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We complete the set of spin-projector operators for fields up to rank 3 by providing all operators
connecting sectors with the same spin and parity. In this way, we can broaden the search for unitary and
nontachyonic particle propagation in quadratic Lagrangians with interfield mixing. We use the properties of
projector algebra to reanalyze known theories and shed light on new, healthy ones. We do so with full
control over the gauge constraints by determining the form of the saturated propagator in an appropriate
frame of reference.
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I. INTRODUCTION

The use of fields and local Lagrangians to fit the quantum
behavior of relativistic particles has met unparalleled exper-
imental support. In the effort to craft coherent quantum field
models two main approaches can be followed which carry
different views for the symmetries of the theory. In a up-
bottom approach, symmetries are the starting point that
shape the field interactions for a given particle content. In the
lower spin sector, which can be described by low-rank fields,
the narrower space of invariants facilitates the building of
such theories.Already for spin≥2, imposed symmetries lose
their major constraining power, a paradigmatic case being
the many different alternatives which accompany the sim-
plest theory of gravity. Aside from this mainstream attitude,
a different scrutiny of quantum field models—more focused
on a particle’s free propagation and the consistency of their
interactions—has been carriedmost notably in Refs. [1–10].
This different focus has demonstrated how some symmetries
can be brought into existence by the stronger claims of
unitarity and causality of the quadratic Lagrangian.
Moreover, in the absence of obstructions, techniques have
been developed to consistently extend the same symmetries,
allowing for a nonlinear completion and hence interactions.
This bottom-up approach embraces the field formalism as a
pathological carrier of multispin components, and selects
constraints and symmetries over the generic Lorentz-
invariant Lagrangian to cure it. The path for a successful
application of this method starts with an otherwise uncon-
strained Lorentz-invariant quadratic action, built from a

selected set of fields. A spectral analysis for this theory is
then performed, which illuminates the presence of ghost-
like pathological propagation. The nature of ghost being
twofold, both of Ostrogradsky type [11,12],1 sourced by
higher-order derivative terms, or linked to the undefined
nature of Lorentzmetric. On top of this, tachyonic states also
populate the propagator’s poles and require care. After such
polishing has been realized, which is in general a difficult
task, a constrained quadratic action emerges. The art of
building consistent interactions on top of a linear system is
aided by cohomological methods and the less systematic
(but more intuitive) Noether method [4–7,17]. This will not
be the subject of this paper, which focuses on the con-
straining power of spectral analyses. To explore the particle
spectrum of a theory in a systematic way, it is favorable to
explicit the link between fields, generally reducible repre-
sentation of the Lorentz group, and particles, interpreted à la
Wigner as representations of the little group. Different
methods have been developed, in particular in the context
of gauge theories and higher-spin model building [18–25],
to pinpoint the physical degrees of freedom. Wewill rely on
the techniques introduced by Rivers [9], and adopted in the
seminal works [10,26–28], that exploit the algebra of
projector operators to highlight the spin components of a
given field. This formalism also smoothly solves the
problem of the inversion of the equation of motion in
the presence of local symmetries, which are controlled by
the gauge-invariant saturated propagator. These powerful
techniques have handed the keys to reveal the inevitability of
the Fierz-Pauli action [10] and reveal the particle spectrum
of diffeomorphism-invariant theories of gravity in first-order
formalism (for an incomplete list ofworks on the subject, seePublished by the American Physical Society under the terms of
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1Note that ways to welcome such ghosts have been explored
[13–16].
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Refs. [10,26–32]). The latter case is paradigmatic of the use
of many different fields with quadratic mixing and simulta-
neous transformation under gauge symmetry. It has received
increasing attention in the last years and has required the
computation of projector operators up to spin 3, an operation
completed only recently [29,33]. When moving to higher
spin the simultaneous presence ofmany fields, possibly in an
auxiliary role, ismandatory to provide the propagation of the
wanted states. There is therefore fair expectation that future
phenomenology could be tackled by models where particle
propagation is encoded in multiple fields with collective
gauge symmetries whose constraining power and renorma-
lizability have not yet been given the proper attention. This is
particularly interesting given that consistent couplings of
higher-spin particles seem to require higher-derivative
interactions and therefore a naive power-counting renorm-
alization is no longer applicable. More promising, similarly
to the case of the nonlinear sigma model, symmetries might
help to constrain the form of the UV terms and provide
predictive models. Surprisingly, while geometric theories of
gravity have attracted most of the use of the method in
question, almost no attention has been given to Lorentz-
invariant higher-spin propagation involving multiple fields,
with one notable exception being the study of the Singh
model in Ref. [33]. A possible reason to justify such lacking
can be tracked to themissing operators needed to express the
mixing terms involving all the fields. Up to fields of rank 3,
and therefore equal spin number, we provide the missing
terms so to open the study of the spectrum for new unex-
plored models with possible collective symmetries. We
illustrate a possible procedure (which has common roots
with Refs. [30,32]) with a greater focus on the explicit form
of the saturated propagator and that unambiguously estab-
lishes the nature of the propagating particles. In this workwe
use the mostly minus metric signature.

