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We perform the manifestly covariant quantization of a scale invariant gravity with a scalar field, which is
equivalent to the well-known Brans-Dicke gravity via a field redefinition of the scalar field, in the
de Donder gauge condition (or harmonic gauge condition) for general coordinate invariance. First, without
specifying the expression of a gravitational theory, we write down various equal-time (anti)commutation
relations (ETCRs), in particular, those involving the Nakanishi-Lautrup field, the Faddeev-Popov (FP)
ghost, and the FP antighost only on the basis of the de Donder gauge condition. It is shown that choral
symmetry, which is a Poincaré-like /O0Sp(8|8) supersymmetry, can be derived from such a general action
with the de Donder gauge. Next, taking the scale invariant gravity with a scalar field as a classical theory,
we derive the ETCRs for the gravitational sector involving the metric tensor and scalar fields. Moreover, we
account for how scale symmetry is spontaneously broken in quantum gravity, thereby showing that the

dilaton is a massless Nambu-Goldstone particle.

DOI: 10.1103/PhysRevD.105.066001

I. INTRODUCTION

A residual symmetry which is left behind after taking a
certain gauge-fixing condition for the gauge invariance, has
thus far played an important role in quantum field theory.
For instance, in string theory, conformal symmetry on the
world sheet can be thought as the fundamental symmetry in
perturbative regime where strings are weakly interacting
[1]. The conformal symmetry is a typical residual sym-
metry, which is left in a theory after taking the conformal
gauge for the world-sheet diffeomorphism [or general
coordinate transformation (GCT)] and the Weyl symmetry
(or a local scale transformation) [2].

Recently, we have elucidated various aspects of such
residual symmetries existing in some gravitational theories.
In particular, in the most recent study, we have shown that
using the simplest scalar-tensor gravity [3] the restricted
Weyl symmetry (RWS) and general coordinate invariance
generate conformal symmetry in four dimensions in a flat
Minkowski background [4-6].

Also about Einstein gravity, in a pioneering work by
Nakanishi [7,8], on the basis of the Einstein-Hilbert action
in the de Donder gauge (harmonic gauge) for general
coordinate invariance, it has been shown that there remains
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a huge residual symmetry, which is a Poincaré-like
ISOp(8|8) supersymmetry, called “choral symmetry,”
including the BRST symmetry and GL(4) symmetry etc.
It is of interest that in this formulation the graviton can be
identified with a Nambu-Goldstone particle associated with
spontaneous symmetry breakdown of GL(4) symmetry to
the Lorentz symmetry SO(1,3), thereby proving the
exact masslessness of the graviton in a nonperturbative
manner [9].

However, in this formulation, the Einstein equation was
critically used in obtaining the equal-time commutation
relation [b,. b}] = if (9,b, + 9,b,)8°, which is needed in
proving the closure of the 7SO p(8|8) algebra among the
generators, so the formulation depends on the Einstein-
Hilbert term in a classical action. One of our motivations is
to relax this situation and show that the choral symmetry
does not depend on the expression of the classical gravity
but completely comes from the de Donder gauge condition
for GCT in the BRST formalism [10]. For this purpose,
without the knowledge of the classical Lagrangian we
derive various equal-time (anti-)commutation relations
(ETCRs) for the Nakanishi-Lautrup field, the Faddeev-
Popov (FP) ghost, and the FP antighost only on the basis of
the de Donder gauge condition.

Another motivation behind the study at hand is to
construct a quantum theory of the well-known Brans-
Dicke gravity [11] by constructing its manifestly covariant
BRST formalism since many of studies of the Brans-Dicke
gravity have been limited to a classical analysis. As a
concrete advantage of our quantum theory where the
gravity as well as a scalar field are quantized, we will
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show that scale invariance is spontaneously broken and
consequently “dilaton” is exactly massless thanks to the
Nambu-Goldstone theorem even in quantum gravity.

We close this section with an overview of this article.
In Sec. II, we discuss a quantum gravity for which the
de Donder gauge is adopted as a gauge condition for
the general coordinate invariance. In Sec. III, we calculate
the ETCRs for the Nakanishi-Lautrup auxiliary field, the
FP ghost and the FP antighost based on the quantum gravity
made in Sec. II. In Sec. IV, we calculate the ETCRs
involving among the Nakanishi-Lautrup field and its time
derivative without using the information on a classical
gravitational action, and then comment on choral sym-
metry. In Sec. V, a scale invariant scalar-tensor gravity is
briefly reviewed. In Sec. VI, by selecting the scale invariant
scalar-tensor gravity as a classical theory we calculate the
ETCRs for the gravitational sector, and in Sec. VII we
discuss spontaneous symmetry breakdown of the scale
invariance and show that the dilaton is exactly massless
owing to the Nambu-Goldstone theorem in quantum
gravity. The final section is devoted to the conclusion.
Two Appendixes are put for technical details. In
Appendix A, a derivation of the tensorlike ETCR is given,
and in Appendix B we have derived the scale current via the
Noether theorem.

II. QUANTUM GRAVITY
WITH DE DONDER GAUGE

We wish to consider a manifestly covariant canonical
formalism of general gravitational theories where general
coordinate invariance is fixed by the de Donder gauge
condition. To take a more general theory into consideration,
without specifying the concrete expression of the gravita-
tional Lagrangian, we will start with the following classical
Lagrangian':

[’c :ﬁC(gﬂD’¢)’ (1)

which includes the metric tensor field g,, and a scalar field
¢ as dynamical fields, and is invariant under the general
coordinate transformation (GCT). We assume that £, does
not involve more than first order derivatives of the metric
and matter fields.

