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While the phase structure of the Uð1Þ ×Uð1Þ-symmetric Higgs theory is still under debate, a version of
this theory with an additional Chern-Simons term was recently shown to undergo a second-order phase
transition [Vira Shyta et al., Phys. Rev. Lett. 127, 045701 (2021)]. This theory is dual to a topological field
theory of massless fermions featuring two gauge fields. Here we elaborate on several aspects of this duality,
focusing on the critical current correlators and on the nature of the critical point as reflected by the
bosonization duality. The current correlators associated with the Uð1Þ × Uð1Þ symmetry and the topological
current are shown to coincide up to a universal prefactor, which we find to be the same for both Uð1Þ and
Uð1Þ × Uð1Þ topological Higgs theories. The established duality offers in addition another way to
substantiate the claim about the existence of a critical point in the bosonic Chern-Simons Uð1Þ ×Uð1Þ
Higgs model: a Schwinger-Dyson analysis of the fermionic dual model shows that no dynamical mass
generation occurs. The same cannot be said for the theory without the Chern-Simons term in the action.
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I. INTRODUCTION

The study of bosonization in dimensions higher than
1þ 1 has been around for a long time [1–3]. While
bosonization in the 1þ 1 dimension is a well developed
field [4,5], this does not hold for the (2þ 1)-dimensional
case, in spite of the intense recent activity in the field [6–14].
Typically, in 1þ 1 dimensions scalar fields are expressed
locally in terms of fermion bilinears [15,16]. One such
fermion bilinear is the current jμ ¼ iψ̄γμψ , but other local
forms are also possible. A well-known example is the
bosonization of the Thirring model, where the fermion
current is expressed as jμ ∼ ϵμν∂νφ [15]. Since jμ is a
vector, going one dimension higher implies necessarily that
bosonization in 2þ 1 dimensions should involve a gauge
field, aμ, and therefore, one can guess, jμ ∼ ϵμνλ∂νaλ. Of
course, this intuitive picture has to be substantiated by actual
calculations, and it becomes immediately clear that unlike
the (1þ 1)-dimensional case, more fields have to be
involved, so the gauge field has to be minimally coupled
to a scalar field in order to match the symmetries of
fermionic and bosonic theories [6]. As a consequence, in

the case of Uð1Þ symmetries in 2þ 1 dimensions the
bosonization manifests itself as a kind of particle-vortex
duality [17–20]. One important feature of dualities is that
they provide mappings between strongly and weakly
coupled theories, thus presenting a nonperturbative tool to
analyze quantum field theories. Dualities between bosonic
Uð1Þ-symmetric theories on the lattice have been established
exactly in several dimensions [17,21–25]. Since bosoniza-
tion dualities in 2þ 1 dimensions involve Chern-Simons
(CS) terms [6,8], it is considerably more difficult to perform
the procedure on the lattice, although it has been considered
in some cases more rigorously for gapped fermions [12,13].
The bosonization duality in relativistic field theories in

2þ 1 dimensions [6,8] finds its precursors [26] in actual
condensed matter systems where quasiparticles with frac-
tional statistics (anyons) arise, as for example in the fractional
quantum Hall effect [27,28]. Recall that in quantum Hall
systems statistical transmutation occurs via an emergent
gauge field associated with the Berry phase of the
Laughlin wave function [29]. The idea is that bosons can
be transmuted into fermions via flux attachment, which
changes the (intrinsic) angular momentum from integer to
half-integer via a mechanism reminiscent of the Aharonov-
Bohm effect [30]. The emergent gauge field is typically not
governed by an electrodynamics à laMaxwell, as in this case
the flux alone cannot guarantee the change of statistics via the
angular momentum, since a Maxwell-like electrodynamics
produces a field contribution to the angular momentum that
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generally cancels the mechanical contribution arising by
letting the particle go around another particle with a flux
attached to it [31,32]. That is the reason why a topological
action in the form of a CS term is required: the energy-
momentum tensor being given by the functional derivative of
the action with respect to the metric, a CS term does not
contribute to it, since it is topological (i.e., it does not depend
on the metric) [31], so no field contribution to the total
angular momentum arises from it.
Things become considerably more subtle when gauge

fields are periodic, i.e., the Uð1Þ group is compact. In this
case even the pure Abelian CS action,

SCS ¼
iκ
2

Z
d3xaμϵμνλ∂νaλ; ð1Þ

features nontrivial aspects, despite the theory being free. This
situation provides one of the simplest realizations of a so-
called topological order [33]. The compactness of the gauge
field aμ forces the CS coupling to be quantized, κ ¼ k=ð2πÞ,
where k ∈ Z is the so-called CS level. This way eigenstates
of the Wilson loop have a degeneracy that depends on the
genus g of the manifold where the CS form is defined, being
given by kg. This fact is not only important in a purely
abstract sense, but has far reaching consequences in con-
densed matter systems in 2þ 1 dimensions [33,34]. There
are other, mathematically deeper ways of understanding the
quantization of the CS action, and this involves concepts
such as spin manifolds and connections [35].
The Wilson loops and the topological quantization,

which they ensue in the pure compact CS action, acquire
an even more interesting meaning when the loops are
actually closed vortex lines due to the coupling to matter
fields. Recall that in the (bosonic) particle-vortex duality
[17–20] particle worldlines in a theory are expressed in
terms of an ensemble of vortex lines in a dual theory, with
the duality transformation mapping the strong coupling
of a theory into the weak coupling of the other one, and
vice versa. In this case the topologically nontrivial gauge
transformation involves the phase θ of the complex
Higgs scalar, so aμ → aμ þ ∂μθ causes the CS action to
be transformed into S0CS½a� ¼ SCS½aþ dθ�, but periodicity
of θ implies that ϵμνλ∂ν∂λθ does not vanish at vortex
singularities [36]. Considering a single vortex loop for
simplicity,

ϵμνλ∂ν∂λθðxÞ ¼ 2πn
I
L
dyμδ3ðx − yÞ; ð2Þ

where n ∈ Z is the winding number defined viaH
L dθ ¼ 2πn, we obtain from the CS action a field equation
for the gauge field in the form

ϵμνλ∂νaλ ¼ −2πkn
I
L
dyμδ3ðx − yÞ: ð3Þ

The quantity Jμ ¼ iϵμνλ∂νaλ=ð2πÞ defines a topological
current. The role of topology is apparent also in the sense of
the vortex loop as a topological defect, since the right-hand
side (RHS) turns out to have a zero divergence independ-
ently of the shape of the loop.
In Ref. [17] the correlation functions of vortex loops are

shown to be directly related to the current correlation
function associated with the global (Noether) Uð1Þ sym-
metry. There this result was established on the lattice in the
context of a bosonic particle-vortex duality. Such a con-
nection is expected to exist also in the case of other dualities
in 2þ 1 dimensions, including the ones associated with
bosonization [37]. Particularly relevant in this context is the
approach to the critical point, where the theory is a conformal
field theory (CFT) and, in addition, the fixed points on both
sides of the duality coincide. This example highlights well
the power of the duality approach, since it establishes the
existence of a critical point (and therefore a second-order
phase transition) in the Abelian Higgs model in 2þ 1
dimensions for one Higgs scalar, something that is otherwise
very hard to assert by perturbative means, unless a large
enough number of scalars is available [38–40]. The duality
result obtained in Ref. [17] in the lattice and elaborated
further via Monte Carlo simulations in Refs. [19,41] allows
one to unequivocally conclude that a second-order phase
transition indeed takes place. That this result can also be
obtained within a field theoretical approach via bosonization
is a remarkable achievement [6,8].
Regarding the phase structure, the bosonization duality

approach is considerably less conclusive in the case of a
Uð1Þ ×Uð1Þ-symmetric Higgs theory in 2þ 1 dimensions
[9]. In this case numerical results using lattice gauge theory
models favor a first-order phase transition [42,43]. However,
other lattice models with Uð1Þ ×Uð1Þ symmetry lead to a
second-order phase transition [44–46]. In a recent Letter [14]
we have pointed out yet another route toward quantum
criticality in Uð1Þ ×Uð1Þ Higgs systems, namely, one
where a CS term is present in the Lagrangian. There we
focused on a derivation of the duality in terms of interactions
between vortex loops, which in the case of a CS Higgs
theory naturally leads to a sum over sign factors ð−1ÞNab

in the partition function, where Nab ¼
P

a≠b nanbLkab,
with integers na and nb being the quanta (winding numbers)
from given vortex loops a and b. These sign factors are

weighted by a phase factor eiπ
P

a
naWa, where Wa is the

writhe [47–49]. The sign factors are here identified to
integrated out massless fermions. The duality and a renorm-
alization group (RG) analysis provided strong evidence for
the existence of a quantum critical point in this theory. Key in
the RG analysis was the vanishing of certain Feynman
diagrams at zero momenta as a consequence of the CS
term [14].
In this paper we discuss the Uð1Þ × Uð1Þ CS Higgs

theory further using a point of view more focused on local
field theory actions rather than directly considering vortex
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loop configurations. The basic idea is to take advantage of
the flux attachment with CS terms in the bosonic particle-
vortex duality for theUð1Þ theory [8]. In spite of the absence
of a CS term in the Higgs theory of this bosonic duality, a CS
Uð1Þ Higgs model is used in the intermediate steps via the
bosonization technique in 2þ 1 dimensions [6,8]. Here we
will discuss some important differences between the boso-
nization duality for the usual Uð1Þ ×Uð1Þ Higgs theory
discussed earlier [8,9] and the case of a CS Uð1Þ ×Uð1Þ
Higgs theory. One main focus of our analysis is to obtain
results that elucidate further the quantum critical behavior
discussed in our previous work [14]. We will address with a
considerable level of detail the correspondence via the
duality between the conserved current associated with the
Uð1Þ ×Uð1Þ symmetry and the topological current from the
dual model. This point of view adheres to the logic of
bosonization in (1þ 1)-dimensional systems [15] where a
precise correspondence is derived between the currents of
the fermionic and bosonic theories. For this reason we will
start by briefly reviewing some basic facts about the (1þ 1)-
dimensional case in Sec. II.
Besides the duality and critical behavior of the Uð1Þ ×

Uð1Þ CS theory, this paper will additionally explore several
aspects of the particle-vortex duality in 2þ 1 dimensions
that reflect the interplay between current correlation func-
tions featuring both Noether and topological currents. As
mentioned, we will mainly focus on theories at the quantum
critical point. In order to set the stage, after briefly recapping
in Sec. II well-known results from bosonization in 1þ 1
dimensions, our discussion of bosonization in 2þ 1 dimen-
sions in Sec. III starts by first considering a toy example
in 0þ 1 dimensions (Sec. III A). The interest in such an
example is not only driven by the fact that it provides exact
results within a path integral treatment. In fact, the (0þ 1)-
dimensional case exhibits many features similar to those
encountered in the (2þ 1)-dimensional case, but in a much
simpler setting. One of the similarities is the generation of
a CS term in 0þ 1 dimensions after exactly performing
the path integral over fermions [50,51]. Also the effect of the
parity anomaly in the partition function and its role in
the bosonization is made explicit. Given that the Thirring
model in 1þ 1 dimensions is one of the best known
examples of bosonization [15], we briefly consider it in
both 0þ 1 (Sec. III A 2) and 2þ 1 (Sec. III B) dimensions.
Sections IV–VI, and VII constitute the core results of this
paper. Section IV focuses mainly on the role of criticality in
particle-vortex duality, offering new insights from a field
theoretic perspective on the well-known bosonic particle-
vortex duality in 2þ 1 dimensions [17–19]. There
the importance of the critical point is emphasized in
the discussion we give of this duality (Sec. IV B). Next,
establishing the bosonization duality for the Uð1Þ-
symmetric Higgs theory, in Sec. V B we obtain the
relation between topological and Noether current corre-
lators at criticality. Section V serves as a warm-up for the

discussion of the Uð1Þ ×Uð1Þ case in Secs. VI and VII.
Section VI gives a derivation of both the bosonic and
fermionic dual models as well as the calculation of the
corresponding current correlators. In Sec. VII we discuss
the phase structure and compare it to the one of the
Uð1Þ ×Uð1ÞHiggs electrodynamics without the CS term.
Section VIII summarizes our results and gives an outlook.

