,
thus proving that the “dilaton” is exactly massless because
of the Nambu-Goldstone theorem. As pointed out in the
previous paper [25], when the dilaton is exactly massless at
the quantum level, it mediates a long-range force between
massive objects as in the Newtonian force, which imposes a
severe phenomenological constraint on parameters in the
Brans-Dicke model [11] since the long-range force stem-
ming from the massless dilaton could affect the perihelion
advance of Mercury, for instance.
Furthermore, we have shown that the choral symmetry,

which is a Poincaré-like IOSpð8j8Þ supersymmetry, can be
derived from any gravitational theories, which are invariant
under the general coordinate transformation (GCT), if the
GCT is gauge-fixed by the de Donder gauge. To put it
differently, the choral symmetry comes from only the
de Donder gauge for the GCT in the BRST formalism. It
is worthwhile to recall that the choral symmetry includes the
BRST symmetry and the physical observables can be defined
as operators which commute with the BRST charge [8].
We still have a lot of work to be done in the future. For

instance, we would like to extend the present formalism to
gravitational theories with a local scale invariance (or Weyl
invariance) and investigate the resultant residual sym-
metries. In the case of the Weyl invariance, it seems that
we might prefer the Weyl-invariant gauge conditions
such as ∂μðð−gÞ14gμνÞ ¼ 0 and ∂μð ffiffiffiffiffiffi−gp

ϕ2gμνÞ ¼ 0 to the
de Donder gauge condition ∂μð ffiffiffiffiffiffi−gp

gμνÞ ¼ 0 since we have
the restricted Weyl symmetry in these Weyl invariant gauge
conditions when we take the gauge condition R ¼ 0 for the
Weyl invariance. However, then we will lose the choral
symmetry but instead we would have new residual
symmetries.
As another problem, it is of interest to construct a

manifestly scale-invariant regularization scheme in the theory
at hand and calculate an effective potential explicitly [26–28].
With this regularization scheme, it is necessary to introduce
an additional scalar field in addition to the dilaton and the two
scalar fields might collaborate with each other for nullifying
the scalar force. In fact, such an approach on the basis of the
dilaton and the axion has been recently proposed [29]. In the
near future, we would like to report on these problems.
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APPENDIX A: DERIVATION OF ½Rμν;b0ρ�
In this Appendix, we wish to prove the tensorlike ETCR:

½Rμν; b0ρ� ¼ −if̃ðδ0μRρν þ δ0νRρμÞδ3: ðA1Þ

Our strategy for the proof is similar to that of [8], but is in
essence different from it since we have been already able to
derive the ETCR (55) without recourse to the Einstein
equation. In what follows, we will prove the following two
equations:

½G0
ν; b0ρ� ¼ if̃ðδ0ρR0

ν − δ0νR0
ρÞδ3; ½Rkl; b0ρ� ¼ 0; ðA2Þ

from which it is easy to see that we can reach our goal (A1).
Let us first prove the former equation in (A2). From the

Einstein equation, which is the first equation in (71), G0
ν is

G0
ν ¼

1

φ

�
ð∇0∇ν − δ0ν□Þφþ 1

2
T0

ν þ
1

2

�
E0

ν −
1

2
δ0νE

��
:

ðA3Þ

Note that the first term ð∇0∇ν − δ0ν□Þφ contains no φ̈.
Then, ½G0

ν; b0ρ� reads

½G0
ν; b0ρ� ¼

1

φ

�
½ð∇0∇ν − δ0ν□Þφ; b0ρ� þ

1

2
½T0

ν; b0ρ�

þ 1

2
½E0

ν −
1

2
δ0νE; b0ρ�

	

≡ 1

φ
ðA1 þ A2 þ A3Þ: ðA4Þ

After some calculations, A1 is found to be

A1 ≡ ½ð∇0∇ν − δ0ν□Þφ; b0ρ�
¼ if̃ðδ0ρ∇0∇νφ − δ0ν∇0∇ρφÞδ3: ðA5Þ

In order to evaluate A2, it is necessary to calculate ½Tμν; b0ρ�
whose result is given by