Let us fix the general coordinate symmetry by the de
Donder gauge condition (or harmonic gauge condition):

0,3 =0, (2)

'We follow the notation and conventions of MTW textbook
[12]. Greek little letters u, v, - - - and Latin ones i, j, - - - are used
for space-time and spatial indices, respectively; for instance,
u=0, 1,2, 3 and i =1, 2, 3. Furthermore, the Riemann
curvature tensor and the Ricci tensor are respectively defined
by R gy = 0,00 + 110, — (<> v) and R, = R’ .

where we have defined #* = ,/—g¢"* = hg"*. Then, the
BRST transformation is of the form:

€, = IB,, e’ = —c*0,c?, Spp = —c'0,9,
(Vue, +Vue,)
(Caaflg[ll/ + aﬂcagal/ + 8ucag/4a)’

By7 = h(VHeY + Viek — gV cr). (3)

5Bg;w = -

Using this BRST transformation, the Lagrangian for the
gauge-fixing condition and FP ghosts can be constructed in
a standard manner

Lerrp=05(i3"0,¢,)
= _gﬂyaﬂBv - iaﬂézz [gﬂﬂapcv +§upa/)c/4 _a/)(glwcﬂ)]‘
(4)

To simplify this expression, let us introduce a new auxiliary
field b, defined as

b, = B, —ic*9,c,, (5)
and its BRST transformation reads

ogb, = —c’lﬁ,lbp. (6)
Then, the Lagrangian (4) can be cast to the form:
Lepipp==3"0,b,—i3"0,c,0,c’ +i0,(7*0,c,-c"). (7)

As a result, up to a total derivative, the gauge-fixed and
BRST-invariant quantum Lagrangian is given by

L,=L, —7"0,b,—ig"0,c,0,c’
=L, + Lgr + Lep, (8)
where we have defined
EGF = —g””@,,b,,, EFP = —if]””aﬂél,a,,c/’. (9)

By performing the integration by parts once, let us rewrite
the Lagrangian (8) as

L,=L,+0,3"b, —ig"d,c,0,c" + 0,
= EC + ZGF + EFP + 8”))#, (10)
where a surface term V¥ and Lgp are defined as

W= _gﬂybw Z:GF = 3y§””bu~ (11)

From this Lagrangian, we can obtain field equations by
taking the variation with respect to g,,, ¢, b,, ¢,, and ¢/ in
order:
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N
0,7 =0,

1 oL, 1 1 oL
¢ —_— E :O C:O’
( w ) o

¢v9,0,¢" =0,  ¢*9,0,8,=0, (12)

where we have defined

E, = 0,b,+i0,c,0,c" + (u < v),
E=g"E,,. (13)

Next, in order to find the field equation for the b, field,
let us take a covariant derivative of the first Einstein
equation in Eq. (12). The result reads

v, <EMV _ ;gWE> =0, (14)

where we have used the equation

v oL,
og

=0. (15)

This equation can be shown as follows: Using the GCT
invariance of the classical action, we have

oL,
— — 4 _ 4 v
O—6£SC_/d xégﬁc—/d x<5 -0.9" + 545 64))
oL, oL,
_ 4 U 4 " Vot
—/débégg —/d(3 (VHer + Vet)

= —2/d4x<vﬂ%)€”, (16)

where we have used the field equation for ¢.
Generally for a symmetric tensor $**, we have a formula:

vV, 8, =h"'0,(hs",) + %Saﬂaﬂgaﬂ. (17)
Using this, we can show an equality:
V,E', = h™'0,§" - E,, + 0%b,
+i(0%¢; - 0,c* + 0,8, - O*ct) + %G”E, (18)

where 9% = ¢#9,0,. Then Eq. (14), together with the help
of the other field equations in Eq. (12), is seen to lead to the
field equation for the b, field:

¢49,0,b, = 0. (19)

In other words, the b/, field, the ghost field ¢” and the
antighost field ¢, all satisfy the d’Alembert equation.
Furthermore, it is of interest to see that the space-time

coordlnates x* obey the d’ Alembert equation, g**0,,0,x* =
as well.?

III. EQUAL-TIME COMMUTATION RELATIONS

In this section, after introducing the canonical commu-
tation relations (CCRs), we will evaluate the equal-time
commutation relations (ETCRs) among fundamental var-
iables, in particular, the Nakanishi-Lautrup field b,,, the FP
ghost ¢ and the FP antighost ¢, in detail. To simplify
various expressions, we will obey the following abbrevia-
tions adopted in the textbook of Nakanishi and Ojima [8]:

[A,B'] =

f=

[A(X), B()|[o—yo, & =
1 1 1

00 \/_—9900 - hgoo ’

5(3—7),

(20)

where we assume that §% is invertible.

Now let us set up the canonical (anti)commutation
relations:

(G 7] = i (3061 + SN, [pory) = i

{c?.my. } = {222} = +i555°. (21)

\) |

where the other (anti)commutation relations vanish. Here
the canonical variables are g,,,¢,c”,¢, and the corre-
sponding canonical conjugate momenta are 7y, 77, 7, 7o,
respectively and the b, field is regarded as not a canonical
variable but a conjugate momentum of §¥.

Based on the Lagrangian (10), the expressions for

canonical conjugate momenta read

oL
ﬂ.ul/
00,
ST
¢ aé’)’
Koo = gi = _l‘glloaﬂz.o_,
7l = oL = i3%9,c° (22)
3(:

where we have defined the time derivative such as

G = 99”” = 0yg,w» and differentiation of ghosts is taken

from the right.

From now on, we would like to evaluate various non-
trivial equal-time commutation relations (ETCRs) in order.
Let us first work with the ETCR in Eq. (21):

Usmg the de Donder condition, these d’Alembert equations

can be rewritten as 9,(7*0,®) = 0 where ® = {x*,b,, ", ¢,}.
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1
70, ghu] = i3 G0+ ). (23)

The canonical conjugate momentum ﬂg‘o has a structure

720 = A* 4+ BP9y + CPby, (24)

where A%, BY, and C* =—-15%¢% have no g,,, and
B¥8,¢ does not have ¢ since 7% does not include the

dynamics of the metric and the scalar fields. Then, we find
that Eq. (23) produces

[g;wv b;)] = _i}‘(éoﬂgpy + 69.9/)/4)53' (25)
From this ETCR, we can easily derive ETCRs:

¢°8,)8°
708, g8’ (26)

= if (¢, +
= if (75, +

9. by
9. by

Here we have used the following fact; since a commutator
works as a derivation, we can have formulas:

. ] =~ (g, V.
1
7.0 = - (aﬂ“g“ﬁ - 5@%”) (9@, (27)

where @ is a generic field.