II. BOSONIZATION IN 1 + 1 DIMENSIONS

Let us briefly recapitulate a number of results from
(1þ 1)-dimensional bosonization that will be relevant
within the context of this paper.

A. The Thirring model

The Thirring model of interacting Dirac fermions
represents a primary example of bosonization in field
theory [15]. The Lagrangian for the Thirring model differs
from the one for QED in the way the Uð1Þ Noether
currents interact. Instead of featuring a long-range, pho-
ton-mediated interaction between currents, the interaction
between currents in the Thirring model is short-ranged.
The Lagrangian is thus given by

LTh ¼ ψ̄ð=∂ þMÞψ −
λ

2
jμjμ; ð4Þ

where the current jμ ¼ iψ̄γμψ . In 1þ 1 dimensions the
Thirring model is known to be dual to the bosonic sine-
Gordon model,

LSG ¼ 1

2κ2
ð∂μφÞ2 − α cosφ; ð5Þ

where α ∼M. The conserved current jμ of the Thirring
Lagrangian is related to the scalar field φ in the sine-Gordon
Lagrangian via [15]

jμ ¼
1

2π
ϵμν∂νφ; ð6Þ

provided the following relation between couplings holds:

κ2 ¼ 4π2

π þ λ
: ð7Þ

Such a connection between the currents reflects the dual
nature of the corresponding theories.
In the zero mass limit the Thirring model in 1þ 1

dimensions is equivalent to a free scalar field, since in this
case α ¼ 0. Thus, as elaborated in Appendix A, we obtain
that the current correlation function CμνðxÞ ¼ hjμðxÞjνð0Þi
is given by

CμνðxÞ ¼ −
1

2πðπ þ λÞx2
�
δμν −

2xμxν
x2

�
: ð8Þ
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This result highlights the future importance of the prefactor
arising in the current correlator, which is dependent on the
interaction coupling λ.

B. Fermions in the presence of a background gauge field

There is yet another instance where a current having
the form (6) plays a role. Let us consider the action of a
massless Dirac fermion in the presence of a background
gauge field,

S ¼
Z

d2xψ̄ð=∂ − i=AÞψ : ð9Þ

This action features besides the local Uð1Þ gauge symmetry
also the local chiral symmetry ψðxÞ → eiγ5φðxÞ, since this
transformation is compensated by AμðxÞ → AμðxÞ − ϵμν∂νφ.
This is true because in d ¼ 2 the property that γμγ5 ¼ ϵμνγν
holds. Hence, the gauge field is entirely parametrized in
terms of a scalar field. At the classical level a gauge
transformation in the fermionic fields removes henceforth
the gauge field completely from the action, leading to a
theory of a free massless scalar fermion. As is well known,
such a result is not correct at the quantum level, as the theory
of Eq. (9) features a chiral anomaly. Recall that the effective
action,

Seff ¼ − ln detð=∂ − i=AÞ; ð10Þ

needs to be regularized. Using the standard Pauli-Villars
regularization, one obtains that the scalar field paramet-
rization of the gauge field cannot be gauged away any
longer. The final result is a theory consisting of a free
massless Dirac fermion decoupled from a free massless
scalar field [5],

S ¼
Z

d2x
�
ψ̄=∂ψ þ 1

2π
ð∂μφÞ2

�
: ð11Þ

The scalar field term in the above action corresponds to
the Oð2Þ nonlinear sigma model considered in detail in
Appendix A (with g ¼ π). As the vector gauge field Aμ is
eliminated, instead of the fermionic current jμ ¼ iψ̄γμψ
there is a corresponding topological current, J̃μ ¼ 1

π ϵμν∂νφ,
obtained from Eq. (11). Analogously, the current Jμ ¼
∂μφ=π is identified with the fermionic chiral current
j5μ ¼ iψ̄γ5γμψ . Due to the chiral anomaly, the current
correlation function for Jμ is not transverse in momentum
space, as shown in Appendix A. Therefore, through a proper
Pauli-Villars regularization one obtains a bosonized version
of the (1þ 1)-dimensional massless fermionic theory with a
background gauge field.

III. DYNAMICALLY GENERATED
CHERN-SIMONS TERM AND BOSONIZATION

Bosonization in 2þ 1 dimensions works very differently
from the (1þ 1)-dimensional case. One distinctive feature is
the absence of a γ5 matrix and, as a consequence, a chiral
symmetry in the case of massless fermions [52]. Although in
2þ 1 dimensions the product of Dirac matrices does not
yield a γ5 matrix, the trace of such a product produces
trðγμγνγλÞ ¼ 2iϵμνλ, which is of paramount importance in
the dynamical generation of the CS term. The possibility of a
CS term is another distinctive feature of systems at an odd
number of spacetime dimensions. The simplest occurrence
of a CS term is in 0þ 1 dimensions, where most calculations
can be performed exactly. This also provides a toy model to
illustrate some key features of the bosonization duality in
2þ 1 dimensions. Concerning the latter, an early example
amounts to extend to 2þ 1 dimensions the (1þ 1)-
dimensional bosonization of the Thirring model [3]. We
briefly review this result in Sec. III B, since some elements
of it will be useful later on. Also, for completeness, since
the Thirring model is being discussed in both 1þ 1 and
2þ 1 dimensions, we connect the exact bosonization
duality in 0þ 1 dimensions to a (0þ 1)-dimensional
version of the Thirring model, which just turns out to
correspond to the Hubbard model in the atomic limit.

A. Exact bosonization in 0 + 1 dimensions

1. Bosonization duality and parity anomaly in 0 + 1
dimensions

The bosonization duality takes different forms depending
on the dimensionality of the theories. In pursuit of a clear
narrative behind the (2þ 1)d bosonization that we are set to
obtain, let us start by demonstrating an exact bosonization
duality in ð0þ 1Þdwith only the time component present. In
the imaginary time formalism, a fermionic theory has the
following Lagrangian,

Lf ¼ ψ†ð∂τ þm − iAðτÞÞψ ; ð12Þ

where ψðτÞ is a fermionic field coupled to the gauge field
A and satisfying an antiperiodic boundary condition,
ψð0Þ ¼ −ψðβÞ, with β ¼ 1=T being an inverse temper-
ature. While the Lagrangian is gauge invariant, the
partition function fails to have this property when topo-
logically nontrivial gauge transformations are considered.
By the latter we mean a gauge transformation ψ → eiλψ ,
A → Aþ ∂τλ, where λ ∈ S1. We will see how this works
within this simple setting below.
Once the fermionic field is integrated out, the partition

yields

Zf ¼
detð∂τ þm − iAðτÞÞ

detð∂τ þmÞ ; ð13Þ
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where for normalization purposes there is a division by the
free theory. The fermion determinant is given by the product
of the eigenvalues of the operator ð∂τ þmþ AðτÞÞ. The
boundary conditions on the fermionic field allow one to
obtain a discretized set of eigenvalues, and thus, the partition
function becomes

Zf ¼
Y∞

n¼−∞

�
1þ βm − iϕ

ið2nþ 1Þπ
�

×
Y∞

n¼−∞

�
1þ βm

ið2nþ 1Þπ
�
−1
; ð14Þ

where we used the notation

ϕ ¼
Z

β

0

dτAðτÞ: ð15Þ

The infinite products arising in the partition function (14)
can be evaluated by manipulating the well-known infinite
product representation of the cosine hyperbolic function
[62]. Eventually, one obtains following Refs. [50,51]

Zf ¼
coshðβm−iϕ

2
Þ

coshðβm
2
Þ ¼ cos

�
ϕ

2

�
− i tanh

�
βm
2

�
sin

�
ϕ

2

�
: ð16Þ

Assuming the mass, m, to be positive and taking the limit
βm → ∞, we obtain the zero temperature result

Zf ¼ e−
iϕ
2 : ð17Þ

Note that the zero temperature limit resembles a Pauli-
Villars type of regularization, if the limit is interpreted as a
large mass one. Importantly, if the “flux” of Eq. (15) is 2π,
in analogy with the single unit flux in 3þ 1 dimensions, we
obtain that Zf ¼ −1, so the partition function is negative.
This result is a toy example for a more general scenario
provided by the Atiyah-Patodi-Singer (APS) theorem [63];
see also Ref. [64] for a discussion in the context of partition
functions of fermionic systems in manifolds with and
without boundaries.
A topologically nontrivial gauge transformation,

A → Aþ ∂τλ yields

Z0
f ¼ ð−1ÞnZf; ð18Þ

where n is the winding number,

n ¼ 1

2π

Z
β

0

dτ∂τλ; n ∈ Z: ð19Þ

The above sign flip in the partition function that is caused
by the gauge transformation is the (0þ 1)-dimensional
version of the well-known parity anomaly in 2þ 1 dimen-
sions [65,66]. By means of this toy example we can see that

the anomaly is canceled at zero temperature if we add a level
−1=2 CS term to the action, which in (0þ 1)d is simply a
gauge field itself with an imaginary prefactor. The resulting
theory without the anomaly is then given by

Z0
fðAÞ ¼

Z
Dψ†Dψe−Sfþ

i
2

R
β

0
dτAðτÞ ¼ 1: ð20Þ

A similar argument such as the one above plays an important
role in (2þ 1)d, as we will see a couple of times later on.
Although we have considered a massive theory, we note

that the anomaly persists in the massless case, since for
m ¼ 0 we have

Zfjm¼0 ¼ cosðϕ=2Þ; ð21Þ

which again gets a ð−1Þn factor after performing a
topologically nontrivial gauge transformation.
Now we consider the bosonic Lagrangian in (0þ 1)

dimensions containing a level 1 CS term,

Lb ¼
1

2g
ð∂τθ − AÞ2 þ iA; ð22Þ

where θ ∈ S1. This Lagrangian can be regarded as a
topological Abelian Higgs model in 0þ 1 dimensions.
Performing the shift A → Aþ ∂τθ we obtain

L0
b ¼

1

2g
A2 þ iðAþ ∂τθÞ; ð23Þ

and thus in view of Eq. (15),

Zb ¼ e−iϕ; ð24Þ

after using a proper normalization. The important result for
us is the phase factor. From the discussion for the fermion
case, we can therefore write

Z
Dψ†Dψe−Sf−

i
2

R
β

0
dτAðτÞ

¼
Z

Dθe−
R

β

0
dτ½ 1

2gð∂τθ−AÞ2þiA�: ð25Þ

The above is the simplest example of the bosonization duality
involving CS terms. We note in particular a feature that will
appear later in our discussion of bosonization in 2þ 1
dimensions, namely, that the fermionic side features a level
1=2 CS term, while a level 1 CS occurs in the bosonic side.