II. FIELDS, PARTICLES, AND THE
QUADRATIC ACTION

A. Fields and particles

While attempts to emancipate particle phenomenology
from local fields are an intriguing line of past and present
research [34–37], their use is still mainstream when it
comes to providing scattering amplitudes at relativistic
energies. The main issue of this approach is represented by
the clash between the field components and the particle that
they describe. More precisely, while tensor fields carry
representations of the Lorentz group Dðs1; s2Þ,2 the par-
ticle’s labels are linked to the little group. These are the
smaller SUð2Þ for massive particles, and Uð1Þ for massless
particles, in terms of which Dðs1; s2Þ is reducible. In the

massive case the physically relevant quantum number is
therefore the spin s, with representations 2sþ 1 dimen-
sional and values −s;−sþ 1;…s − 2; s − 1;þs. Similarly,
for the little group of massless particles, the representations
are identified with the integer number s, connected to the
eigenvalues of the conserved helicity operator, with only
two different states �s. When parity invariance is mean-
ingful, the twofold discrete values of the parity operator
(P ¼ �1) aid in giving a full description of Poincaré-
invariant systems through fields, with the Abelian subgroup
of translations being trivially realized by their continuous
momentum dependence. In our analysis, as is customary in
the literature, we will use the decomposition of fields in the
SOð2Þ little group which not only is enough to derive
conclusions about the causal and unitary propagation of
massive particles, but also provides the intermediate step in
describing the unitarity of helicity states within the for-
malism of the saturated propagator. It is standard notation
to label the little group components within the reducible
Lorentz tensor with the symbol Sp, with S being the SUð2Þ
spin number and p the parity eigenvalue. To this symbol we
add a further subscript to distinguish multiple components
of the same Sp element for the totality of cases analyzed in
this paper, from rank-0 to rank-3 fields. Therefore, follow-
ing the enumeration of Ref. [29] and extending it to include
the vector and scalar cases, we have

ϕμνρ ⊃ 3−1 ⊕ 2þ1 ⊕ 2þ2 ⊕ 2þ3 ⊕ 2−1 ⊕ 2−2 ⊕ 1þ1 ⊕ 1þ2
⊕ 1þ3 ⊕ 1−1 ⊕ 1−2 ⊕ 1−3 ⊕ 1−4 ⊕ 1−5 ⊕ 1−6 ⊕ 0þ1
⊕ 0þ2 ⊕ 0þ3 ⊕ 0þ4 ⊕ 0−1 ;

ϕμν ⊃ 2þ4 ⊕ 1−7 ⊕ 0þ5 ⊕ 0þ6 ;

ϕμ ⊃ 1−8 ⊕ 0þ7 ;

ϕ ⊃ 0þ8 ; ð2:1Þ

where we only impose symmetry for the rank-2 tensor.
Equation (2.1) makes explicit how a single indexed field
carries multiple particles, with substantial growth in their
number with the field rank. Therefore, when using fields as
building blocks for the dynamics of higher-spin particles,
the necessity of constraining the fields arises. Fierz
and Pauli [38] presented the rules to build linear equations
of motion that only propagate a spin-s particle by adopting
a rank-s symmetric and traceless tensor field Φμ1μ2���μs ,
which therefore carries the Lorentz representation
Dðs=2; s=2Þ. Being such single representation already
reducible in SUð2Þ components, on top of the Klein-
Gordon equation

ð□þm2Þϕμ1μ2���μs ¼ 0; ð2:2Þ

the null-divergence condition

∂μiϕμ1μ2���μs ¼ 0 ði ¼ 1; ::sÞ ð2:3Þ
2We limit ourselves to the bosonic case, avoiding double-

covering representations of the little group, which is suitable for
fermions.
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must also be imposed to prevent the propagation of
particles with spin lower than s. It was immediately realized
by Fierz and Pauli that the simplicity of their universal
description for all integer-spin particles could not survive
the introduction of interactions without leading to incon-
sistencies. Such inconsistencies could be healed by relaying
to a Lagrangian origin of the equations, enriched with
auxiliary, lower-rank fields. Since the seminal Fierz-Pauli
paper, most subsequent attempts to find healthy
Lagrangians for the propagation of higher-spin particles
have relied on quadratic mixing among different fields. For
instance, taking the simple but already involved case of a
spin-3 particle, the Singh-Hagen [39] proposal uses a
Lagrangian with a collective rank-3 and rank-0 dynamics,
while the Klishevich-Zinoviev model [40,41] needs all
fields with rank less than or equal to 3. As exemplary cases,
we will study such models with our complete set of
projectors in the following pages.3

B. Projector operators

Having recognized the relevance of Lagrangian theories
with multiple fields entangled in quadratic mixing, we
recap the efficient approach based on projector operators
[10,26–33] to assess the nature of their particle spectrum. In
what follows, when stating general properties of the action,
we will hide the index structure and consider an indexless
superfield formalism as in Φ ¼ fϕμνρ;ϕμν;ϕμ;ϕg, consid-
ering field contractions in the intuitive form

ΦΨ ¼ ϕμ1μ2μ3ψ
μ1μ2μ3 þ ϕμ1μ2ψ

μ1μ2 þ ϕμ1ψ
μ1 þ ϕψ ; ð2:4Þ

and similarly for supermatrices K,

ΦKΨ¼ϕμ1μ2μ3κ
μ1μ2μ3ν1ν2ν3ψν1ν2ν3 þϕμ1μ2μ3κ

μ1μ2μ3ν1ν2ψν1ν2

þϕμ1μ2κ
μ1μ2ν1ν2ν3ψν1ν2ν3 þ���ϕμ1κ

μ1ν1ψν1 þϕμ1κ
μ1ψ

þϕκν1ψν1 þϕκψ ; ð2:5Þ

where, of course, in practical examples some components
might be absent.
The starting point of the algorithm is the source-

dependent quadratic action, which in momentum space
can be put in the economical form

S ¼ 1

2

Z
d4qðΦð−qÞKðqÞΦðqÞ þ J ð−qÞΦðqÞ

þ J ðqÞΦð−qÞÞ: ð2:6Þ

The explicit particle content of Eq. (2.6) is accessed by
expanding the fields in terms of the irreducible Sp

components, a process taken care of by a set of operators
with a rather involved superscript and subscript index
structure:

ð2:7Þ

While it is difficult to top the clear illustrations given
inRefs. [10,26,29–32], we briefly review themain properties
of the operators in Eq. (2.7) to keep these pages as
self-contained as possible. We start with the simple case
of a single field ϕμ1μ2���μnðqÞ; then, the subset of operators
with i ¼ k in Eq. (2.7) are actually projectors onto the space
of spin S and parity p, fulfilling the completeness relation

ϕμ1μ2���μnðqÞ ¼
X
S;p;i

Pi;i ν1ν2…νn
fS;pgμ1μ2…μn

ðqÞϕν1ν2���νnðqÞ: ð2:8Þ

The meaning of the “Reps Indices” i, i is therefore to keep
track of the multiple representations within the spin/parity
sector fS; pg, as enumerated in Eq. (2.1). The need for a
double entry is then intended when considering transitions
between different representations with the same S and p
values. Being possible to realize such transition also among
fields of different rank, we have considered in Eq. (2.7) the
generic case with different numbers of upper and lower
Lorentz indices. For instance, by looking at Eq. (2.1), we
might recover a vector with spin/parity 1− out of a rank-3
tensor via

P8;1 ν1ν2ν3
f1;−gμ ϕν1ν2ν3 ¼ P8;1 ρ1ρ2ρ3

f1;−gμ P1;1 ν1ν2ν3
f1;−gρ1ρ2ρ3ϕν1ν2ν3 ð2:9Þ

wherewe neglected themomentumdependence to lighten the
notation. Equations (2.8)–(2.9) are particular applications ofX

S;p;i

Pi;i ν1ν2…νn
fS;pgμ1μ2…μn

¼ 1̂ ν1ν2…νn
μ1μ2…μn ;

Pi;k ρ1ρ2…ρn
fS;pgμ1μ2…μn

Pj;w ν1ν2…νn
fR;mgρ1ρ2…ρn

¼δk;jδS;Rδp;mP
i;w ν1ν2…νn
fS;pgμ1μ2…μn

;

Pi;j ν1ν2…νn
fS;pgμ1μ2…μn

¼ðPj;i ν1ν2…νn
fS;pg μ1μ2…μn

Þ�; ð2:10Þ
which describe the completeness of the projectors, and the
orthogonality and Hermiticity of the operators.4 The task of
computing the explicit forms of these operators for a set of
rank-2 and rank-3 fieldswas only recently completed [29,33].

3The unitarity of the Singh-Hagen model was already inves-
tigated in Ref. [33] where, in order to only use rank-3 projectors,
a clever integration of the auxiliary rank-0 field was employed,
trading the linear Lagrangian for a nonlinear one.

4We introduced the unit operator 1̂ in the field space of given
rank and index symmetry so that, for instance, for a symmetric
rank-2 field we have 1̂ ν1ν2

μ1μ2 ¼ 1
2
ðδν1μ1δν2μ2 þ δν2μ1δ

ν1
μ2Þ.
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This paper’s original contribution is to provide the missing
operators to study the mixing between all of the fields up to
rank 3, including the scalar-tensor and vector-tensor transition
operators. We refer to the cited literature for details about the
computation of the actual projectors, in particular the role
of the transverse and longitudinal operators which allows
possible future generalizations to higher spins. For our
computation a brute force method has been used, with an
appropriate code to generate tensor-covariant combinations
with given symmetries so as to impose Eq. (2.10) and solve
the corresponding linear system. We provide a shortened list
of such operators, which can be completed to the full set with
the use of Eq. (2.10), in theAppendix. The full code-ready set
can be found in the Supplemental Material [42]. For this
purpose, the tools found in Refs. [43–45] have been of great
help. Once the set of operators fulfilling Eq. (2.10) is known,
the investigation about the nature of the particle spectrum
follows almost mechanically. In particular, within this for-
malism, the subtle presence of gauge symmetries can be
revealed and dealt with in a simple and physically intui-
tive way.

C. Quadratic action and saturated propagator

The source-dependent quadratic action (2.6) can now be
manipulated to reveal the propagating spin/parity sectors
via the expansion

Z
d4qΦð−qÞKðqÞΦðqÞ

¼
Z

d4qΦð−qÞ
X
S;p;i;j

ðafS;pgi;j Pi;j
fS;pgÞΦðqÞ: ð2:11Þ

To get the fundamental matrices afS;pgi;j we need to get the
components of the supermatrix KðqÞ corresponding to
the fields that include the ith and jth representations of
spin/parity Sp [Eq. (2.1)]. The Lorentz indices of this object
are then traced against the operator Pi;j

fS;pg, opportunely
weighted with the dimension of the Sp representation

dS ¼ 2Sþ 1. So, for instance, to get af1;−g1;8 we use

af1;−g1;8 ¼ 1

3
P1;8 ν1
f1;−gμ1μ2μ3 κμ1μ2μ3ν1 ð2:12Þ

or similarly, for diagonal elements,

af2;þg
4;4 ¼ 1

5
P4;4 ν1ν2
f2;þgμ1μ2 κμ1μ2ν1ν2 ; ð2:13Þ

and so on. The matrices afS;pgi;j are central in these spectral
investigations, encoding all of the information on the
particle quanta in an easy-to-manipulate form. Indeed,
with the form (2.11) the computation of the propagator
DðqÞ in the presence of the sources JðqÞ translates into the
inversion of the equation