As for the ETCRs involving ghosts, let us first consider
the anti-ETCRS, {z;,c”} ={x2,¢;} =i8;5°. These ETCRs
lead to the same ETCR:

{¢;,¢7} = —f598°, (28)

where we have used a useful identity for generic variables
® and ¥:

(@, W] = 9y[®. W] — [@, W], (29)
which also holds for the anticommutation relation. Next, it
is easy to see that the ETCRs, (720, ¢”'] = [#2°,¢)] =0

produce
by, ¢ = [by, €3] = 0. (30)

Finally, the ETCRs, [z, 79"] = [zZ, 2%"] = 0 give us

—if0,e,5, [¢7,b] =

»Yp

[C/lv /)] = if@,,c"53. (31)

In this article, we make use of the following ETCR:

[gyw b;] l{f( p9uw + 509/21/ + 51/9/)/4)53

+ (8K =282F ") g,, + (< v)|0 (5} (32)

This ETCR can be in general shown to hold when the
system has the translational invariance and the general
coordinate transformation is fixed by the de Donder gauge
as follows: The translational invariance requires the validity
of the following equation for a generic field ®(x):

[@(x), P,]

where P, is the generator of the translation which is now
given by

= i0,®(x), (33)

P,= / dBxi®0,b,,. (34)
Now let us consider the specific case ®(x) = g, (x):

[gyu(x)7pp] = [g;w (x), /dsx/g(wallb;] = iapg;w(x)' (35)

0/1/}

Taking x° = x" and using [g,,. 3°] = 0, we have

/f’W)@nn1i@%w. (36)

Using the de Donder gauge condition (2) and Eq. (25), this
equation can be rewritten as

1 -
/d3 1500 (x )[gﬂlﬂb/)] = {apgﬂy—?aof(éggpy_l_éggpﬂ) )

(37)
which is easily solved for [g,,, b}] to be
[gmn b;;] - i[}apgm/ - 60}(52.%)1/ + 539,0/4)}53
+ F(/w)pkak(}‘(p)’ (38)

where F,,), kis an arbitrary function which is symmetric
under the exchange of y < v.

Next, to fix the function F (wp > k let us take account of the
consistency with the de Donder gauge condition (2):

[0,3".b,] = 0. (39)
After some calculations, Eq. (39) leads to an equation for
Fu)t:
(gOagvﬂ _~0vgaﬂ> (@ = ( 0k51/ + Ou&k ~ 1/62)
(40)

3This translation generator belongs to the generators of choral
symmetry as will be seen in Eq. (62).
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This equation has the unique solution given by

F(pw)/)k = l[(éﬁ - 252.?@0]()9/)1/ + (/“t <~ U)] (41)

We can therefore obtain

(90 ) = i{ [ 0,90, = D0 (829, + 50,,)15°
18 =28075%) g + (u o IS (42)
Finally, using Eqs. (25) and (29), we can arrive at the
desired equation (32). It is of interest that Eq. (32) can be
derived from only the translational invariance and the de
Donder gauge condition without reference to the classical
Lagrangian £, which knows information of the dynamics
of the gravitational field g,, and the scalar field ¢.
Then, using Eq. (32) together with Egs. (25) and (26), we
can easily show that
[FZV, bﬁ] = l}(&{l—‘gv - 521—@1/ - 619FZA)53
+18, (200001 9™ — 835 — 8)8)0(f8°).  (43)

Incidentally, this ETCR is also needed in deriving the
ETCR [b,. b,] in the next section and the tensorlike ETCR

[R;tw b;)] = —i}(52pr + 61(/)R/w)53’ (44)

which will be derived in the Appendix A.
Finally, for later convenience we derive the ETCRs,

[¢. b)), ). b/, and 9. b;,] To do so, we begin by consid-
ering [¢,c,] =0 and take its BRST transformation as
follows™:

0= {iQB7 M’v Z’lp]} = {[iQBvﬁb]’ZJp} + [‘f’a {iQB7 Z’;:}]
= {=c*0,¢, ¢yt + [, iB)] = [, i(b), + icﬂ’aﬁﬁ,)]
= i[¢. b)), (45)

where together with [¢), ¢,] = 0, Egs. (3) and (5) have been
used. Thus, we have shown

$.b) =0. (46)

In a perfectly similar way, we can calculate [¢, b,] by
starting with [¢, ¢,] = 0 as follows:

0 = {iQp. [h. &)1} = {[i0n. $). 2} + . {i0s. )]
= (=00(c 0.2} + [ i(b) + ¥ 9,2))]
— {2}, + il b)), (47)

“We define the BRST transformation as 6® = [iQp, ®}
where @ is a generic field and [, } denotes the graded bracket.

from which, using Eq. (28) we can obtain

[, b)) = —ifd, 5. (48)

The calculation of [¢), b;,] proceeds as follows: First, we
utilize the formula [cf. Eq. (29)]

(. b)) = 0o ([, B)]) — (9. B,). (49)

Since the b field obeys the d’Alembert equation as in
Eq. (19), b;, can be described in terms of b, and b, like

b, = _}(2g0kakb/) + G10,0b,). (50)

P

Then, we are ready to evaluate

. b)) = =2F' %0, [, b)) = =2if P70, (FO,$8°)
=2if0,¢[f ' 00f8 + %0, (f5%)). (51)

Thus, we reach a result

. b)) = if (0,0 — [~'00f0,)8> — 2if 0,7 O (&)
(52)

Note that Egs. (46), (48), and (52) hold as well when we
replace ¢ by ¢.

IV. DERIVATION OF ETCRS INVOLVING b,
FIELD AND CHORAL SYMMETRY

We are now in a position to address the novel part of our
formulation and discuss a huge residual symmetry called
“choral symmetry” which emerges in adopting the de
Donder gauge for the general coordinate invariance.

In order to derive the commutation relations among the
bﬂ field in terms of the BRST transformation, let us start
with the latter equation in Eq. (30) and take the BRST
transformation:

0= {iQp.[b,. T,]}
={[iQp. b,). €.} + [b,, {iQp, C)}]
= —{c?9,b,.c,} +i[b,,b,] — [b,.c”"D,c,],  (53)

where Eqgs. (3), (5), and (6) have been used. Using Eq. (31),
the first and third terms precisely cancel so we can obtain

(B, b] = 0. (54)

Next, let us turn our attention to the derivation of the
ETCR:

b, b)) = if(8,b, + 0,b,)8". (55)
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To do that, let us start with the ETCR
[7eus b)) =0, (56)

which can be easily shown. Taking its BRST transforma-
tion leads to an equation:

{iQp.7eu}. b] = {7 [1Qp. b)) = 0. (57)

The first term on the left-hand side (lhs) can be calculated
to be

[{iQBv”c,u}’bL]
=—i[(§7°V," + 5%V, =5V,¢4)0,8,. by
+ iayby '53 _gOO[bw bIIJ] + i[gpoap(claléﬂ)v b;/]’ (58)
where Eqgs. (3), (5), (22), (26), and (54) have been used.