2. The Thirring model in 0 + 1 dimensions

Given the results of the previous subsection, we see that
if we promote A to be a dynamical gauge field a over which
we integrate in the path integral, the Lagrangian of Eq. (12)
actually imposes a constraint ψ†ψ ¼ 0. Thus, inspired also
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by Eq. (23), we add a term a2=ð2gÞ to the Lagrangian of
Eq. (12). The result obtained upon integrating out a is an
interacting fermionic theory,

L0
f ¼ ψ†ð∂τ þmÞψ þ g

2
ðψ†ψÞ2; ð26Þ

where in the present case we must require that there are at
least two Fermi field components; otherwise ðψ†ψÞ2 van-
ishes, since ψ is a Grassmann field. The Lagrangian (26)
corresponds to the Thirring model in 0þ 1 dimensions.
In the two-component case [for instance, ψ ¼ ðψ↑;ψ↓Þ],
the Lagrangian (26) is equivalent to the atomic limit of the
Hubbard model. In this two-component example where a
arises as an auxiliary field (via a so-called Hubbard-
Stratonovich transformation), integrating out the fermions
yields in the zero temperature limit

Z ¼
Z

Dae−iϕ−
1
2g

R
dτa2ðτÞ: ð27Þ

The partition function above presents a bosonized version of
the Thirring model.
To build up the solid groundwork for the discussion of the

(2þ 1)-dimensional case, we also need general current
correlation functions of massless scalar and fermionic
theories. The expressions are known, but for the sake of
completeness of the narrative these results are derived in
Appendix B.With this and bosonization in lower dimensions
in mind, we transition to the bosonization occurring in
ð2þ 1Þd. As before, the conversation is opened by the
fermionic case. While there are similarities when approach-
ing the ð1þ 1Þd and ð2þ 1Þd cases, as was hinted above
they are not fully analogs. For instance, the same action of
Eq. (9) taken in 2þ 1 dimensions does not have a chiral
symmetry, since γ5 matrices can be defined only for even
dimensions of spacetime. However, just as in 0þ 1 dimen-
sions, the theory features a parity anomaly, since the effective
action (10) in 2þ 1 dimensions receives a factor ð−1Þn
under a topologically nontrivial gauge transformation, with n
being the winding number introduced in Eq. (19) and
associated with the nontrivial topology [66].

B. The Thirring model in 2 + 1 dimensions

A bosonization procedure for the Thirring model in
2þ 1 dimensions consists in performing a straightfor-
ward Hubbard-Stratonovich transformation to introduce
an auxiliary vector field aμ,

L0
Th ¼ ψ̄ð=∂ þ i=aþMÞψ þ 1

2λ
a2μ: ð28Þ

Integrating out fermions generates the following effective
Lagrangian [3] in the regime where the mass M is large:

Leff ¼
1

2λ
a2μ þ

isgnðMÞ
8π

ϵμνλaμ∂νaλ þ
1

48πjMj ðϵμνλ∂νaλÞ2:

ð29Þ

This effective Lagrangian follows directly from the large
mass expansion of the current correlation function for
free fermions of Eq. (B36) in Appendix B 2, since it also
corresponds to the one-loop vacuum polarization.
A couple of remarks are in order. First, we note that the

Lagrangian (29) is not gauge invariant because of the term
∼a2μ. However, even in the absence of such a term (for
instance, in the limit λ → ∞), gauge invariance is lost if one
allows for topologically nontrivial gauge transformations,
since the CS term is half-quantized in the above calculation
[65]. Strictly speaking, such large gauge transformations are
not required in the case of the Thirring model, since aμ here
is a noncompact auxiliary field. Nevertheless, let us take
the opportunity to consider this strong coupling regime and
the possibility of allowing for large gauge transformations,
since these are of paramount importance in most contexts
considered in this paper. In fact, this leads us to consider
Pauli-Villars regularization in the form

Seff ¼ −Tr lnð=∂ þM − i=aÞ þ Tr lnð=∂ −M − i=aÞ; ð30Þ

assuming M > 0 infinitely large such as to suppress the
Maxwell term and turn the generated CS term integer-
quantized. In this way, we obtain

L0
eff ¼

1

2λ
a2μ þ

i
4π

ϵμνλaμ∂νaλ; ð31Þ

which is invariant under topologically nontrivial gauge
transformations when λ → ∞.
The field equation for the effective Lagrangian (31)

expresses that the theory is self-dual (in the sense of field
equations) [67,68],

aμ ¼ −i
λ

2π
ϵμνλ∂νaλ: ð32Þ

The above self-duality may be explored further by intro-
ducing an auxiliary field bμ to rewrite (31) as

L00
eff ¼

λ

8π2
ðϵμνλ∂νbλÞ2 þ

i
4π

ϵμνλaμ∂νðaλ − bλÞ: ð33Þ

Integrating out aμ yields then the equivalent dual effective
Lagrangian,

L̃eff ¼
λ

8π2
ðϵμνλ∂νbλÞ2 −

i
4π

ϵμνλbμ∂νbλ; ð34Þ

which is gauge invariant. Hence, similar to the (1þ 1)-
dimensional case, the massive Thirring model offers a path
to bosonization in 2þ 1 dimensions as well. However, the
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result is not exact in the latter case. Nevertheless, we see
already here that the level 1 CS term appears naturally in the
(2þ 1)-dimensional bosonization to preserve the gauge
invariance. This subsection highlights the interplay between
gauge noninvariance, parity anomaly, and the role CS term
plays in both of them.

IV. THE CRITICAL POINT AND PARTICLE-
VORTEX DUALITY

By this point, we touched on the correspondence
between the current correlation functions occurring in
(1þ 1)-dimensional dualities in Sec. II. We now generalize
this discussion as well as examine the (2þ 1)-dimensional
case in detail. Current correlators describe the behavior of a
theory in the near-critical regime, and so as dual theories
are expected to behave similarly, the notions of criticality
and duality are intertwined. This section will demonstrate
this connection through the bosonic particle-vortex duality
as well as consider some of the more intricate procedures
involved.

A. Scale invariance and current conservation

It is well known that scale invariance and current
conservation imply that the scaling behavior of the current
correlation function does not have an anomalous dimen-
sion [69,70]. This means that if a theory features a critical
point, the power-law behavior of the current correlation
function is determined by dimensional analysis. Thus, the
power law obtained for the free theory is also valid for the
interacting case at an RG fixed point, and therefore, only
the amplitude is changed. To account for this possibility,
we generalize the current correlation functions of a free
massless bosonic theory in momentum space calculated in
Eq. (B28) of Appendix B to be

CμνðqÞ ¼ −vcdjqjd−2
�
δμν −

qμqν
q2

�
; ð35Þ

where v is a universal amplitude equal to unity for a free
scalar theory and cd is a coefficient defined by the
dimensionality of the theory and given explicitly
in Eq. (B21).
Interestingly, as is shown in Appendix B, the case of v ¼ 1

also corresponds to the one-loop vacuum polarization of the
critical Higgs theory that we will encounter further in
Eq. (41). This one-loop value changes for a multicomponent
Higgs theory. For instance, in the case of a Oð2NÞ-invariant
theory, where N is the number of complex fields, we have
v ¼ N since one has to sum over all N complex scalar loops.
This is the well-known leading order large N result.
As was discussed in the previous section, fermionic

currents are intrinsically dependent on the structure of γμ
matrices; therefore, the generalization to d dimensions when
calculating the current correlation functions is tiresome.

Nevertheless, in 2þ 1 dimensions the current correlation
function of free massless Dirac fermions coincides with
the bosonic one presented in Eq. (35) for v ¼ 1 (see
Appendix B). The crucial feature of the d ¼ 3 case lies
in the fact that in the most general situation one has to
account for a possibility of the parity symmetry breaking in
the form of a CS term [71],

CμνðpÞ ¼ −
jpj
16

�
v

�
δμν −

pμpν

p2

�
þ wϵμνλ

pλ

jpj
�
; ð36Þ

where w is another universal amplitude. This equation will
be shown to be consistent with our original calculations in
2þ 1 dimensions in Secs. V and VI.

B. Particle-vortex duality and the existence
of a critical point

Current correlation functions at criticality were shown to
yield universal results reflecting the duality as fermionic and
bosonic correlators possess the same form. Let us demon-
strate now how duality can be used as a tool to claim the
existence of a critical point. Particle-vortex duality in 2þ 1
dimensions is performed exactly on the lattice using a Villain
form of the XY model [17,18]. In the version discussed
originally by Peskin [17], it is shown that the XY model is
equivalent by duality to a lattice Abelian Higgs model with
infinite phase stiffness in Euclidean spacetime. In a classical
statistical mechanics sense this was treated as a zero
temperature limit in Ref. [17], which was dubbed “frozen
superconductor.” On the other hand, the temperature of
the original XY model becomes the inverse of the gauge
coupling constant e2 in the dual model. This line of
reasoning ultimately led to the conclusion in a later work
by Dasgupta and Halperin [19] that the Abelian Higgs model
(in the form of a lattice Ginzburg-Landau superconductor
[36]) features a critical point, thus undergoing a second-order
phase transition. This result is very hard to obtain using RG
methods (see, for instance, Ref. [40] for a recent account and
the closing paragraph of this subsection). More sophisticated
numerical studies [41] have confirmed the duality scenario
of earlier papers [17–20], including an analysis of the scaling
dimensions. This convincingly confirms by means of lattice
simulations the validity of the scale invariant form of the
current correlation function as given in Eq. (36) with w ¼ 0
(i.e., corresponding to the situation where parity symmetry
breaking is absent). Furthermore, since the renormalization
of the gauge coupling is well known to be given in terms of
the vacuum polarization by

e2ðpÞ ¼ e2

1þ e2ΠðpÞ ; ð37Þ

Eq. (36) implies e2ðpÞ ¼ e2=½1þ e2v=ð16jpjÞ�. We obtain
that the dimensionless coupling ê2ðpÞ ¼ e2ðpÞ=jpj reaches
the IR stable fixed point, ê2� ¼ 16=v, as jpj → 0. We
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conclude that this theory is strongly coupled as e2 → ∞
causes the dimensionless coupling to flow to the same fixed
point. In this case, the bare coupling constant e2 serves as a
UV scale. The same line of argument holds for fermionic
QED in 2þ 1 dimensions [53].
The discussion above allows us to establish the field

theory version of the bosonic particle-vortex duality on
the lattice as the equality of the partition functions in the
IR regime, i.e., the one in which e2 → ∞, so the Maxwell
term can be suppressed [72]. In order to account for the
current response, a background field has to be included in
the corresponding partition functions. The way to proceed
is already thoroughly discussed in Peskin’s seminal work
[17] and leads to the inclusion of what is now known as a
BF term,

SBF½a;A� ¼
i
2π

Z
d3xaμϵμνλ∂νAλ; ð38Þ

where Aμ denotes a background gauge field and aμ
represents a dynamical gauge field. As the field theory
action associated with the XY model is simply a jϕj4 field
theory [5], this bosonic field theory in the presence of
background field Aμ is defined via

ZbQED½A�¼
Z

Dϕ�Dϕe−SbQED½A�;

SbQED½A�¼
Z

d3x

�
jð∂μ− iAμÞϕj2þm2jϕj2þ λ

2
jϕj4

�
: ð39Þ

When the background field vanishes, Aμ ¼ 0, the partition
function ZbQED is just the field theory version of the XY
model, and we can write ZbQED½A ¼ 0� ¼ ZXY . Following
the prescription above regarding an additional BF term,
we have [6,8]