KðqÞDðqÞ ¼
X
S;p;i;j

ðafS;pgi;j Pi;j
fS;pgÞDðqÞ ¼ 1̂; ð2:14Þ

which has the solution

DðqÞ ¼
X
S;p;i;j

bfS;pgi;j Pi;j
fS;pg; ð2:15Þ

with bfS;pgi;j ¼ ðafS;pgi;j Þ−1. The advantage in using such a
decomposition is the direct connection with gauge sym-

metries, which arise when the determinant of afS;pgi;j is zero,
making the naive inversion impossible. Then, in the
presence of a set of n null vectors Xs¼1;2���n

i for the matrix

afS;pgi;j , we have n corresponding symmetries under the
gauge transformations

δΦ ¼ Xs
iP

i;j
fS;pgΨ; ðs ¼ 1; 2 � � � nÞ; ð2:16Þ

with an arbitrary superfield Ψ. To fix such gauge freedom

we take the nondegenerate submatrix ãfS;pgi;j , which can be
promptly inverted. Then, we can recover gauge invariance
by asking the sources to solve for the gauge constraints

X�s
j P

i;j
fS;pgJðqÞ ¼ 0; ðs ¼ 1; 2 � � � nÞ; ð2:17Þ

and defining

DSðqÞ ¼ J̃�ðqÞ
�X

S;p;i;j

b̃fS;pgi;j Pi;j
fS;pg

�
J̃ðqÞ; ð2:18Þ

where we used J̃ðqÞ to refer to solutions of Eq. (2.17).

D. Poles, ghosts, and tachyons

Equation (2.18) is the gauge-invariant saturated propa-
gator which has the generic structure of an undefined
quadratic form in the sources with possible poles in the
squared momentum q2. In the proximity of such poles we
recover the structure

lim
q2→M2

a

DSðqÞ ∼
P

mrmjjmj2
ðq2 −M2

aÞn
; ð2:19Þ

where jm are linear combinations of source components
with definite properties under angular momentum (Ma ≠ 0)
or helicity (Ma ¼ 0) transformations (for details, see Sec. II
of Ref. [46]). Many factors can concur to challenge the
healthy propagation of particles, providing in turn strong
constraints over the parameter space of the linear model. As
is known, the residue of the propagator poles has a special
role in defining the unitarity of the model and the undefined
Lorentz metric cannot ensure the positivity of the residue in
Eq. (2.19), thus generally propagating ghosts. Connected to

C. MARZO PHYS. REV. D 105, 065017 (2022)

065017-4



this is also the elimination of possible poles of order >1 in
q2, linked to Ostrogradsky instabilities [n > 1 in
Eq. (2.19)]. The tribute to causality is instead paid by
avoiding superluminal propagation which is triggered by
complex masses M2

a < 0 providing yet another constraint
to account for. A certain number of shortcuts have been
developed to avoid dealing with Eq. (2.19) directly and

instead reduce the problem to the simpler matrices b̃fS;pgi;j .
Indeed, by restricting ourselves to nondegenerate massive
particles, the positivity of the quadratic form over the pole
q2 → M2 can be read off the simple formula

Res
q2→M2

X
i

ð−1Þpb̃fS;pgi;i > 0:

This approach misses potentially interesting scenarios, such
as massless propagation, critical cases where different spin
sectors share a common mass, and (notably for our work)
collective gauge-invariant descriptions of massive particles
(see Sec. IV). For this reason, in the spirit of Refs. [10,32]
we will directly rely on the source-dependent saturated
propagator to derive any conclusion about unitarity and
causality. The impairment to get such information from
Eq. (2.19) is connected to the imposition of constraints on
the sources, which will be difficult to exhibit when keeping
an index-free formalism. Therefore, some progress can be
made by exploiting Lorentz invariance and solving the
gauge constraints in particular frames. In the massive case
we feed our algorithm with the form of Eq. (2.17) in the
frame q ¼ ðω; 0⃗Þ and solve for the components; then, such
a subset of independent sources is reinserted into Eq. (2.17)
where the residue is easily computed. The massless case is
slightly more subtle because spurious poles in q2 are also
present in the polarization operators. Therefore, we inter-
mediately use the frame q ¼ ðω; 0; 0; κÞ and only later
impose the light-like limit κ → ω.

III. APPLICATIONS: REVIEW

Before adopting the projector technology to explore
uncharted territories, we review more familiar ones,
stressing (with the benefits of insight) the role of quadratic
mixing and gauge symmetries.

A. Proca-Stueckelberg-Goldstone

The interacting theory of the vector and scalar field is a
simple yet rich playground which shows the interplay
between our formalism and the physical properties of
particles they accommodate. In this section, we extensively
review Proca and Stueckelberg theories. This subject has
been already explored in Ref. [47], but we find it necessary
to present it here as well, before moving to more complex
scenarios. We start by analyzing the massive vector system
described by the Proca action

SP¼
Z

d4x

�
−
1

4
ð∂μVν−∂νVμÞð∂μVν−∂νVμÞþm2

V

2
VμVμ

�
:

ð3:1Þ

The decomposition (2.1) defines two spin/parity sectors 1−

and 0þ with the (one-dimensional) matrices

af1;−g8;8 ¼ q2 −m2
V;

af0;þg
7;7 ¼ m2

V: ð3:2Þ

The mass parameter removes the possible degeneracy of
the scalar sector, thus breaking the corresponding gauge
symmetry. The saturated propagator DSðqÞ ¼ D1−

S ðqÞ þ
D0þ

S ðqÞ can therefore be trivially computed as

D1−

S ðqÞ ¼ J�μðqÞb̃f1;−g8;8 P8;8 μν
f1−g JνðqÞ

¼ J�μðqÞJνðqÞ
q2 −m2

V

�
qμqν
q2

− gμν

�
;