The second term on the lhs in Eq. (57) can be also
calculated to be

{”cw [iQB’ b”} - _iaﬂbl/ : 53 + Ci/[”cw a/lb” (59)

Then, Eq. (57) together with Egs. (58) and (59) gives us an
equation:

(b, B,) = if (b, + ,b,)5
— if[(F77V,c® + 5V e — FOV,c1)D, 8, b))

P
+ i}[gﬂoap(ciaﬂaﬂ)’ b;] - fcl/[ﬂcw 8ﬂbi]
=if(0,b, +0,b,)8 + K, (60)

After some calculations, we can prove K,, =0, which
implies that Eq. (55) is certainly valid. Note that in proving
K,, =0, it is necessary to make use of Eq. (43) and the
|

of

field equation for the antighost ¢,, ie., #¥0,0,c, = 0.
In particular, we must use the following ETCRs:

[Eﬂ’b” = —2lf[8y(;/’”53 _QOkayEyak(}53)]’
Ve, b = if (=89V,cf + &0, c* —T%,c0)8°

O,

+i8)(280 fg* = Shck — 8500, (f5%).  (61)

We end this section with the argument of choral sym-
metry, which is a huge residual symmetry 70Sp(8|3)
involving the BRST symmetry, the rigid translation
and GL(4) symmetry etc. Via the Noether theorem, the
10Sp(8]8) generators can be constructed out of Lgg + Lgp
in Eq. (9) as [8]

MMN E/d?}ngv(XMaDXN)
- / d3x§0y(XMayXN _ GDXM . XN),
pM = / Pxig™(10,XV) = / dxg>o, XM, (62)

where XM = {x*,b,,

the graded form:

c*,¢,}. The I0Sp(8|8) algebra takes

[iMMN,MRS} — —MMSﬁNR + (_)\R||S|MMR7~7NS
— (—)MIN(M < N),
[iMMN,PR} — _PM;]NR 4 (_)\MHN|PN77MR’
[PM PN} =0, (63)
where M is a 16 x 16 10Sp(8|8) metric [13].
Since the generators MMN and PM could have one time

derivative, calculating the algebra requires us to use the
ETCRs including two time derivatives such as

b, b)) = if |8,b, + 0,b, — 2f3*9,0,b, 53 (9,b, + ayb,,)] 5, —2ifg"™(0,b, + 9,b,)0(f5°)

Oof

e, b0) = 7 | (9,00 - 78#)53 - 230,00,(7) .

[E,. b =if (a@ - %8@,) 5 — 2g°’<aya,,ak(]f53)} ) (64)

These ETCRs can be all derived from the field equations
and the ETCRs obtained so far, for instance, Egs. (12), (19),
(29), (30), and (31) without specifying the expression of a
classical gravitational Lagrangian. This situation should be
contrasted with the previous formulation [8] where Eq. (55)
has been derived by using the Einstein-Hilbert Lagrangian.
Thus, it is said that the choral symmetry uniquely

characterizes the expression of Lgr + Lgp [8]. By contrast,
we can mention that the origin of the choral symmetry
purely lies in the de Donder gauge and the corresponding
FP ghost Lagrangian irrespective of a specific choice
of a classical gravitational theory as long as there
exists the general coordinate invariance in the classical
theory.
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V. A SCALE INVARIANT
SCALAR-TENSOR GRAVITY

In this section, as a classical Lagrangian, we will take the
simplest scalar-tensor gravity [3] whose Lagrangian is
given by

1 1
£o=vEa(36 PR =57 000.0). (69

where & is a constant called the nonminimal coupling
constant, ¢ a real scalar field with a normal kinetic term
(i.e., not a ghost), and R the scalar curvature. In addition to
the general coordinate transformation (GCT) and a global
scale transformation with Q = constant, this Lagrangian is
also invariant under the restricted Weyl transformation
[14-16], [4-6]:

Guv = g;w = QQ(X)ng ¢ - ¢/ =Q! (X)¢, (66)
where the gauge transformation parameter Q(x) obeys a
constraint [JQ = 0. In order to prove the invariance, we
need to use the following transformation of the scalar
curvature under (66):

R — R =Q7%(R-6Q7'0IQ). (67)
For the sake of simplicity, in what follows we will put

1

Y= E&ﬁz- (68)

It is worth recalling that we can rewrite (65) as the
Lagrangian of the well-known Brans-Dicke theory [11]:

1
L.=+\/=g <(PR - 6059” "auq’avq’) ’ (69)

where w = ﬁ is known as the Brans-Dicke parameter.
Thus, our classical Lagrangian (65) is at least classically
equivalent to that of Brans-Dicke theory.

Taking the de Donder condition as a gauge-fixing
condition for GCT, the gauge-fixed and BRST-invariant
quantum Lagrangian is given by

1
£y = v=i(oR - 570,000
GO, b, — i0,2,0,. (70)

uCp
From this Lagrangian, we can obtain field equations by
taking the variation with respect to g,,, ¢, b,, ¢,, and ¢’ in
order:

1 1 1
(pG/w - (vyvu - gﬂUD)(p - ETﬂIJ - 5 (E/w - Eg/wE> = O’

EPR + 0 = 0,
g"0,0,c’ =0,

9" =0,
¢49,0,¢, =0, (71)

where we have defined

1
Tﬂl/ = ay¢ay¢ - Eguv(a/)¢)2' (72)

Of course, even in this case the b, field satisfies the
d’ Alembert equation (19).

VI. EQUAL-TIME COMMUTATION RELATIONS
IN GRAVITATIONAL SECTOR

Since we have introduced the classical Lagrangian (65)
in a theory at hand, we are now ready to evaluate the equal-
time commutation relations (ETCRs) involving the metric
tensor and the scalar fields in the gravitational sector.