ZbQED½A� ¼
Z

Dϕ�Dϕe−SbQED½A�

¼ lim
e2→∞

Z
Dφ�DφDaμe

−
R

d3xLsQED½a�þSBF½a;A�

¼ ZsQED½A�; ð40Þ

where

LsQED½a� ¼
1

4e2
F2
μν þ jð∂μ − iaμÞφj2 þm2jφj2 þ u

2
jφj4

ð41Þ

is the usual scalar QED Lagrangian. Note the difference in
the two QED models yielding partition functions denoted
ZbQED½A� and ZsQED½A�. In the former the fluctuating scalar
field is coupled minimally to a (classical) background field
Aμ, while in the latter both the scalar and the minimally

coupled gauge field are being integrated over. In ZsQED½A�
the background field couples to the fluctuating gauge field
via a BF term.
Equation (40) is interesting, since it establishes the

particle-vortex duality as something that mimics dual var-
iables in ordinary quantum mechanics, the most prosaic
example being given by the duality between the position and
momentum operators via the commutator, ½x; p� ¼ i, which
is also reflected in terms of a plane wave basis via Fourier
transforms of wave functions. In the functional integral of
Eq. (40) the phase factor contains the BF term, which plays a
role similar to the phase factor in an ordinary Fourier
transform underlying the particle-wave duality in quantum
mechanics. In this sense, the partition function of Eq. (39)
acquires the Fourier representation in terms of fluxes as
represented in Eq. (40). Note that by promoting Aμ to a
dynamical gauge field bμ on the RHS of Eq. (40), adding a
BF term coupling bμ to a new background field Bμ, trivially
yields the left-hand side (LHS) upon subsequently integrat-
ing out bμ, which enforces aμ ¼ Bμ (note that this simple
calculation can also be done assuming e2 is finite).
Along a similar vein, a fermionic analog of the bosonic

particle-vortex duality expressed in Eq. (40) has been
proposed [73,74]. In the absence of parity symmetry break-
ing this amounts to a replacement of the scalar QED by a
fermionic QED in Eq. (40), along with the switching to
corresponding path integrals over spinor (Grassmann) fields.
From Eq. (40) it follows that the current correlation

function of the XY model field theory,

Cμνðx − x0Þ ¼ δ lnZbQED½A�
δAμðxÞδAνðx0Þ

����
A¼0

; ð42Þ

is connected to the correlation function Kμνðx − x0Þ ¼
hJμðxÞJνðx0Þi of the topological current,

Jμ ¼
i
2π

εμνλ∂νaλ: ð43Þ

These correlation functions will be explored in a more
quantitative fashion in the next section.
Let us discuss the limit e2 → ∞ further. Integrating out

aμ exactly on the RHS of Eq. (40) yields the effective
Lagrangian,

Leff ¼ j∂μφj2 þm2jφj2 þ u
2
jφj4

þ ðφ�∂μφ − φ∂μφ
� − ϵμνλ∂νAλ

2π Þ2
4jφj2 : ð44Þ

When the background field is set to zero, the last term of
Eq. (44) represents a (perturbatively) nonrenormalizable
interaction in 2þ 1 dimensions, as near a Uð1Þ broken
symmetry state the denominator jφj2 ∼ const at leading
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order. This is an irrelevant operator in the RG sense, so
essentially upon integrating aμ out in the RHS of Eq. (40) we
indeed obtain (asymptotically) its LHS.
The discussion of the previous paragraph glosses over

the effect of the functional measure arising in the path
integral after integrating out aμ in the limit e2 → ∞. In
fact, after integrating out aμ the measure becomes for-
mally Dφ�Dφ=jφj (implicit in this expression is a formal
infinite product of the form

Q
x½dφ�ðxÞdφðxÞ=jφðxÞj�).

Although this has no major consequences perturbatively,
it will be important in the following manipulations of the
path integral.
Let us now express the complex scalar field in terms of

an amplitude and a phase as φ ¼ ρeiθ=
ffiffiffi
2

p
, with the result

Leff ¼
1

2

�
ð∂μρÞ2 þm2ρ2 þ u

4
ρ4
�

þ 1

8π2ρ2
ðϵμνλ∂νAλÞ2 −

i
2π

∂μθϵμνλ∂νAλ; ð45Þ

while the path integral measure becomes Dφ�Dφ=jφj ¼Q
x½dρðxÞdθðxÞ�. Partial integration of the last term of the

effective Lagrangian (45) in the action leads to a direct
coupling of Aμ to loops of vortex lines, since periodicity of
θ implies that the spacetime curl of ∂μθ does not vanish
along vortex lines, yielding instead [36]

ϵμνλ∂ν∂λθ ¼ 2π
X
a

na

I
La

dyðaÞμ δ3ðx − yðaÞÞ; ð46Þ

where na ∈ Z and La denote vortex loop paths. Thus, the
Wilson loop factors arise in the partition function,

Y
a

e
i2πna

H
La

dyðaÞμ AμðyðaÞÞ; ð47Þ

with the functional integral over the phase θðxÞ becoming
a path integral over all possible particle trajectories along
the loops La. Therefore, the current correlation function
can be expressed in terms of a vortex loop correlation
function, i.e., a correlation function between topological
defects. The lattice version of this statement can already
be encountered in Ref. [17]. Here we are rephrasing it in
terms of a continuum field theory approach, which also
highlights the role played by amplitude fluctuations with
respect to the background field: from Eq. (45) we note that
ρ2 plays the role of a gauge coupling in the Maxwell term
for the background field.
The correctness of the effective Lagrangian (45) can be

cross-checked by showing that it indeed yields the LHS of
Eq. (40) after promoting the background field Aμ to a
dynamical gauge field bμ, adding a BF term SBF½b;B� in the
process, with Bμ being a new background field. We have
already seen that this is a trivial calculation if done before

integrating out aμ, since bμ in this case simply acts as a
Lagrange multiplier field. It should not matter whether this
is done before or after integrating out aμ. To see this, we
integrate out bμ exactly, but the presence of the coefficient
1=ρ2ðxÞ multiplying the Maxwell term makes it necessary
to proceed with some care. First, we insert the identity

Z
Dsμδðsμ − ϵμνλ∂νbλÞ ¼ 1 ð48Þ

and use the integral representation of the delta function
above, which makes a Lagrange multiplier field λμ appear
in the action

Leff ¼
1

2

�
ð∂μρÞ2 þm2ρ2 þ u

4
ρ4
�

þ 1

8π2ρ2
s2μ þ isμ

�
Bμ

2π
−
∂μθ

2π
− λμ

�

þ iλμϵμνλ∂νbλ: ð49Þ

Integrating out bμ leads to the constraint ϵμνλ∂νλμ ¼ 0,
which is immediately solved as λμ ¼ ∂μω and trivially
gauged away via θ → θ − 2πω. Finally, integrating over sμ
yields

LXY ¼ 1

2

�
ð∂μρÞ2 þm2ρ2 þ u

4
ρ4
�
þ ρ2

2
ð∂μθ−BμÞ2; ð50Þ

while restoring the Jacobian factor back to
Q

x½dρðxÞ
ρðxÞdθðxÞ�. The result can obviously be rewritten back
in the form (39) by reintroducing the complex fields
via ϕ ¼ ρeiθ=

ffiffiffi
2

p
.

We note here the power of the duality in establishing the
existence of a critical point, something otherwise difficult to
obtain by purely perturbative means [40,75,76] (for a non-
perturbative analysis of the problem using the functional RG,
see Refs. [77,78]). Although the existence of an IR fixed
point for a properly defined (i.e., in terms of some chosen
scaling variable) dimensionless gauge coupling is easy to
obtain at one-loop order, the same does not hold with the
jϕj4 coupling, since the one-loop calculation requires a
numberN of complex field components to be larger than 183
[38,39]. This critical number of fields gets significantly
reduced in a four-loop calculation, but an IR stable fixed
point is still not found even in this case [40]. Extensive
numerical simulations were made in a recent work [79] for
several values of N (specifically, N ¼ 2, 4, 10, 15, 25),
starting with N ¼ 2, conclusively finding a second-order
phase transition for N ≥ 10. Importantly, a first-order phase
transition is found for the N ¼ 2 case [79], leading to an
agreement with earlier RG results [38,39]. Thus, it is quite
remarkable that the field theory duality can establish the
existence of a critical point for the single complex field case
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in the strong-coupling regime e2 → ∞. As a side remark,
let us point out that perturbatively even the RG flow for
the dimensionless gauge coupling introduces difficulties
at higher loop order. For instance, while at one-loop an IR
fixed point is found for any number of Higgs scalars, the
same fails to be true at two-loops: the ϵ-expansion for the
dimensionless gauge coupling yields a fixed point pro-
vided more than 18 Higgs fields are available [75,76].
However, the duality result implies that such an IR fixed
point must exist nonperturbatively for a single Higgs
scalar. This in turn implies the scaling behavior of the
current correlation function. Most importantly, no detailed
information is needed about the RG flow of the jϕj4
coupling, which underlies most of the difficulties involv-
ing the establishment of Wilson-Fisher critical behavior
[38–40,80]. Importantly, the vanishing of the RG β
function for the gauge coupling is well known to exactly
determine the anomalous dimension of the gauge field,
which is in this case given by 4 − d [41,78,80,81]. Thus,
since the gauge field couples linearly to the conserved
current, the absence of an anomalous dimension in the
latter follows immediately, leading in this way to a current
correlator given by Eq. (35).

C. From background to dynamical field via fluctuating
vortex loops

The discussion of the particle-vortex duality in the
previous subsection involved the promotion of the back-
ground gauge field to a dynamical one. Let us explore the
meaning of this procedure and physical motivation behind
it in terms of vortex loops.
In a regime where ρ is approximately uniform, we can

adopt a different point of view about promoting Aμ to a
dynamical field that emphasizes the role of vortex loops. In
this sense, promoting Aμ to a dynamical gauge field
corresponds to solving the field equation for Aμ as

AμðxÞ ¼ BμðxÞ þ i
ρ2

2

X
a

na

I
La

dyðaÞμ

jx − yðaÞj ; ð51Þ

where BμðxÞ is a nonsingular classical background con-
tribution that does not depend on vortex loops. At first
sight, the fact that this solution is complex might seem
problematic, since Aμ is supposed to be real. However,
this is actually not a problem at all, since the imaginary
contribution is interpreted in the sense of quantum fluc-
tuations in an ensemble of vortex loops. After all, perform-
ing a Gaussian integral in this case amounts to simply
solving the field equations and plugging the solution (51)
back into the action. In this way the Wilson loop term
generates a contribution that yields the interaction between
vortex loops in the effective action,

SVortex−loop−int ¼ πρ2
X
a;b

nanb

×
I
La

dyðaÞμ

I
Lb

dyðbÞμ
1

jyðaÞ − yðbÞj : ð52Þ

Such a vortex interaction term naturally appears in lattice
Villain models [23]. In the particular case of Eq. (52), it just
corresponds to the continuum version of the vortex loop
representation of the Villain form of the XY model in 2þ 1
dimensions [19]. The analysis above emphasizes at the end
the precise meaning of the particle-vortex duality, since we
ultimately have to perform a path integral over vortex loops
that are direct worldlines of particle trajectories. Also, this
subsection, in particular Eq. (51), motivates the notion of
promoting a background gauge field to be dynamical.

V. BOSONIZATION DUALITY AND CRITICAL
CURRENT CORRELATORS IN THE

Uð1Þ-SYMMETRIC CASE

In the previous section we demonstrated how the exist-
ence of a critical regime can follow from the particle-vortex
duality. As the end goal of this work is to examine the
bosonization duality between the CS Uð1Þ × Uð1Þ Higgs
theory and interacting massless fermions, this section sets up
the necessary methods on a simpler model. Here we will
obtain the bosonization duality for the CS Uð1Þ-symmetric
Higgs theory employing the flux attachment approach.
Moving further, we will show the way in which the duality
is reflected in the relation between current correlation
functions corresponding to different sides of the duality.