D0þ
S ðqÞ ¼ J�μðqÞb̃f0;þg

7;7 P7;7 μν
f0þg JνðqÞ

¼ J�μðqÞJνðqÞqμqν
m2

Vq
2

: ð3:3Þ

We see that, while the 0þ sector has only a spurious
massless pole, the sector 1− might exhibit healthy, non-
tachyonic propagation. Going to the frame qμ ¼ ðω; 0⃗Þ, we
simply find

lim
ω2→m2

V

DSðqÞ ¼
jJ1j2 þ jJ2j2 þ jJ3j2

ω2 −m2
V

; ð3:4Þ

with the three degrees of freedom as expected for a massive
spin-1 particle. It is known that, to circumvent the bad
q2 → ∞ behavior of the 0þ sector, gauge symmetries must
be introduced to sweep it away. In all known cases this will
require an extension with quadratic mixing between the
vector and scalar sectors. In the minimal case this can be
achieved via the Stueckelberg mechanism, with only one
field introduced in the simple form

SS ¼ SP þ
Z

d4x
�
1

2
∂μϕS∂μϕS þmVϕS∂μVμ

�
: ð3:5Þ

We see the appearance of quadratic mixing in order to
entangle the two fields in a common symmetry. This
symmetry can be revealed by noticing that, now, the sector
0þ is enhanced to the degenerate 2 × 2 matrix

af0;þg
i;j ¼

�
a7;7 a7;8
a8;7 a8;8

�
¼
�

m2
V imV

ffiffiffiffiffi
q2

p
−imV

ffiffiffiffiffi
q2

p
q2

�
: ð3:6Þ
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A direct application of Eq. (2.16) then reveals, in momen-
tum space, the symmetry

δΦ ¼ ðδVμ; δϕSÞ ¼ ðiqμψ ; mVψÞ; ð3:7Þ

whereψ is an arbitrary scalar field.We can fix the freedomof
Eq. (3.7) to allow the computation of the propagator by
arbitrarily choosing either diagonal element in Eq. (3.6) as a
nondegenerate submatrix. The equivalence of both choices is
granted by the source constraint (2.17), which becomes

i
qμ
mV

JμðqÞ ¼ JðqÞ; ð3:8Þ

where the indexless JðqÞ is the source for the scalar field ϕ.5
Besides the role of the gauge invariance, the saturated
propagator, in the limit q2 ¼ ω2 → m2

V , is formally identical
to the Proca one, propagating three states of the massive 1−

spin sector. We stress that such a spectral analysis displays
features that are also included in more involved Lagrangians
with a Stueckelberg-like quadratic part. In particular, the
presence of quadratic mixing between fields of different
rank, and the corresponding inhomogeneous transformations
required by gauge invariance, are manifested by Goldstone
states in theories with spontaneous symmetry breaking.

B. Einstein-Palatini

The massless Fierz-Pauli Lagrangian for a symmetric
rank-2 field propagates two helicity states as shown (with
the help of the projector algebra) in Ref. [10]. There, the
apparent propagation of a ghost-like spin-0 particle was
shown to disappear in the limit q2 → 0 owing to the
constrained sources. As an interesting application, we
revisit the same problem by adopting a rank-3 tensor as
an auxiliary field in the so-called Palatini formulation. To
the best of our knowledge, the saturated propagator for this
formulation has been explicitly worked out, in coordinate
space, only in Ref. [30]. On top of the many interesting
applications for the first-order formulation of the gravita-
tional problem, it also gives a nontrivial display of a model
requiring a rank-3 and rank-2 field cooperation in order to
propagate a single helicity-2 particle. The quadratic action
we target is of the form

SEP ¼ aEP

Z
d4xðδμν þHμνÞð∂αAα

μν − ∂νAα
μα

þ Aα
νμAβ

αβ − Aα
βμAβ

αμÞ

¼ aEP

Z
d4x½Hμνð∂αAα

μν − ∂νAα
μαÞ þ Aα

μ
μAβ

αβ

− Aα
βμAβ

α
μ þOðHA2Þ�; ð3:9Þ

and we require Hμν ¼ Hνν and Aα
μν ¼ Aα

νμ, with the latter
equality being required to avoid many irrelevant spin
representations. For this set of fields, Eq. (2.1) is now
reduced to

Aμνρ ⊃ 3−1 ⊕ 2þ1 ⊕ 2þ2 ⊕ 2−1 ⊕ 1þ1 ⊕ 1−1 ⊕ 1−2 ⊕ 1−4 ⊕ 1−5

⊕ 0þ1 ⊕ 0þ2 ⊕ 0þ4 ;

Hμν ⊃ 2þ4 ⊕ 1−7 ⊕ 0þ5 ⊕ 0þ6 : ð3:10Þ

In terms of these representations the relevant spin/parity
matrices become

af2;þg
i;j ¼ aEP

0
BBBBB@

−2 0 −i
ffiffiffiffi
q2

p
3

0 1 −i
ffiffi
2
3

q ffiffiffiffiffi
q2

p

i
ffiffiffiffi
q2

p
3

i
ffiffi
2
3

q ffiffiffiffiffi
q2

p
0

1
CCCCCA
; ð3:11Þ

af1;−gi;j ¼ aEP

0
BBBBBBBBBBBBB@

4
3

−
ffiffi
5

p
3

2
ffiffi
5

p
3

−1
3

ffiffi
5
2

q
i

ffiffiffiffiffi
5q2

6

q

−
ffiffi
5

p
3

−1
3

−1
3

−2
ffiffi
2

p
3

i
ffiffiffiffi
q2

6

q

2
ffiffi
5

p
3

−1
3

−4
3

− 1

3
ffiffi
2

p −i
ffiffiffiffi
q2

6

q

−1
3

ffiffi
5

p
2

−2
ffiffi
2

p
3

− 1

3
ffiffi
2

p 1
3

−i
ffiffiffiffiffiffiffi
q2

2
ffiffi
3

p
q

−i
ffiffiffiffiffi
5q2

6

q
−i

ffiffiffiffi
q2

6

q
i

ffiffiffiffi
q2

6

q
i

ffiffiffiffiffiffiffi
q2

2
ffiffi
3

p
q

0

1
CCCCCCCCCCCCCA

;