For later convenience, here let us take account of the
de Donder gauge condition (2), from which we have
identities:

gﬂyrﬁy = 0’ g/lﬂa/lg;w = Fﬁ]/ (73)
Moreover, since the equation g“”l“ﬁy = 0 reads

(zglﬂgvp - glwglp)apg/w =0, (74)

it is possible to express the time derivative of the metric
field in terms of its spacial one as

D¥ g, = (29% ¢ = ¢ *) Ok Gy (75)

where the operator D** is defined by
fDA;w — gO/lg;w _ 2gﬂug()v' (76)
To remove second order derivatives of the metric

involved in R, we perform the integration by parts once
and rewrite the Lagrangian (70) as’

L= _(pg”D(FZvFga - F;(:argu) - 8M(p(g<l/31"ﬁﬂ - gyyrl(ja)
1"‘ UV § AUV P D
—Eg””au¢8y¢+8ﬂg” b,—ig"9,c,0,c’ +9,V, (77)
where a surface term V¥ is defined as

V= (5T — §“T8a) — §*b,. (78)

’See Appendix B.
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From the Lagrangian (77), the concrete expressions for
canonical conjugate momenta for the metric tensor and the
scalar fields read

=
= ——F ) { g g — g — g
+9%g g+ g g + ( grgt+ 90”9”)9‘"] 090t
~V=9 [ (G + g ") - gﬂ”gﬂ‘)} 0,0
) TH P+ P g = g,

7y = % = 40, + EP(—FPTY, + FOTE,). (79)

From now on, we would like to evaluate several non-
trivial equal-time commutation relations (ETCRs) relevant
to the gravitational Lagrangian (77). For this purpose, let us
first write down some equations to be solved in order. Since
7y in Eq. (79) is rewritten as

1y =300 — 0 + QLT P = 579V no
(90](9/)6 - Opgk6>8kgpa]v (80)
[7y.¢'] = —i5* in Eq. (21) gives rise to an equation:

~7°, ¢') + EP(T° 7 = 876 Gpo &) = —i8®. (81)

Next, [z,.g,,] = 0 produces an equation:
_900[&5’ g;w} + §¢(§009ﬂ6 - ~0pg()a)["gpm g//u/] =0. (82)

Moreover, [D*°§,,. g,.]
D-equation (75), reads

=0, which stems from the

(6" =29 9") [0 9] = O. (83)

Similarly, [D*?,,,¢'] = 0 gives us an equation:

(99" = 299" Gp5- #'] = 0. (84)

Now we are willing to solve Eqgs. (81)—(84). First of all,
let us focus on Eq. (84). From the argument of symmetry,
[9po- @'] must be of form:

[gpm ¢/] =da (g/m + 0262597)53’ (85)

where a;, a, are certain coefficients to be determined
sooner. Indeed, from Eq. (84), we find that a, = g% so the

ETCR (85) reads

[gpa’ ¢/] =a

(gpa

Next, let us solve Eq. (83). In this case, we also find that
[9po G,] has a symmetry under the simultaneous exchange
of (uv) < (po) and primed <> unprimed in addition to the
usual symmetry p <> v and p <> o. Then, we can write
down its general expression like

= 5350> (86)

[Gp0 9] = {19069 + €2(GpuIor + Gpu o)
+ hfles(8560 g + 80809,0)
+ ¢a(8)8090n + )80 Goy + 80509, + 505)9,,)]
+ (hf)esdpdss5)} 8%, (87)

where c¢;(i =1,...,5) are some coefficients. Imposing
Eq. (83) on (87) leads to relations among the coefficients:
c3=2(ci+c3), cy=-cy, cs=4(c;+cy).  (8)
Furthermore, using Eq. (86), Eq. (81) gives [¢ ',
which is of form:

[, ') = (if + 3a,Ep)5°. (89)

Finally, with the help of Egs. (86), (87), and (88), Eq. (82)
leads to a relation:

= 3¢y +2¢5)é¢. (90)

In order to fix the coefficients a,, ¢, and ¢, completely,
we need to have two independent relations among them.
Such relations can be provided by calculating [/, Ghn)
explicitly in terms of [z&!, ¢,,] = —i1(8%6L + 5,,65)8° in
Eg. (21) and the concrete expression of 7%’ in Eq. (79). To
do that, from Eq. (79), let us write

kl Akl + Bklpbp + ("jklmngmn + Dkl('p. (91)

Here AX, B¥ Ckmn _and DX commute with g,,,,,, and CK™"
A 6
and DX are defined as

— lh(pKklmn

évklmn
2

Dkl — gOngl _ gOkgOI, (92)

where the definition of KX and its property are
given by

®It turns out that the concrete expressions of AX and B* are
irrelevant to the calculation of [y, G-
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g 9 9
Kklmn _ gkO gkl gkn ,
gm() gml gmn
1
Kklmn ) ( ) 1(gij.gmn glmgjn gmg]m) = 5 (6{(55 + 555;()
(93)
From Eq. (91), we can calculate
[..gkh g;nn] = Cl:l;q([”gq’g/mn] qup [b/w dmn] [QO dmn])
(94)

Then, using Egs. (21), (25), (86), and (93), we find

= fo7 (=i — a15) graGmn
+ i(gkmgln + gknglm)]53
= [Clgklgmn + o (gkmgln + gknglm)]é37 (95)

[ka g;nn]

where the last equality comes from Eq. (87). In this way, we
have succeeded in getting two independent relations among
a, ¢, and c,:

= fo ' (=i — a,g™ég). ¢ =ifp~". (96)
Using Eqgs. (90) and (96), we can fix completely the
coefficients as

411, -
cr=—icr Ty !