A. Bosonization via flux attachment

The flux attachment technique is very powerful in its
simplicity as it uses the two basic bosonization equations as
building blocks of the duality web [8,12],

ZfQED½A�e−1
2
SCS½A� ¼ ZbQEDþflux½A�; ð53Þ

ZfQEDþflux½A� ¼ ZbQED½A�eSCS½A�; ð54Þ

where SCS½A� is the action for a level 1 CS term,

SCS ¼
i
4π

ϵμνλAμ∂νAλ; ð55Þ

and Aμ is the background field. Let us describe the elements
arising in Eqs. (53) and (54) in detail. While the bosonic
partition function was introduced in Eq. (39), the fermionic
side is given by

ZfQED½A� ¼
Z

Dψ̄Dψe−SfQED½A�;

SfQED½A� ¼
Z

d3xψ̄ð=∂ − i=AÞψ : ð56Þ
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The fermionic flux attachment is defined as

ZfQEDþflux½A� ¼
Z

DaμZfQED½a�e−1
2
SCS½a�−SBF½a;A�; ð57Þ

while for bosons

ZbQEDþflux½A� ¼
Z

DaμZbQED½a�eSCS½a�þSBF½a;A�; ð58Þ

with the BF term defined in Eq. (38).
Equation (54) can easily be shown to follow from

Eq. (53) [82], so actually the latter can be regarded as
the fundamental result out of which all other dualities
belonging to the duality web are derived [6]. Conversely, a
similar reasoning would allow us to derive Eq. (53) starting
from (54), so it would have been equally possible to assume
the latter as a seed to all other dualities as well. This way
one can obtain the exact particle-vortex duality discussed in
Sec. IV B from one of the flux attachment conjectures and
its time-reversed version. Such an elegant approach is also
consistent with other well-established dualities and can be
used to provide new reliable results.
Note that the flux attachment for fermions operates

slightly differently from the bosonic case. Indeed, while
the bosons get a level 1 CS term, the fermionic flux
attachment features a level 1=2 CS term. The reason for
this is the parity anomaly [65,66]. We have encountered
this problem before in our discussion of the Thirring
model in 2þ 1 dimensions. It is now the moment of being
more thorough on this point. It turns out that massless
Dirac fermions are invariant under time reversal and
inversion of one of the two spatial coordinates, but not
both, since in two spatial dimensions this would corre-
spond to a rotation by π. In Euclidean three-dimensional
spacetime both symmetries translate into parity symmetry,
corresponding to an inversion of any of the three coor-
dinates. It turns out that quantum fluctuations (i.e.,
integrating out the fermions in a gauge field background)
would either break gauge invariance or the parity [66].
The solution to this problem is well known. Just as in the
(1þ 1)-dimensional case, we have to employ Pauli-Villars
regularization in the fermionic theory.
The effective action for free massless fermions can be

obtained assuming dimensional regularization for the parity
even component of the current correlation function [as
shown in Eq. (B36) in Appendix B]. Nevertheless, this type
of regularization is not suitable to obtain a CS term in the
massless case. In order to do so, let us consider the theory
with an additional level 1=2 CS gauge term and integrate
out fermionic fields. In this case, the following effective
action is obtained:

Seff ¼−Tr lnð=∂− i=AÞþTr lnð=∂−M− i=AÞþ1

2
SCSðAÞ; ð59Þ

where M > 0. The second tracelog in Eq. (59) arises from
the Pauli-Villars regulator fields. When the limit M → ∞ is
taken, the regularized theory yields an additional level 1=2
CS contribution that results in an overall level 1 CS term.
Were we to add a level −1=2 CS term, no CS term at all
would be present in the effective action. We have noticed a
similar behavior within the simple setting in 0þ 1 dimen-
sions; see, for instance, Eq. (20). Note that nothing like this
happens in the bosonic theory, since scalar field fluctuations
do not generate any antisymmetric contribution in the
vacuum polarization.
Curiously, from Eqs. (40) and (54) we can write

ZfQEDþflux½A�e−SCS½A� ¼ ZbQED½A�

¼
Z

DaμZbQED½a�eSBF½a;A�; ð60Þ

so we note that for Aμ ¼ 0 there must be no parity
symmetry breaking occurring in ZfQEDþflux½A ¼ 0�, in spite
of the (dynamical) CS term in Eq. (57), since ZbQED½A ¼ 0�
does not break parity symmetry. This is consistent with the
discussion above. Although the classical fermionic action
seems to break parity, the latter is actually not broken at the
quantum level [6].

B. Current correlation functions

With the duality (53) in mind, let us calculate the current
correlators for bosonic and fermionic sides. We will start
with the former by first integrating over the scalar field ϕ at
one-loop order in Eq. (58). Then, the CSUð1Þ Higgs action
can be rewritten as a quadratic form,

SB ¼ 1

2

Z
p
aμðpÞMμνðpÞaνð−pÞ; ð61Þ

with

MμνðpÞ ¼
jpj
16

�
δμν −

pμpν

p2

�
−

1

2π
εμνλpλþ

jpj
α

pμpν

p2
; ð62Þ

where the last term contains a gauge fixing constant α.
Inverting the tensor we obtain a propagator for aμ,

DμνðpÞ ¼
π2

4ðπ2
64
þ 1Þjpj

�
δμν −

pμpν

p2
þ 8

πjpjεμνλpλ

�
; ð63Þ

written here in the Landau gauge α ¼ 0.
The theory features the topological current of Eq. (43),

and one can thus see that the current correlation function in
this case is directly derived from the propagator Dμν and
yields in momentum space
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KB
μνðpÞ ¼ hJμðpÞJνð−pÞi ¼ −

1
π2

64
þ 1

�jpj
16

�
δμν −

pμpν

p2

�

þ 1

2π
εμνλpλ

�
: ð64Þ

The obtained topological current correlator has to be
compared to the one on the fermionic side of the bosoniza-
tion duality in Eq. (53). To do so, we recall that the current
correlation function of a free massless fermion is given
by Eq. (36) with v ¼ 1 and w ¼ 0 [see Eq. (B37) in
Appendix B 2]. Note that an antisymmetric contribution
to the current correlator is generated by the proper Paulli-
Villars regularization as shown in Eq. (59). Finally, the
fermionic side of the duality at hand contains an additional
level 1=2 CS term. Therefore, the fermionic current corre-
lation function reads

CFμνðpÞ ¼ −
jpj
16

�
δμν −

pμpν

p2

�
−

1

2π
ϵμνλpλ: ð65Þ

Comparing the above expression to the general scale
invariant form in Eq. (36), we see that v ¼ 1 and w ¼ 8=π.
Hence, the topological current correlation function is
proportional to CFμνðpÞ,

KB
μνðpÞ ¼

1
π2

64
þ 1

CFμνðpÞ: ð66Þ

As was conveyed in Sec. IV, such a relation between the
current correlators not only supports the validity of the
bosonization duality but also points toward the existence
of a critical regime for both theories in the duality.
The interpretation of the coefficient relating topological

and Noether current correlators is a well-known manifesta-
tion of S-duality in 2þ 1 dimensions [71]: the coefficients of
the transverse and parity odd components of KB

μνðpÞ are the
real and imaginary parts of 1=ð4π2τÞ, where τ ¼ −1=16þ
i=ð2πÞ is viewed as a complex-valued coupling constant that
gets inverted by the duality. The real and imaginary parts of
τ� are the transverse and parity odd coefficients of CFμνðpÞ.

VI. BOSONIZATION DUALITY IN Uð1Þ × Uð1Þ
TOPOLOGICAL ABELIAN HIGGS MODEL

We have seen by now that bosonization duality for the
one-component CS Higgs model results in current correla-
tion functions on both sides of the relation coinciding up to a
universal prefactor. We showed in the previous section how
the duality between bosonic and fermionic theories in 2þ 1
dimensions can be obtained via flux attachment. Now, the
discussion above will finally result in the derivation of the
bosonization duality involving the Uð1Þ ×Uð1Þ topological
Abelian Higgs model. We will also calculate corresponding
current correlation functions and conclude whether their

form implies the existence of a critical point in the duality. To
elaborate on the motivation to study such a duality, let us first
put this model in the condensed matter physics context.
Some quantum antiferromagnets in two spatial dimensions

are describable by means of a CP1 model with an additional
Maxwell term [83–85]. In this case the direction of the
magnetization n is given in the terms of the CP1 fields za
(a ¼ 1; 2) by n ¼ z�aσabzb. Such a model is known to be
self-dual when an additional easy-plane anisotropy term,
Kn2z=2 ¼ Kðjz1j2 − jz2j2Þ2=2, K > 0 is included in the
Lagrangian, thus making the theoryUð1Þ ×Uð1Þ-symmetric
[83]. Originally derived in the lattice [83], this self-duality
was rederived in Ref. [8] by means of the bosonization
duality technique described in Sec. V.
Recently we have considered a version of such a quantum

antiferromagnet with an additional CS term [14]. One of the
goals of that studywas to show the CS term causes the model
to undergo a second-order phase transition, unlike the case
where the CS term is absent [42,43]. Specifically, the theory
has a Lagrangian,

L ¼
X
a¼1;2

jð∂μ − iaμÞzaj2 þ
i
4π

ϵμνλaμ∂νaλ

þm2
0ðjz1j2 þ jz2j2Þ þ

u
2
ðjz1j4 þ jz2j4Þ; ð67Þ

where aμ is an emergent gauge field. The Lagrangian above
may also be viewed as a generalization of the theory of
Eq. (58) to include two complex fields rather than a single
one. This observation will be useful in the discussion that
will follow later on.
The theory is dual to another bosonic theory, which was

established through the standard particle-vortex duality [14],
which closely parallels the dualities performed in the lattice,
though it was carried out directly in the continuum. The main
reason for using a continuum approach is related to the
technical difficulties one faces while trying to write a CS
term in the lattice [86–88]. The dual bosonic field theory
obtained in Ref. [14] has the following form yielding a
second-quantized representation for the ensemble of vortex
loops [36]:

Ldual ¼
X
I¼1;2

�
jð∂μ − ibIμÞϕIj2 þm2jϕIj2 þ

λ

2
jϕIj4

�

−
i
4π

ϵμνλðb1μ þ b2μÞ∂νðb1λ þ b2λÞ: ð68Þ

We can establish the bosonization duality leading to
Eq. (68) using the flux attachment technique discussed in
Sec. V. We use the basic flux attachment dualities (53) and
(54) to derive the bosonization duality for the Lagrangian of
Eq. (67) by simply multiplying both these relations together,
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ZfQED½A�e−1
2
SCS½A�ZfQEDþflux½A�

¼ ZbQEDþflux½A�ZbQED½A�eSCS½A�: ð69Þ

After we promote the background field Aμ to a dynamical
field bμ, the left-hand side of Eq. (69) takes the form

Z
DbμZfQED½b�e−1

2
SCS½b�ZfQEDþflux½b�

¼
Z

DbμZbQEDþflux½b�ZbQED½b�eSCS½b�; ð70Þ

which upon renaming the gauge fields, aμ → b1μ [remember
that there is an integral over aμ in ZfQEDþflux½A�; recall
Eq. (57)], bμ → b2μ, yields the fermionic action