ð3:12Þ

and

af0;þg
i;j ¼ aEP

0
BBBBBBBBBBBB@

0 1ffiffi
2

p 2 −i
ffiffiffiffi
q2

pffiffi
3

p i
ffiffiffiffiffi
q2

p
1ffiffi
2

p −1 1ffiffi
2

p −i
ffiffiffiffiffi
2q2

3

q
−i

ffiffiffiffi
q2

2

q

2 1ffiffi
2

p 0 0 0

i
ffiffiffiffi
q2

3

q
i

ffiffiffiffiffi
2q2

3

q
0 0 0

−i
ffiffiffiffiffi
q2

p
i

ffiffiffiffi
q2

2

q
0 0 0

1
CCCCCCCCCCCCA

:

ð3:13Þ

It easy to notice that the 1− and 0þ sectors provide
degenerate matrices, a result familiar with the correspond-
ing analysis of Einstein theory in second-order formulation.
Different choices of the nondegenerate 4 × 4 submatrices
are possible and a comforting consistency check reveals
that the final shape of the saturated propagator is
unchanged. What we think is notable in this kind of gauge
invariance check is that, in some cases, spurious double

5We hope to curb the inevitable profusion of symbols by
leaving the number of indices to signal to which field a given
source is connected to.
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poles might arise and/or disappear based on the choice of
the nondegenerate submatrix. This shows that the physi-
cally relevant poles to investigate are the gauge-invariant
ones of the saturated propagator, rather than those of the

inverse of the spin/parity matrices b̃fS;pgi;j . To reveal a
possible ghost-like propagation we have to follow the
protocol illustrated before and arrive at the saturated
propagator. In the massless case, the check entails asking
the propagator to only have single poles and a definite
positive residue with the appropriate number of states [see,
for instance, Eq. (3.4)]. Of course, in the presence of high-
rank fields, the large structure of the saturated propagator
expanded in components impedes a straightforward check.
We will use this example to illustrate the manipulations we
adopted in order to reach unambiguous conclusions. Once
the gauge constraints (2.17) are imposed on the sources, the
saturated propagator is obtained by considering the inverse
of all of the spin/parity sectors DSðqÞ ¼ D3−

S ðqÞ þ
D2þ

S ðqÞ þD2−

S ðqÞ þD1þ
S ðqÞ þD1−

S ðqÞ þD0þ
S ðqÞ. As said,

even the sectors not showing poles have to be included to
cancel the spurious ones of the projectors. The saturated
propagator for the rank-3/rank-2 system has the generic
form [30]

lim
q2→0

DS ¼
1

q2
ð J̃�μν q̃ρJ�μνρ Þ

�M1;1
μναβ M1;2

μναβ

M2;1
μναβ M2;2

μναβ

��
J̃αβ

q̃ιJαβι

�
:

ð3:14Þ

In our approach we break Lorentz covariance by expanding
Eq. (3.14) in components, having q ¼ ðω; 0; 0; κÞ, and
imposing κ → ω in the massless case. It is therefore more
appropriate to collect all of the components of J̃μνα, J̃μν

(which are less than the unconstrained Jμνα, Jμν) in a long
row vector X ¼ ðJ01; J02; � � �ωJ001;ωJ002; � � �Þ so that
Eq. (3.14) becomes

lim
q2→0

DS ¼
1

q2
X̃†MX̃: ð3:15Þ

With the matrix M we can promptly check the number of
propagating states by computing its rank which, luckily, is
equal to two. Then, the constraint over the only free
parameter aEP is derived by diagonalizing M which, in
our computation, reveals

lim
q2→0

DS ¼ −
1

aEP

21jj1j2 þ 10jj2j2
ω2 − κ2

; ð3:16Þ

where j1 and j2 are the two eigenvectors. As expected, the
conclusion is that the dimensional aEP coupling allows
unitarity if negative.

C. Singh-Hagen

The same rationale we introduced in the computation of
the mixed rank-3/rank-2 Einstein-Palatini model can (with
some minor changes) help to reveal the possible presence of
ghosts and tachyons in models with propagation of massive
particles. In this and the next section we will analyze two
alternative models that describe a massive spin-3 particle
for which the collective cooperation of many different
fields seems to be mandatory to preserve locality. The first
model was introduced in Ref. [39] and was recently studied
in Ref. [33] by integrating out the auxiliary scalar field. We
will instead rely on the complete set of operators that we
computed for this purpose. The Singh-Hagen action is
given by