6E+ 1 = =i 10

66+ 1
(97)

Accordingly, we can obtain the following ETCRs:

. 2~ 2
[0pos @] = — 11 ifg~! (gpa + F525°>5’ (98)
] = L iFe (99)
SRR LA
. ~ 4 1
[gpm g;w] - lf(/)_l { 6§ I 1 9poGuv + 9puYov + 9pvYou

48
6 +

(060, + 800, + 080, + 52599,,4

; hf[ (00, + 5000

+ (hf)? 8¢ 50505050}53

66+17 (100)

It is worthwhile to notice that these ETCRs have two
peculiar features, one of which is the presence of the factor

6¢ 4 1 in the denominator, thereby implying that they do
not make sense in a theory with a local scale (or Weyl)
symmetry. In other words, in the case of 664+ 1=0
corresponding to the Weyl invariant scalar-tensor gravity,
we need to introduce one more gauge condition such as
R = 0 or ¢ = constant to fix the Weyl symmetry. The other
important feature is the existence of the field ¢ (or ¢) in the
denominator, which means that an unbroken phase
(¢(x)) = 0 cannot be dealt with in the present formalism.
This fact might suggest that a (global) scale invariance
would be broken spontaneously even in quantum gravity as
in classical gravity in order to construct a consistent
quantum theory of the scale invariant scalar-tensor gravity.
However, there could be the other possibilities. For
instance, the present formulation is unable to treat with
the symmetric phase. Anyway, we need more study about
this problem in the future.

VII. SPONTANEOUS SYMMETRY BREAKDOWN
OF SCALE INVARIANCE

In the previous work, we have shown that the scale
invariance is in fact spontaneously broken in classical
gravity where the gravitational sector is not quantized
[4-6]. In this section, we wish to investigate whether a
(global) scale invariance is spontaneously broken even in
quantum gravity or not.

Taking € in Eq. (66) to be a constant, we can define a
scale transformation as

G = g;w = ngﬂw ¢ - ¢/ = Q_1¢’
—_ 02 - “1=
b, — b, =Qb,, ¢ Qe

=P =Q e,

o
p 7 Cp =

(101)

where we have added the scale transformation for the
Nakanishi-Lautrup field and the FP (anti)ghosts. Then, it is
easy to see that the quantum Langrangian (70) is invariant
under the scale transformation (101). This fact implies that
the de Donder gauge is invariant under the scale trans-
formation. Incidentally, the de Donder gauge is not invari-
ant under a local scale (or Weyl) transformation. To make a
gauge condition for the general coordinate invariance be
invariant under the Weyl transformation requires us to take
a different gauge condition such as 8”((—g)%g””) =0 or
9,(\/=9#*¢") = 0 from the de Donder gauge.

Since the scale transformation is a global one, we can
construct a conserved Noether current and charge along
the standard procedure. After some calculations, it turns
out that the conserved current for the scale symmetry is
given by7

'See Appendix B.
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JH = L(9%) + 2b, + 0, (C,c”)|.

1
# —65; (102)

It is straightforward to verify that this current is conserved,
9,J* =0, in terms of field equations. Note that in the
conformal coupling & = — %, the first term on the right-hand
side (rhs) coming from the classical action is identically
vanishing [17,18] while the second and third terms coming
from the gauge-fixing and FP ghost terms, respectively, do
not so.

The Noether charge Q = [d°xJ° turns out to generate
the infinitesimal scale transformation correctly by using the
ETCRs obtained thus far:
|

89 = [INQ, g
6 + 1

59#1/ = ZAgﬂI/’
oc, = —Ac

5p=—Np,  Sb,=—2Ab,,

bc? = —Ac?, (103)

12 P
where we have set Q = e ~ 1 + A. It might be curious
about why no derivative of the metric tensor g, appears in
O since it usually generates the transformation of the metric
tensor [3]. This problem can be understood for the first time
in the present formulation since we have successfully
quantized the metric field and the scalar field.

To check that the charge Q indeed generates the scale
transformation (103), let us calculate 6g,, and 6b, explic-
itly. As for 6g,,,

=iA / X' [90/” (T 0, (%) +2b), + ial,(éﬁ,c”’)) , gﬂy}

=i / PA{(6E+ DT [P, 9] + 257, 9]}

= 2Agm,,

(104)

where in the third equality we put x° = x’°, and used Egs. (25) and (98). Against the expectation that the derivative of ¢
would play a role [3], the b field also does the job in generating the scale transformation. In a similar manner, as for 60,

we have

ob

, = [IAQ. b,

1
_ iA/ By [g()w <6f_+ d,(¢?) +2b), + iay(éﬁ,c"’)> . b,)}

2

=i [ (5007 + 200+ 0, (ee) ) + U6 + D)+ (1 b + 1)}

= —2Ab,,

where we have used Egs. (26), (31), and (48). We wish to
mention again that in the case of classical gravity, one
cannot show that the charge (@ generates the scale
transformation owing to the absence of the ETCRs relevant
to the Nakanishi-Lautrup field b, and the FP ghosts ¢,
and c°.

Now let us move to the issue of spontaneous symmetry
breakdown of scale symmetry in quantum gravity. From
Eq. (103) and the definition of 6& = [iAQ, @] for a generic
field ®, we obtain that

[iQ. 4] = 9.

[iQ,c’] = —c’.

{iQ’ bp] = _2bp,
(106)

[iQ. 9] = 29,

[i0.2,] = —¢,.

Assuming that the fields take the following vacuum
expectation values:

(105)

|

<0|g/,w|0> = ;7/41/7 <0|¢|0> = ¢0’ <0|bp|0> = 07
(01c,[0) =0, (0]e”|0) =0, (107)
with ¢, being a constant, Eq. (106) implies that

<0|[1Q’ g;w]|0> = 2’/[/w’ <0|[ZQ7 ¢Ho> = _¢07

(0[[iQ. b,]|0) = 0.

(0lliQ.¢,]|0) =0, (0][iQ. c’]|0) = 0. (108)

The second equation in Eq. (108) shows that the scale
invariance is spontaneously broken at the quantum level as
long as ¢y # 0 holds [4,6].

Here three important remarks are in order. First, the first
assumption in Eq. (107), (0/g,,|0) = #,,, comes from our
postulate that the vacuum is invariant under translation [8]:

P,[0) =0, (109)
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which means that translational invariance is not broken
spontaneously. It is true that the existence of the non-
vanishing cosmological constant is not consistent with this
assumption, but we have adopted this assumption from
phenomenological considerations. Moreover, with this
assumption the graviton can be identified with a Nambu-
Goldstone (NG) boson corresponding to spontaneous
symmetry breakdown of GL(4) symmetry down to
SO(1,3) Lorentz symmetry, thereby proving the exact
masslessness of the graviton [9].