Sf ¼
Z

d3x

�X
I¼1;2

�
ψ̄ Ið=∂ − i=bIÞψ I þ

i
8π

bIμϵμνλ∂νbIλ

�

þ i
2π

b1μϵμνλ∂νb2λ

	
: ð71Þ

Proceeding similarly for the right-hand side of Eq. (69), we
obtain that a bosonic action with the Lagrangian (68).
Therefore, we have obtained that the derivation given via
flux attachments to fermions and bosons reproduces the
result (68) derived in Ref. [14] using particle-vortex duality
in terms of vortex loops.
While promoting the background field to a dynamical

gauge field, we have intentionally not introduced a new
background field. The reason for this is that what has been

done above would not have given the current response of
the original model of Eq. (67) directly, since both Eqs. (68)
and (71) are models dual to (67). What we need is to derive
the dual fermionic model (71) directly from the original
action (67). In this way introducing background fields in
an appropriate fashion leads ultimately to a relationship
between the conserved current response of the model (67)
to the topological current response of the fermionic dual
model (71). Hence, we will now show that the fermionic
dual theory follows by starting directly from the
Lagrangian (67). This is achieved by first considering a
time-reversed version of Eq. (54),

Z̄fQEDþflux½A� ¼ ZbQED½A�e−SCS½A�; ð72Þ

where time reversal changes the signs in the flux attach-
ment as follows:

Z̄fQEDþflux½A� ¼
Z

DaμZfQED½a�e1
2
SCS½a�þSBF½a;A�: ð73Þ

Then, the expression in Eq. (72) is used twice in the
following way:

Z̄fQEDþflux½A − C�Z̄fQEDþflux½Aþ C�eSCS½A−C�
¼ ZbQED½A − C�ZbQED½Aþ C�e−SCS½AþC�: ð74Þ

Both sides of the equation are then multiplied by a BF term
introducing a new background gauge field B,

Z
DaμZbQED½a − C�ZbQED½aþ C�e−SCS½aþC�þSBF½a;B�−SCS½B�

¼
Z

DaμDb1μDb2μZfQED½b1�ZfQED½b2�e1
2
ðSCS½b1�þSCS½b2�ÞþSBF½b1;aþC�þSBF½b2;a−C�þSCS½a−C�þSBF½a;B�−SCS½B�; ð75Þ

where the background field A was promoted to be dynamical A → a and we have included a CS term for the background
field B on both sides of Eq. (75). After a is integrated out in the RHS leading to a ¼ C − ðb1 þ b2 þ BÞ, we obtain,

Z
DaμZbQED½a − C�ZbQED½aþ C�e−SCS½aþC�þSBF½a;B�−SCS½B�

¼
Z

Db1μDb2μZfQED½b1�ZfQED½b2�e−1
2
ðSCS½b1�þSCS½b2�Þ−SBF½b1;b2�þ2SBF½b1;C�−SBF½b1þb2;B�−2SCS½B�þSBF½B;C�: ð76Þ

Setting B ¼ C, the duality takes the form

ZB½B�≡
Z

DaμZbQED½a − B�ZbQED½aþ B�e−SCS½a�−2SCS½B�

¼
Z

Db1μDb2μ

�Y
I¼1;2

Dψ̄ IDψ I

�
e−SfþSBF½b1−b2;B� ≡ ZF½B�: ð77Þ
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The first line of Eq. (77) reproduces precisely the path
integral for the Lagrangian of Eq. (67) with bosons addi-
tionally coupled to the background field Bμ. The second line
features the fermionic action Sf of Eq. (71). Both sides of the
expression contain additional terms coupling dynamical
fields to the background field Bμ. The notations ZB½B�
and ZF½B� are introduced to refer to the bosonic and
fermionic sides of the expression. It is clear, therefore, that
Eq. (77) expresses an explicit bosonization duality for the
theory in Eq. (67).
Differentiating lnZB½B� ¼ lnZF½B� with respect to the

background field, Bμ, and setting Bμ ¼ 0 at the end, one
obtains the equality between the expectation values of the
currents from both sides of the duality. The fermionic
current is a topological one,

jFμ ¼ i
2π

ϵμνλ∂νðb2λ − b1λÞ; ð78Þ

while the bosonic side yields the conserved current asso-
ciated with the Uð1Þ × Uð1Þ symmetry,

jBμ ¼
X
a¼1;2

ð−1Þa½iðz�a∂μza − za∂μz�aÞ þ 2jzaj2aμ�: ð79Þ

For current correlation functions for both bosonic and
fermionic sides of the duality (77) one can write

CBμνðx; x0Þ ¼
δ2 lnZB½B�

δBμðxÞδBνðx0Þ
����
B¼0

;

KF
μνðx; x0Þ ¼

δ2 lnZF½B�
δBμðxÞδBνðx0Þ

����
B¼0

: ð80Þ

It is anticipated that the current correlation functions are equal
up to an overall universal amplitude prefactor. Note that for
the fermionic correlation function nondiagonal gauge field
propagators such as hb1μðpÞb2νð−pÞi are needed. To obtain
these we have to calculate the effective gauge action by
integrating the fermions out. There is a simpler way, however.
We can integrate the fermions out beforewe integrate aμ out,
i.e., using Eq. (75) instead. Following this procedure generate
an additional e

1
2
ðSCS½b1�þSCS½b2�Þ factor in the integrand. The

integrals over b1μ and b2μ have the same (Gaussian) form,
and thus we obtain upon integrating over both b1μ and b2μ the
effective action

S0eff ¼
1

4π2

Z
x

Z
x0
D̄μνðx − x0Þϵμαβϵνσρ∂α∂ 0

σ½aβðxÞaρðx0Þ þ BβðxÞBρðx0Þ� − SCS½a�; ð81Þ

where in momentum space D̄μνðpÞ ¼ Dμνð−pÞ, with
DμνðpÞ being given by Eq. (63), and we have set B ¼ C
as before. By applying the prescription given in Eq. (80),
we obtain

KF
μνðx − x0Þ ¼ −

δ2S0eff
δBμðxÞδBνðx0Þ

����
B¼0

; ð82Þ

and therefore,

KF
μνðpÞ ¼ −

8jpj
π2 þ 64

�
δμν −

pμpν

p2
−
8

π

ϵμνλpλ

jpj
�
: ð83Þ

Similarly, upon integrating out the scalar fields za (at one-
loop), Eq. (80) yields

CBμνðpÞ ¼ −
jpj
8

�
δμν −

pμpν

p2
−
8

π

ϵμνλpλ

jpj
�
: ð84Þ

Henceforth we verify the relation

KF
μνðpÞ ¼

1
π2

64
þ 1

CBμνðpÞ: ð85Þ

The universal amplitude relating CBμνðpÞ to KF
μνðpÞ in

Eq. (85) is the same as the one appearing in Eq. (66), with the
difference that there the topological current correlator refers
to the bosonic side of the duality and the Uð1Þ conserved
current correlator is associated with the fermionic side of the
duality. Actually what determines the nature of the current
correlators (i.e., either a conserved current associated with
global symmetry or a topological current) is how each side of
the duality is coupled to the background field. In Eq. (60) the
background field A is coupled to a Uð1Þ current on the
fermionic side of the duality while it couples to a topological
current on the bosonic side. As a consequence, Eq. (66)
ultimately follows from this fact. In the duality of Eq. (77),
on the other hand, the background field is coupled to the
Uð1Þ ×Uð1Þ conserved current in the bosonic side of the
duality, while the fermionic side couples the background
field to the topological current. Another interesting aspect
in this comparison is the presence of a CS term for the
background field on the sidewhere the latter is coupled to the
conserved current following from a global (Noether) sym-
metry. In this case the coefficient of the CS term reflects the
effective Uð1Þ charge of the theory. We note that for the
Lagrangian (67) we can define an operator z�1z2 that creates a
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monopole excitation of charge þ1 − ð−1Þ ¼ 2, which
reflects the level 2 of the CS term in Eq. (77).
Working directly with the fermionic side of Eq. (77)

where aμ has already been integrated out is more cumber-
some, since we have to deal with a matrix gauge field
propagator with matrix elements, hbIμðpÞbJνð−pÞi. While
this is not strictly necessary for the calculation of the current
correlators, it is important for obtaining other dynamical

physical properties (we will encounter a situation in the
next section where this happens, namely, in the study of the
fermion self-energy as obtained from the Schwinger-
Dyson equation). Let us therefore discuss this matrix
propagator below.
From the one-loop fermionic vacuum polarization,

Eq. (77) leads to the effective gauge field action in
the form

Sgaugeeff ¼ 1

2

Z
p
½ b1μðpÞ b2μðpÞ �

2
4

jpj
16
ðδμν − pμpν

p2 Þ − 1
2π ϵμνλpλ

− 1
2π ϵμνλpλ

jpj
16
ðδμν − pμpν

p2 Þ

3
5� b1νð−pÞ

b2νð−pÞ

�

þ 1

2π

Z
p
ϵμνλpλ½b2μðpÞ − b1μðpÞ�Bνð−pÞ; ð86Þ

where the CS terms cancel due to the level 1=2 CS terms
with opposite signs generated by integrating out fermions.
From Eq. (86) one derives the matrix gauge field

propagator in the Landau gauge,

DμνðpÞ ¼
�
DμνðpÞ EμνðpÞ
EμνðpÞ DμνðpÞ

�
; ð87Þ

where diagonal elements of the matrix are

DμνðpÞ ¼ hb1μðpÞb1νð−pÞi ¼ hb2μðpÞb2νð−pÞi

¼ 16π2

jpjðπ2 þ 64Þ
�
δμν −

pμpν

p2

�
ð88Þ

and the off-diagonal elements can be calculated to be

EμνðpÞ ¼ hb1μðpÞb2νð−pÞi ¼
128π

ðπ2 þ 64Þp2
ϵμνλpλ: ð89Þ

The topological fermionic current correlation function
corresponding to Eq. (78) written in terms of the matrix
propagator elements is

KF
μνðpÞ ¼ −

1

2π2
ϵμαβϵνσρpαpσ½DβρðpÞ − EβρðpÞ�: ð90Þ

After a lengthy but straightforward calculation, one obtains
once more the result of Eq. (83).

VII. DISCUSSION: BOSONIZATION AND
CRITICALITY IN Uð1Þ × Uð1Þ SYMMETRIC

THEORIES

As the Uð1Þ × Uð1Þ Abelian Higgs model that is most
often considered in the literature does not contain a CS term
in its Lagrangian [83,84,89], both its bosonic [83] and
fermionized [8] forms of particle-vortex duality behave very

differently relative to the model discussed in the previous
section. Thus, we will focus the discussion on the critical
behavior of the topological two-component Higgsmodel and
how it compares to the nontopological version. First, from
the standard Villain lattice form of particle-vortex duality
[83] we easily infer that the effective continuum dual theory
has the form [90]

L̃ ¼
X
I¼1;2

�
jð∂μ − ibIμÞϕIj2 þm2jϕIj2 þ

λ

2
jϕIj4

�

þM2

2
ðb1μ þ b2μÞ2: ð91Þ

The gauge invariance of the above dual theory is more
restrictive than the one of Eq. (68). Indeed, while for the
latter independent gauge transformations, bIμ → bIμ þ ∂μξI ,
ϕI → eiξIϕI , leave the action invariant, we have to use
b1μ → b1μ þ ∂μξ, b2μ → b2μ − ∂μξ, ϕ1 → eiξϕ1, ϕ2 →
e−iξϕ2 in Eq. (91). Closely related to this is the fact that
effectively M2 is very large, since it is proportional to e2;
recall the closely related discussion in this context in Sec. IV.
This leads effectively to only one gauge field, ultimately
implying that the theory is self-dual [83,89]. On the contrary,
there is nothing similarly happening to the mixed CS term
arising in Eq. (68). The two gauge fields appearing there are
a robust feature of the theory, which is also reflected in its
broader gauge freedom. There is no need to restrict ξ2 ¼ −ξ1
in this case.
The effective reduction to a single gauge field also occurs

in the bosonization duality of the theory leading to the
bosonic dual Lagrangian (91). This contrasts to the fermionic
dual theory of Eq. (71). This fact has far reaching conse-
quences in the study of possible critical points [9,14]. One
major difficulty in this case is whether the system becomes
critical, and this has been a matter of some controversy in
the field of deconfined quantum critical points. Numerical
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results typically yield a first-order phase transition for the
standard (i.e., without a CS term) Uð1Þ ×Uð1Þ Abelian
Higgs model [42,43], so quantum criticality would be
absent. Nevertheless, as pointed out recently in Ref. [9],
the bosonization duality rather suggests that the theory
becomes critical. The dual fermion model in this case is
given by the Lagrangian