½Tμν; b0ρ� ¼ −if̃ðδ0μTρν þ δ0νTρμÞδ3: ðA6Þ

Using this result, A2 becomes

A2 ≡ 1

2
½T0

ν; b0ρ� ¼
1

2
if̃ðδ0ρT0

ν − δ0νT0
ρÞδ3: ðA7Þ

Finally, evaluating A3 requires us to calculate ½Eμν; b0ρ�,
which is found to be

½Eμν; b0ρ� ¼ −if̃ðδ0μEρν þ δ0νEρμÞδ3: ðA8Þ

Since we can calculate ½E; b0ρ� ¼ 0, A3 reads

A3 ≡ 1

2

�
E0

ν −
1

2
δ0νE; b0ρ

�
¼ 1

2
if̃ðδ0ρE0

ν − δ0νE0
ρÞδ3: ðA9Þ

Adding A1, A2, and A3 gives rise to the former equation in
(A2) since from Eq. (71) R0

ν is described as
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R0
ν¼

1

φ

��
∇0∇νþ

1

2
δ0ν□

�
φþ1

2

�
T0

ν−
1

2
δ0νT

�
þ1

2
E0

ν

�
:

ðA10Þ

Next, let us prove the validity of the latter equation in
(A2). From the Einstein equation in (71), Rkl takes the
form:

Rkl ¼
1

φ

��
∇k∇l þ

1

2
gkl□

�
φþ 1

2

�
Tkl −

1

2
gklT

�
þ 1

2
Ekl

�
:

ðA11Þ

With the help of Eqs. (A6) and (A8), we find

½Rkl; b0ρ� ¼
1

φ

��
∇k∇l þ

1

2
gkl□

�
φ; b0ρ

�
: ðA12Þ

Using Eq. (43) and the formula:

½φ̈; b0ρ� ¼ −2if̃∂ρ _φδ
3 þ 2if̃∂ρφg̃0k∂kðf̃δ3Þ; ðA13Þ

which can be proved through (48) and (52), we can
show that the rhs of Eq. (A12) is identically vanishing.
Accordingly, we have succeeded in proving our
statement (A1).

APPENDIX B: CONSERVED CURRENT
FOR SCALE SYMMETRY

In this Appendix, we will present a derivation of the
conserved current for the scale symmetry in Eq. (102) and
show that the current is indeed conserved on-shell.
First, let us rewrite the Einstein-Hilbert term in order not

to include second order derivatives of the metric by the
standard technique [30]:

ffiffiffiffiffiffi
−g

p
R ¼ g̃μνð∂αΓα

μν − ∂νΓα
μα þ Γσ

μνΓα
σα − Γσ

μαΓα
νσÞ; ðB1Þ

where the first and second terms can be rewritten as

g̃μν∂αΓα
μν ¼ ∂αðg̃μνΓα

μνÞ − ∂αg̃μν · Γα
μν

¼ ∂αðg̃μνΓα
μνÞ − ðΓρ

αρg̃μν − 2Γμ
αρg̃νρÞΓα

μν

g̃μν∂νΓα
μα ¼ ∂νðg̃μνΓα

μαÞ − ∂νg̃μν · Γα
μα

¼ ∂νðg̃μνΓα
μαÞ þ Γμ

ρσ g̃ρσΓα
μα: ðB2Þ

From Eqs. (B1) and (B2), we have

ffiffiffiffiffiffi
−g

p
R ¼ ∂αðg̃μνΓα

μν − g̃μαΓβ
μβÞ

þ g̃μνðΓσ
μαΓα

νσ − Γσ
μνΓα

σαÞ: ðB3Þ

Using the formula (B3), up to a surface term the part of
the scalar-tensor gravity in the classical Lagrangian (69)
can be cast to the form:

ffiffiffiffiffiffi
−g

p
φR ¼ −

ffiffiffiffiffiffi
−g

p ðGα∂αφþGφÞ; ðB4Þ

where Gα and G are defined by

Gα ≡ gμνΓα
μν − gμαΓβ

μβ;

G≡ gμνðΓσ
μνΓα

σα − Γσ
μαΓα

νσÞ: ðB5Þ

Then, the quantum Lagrangian (70) takes the form:

Lq ¼ −
ffiffiffiffiffiffi
−g

p �
Gα∂αφþGφþ 1

2
gμν∂μϕ∂νϕ

�
− g̃μν∂μbν − ig̃μν∂μc̄ρ∂νcρ: ðB6Þ

With the infinitesimal scale invariance (103), the Noether
theorem provides us with a formula for the conserved
current:

ΛJμ ¼
X
i

∂RLq

∂∂μΦi
δΦi; ðB7Þ

where we use the right-derivative notation and Φi ¼
fgρσ;ϕ; bρ; c̄ρ; cρg. It is therefore necessary to evaluate
each term on the rhs of the following equation:

Jμ ¼ ∂RLq

∂∂μgρσ
2gρσ −

∂RLq

∂∂μϕ
ϕ −

∂RLq

∂∂μbρ
2bρ

−
∂RLq

∂∂μc̄ρ
c̄ρ −

∂RLq

∂∂μcρ
cρ: ðB8Þ

To calculate the first term on the rhs, we need the formulas:

∂ð ffiffiffiffiffiffi−gp
GαÞ

∂∂μgρσ
¼ ffiffiffiffiffiffi

−g
p ðgαðρgσÞμ− gρσgμαÞ;

∂ð ffiffiffiffiffiffi−gp
GÞ

∂∂μgρσ
¼ ffiffiffiffiffiffi

−g
p �

1

2
gρσgαβΓμ

αβ þΓα
αλ

�
gλðρgσÞμ−

1

2
gλμgρσ

�

þ 1

2

�
gλðρ∂λgσÞμ−

1

2
gλμ∂λgρσ − gραgβσΓμ

αβ

��
;

ðB9Þ

where we have used the symmetrization notation,
AðρBσÞ ≡ 1

2
ðAρBσ þ AσBρÞ. After a straightforward calcu-

lation, we find that the current is given by

Jμ ¼ g̃μν
�
6ξþ 1

ξ
∂νφþ 2bν þ i∂νðc̄ρcρÞ

�

¼ g̃μν
�
6ξþ 1

2
∂νðϕ2Þ þ 2bν þ i∂νðc̄ρcρÞ

�
; ðB10Þ

where we have used φ≡ 1
2
ξϕ2. Note that in the case of the

Weyl invariant scalar-tensor gravity where 6ξþ 1 ¼ 0 is
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satisfied, the first term, which is a classical contribution, on
the rhs in the above equation identically vanishes [17,18].
Finally, let us check that this current is in fact conserved

in terms of the field equations (71). Taking the derivative of
the former current in (B10) leads to

∂μJμ ¼
ffiffiffiffiffiffi
−g

p �
6ξþ 1

ξ
□φþ E

�
; ðB11Þ

where we have used the de Donder gauge and the field
equations for the FP ghosts. It is easy to see that this
expression vanishes by using the field equations (71). To do
so, let us take the trace of the Einstein equation, i.e., the first
equation, in Eq. (71) whose result reads

ð3□ − RÞφ −
1

2
Tμ

μ þ
1

2
E ¼ 0: ðB12Þ

From the field equation for the scalar field, i.e., the second
equation, in Eq. (71), we obtain

φR ¼ −
1

2
ϕ□ϕ: ðB13Þ

Moreover, taking the trace of Tμν in Eq. (72) gives rise to

Tμ
μ ¼ −ð∂ρϕÞ2: ðB14Þ

Then, substituting Eqs. (B13) and (B14) into (B12), we
have

3□φþ 1

2
½ϕ□ϕþ ð∂ρϕÞ2� þ

1

2
E ¼ 0: ðB15Þ

Since the definition φ≡ 1
2
ξϕ2 gives us an equation:

□φ ¼ ξ½ϕ□ϕþ ð∂ρϕÞ2�; ðB16Þ

inserting this equation to Eq. (B15) yields the desired
equation:

6ξþ 1

ξ
□φþ E ¼ 0; ðB17Þ

by which we can prove the conservation law of the scale
current, ∂μJμ ¼ 0 as seen in Eq. (B11).
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