Second, let us pay our attention to the second assumption
in Eq. (107), (0|¢|0) = ¢ # 0, which is also physically
plausible by the following argument: As usual, let us
consider to move from the Jordan frame to the Einstein
frame by implementing a local scale transformation only
for the metric tensor field as

1
g;u/ - g*/,w = Q(x)zg/w = W§¢2gyw (110)
Pl

where Mp, is the reduced Planck mass. Then, in the
Einstein frame, up to a surface term the quantum
Lagrangian (70) is reduced to the form:

M}, 1,
Eq = \/——g* TR* —Eg‘: (9M68,,G

— (G 0,b, — i 0,E,0,¢7).  (111)

where we have defined a scalar field o(x) and a constant ¢ as

¢ = ESMpen, C—,/@—il. (112)

In this way, we can arrive at the Lagrangian in the Einstein
frame by starting with that in the Jordan frame. The key
point for the change of the frames lies in Eq. (110) where
the scale factor Q(x) is proportional to MLH(/)(X). Namely,

the existence of the nonvanishing “dilaton” ¢ # 0, or more
precisely, (0]|¢|0) # 0, makes it possible to move from the
Jordan frame to the Einstein one. In this sense, our
assumption (0|¢|0) = ¢y # 0 makes sense physically.

As a final remark, as mentioned in the previous section,
in order to make a consistent quantum gravity based on the
scale invariant scalar-tensor gravity, it is necessary to
require the condition (0]¢|0) # 0. Any physical theories
must be formulated within the framework of quantum field
theories, so it is natural to assume such the condition.

To close this section, let us verify more explicitly that the
spontaneous symmetry breakdown of the scale symmetry
occurs in the Einstein frame where the scale symmetry is
replaced with a shift symmetry. For this purpose, let us
rewrite the charge for the scale symmetry in the Jordan
frame into that in the Einstein frame as

0= / dxg [%Qa—l—e_"?;g@by—kay(épcp)) . (113)

where we have used Egs. (102), (110), and (112). Since Q
has a linear term in o(x), the charge cannot annihilate the
vacuum |0):

0[0) # 0.

which means the spontaneous symmetry breakdown of
scale symmetry in the Jordan frame or shift symmetry in the
Einstein frame. Actually, from the Lagrangian (111) the
canonical conjugate momentum for the scalar field o(x)
reads

(114)

oL 0
=—=—/-9.9.0,0. 11
%o = D000 V=9:92 0,0 (115)
Then, Q can be rewritten as
M
Q:—Tpl/d%m'(,—l—---, (116)

where ... denote contributions from the Nakanishi-Lautrup

field and the FP ghosts. Using the equal-time commutation

relation |6, 7,] = i5°, we obtain

Mei
¢

Taking the vacuum expectation value of this equation yields

[iQ.0(x)] = - (117)

(0[[iQ. o(x)]|0) = —”i}" 40,

which clearly means the spontaneous symmetry breakdown
and the scalar field o(x) is the massless NG boson for the
shift symmetry.

(118)

VIII. CONCLUSIONS

In this article, we have performed a manifestly covariant
quantization of a scale invariant gravity which is equivalent
to the Brans-Dicke gravity [11] via the field redefinition of
a scalar field. Many of studies of the Brans-Dicke gravity
have been thus far confined to the classical analysis, so it is
expected that our quantum formulation of the Brans-Dicke
gravity could provide us with some useful information on
quantum aspects of the theory.

Actually, we have presented two new results, one of
which is that in classically scale invariant gravitational
theories, we have a quantum scale symmetry in addition to
a huge choral symmetry when we choose the de Donder
gauge for the general coordinate invariance. In this respect,
it is worthwhile to recall that in the manifestly scale
invariant regularization method [19-24], the scale invari-
ance is free of scale anomaly.
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As the second result, we have shown that the scale
symmetry is spontaneously broken by quantum effects,
thus proving that the “dilaton” is exactly massless because
of the Nambu-Goldstone theorem. As pointed out in the
previous paper [25], when the dilaton is exactly massless at
the quantum level, it mediates a long-range force between
massive objects as in the Newtonian force, which imposes a
severe phenomenological constraint on parameters in the
Brans-Dicke model [11] since the long-range force stem-
ming from the massless dilaton could affect the perihelion
advance of Mercury, for instance.

Furthermore, we have shown that the choral symmetry,
which is a Poincaré-like IOSp(8|8) supersymmetry, can be
derived from any gravitational theories, which are invariant
under the general coordinate transformation (GCT), if the
GCT is gauge-fixed by the de Donder gauge. To put it
differently, the choral symmetry comes from only the
de Donder gauge for the GCT in the BRST formalism. It
is worthwhile to recall that the choral symmetry includes the
BRST symmetry and the physical observables can be defined
as operators which commute with the BRST charge [8].

We still have a lot of work to be done in the future. For
instance, we would like to extend the present formalism to
gravitational theories with a local scale invariance (or Weyl
invariance) and investigate the resultant residual sym-
metries. In the case of the Weyl invariance, it seems that
we might prefer the Weyl-invariant gauge conditions
such as 9,((—g)ig”) =0 and (\/_4529’”’) =0 to the
de Donder gauge condition 0 (\/_ ") = 0 since we have
the restricted Weyl symmetry in these Weyl invariant gauge
conditions when we take the gauge condition R = 0 for the
Weyl invariance. However, then we will lose the choral
symmetry but instead we would have new residual
symmetries.

As another problem, it is of interest to construct a
manifestly scale-invariant regularization scheme in the theory
athand and calculate an effective potential explicitly [26-28].
With this regularization scheme, it is necessary to introduce
an additional scalar field in addition to the dilaton and the two
scalar fields might collaborate with each other for nullifying
the scalar force. In fact, such an approach on the basis of the
dilaton and the axion has been recently proposed [29]. In the
near future, we would like to report on these problems.
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APPENDIX A: DERIVATION OF [R,, .b)]

n
In this Appendix, we wish to prove the tensorlike ETCR:

R, b)) = —if (R, + &R ,)5°. (A1)

Our strategy for the proof is similar to that of [8], but is in
essence different from it since we have been already able to
derive the ETCR (55) without recourse to the Einstein
equation. In what follows, we will prove the following two
equations:

[Gow b;)] - f(égRou - 53R0/))637 [Rklv b;,] = 0’ (AZ)
from which it is easy to see that we can reach our goal (A1).
Let us first prove the former equation in (A2). From the

Einstein equation, which is the first equation in (71), G°, is

1 1 1 1
0 _ _ 0 _ —_70 _ 0 _Z
Gy—(p{(vvy 6BD)w+2TU+2<ED 262E>]-

(A3)

Note that the first term (VOV, —&2(0)¢ contains no ¢.
Then, [G°,, b),] reads

1
GO,,,b’ = ¢{ VOV —5°E! ), b’] [TO,,,b;)]
+%[E° ~&E, b’]}
1
After some calculations, A, is found to be
= [(V'V, - 8)00)¢. b))
= l.?(égvovv(p - 68v0v/)(p)53 (AS)

In order to evaluate A,, it is necessary to calculate [T, b)]
whose result is given by

[T,. b)) = —i f(angy + 60T ,,)5°.