Lf ¼
X
I¼1;2

ψ̄ Ið=∂ − i=aÞψ I; ð92Þ

where we have omitted the BF terms. At first sight it seems
obvious that this theory is critical, with a current correlator
being given by twice the expression of Eq. (B37) of
Appendix B 2, since the above theory features two massless
fermions. This result is the same as the one-loop vacuum
polarization at the critical point (meaning e2 → ∞). This
corresponds to an IR stable fixed point in terms of a properly
defined dimensionless gauge coupling. Higher loops do not
seem to change this picture. However, nonperturbative
behavior may spoil the criticality, causing a dynamical
generation of a fermion mass [54–58,91]. This is best seen
by generalizing the Lagrangian of Eq. (92) to include 2N
fermion components rather than two. Grouping the 2N two-
component Dirac spinors ψ I into N four-component Dirac
spinorsΨa, we can introduce 4 × 4 gammamatrices that also
satisfy a Clifford algebra, along with a γ5-like matrix [53],
introducing a chiral symmetry reminiscent of the actual
chiral symmetry for massless fermions in even dimensions of
spacetime [92]. A fermion QED in 2þ 1 dimensions defined
in this way does not break parity if a mass term of the form
m
P

N
a¼1 Ψ̄aΨa is added, since in terms of the original two-

component fermions it corresponds to having half of the
fermions with mass m and the other half with mass −m.
Hence, there is no antisymmetric contribution to the vacuum
polarization in this case and no CS term is generated. Since
e2 → ∞, the gauge field propagator is obtained by inverting
the vacuum polarization. The Schwinger-Dyson equation for
the fermion propagator then is known to imply a dynami-
cally generated mass that vanishes for N ≥ 32=π2 ≈ 3.24, a
result following from an approximate self-consistent solution
[91]. Thus, if one assumes the validity of this nonperturba-
tive result [93], we obtain that the theory of Eq. (92) becomes
gapped once nonperturbative quantum fluctuation effects are
accounted for. However, if this is the case, it would be
difficult to even claim the existence of a phase transition at

all for N ¼ 2. On the other hand, there is some evidence
favoring a critical value ofN lying in the interval 1 < N < 2

[95–97]. In this case, we can safely argue that the bosoniza-
tion duality rather implies a quantum critical point for the
Uð1Þ ×Uð1Þ symmetric Abelian Higgs model. However,
recent conformal bootstrap calculations [98–100] show that
the theory is gapped for N ¼ 1 (or two two-component
fermions), so the theory is not critical.
It is unclear at the moment whether such an IR form (92)

of the dual theory can actually capture the actual phase
structure of the lattice model, which in this case corre-
sponds to a quantum antiferromagnet with easy-plane
anisotropy [83,101,102]. Furthermore, so far simulations
address rather the so-called deep easy-plane limit, so the
phase stiffnesses are the same. On the other hand, there is
numerical evidence for a second-order phase transition
when the phase stiffnesses are different [103].
The difficulties above are not shared by theUð1Þ ×Uð1Þ

symmetric Abelian Higgs model with a CS term considered
recently in Ref. [14] and analyzed in Sec. VI. Importantly,
the fermionic dual theory given in Eq. (71) features two
gauge fields, and a reduction to a single gauge field does
not occur. This theory features also dynamical CS terms,
including mixed ones [104]. A one-loop RG analysis of the
original model (67) shows that a critical point indeed exists
[14]. Most importantly, the fermionic dual action does not
lead to dynamical mass generation. To see this, we consider
the Schwinger-Dyson equation for one of the fermions ψ I ,

G−1ðpÞ ¼ iγ · pþ
Z

d3q
ð2πÞ3 γμGðqÞγνDμνðp − qÞ; ð93Þ

where DμνðpÞ is the propagator of Eq. (88) and GðpÞ ¼
½ZðpÞiγ · pþ ΣðpÞ�−1 represents the full fermionic propa-
gator. In the above equation vertex corrections are being
neglected. In order to gain better control of the calculation,
we introduceM copies of fermions ψ1 and ψ2, and thus we
have to multiply the diagonal matrix elements in Eq. (86)
by M. This modifies DμνðpÞ to

DμνðpÞ ¼
16π2M

ð64þM2π2Þjpj
�
δμν −

pμpν

p2

�
: ð94Þ

Equation (93) leads then to two self-consistent integral
equations of the form

ΣðpÞ ¼ 32π2M
64þM2π2

Z
d3k
ð2πÞ3

ΣðkÞ
½Z2ðkÞk2 þ Σ2ðkÞ�jkþ pj ; ð95Þ

ZðpÞ ¼ 1 −
16π2M

ð64þM2π2Þp2

Z
d3k
ð2πÞ3

½k2 − p2 þ ðkþ pÞ2�ðkþ pÞ · pZðkÞ
½Z2ðkÞk2 þ Σ2ðkÞ�jkþ pj3 : ð96Þ
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Using a well-known procedure [53,91,105], we easily
convert Eqs. (95) and (96) to nonlinear differential equa-
tions,

d
ds

�
s2

dΣðsÞ
ds

�
¼ −

16M
64þM2π2

s2ΣðsÞ
Z2ðsÞs2 þ Σ2ðsÞ ; ð97Þ

d
ds

�
s4

dZðsÞ
ds

�
¼ 16M

64þM2π2
s4ZðsÞ

Z2ðsÞs2 þ Σ2ðsÞ ; ð98Þ

where s≡ jpj. These equations are solved with the boundary
conditions, lims→0 sΣðsÞ ¼ 0, sdΣðsÞ=dsjs¼Λ ¼ −ΣðΛÞ,
sdZðsÞ=dsjs¼Λ ¼ 3½1 − ZðΛÞ�, where Λ is a UV cutoff.
In addition, the spectral representation implies that
0 < Zð0Þ ≤ 1 must hold. Typically a first approximation
to solve Eqs. (97) and (98) is by linearizing them. Using the
leading order result where Zð0Þ ¼ 1, we obtain a nonzero
gap of the form

Σ�ð0Þ ¼ �Λe−2π=γ; ð99Þ

where

γ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

64M
64þ π2M2

− 1

r
: ð100Þ

We have included two possible signs for the generated gap,
since we are dealing with two-component spinors here, so
strictly speaking a chiral symmetry breaking is only possible
forM ¼ 2N, with half of the fermions getting a mass Σþð0Þ
and the other half Σ−ð0Þ. ForM ¼ 2N þ 1 it is the parity that
is being spontaneously broken.
We obtain that Σð0Þ=Λ is nonzero only for M− < M <

Mþ, where M� ¼ ð64�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4096 − 256π2

p
Þ=ð2π2Þ are the

critical values of N for which the gap vanishes. We note that
M− ≈ 1.235, so this solutiondoes not yield anygapgeneration
for M ¼ 1. Even for the case where M lies in the interval
ðM−;MþÞ, the corresponding value of Σð0Þ=Λ is tiny. Thus,
for all practical purposes we can assume that there is no gap
generation at all. This situation is in sharp contrast with the
one corresponding to the Lagrangian of Eq. (92) when it is
generalized to include 2N fermion fields. Of course, one
important difference is that in the case just discussed M
fermions are coupled to the gauge field b1μ while the other
M fermions couple to the gauge field b2μ, but this is actually
not the main point. The fact is that applying the same
Schwinger-Dyson method to Eq. (92) would amount to
replacing 64M=ð64þ π2M2Þ in Eq. (100) by 32=ðπ2NÞ,
leading in this way to the already quoted result that the gap
vanishes only for N ≥ 32=π2 ≈ 3.24. Note that the number
f ¼ 32=ðπ2NÞ is proportional to the dimensionless gauge
coupling at the IR stable fixed point (to see this we have to
include a Maxwell term as a UV regulator, similar to the

discussion in Sec. IV B) [53], and thus 64M=ð64þ π2M2Þ
withM ¼ 2N would coincidewith f only in the largeN limit.
We have thus found that only values of M ¼ 2N > 1

would allow for chiral symmetry breaking. We note,
however, that the interval ðM−;MþÞ includes the values
2, 3, and 4. Among those values, M ¼ 3 is special, since it
is odd and this would mean that parity gets dynamically
broken in this case. Such a result is not expected in ordinary
QED in 2þ 1 dimensions [106] and seems to violate a
theorem by Vafa and Witten [107], which states that in
massless QED in (2þ 1)d it is not possible to sponta-
neously break parity for any value of M. However, in our
theory the dependence onM arises in a somewhat different
way, since the photon propagator is obtained from inverting
the matrix appearing in Eq. (86). Thus, the conditions
underlying the Vafa-Witten result [107] and the early
Schwinger-Dyson calculation performed in Ref. [106]
do not apply in this case. Furthermore, for the M ¼ 1
case, which is our main interest here, no dynamical mass
generation occurs. Hence, the critical current correlator
obtained in Sec. VI should correctly account for the scale
invariance of the theory.

VIII. CONCLUSION

Let us summarize the main results of our paper. The first
important result we have obtained is the bosonization
duality for the topological Uð1Þ ×Uð1Þ Abelian Higgs
model, which in terms of Lagrangians can be schematically
represented in the form

Lb ¼
X
a¼1;2

jð∂μ − iaμ − ið−1ÞaBμÞzaj2

þ i
4π

ϵμνλaμ∂νaλ þ � � � ;
⇕

Lf ¼
X
I¼1;2

�
ψ̄ Ið=∂ − i=bIÞψ I þ

i
8π

bIμϵμνλ∂νbIλ

�

þ i
2π

b1μϵμνλ∂νb2λ þ
i
2π

ϵμνλBμ∂νðb2λ − b1λÞ; ð101Þ

where Bμ is a background field. While paving the way to
derive the main duality (101), we have revisited some of the
known results of the duality web with focus on inferring
critical properties and current correlators.Note that in contrast
with the duality of Eq. (53) for the Uð1Þ-invariant case (i.e.,
featuring a single scalar), the fermionic dual model is not a
free theory in the case of Eq. (101).We have demonstrated for
the duality (101) that the topological and Noether current
correlators differ only by a universal prefactor we have
calculated, giving the result of Eq. (85). The agreement of
bosonic and fermionic current correlation functions in the
bosonization duality also highlights that theories at criticality
flow to the same fixed points and, therefore, exhibit similar
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critical behavior. Thus, an important feature of the topological
Uð1Þ ×Uð1Þ Abelian Higgs model is that the system under-
goes a second-order phase transition, in contrast to the usual
nontopological case, where the existence of the critical point
is still under debate. Indeed, the Schwinger-Dyson analysis of
the fermionic dualmodel appearing inEq. (101) complements
and strengthens our RG analysis of the bosonic Lagrangian
(67) [represented in a more schematic form in Eq. (101)] in
Ref. [14], since it shows that no dynamical mass generation
occurs. As was extensively discussed in the text, the boso-
nization duality for the nontopological Uð1Þ ×Uð1Þ theory,
despite having a much simpler looking form, yields far less
conclusive results regarding its phase structure.
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APPENDIX A: CURRENT CORRELATOR IN THE
Oð2Þ NONLINEAR SIGMA MODEL