(A6)

Using this result, A, becomes

1 1.~
Ay == 5 [7°,, b, = Elf(égToy - SBTOP)53. (A7)

Finally, evaluating A; requires us to calculate [E,,, b},
which is found to be

[E,,.b,] = —if (8E,, + 8E,,)5

s p u=pu

(A8)

Since we can calculate [E, b,] = 0, A3 reads

1 1 1 .-

Adding A;, A,, and A5 gives rise to the former equation in
(A2) since from Eq. (71) R®, is described as
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1 1 1 1 1
RV, =— || V'V, +-80 (1%, —=8T | +=E°, |.
=2 | (v g0 oy (10,-50m) 4520

(A10)

Next, let us prove the validity of the latter equation in
(A2). From the Einstein equation in (71), Ry, takes the

form:
1 1 1 1 1
Ry = P [(Vkvl + zgle) @+ 3 (Tkl - §9k1T> + zEkl] .
(A11)
With the help of Egs. (A6) and (AS8), we find
/ 1 1 /
[Ris. b)) :; V.V, +§9k15 @, b,|. (A12)
Using Eq. (43) and the formula:
[, b)) = =2if0,(8° + 2if 0,070, (f5°),  (Al13)

which can be proved through (48) and (52), we can
show that the rhs of Eq. (A12) is identically vanishing.
Accordingly, we have succeeded in proving our
statement (A1).

APPENDIX B: CONSERVED CURRENT
FOR SCALE SYMMETRY

In this Appendix, we will present a derivation of the
conserved current for the scale symmetry in Eq. (102) and
show that the current is indeed conserved on-shell.

First, let us rewrite the Einstein-Hilbert term in order not
to include second order derivatives of the metric by the
standard technique [30]:

V=9R = 7" (017,

where the first and second terms can be rewritten as

-0, + Ty, g, —T0,I%,), (BI1)

gyyaar*a — aa( l’*a) ag;w F{l
= 0,(9"T},) — (T3 — 2063’ )L 3
70T = 0,(7 ) = 0,3 - T
= 0,(7"Tia) + Tpod Ty (B2)
From Egs. (B1) and (B2), we have
V=GR = 0,(#T, - 3T
+ 3 (Tl U = T G0)- (B3)

Using the formula (B3), up to a surface term the part of
the scalar-tensor gravity in the classical Lagrangian (69)
can be cast to the form:

V=99R = —/=9(G" 0, + Go), (B4)
where G* and G are defined by
Ga = gyvra gﬂa Mﬁ’
G= gyy (FZqua - FZant/la)' (BS)

Then, the quantum Lagrangian (70) takes the form:

1
L,= —\/—_g(G"aa(p +Go + 2g””aﬂgb8y¢)
- g*0,b, —iy*0,c,0,c’

utp

(B6)

With the infinitesimal scale invariance (103), the Noether
theorem provides us with a formula for the conserved
current:

‘15@

(B7)

AJH _Zaa

where we use the right-derivative notation and ®; =
{9p6- @, b,.C,.c’}. Tt is therefore necessary to evaluate
each term on the rhs of the following equation:

Ly L, L, N
= 90,9, " 00 ¢¢ 00,b,
ORL ORL
-—1¢, - et (B8)
d0,¢c, 00,¢

To calculate the first term on the rhs, we need the formulas:

6(\/_gG(Z)_ alp 6\ _ po pa

“0,, V7Y glg" g =g g"),

a(v_gG)_ — 1 o afTH a( (pa)_l | 0)
m—\/ 9{59/’9 Lo+ T g 59"9/'

1 1
+5 (f(ﬂ@iga)u —59’1”8/19’)0 —g”“g”"F’;,;)] ,
(B9)

where we have used the symmetrization notation,
A(,B,) =5(A,B, + A,B,). After a straightforward calcu-

lation, we find that the current is given by

=" {65—2—18 @+2b,+ i@,,(Z‘,,c/’)}
— g {65 L o,(6%) + 26, + iay@cﬂ)] . (B10)

where we have used ¢ = %54)2. Note that in the case of the
Weyl invariant scalar-tensor gravity where 6 + 1 =0 is
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satisfied, the first term, which is a classical contribution, on
the rhs in the above equation identically vanishes [17,18].

Finally, let us check that this current is in fact conserved
in terms of the field equations (71). Taking the derivative of
the former current in (B10) leads to

66+ 1

D(p+E>, (B11)

0,0 = \/—_g(

where we have used the de Donder gauge and the field
equations for the FP ghosts. It is easy to see that this
expression vanishes by using the field equations (71). To do
s0, let us take the trace of the Einstein equation, i.e., the first
equation, in Eq. (71) whose result reads

1 1
(B0-Rjp -3, +5E=0.

5 (B12)

From the field equation for the scalar field, i.e., the second
equation, in Eq. (71), we obtain

OR = -%¢D¢. (B13)

Moreover, taking the trace of T, in Eq. (72) gives rise to

T, = —(0,0)%

Then, substituting Eqs. (B13) and (B14) into (B12), we
have

(B14)

1 1
300 + 5 [¢0h + (0,0)] + SE=0. (BIS)
Since the definition ¢ = %e:gbz gives us an equation:
Og = &[¢0¢ + (0,0)°]. (B16)

inserting this equation to Eq. (B15) yields the desired
equation:

6&+1
¢

Oe +E =0, (B17)

by which we can prove the conservation law of the scale
current, 9,J* = 0 as seen in Eq. (B11).
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