If we consider a scalar massless theory with an additional
constraint, jφj2 ¼ 1, the model turns into anOð2Þ nonlinear
σ model. In this case the constraint is easily solved by
φ ¼ eiθ, and the Lagrangian reduces to

L ¼ 1

2g
ð∂μθÞ2; ðA1Þ

where we have included now a coupling constant g. This is
the model for a free scalar field theory. However, since θ is
periodic, such a model is nontrivial. For instance, when
supplemented by a coupling constant, it is known to lead to
a Berezinskii-Kosterlitz-Thouless (BKT) phase transition
at d ¼ 2.
The conserved current associated with the Lagrangian

(A1) is given by

Jμ ¼
1

g
∂μθ; ðA2Þ

and makes its appearance in Sec. II B in the context of a
bosonized version of massless Dirac fermions. The corre-
sponding current correlation function is given by

Kμνðx − x0Þ ¼ 1

g2
h∂μθðxÞ∂ 0

νθðx0Þi: ðA3Þ

This can be rewritten as

KμνðxÞ ¼ −
1

g2
∂μ∂νhθðxÞθð0Þi: ðA4Þ

Since

hθðxÞθð0Þi ¼ g
Sdðd − 2Þjxjd−2 ; ðA5Þ

we easily obtain that

KμνðxÞ ¼
1

gSdjxjd
�
δμν − d

xμxν
x2

�
; ðA6Þ

and we also verify that this result is transverse,

∂μKμν ¼ 0: ðA7Þ

However, the current correlation function is not transverse in
momentum space,

KμνðpÞ ¼
pμpν

gp2
: ðA8Þ

This is reminiscent of the axial anomaly occurring naturally
in even spacetime dimensions. This behavior has another
consequence: the trace KμμðxÞ vanishes, but the same does
not happen for KμμðpÞ, which yields the unity. In fact, we
actually have

KμμðxÞ ¼
1

g
δdðxÞ; ðA9Þ

i.e., KμμðxÞ indeed vanishes everywhere, except at x ¼ 0

where a delta function singularity arises.
On the other hand, we can recall that there is another

conserved current, an axial one, namely [5]

J̃μ ¼
1

g
ϵμν∂νθ; ðA10Þ

which is dual to Jμ of Eq. (A2). The current correlation
function K̃μνðxÞ ¼ hJ̃μðxÞJ̃νð0Þi is simply given by

K̃μνðxÞ ¼ −KμνðxÞ; ðA11Þ

implying they are both transverse in real space. However, as
we have already seen,KμνðpÞ is longitudinal. The interesting
result following from the simple calculation above is that
K̃μνðpÞ, by contrast, is transverse,

K̃μνðpÞ ¼
1

g

�
δμν −

pμpν

p2

�
: ðA12Þ
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APPENDIX B: CURRENT CORRELATION
FUNCTION OF FREE THEORIES

1. Free scalar bosons in d dimensions

A general expression for the bosonic current correlation
function of the massless theory in d dimensions can be
obtained explicitly. The vacuum polarization in scalar QED
in the massless limit is easily shown to precisely correspond
to the exact current correlation function of the free theory,

L ¼ j∂μφj2 þm2jφj2; ðB1Þ

when m ¼ 0. The theory possesses a conserved Uð1Þ
current given by

jμ ¼ −iðφ�∂μφ − φ∂μφ
�Þ: ðB2Þ

The corresponding current correlation function for a free
complex scalar boson can be calculated explicitly and
initially is written as

Cμνðx − x0Þ ¼ hjμðxÞjνðx0Þi ¼ −hφ�ðxÞ∂μφðxÞφ�ðx0Þ∂ 0
νφðx0Þi − hφðxÞ∂μφ

�ðxÞφðx0Þ∂ 0
νφ

�ðx0Þi
þ hφ�ðxÞ∂μφðxÞφðx0Þ∂ 0

νφ
�ðx0Þi þ hφðxÞ∂μφ

�ðxÞφ�ðx0Þ∂ 0
νφðx0Þi: ðB3Þ

Since the theory is free, we can use Wick’s theorem to decouple the correlations above. The result is

Cμνðx − x0Þ ¼ −hφ�ðxÞ∂ 0
νφðx0Þih∂μφðxÞφ�ðx0Þi − hφðxÞ∂ 0

νφ
�ðx0Þih∂μφ

�ðxÞφðx0Þi
þ hφ�ðxÞφðx0Þih∂μφðxÞ∂ 0

νφ
�ðx0Þi þ hφðxÞφ�ðx0Þih∂μφ

�ðxÞ∂ 0
νφðx0Þi: ðB4Þ

We note the Fourier representations of the correlation
functions

hφðxÞφ�ðx0Þi ¼
Z
p

eip·ðx−x0Þ

p2 þm2
; ðB5Þ

h∂μφðxÞφ�ðx0Þi ¼ i
Z
p

pμeip·ðx−x
0Þ

p2 þm2
; ðB6Þ

h∂μφðxÞ∂ 0
νφ

�ðx0Þi ¼
Z
p

pμpνeip·ðx−x
0Þ

p2 þm2
; ðB7Þ

while the other correlation functions entering Eq. (B4)
follow by complex conjugation. In the expressions above,
we used the shorthand notation

Z
k
¼

Z
ddk
ð2πÞ3 : ðB8Þ

After inserting the Fourier representations into Eq. (B4),
we obtain the Fourier transform of the current correlation
function as

CμνðkÞ ¼
Z

d3xe−ik·xCμνðxÞ: ðB9Þ

Finally, some straightforward algebraic manipulations and
simplifications yield

CμνðkÞ ¼ IμνðkÞ; ðB10Þ

where IμνðkÞ is given in momentum space by the integral,

IμνðqÞ ¼
Z
k

ð2k − qÞμð2k − qÞν
½ðk − qÞ2 þm2�ðk2 þm2Þ : ðB11Þ

Since we can write

IμνðqÞ ¼ AðqÞδμν þ BðqÞqμqν; ðB12Þ

where

AðqÞ ¼ 1

d − 1

�
IμμðqÞ −

qμqν
q2

IμνðqÞ
�
; ðB13Þ

BðqÞ ¼ 1

ð1 − dÞq2
�
IμμðqÞ − d

qμqν
q2

IμνðqÞ
�
; ðB14Þ

we obtain after straightforward simplifications

AðqÞ ¼−
1

d− 1

�
4m2

d− 2

Z
k

1

ðk2þm2Þ2

þðq2þ 4m2Þ
Z
k

1

½ðk−qÞ2þm2�ðk2þm2Þ
	
: ðB15Þ

BðqÞ¼ 1

ðd−1Þq2
�
−4m2

Z
k

1

ðk2þm2Þ2

þðq2þ4m2Þ
Z
k

1

½ðk−qÞ2þm2�ðk2þm2Þ
	
: ðB16Þ

We now decompose IμνðqÞ into transverse and longi-
tudinal components,

BOSONIZATION DUALITY IN 2þ 1 DIMENSIONS AND … PHYS. REV. D 105, 065019 (2022)

065019-19



IμνðqÞ ¼ AðqÞ
�
δμν −

qμqν
q2

�
þ ½BðqÞq2 þ AðqÞ� qμqν

q2
:

ðB17Þ

The longitudinal component is given simply by

BðqÞq2 þ AðqÞ ¼ −
4m2

d − 2

Z
k

1

ðk2 þm2Þ2 ; ðB18Þ

and we see that for m2 ¼ 0 the result for IμνðqÞ is purely
transverse,

IμνðqÞjm2¼0 ¼ −ΠðqÞðq2δμν − qμqνÞ; ðB19Þ

with

ΠðqÞ ¼
Z
k

1

ðk − qÞ2k2 ¼ cdjqjd−4; ðB20Þ

where cd is given by

cd ¼
d − 2

ð4πÞd=2 Γ
�
2 −

d
2

�
Γ2ðd=2 − 1Þ

ΓðdÞ : ðB21Þ

Let us now specialize to d ¼ 3. In this case we have

Z
k

1

ðk2 þm2Þ2 ¼
1

8πjmj ; ðB22Þ

Z
k

1

½ðk−qÞ2þm2�ðk2þm2Þ¼
1

4πjqjarctan
� jqj
2jmj

�
: ðB23Þ

Hence, the transverse and longitudinal components of
IμνðqÞ read

ItðqÞ ¼ −
1

4π

�
jmj þ ðq2 þ 4m2Þ

2jqj arctan

� jqj
2jmj

��
; ðB24Þ

IlðqÞ ¼ −
jmj
2π

: ðB25Þ

In the expression for AðqÞ we have used dimensional
regularization to write

Z
k

1

k2 þm2
¼ −

2m2

d − 2

Z
k

1

ðk2 þm2Þ2 ; ðB26Þ

which removes a power of the UV cutoff Λ of the form
∼Λd−2 spoiling gauge invariance.
Therefore, the current correlation function of a massless

bosonic theory is purely transverse, and we obtain in real
space that

CμνðxÞ ¼
2

S2dðd − 2Þjxj2ðd−1Þ
�
δμν − 2

xμxν
x2

�
; ðB27Þ

where Sd ¼ 2πd=2=Γðd=2Þ is the solid angle in d dimen-
sions. Indeed, we verify that ∂μCμνðxÞ ¼ 0, and in momen-
tum space we have

CμνðqÞ ¼ −cdjqjd−2
�
δμν −

qμqν
q2

�
: ðB28Þ

2. Free fermions in 2 + 1 dimensions

It is a straightforward exercise to exactly compute the
current correlation function for free fermions. In momen-
tum space we have

CF
μνðpÞ ¼ hjμðpÞjνð−pÞi ¼ −

Z
q
tr½γμGðqÞγνGðp − qÞ�;

ðB29Þ

where

GðpÞ ¼ M − i=p
p2 þM2

: ðB30Þ

Thus,

CF
μνðpÞ ¼

Z
q

tr½γμðM − i=qÞγνðM − i=pþ i=qÞ�
ðq2 þM2Þ½ðp − qÞ2 þM2� : ðB31Þ

The trace in the numerator of the above expression is
rewritten as

tr½γμðM − i=qÞγνðM − i=pþ i=qÞ� ¼ 2ðM2 þ q2

− p · qÞδμν − 2ðpμqν þ pνqμÞ þ 4qμqν

þ 2Mϵμνλpλ; ðB32Þ

where we have made use of the identities

trðγμγνÞ ¼ 2δμν; ðB33Þ

trðγμγνγλÞ ¼ 2iϵμνλ; ðB34Þ

trðγμγλγνγρÞ ¼ 2ðδμλδνρ þ δμρδλν − δμνδλρÞ: ðB35Þ

Performing explicitly the several integrals yields
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−CF
μνðpÞ ¼

1

4π

�
jMj þ p2 − 4M2

2jpj arctan

� jpj
2jMj

��

×

�
δμν −

pμpν

p2

�
þ M
2πjpj arctan

� jpj
2jMj

�
ϵμνλpλ;

ðB36Þ

where UV finiteness of the parity-even transverse term has
been obtained via dimensional regularization. We will see
later that a different gauge-invariant regularization is more
appropriate in this case.

For M ¼ 0 the above result becomes simply

CF
μνðpÞjM¼0 ¼ −

jpj
16

�
δμν −

pμpν

p2

�
: ðB37Þ

Up to a minus sign, Eq. (B37) coincides with the bosonic
current correlation function for free massless bosons of
Eq. (B28) when d ¼ 3 is set,

CF
μνðpÞjM¼0 ¼ CμνðpÞjm¼0: ðB38Þ
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