SSA¼
Z

d4x

�
xSA

�
Aμνρ□Aμνρ−3Aμνρ∂μ∂αAανρ

−
3

2
Aσ

νσ∂ν∂μAμ
ρ
ρþ−3Aν

σ
σ
□Aν

ρ
ρ

þ6Aρσ
σ∂μ∂νAμνρþm2

AA
μνρAμνρ−3m2

AA
μρ

ρAμσ
σ

�

þySA

�
1

2
ϕ□ϕþ2m2

Aϕ
2

�
þzSAmAAσ

μσ∂μϕ

�
; ð3:17Þ

where Aμνρ is totally symmetric and we included four free
parameters xSA, ySA, zSA, andmA for illustrative reasons.We
notice the presence of a term with a quadratic mixing
between the rank-3 tensorAμνρ and the scalarϕ. A symmetric
rank-3 tensor contains the little group representations

Aμνρ ⊃ 3−1 ⊕ 2þ1 ⊕ 1−1 ⊕ 1−4 ⊕ 0þ1 ⊕ 0þ4 ; ð3:18Þ

which are completed by the trivial one 0þ8 carried by the
scalar field ϕ. We then proceed to compute the spin/parity
matrices of the Singh-Hagen model, which are

af3;−gi;j ¼ −2xSAðq2 −m2
AÞ; ð3:19Þ

af2;þg
i;j ¼ 2xSAm2

A; ð3:20Þ

af1;−gi;j ¼ xSA

�
8ðq2 −m2

AÞ −2
ffiffiffi
5

p
m2

A

−2
ffiffiffi
5

p
m2

A 0

�
; ð3:21Þ

and finally,
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af0;þg
i;j ¼

0
B@

xSAð9q2 − 4m2
AÞ 3xSAðq2 − 2m2

AÞ izSAmA

ffiffiffiffiffi
q2

p
3xSAðq2 − 2m2

AÞ xSAðq2 − 4m2
AÞ izSAmA

ffiffiffiffiffi
q2

p
−izSAmA

ffiffiffiffiffi
q2

p
−izSAmA

ffiffiffiffiffi
q2

p
−ySAðq2 − 4m2

AÞ

1
CA: ð3:22Þ

In the Singh-Hagen model the propagation of the massive
spin-3 particle does not require gauge symmetries to
prevent the propagation of dangerous ghosts, and this is
manifested by all of the spin/parity matrices being non-
degenerate. No constraints are therefore imposed on the
sources and we can proceed to the direct inversion of the
matrices (3.19)–(3.22) to find the saturated propagator
DSðqÞ ¼ D3−

S ðqÞ þD2þ
S ðqÞ þD1−

S ðqÞ þD0þ
S ðqÞ. This ob-

ject inherits the massive pole, which is displayed by

inverting the af3;−gi;j matrix. In looking for the propagating
massive states, we put DSðqÞ in a form similar to the
massless one (3.15). This time we arrange the row vector as
X ¼ ðJ; J001; J002; � � �Þ and immediately recover the form

lim
q2→m2

A

DS ¼
1

q2 −m2
A
X†MX: ð3:23Þ

The matrix M has rank 7, which is equal to the 2sþ 1
states of a massive spin-3 particle, and the (nonzero)
eigenvalues are

Mres ¼ x−1SA

�
3;
3

2
;
3

2
;
3

2
;
11

10
;
11

10
;
11

10

�
; ð3:24Þ

which can be made positive if we keep xSA > 0. As already
discussed in Ref. [33], not all of the parameters we used are
physical and only xSA and mA are constrained by causality
and unitarity.

IV. APPLICATIONS: SPECTRUM OF THE
KLISHEVICH-ZINOVIEV MODEL

The Singh-Hagen model is one of the primitive attempts
to define a linear Lagrangian for higher-spin particles.
Further efforts to build a full dynamic around these
germinal models were met with the numerous constraints
which upset the definition of a nontrivial S matrix (see, for
instance, Refs. [48,49] and references therein). In order to
overcome the same constraints, alternative approaches have
been investigated, a notable one being Vasiliev’s full
nonlinear theory [50–52]. The presence in these models
of a nonzero cosmological constant introduces a series of
peculiar phenomena, like novel stability constraints and the
appearance of partial masslessness for propagating particles
[53–57]. In particular, in order to investigate partially
massless theories in anti–de Sitter spaces, a convenient
Lagrangian setup describing massive higher-spin propaga-
tion was developed in Refs. [40,41,58]. For our purposes, it

is notable that such a formulation admits a flat limit and
contributes to an alternative description of higher-spin
particles in Minkowski space. Moreover, differently from
the Singh-Hagen case, this new formulation is inherently
gauge invariant, requiring the entire set of auxiliary
Stueckelberg fields with rank ≤3 to mix in the quadratic
action. This model is therefore the perfect arena to test our
operators and provide an alternative check of unitarity and
causality violations where, moreover, a shortcut like
Eq. (2.4) would be ineffective. Again, we rely on totally
symmetric tensors so that the set of little group represen-
tations carried by the fields are

Aμνρ ⊃ 3−1 ⊕ 2þ1 ⊕ 1−1 ⊕ 1−4 ⊕ 0þ1 ⊕ 0þ4 ;

Hμν ⊃ 2þ4 ⊕ 1−7 ⊕ 0þ5 ⊕ 0þ6 ;

Vμ ⊃ 1−8 ⊕ 0þ7 ;

ϕ ⊃ 0þ8 : ð4:1Þ

In terms of these fields, the action can be written as a sum of
distinctive parts:

SKZ ¼ SAA þ SHH þ SVV þ Sϕϕ þ Smix; ð4:2Þ

with

SAA ¼
Z

d4x

��
−
1

2
∂αAμνρ∂αAμνρ

þ 3

2
∂μAμνρ∂αAα

νρ þ 3

2
∂αAμ

μν∂αAρ
ρ
ν

þ 3

4
∂νAμ

μν∂αAρ
ρα − 3∂νAσ

σ
ρ∂μAμνρþ

�

þm2
A

�
1

2
AμνρAμνρ −

3

2
Aμ

α
αAμβ

β

��
; ð4:3Þ

SHH ¼
Z

d4x

�
3

�
1

2
∂μHαβ∂μHαβ − ∂βHμβ∂αHμ

α

þ ∂βHμβ∂μHα
α −

1

2
∂μHα

α∂μHβ
β

�

þ 9m2
A

4
Hα

αHβ
β

�
; ð4:4Þ

SVV¼
Z

d4x

�
−
15

2
ð∂μVν∂μVν−∂μVν∂νVμÞ−

45m2
A

4
VμVμ

�
;

ð4:5Þ
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Sϕϕ ¼
Z

d4x

�
−
45

2
∂μϕ∂μϕþ 225m2

Aϕ
2

�
; ð4:6Þ

and

Smix ¼
Z

d4x

�
mA

�
−
3

2
ð2Aμνα∂μHνα − 4Aα

α
μ∂βHβ

μ

þ Aα
α
μ∂μHβ

βÞ þ 15ðHμν∂μVν −Hα
α∂μVμÞ

þ −225Vμ∂μϕ

�
þm2

A

�
15

2
Aμ

α
αVμ − 45Hα

αϕ

��
:

ð4:7Þ

Normalizations of the various terms are taken from
Ref. [41]. The four spin/parity matrices are

af3;−gi;j ¼ m2
A − q2; ð4:8Þ

af2;þg
i;j ¼

�
m2

A −i
ffiffiffi
3

p
mA

ffiffiffiffiffi
q2

p
i

ffiffiffi
3

p
mA

ffiffiffiffiffi
q2

p
3q2

�
; ð4:9Þ

af1;−gi;j ¼

0
BBBBBB@

4ðq2 −m2
AÞ −

ffiffiffi
5

p
m2

A i
ffiffiffiffiffi
30

p
mA

ffiffiffiffiffi
q2

p
þm2

A
5
ffiffiffiffi
15

p
2

−
ffiffiffi
5

p
m2

A 0 0 m2
A
5
ffiffi
3

p
2

−i
ffiffiffiffiffi
30

p ffiffiffiffiffi
q2

p
0 0 im2

A
15ffiffi
2

p

m2
A
5
ffiffiffiffi
15

p
2

m2
A
5
ffiffi
3

p
2

−im2
A

15ffiffi
2

p − 15
2
ð2q2 þ 3m2

AÞ

1
CCCCCCA
; ð4:10Þ

af0;þg
i;j ¼

0
BBBBBBBBBBBB@

9
2
q2 − 2m2

A
3
2
q2 − 3m2

A −mAi
5
ffiffi
3

p
2

ffiffiffiffiffi
q2

p
þmA

9i
2

ffiffiffiffiffi
q2

p
15
2
mA 0

3
2
q2 − 2m2

A
1
2
q2 − 2m2

A −mAi
3
ffiffi
3

p
2

ffiffiffiffiffi
q2

p
þmA

3i
2

ffiffiffiffiffi
q2

p
15
2
mA 0

mAi
5
ffiffi
3

p
2

ffiffiffiffiffi
q2

p
mAi

3
ffiffi
3

p
2

ffiffiffiffiffi
q2

p
27
2
m2

A − 6q2 9
ffiffi
3

p
2
m2

A −i15
ffiffiffi
3

p
mA

ffiffiffiffiffi
q2

p
−45

ffiffiffi
3

p
m2

A

mAi
9
2

ffiffiffiffiffi
q2

p
−mAi

3
2

ffiffiffiffiffi
q2

p
9
ffiffi
3

p
2
m2

A
9
2
m2

A 0 −45m2
A

m2
A
15
2

m2
A
15
2

15
ffiffiffi
3

p
imA

ffiffiffiffiffiffiffiffi
qq2

p
0 − 45

2
m2

A −225imA

ffiffiffiffiffi
q2

p
0 0 −45

ffiffiffi
3

p
m2

A −45m2
A 225imA

ffiffiffiffiffi
q2

p
90ðq2 þ 5m2

AÞ

1
CCCCCCCCCCCCA

: ð4:11Þ

The pervasiveness of gauge invariance is revealed by
noticing that the ranks of the matrices af2;þg

i;j , af1;−gi;j , and

af0;þg
i;j are 1, 2, and 5, respectively. The set of null vectors

will therefore generate a long list of constraints which,
again, we will solve for the source components in the frame
q ¼ ðω; 0⃗Þ. After this step we can again discover the
structure (3.23) with the eigenvalues of the large matrix
M being

Mres ¼
�
1

15
ð533 − 2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
61591

p
Þ; 1
15

ð533 − 2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
61591

p
Þ;

1

15
ð533þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
61591

p
Þ; 1
15

ð533þ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
61591

p
Þ;

3; 5;
683

45

�
;

which, while hideous to look at, are all positive.

V. APPLICATIONS: COLLECTIVE
PROPAGATION FOR HIGHER-SPIN

PARTICLES

The previous examples displayed how the quadratic
mixing between fields of different rank helps modeling
manifestly local higher-spin propagation. It is therefore
natural to expect that the corresponding Lagrangians might
lead to a broader spectrum than that of a single particle, and
indeed this is the direction taken by the numerous studies
around extensions of the minimal Einstein-Palatini model
of Sec. III B; see, for instance, Refs. [26–32,59–63]. The
full set of operators calculated in this work opens a
computational opportunity for the derivation of parameter
constraints for such collective systems. It is outside of this
paper’s purpose to provide a survey of new models
achievable with the projector formalism, an activity whose
extent asks for dedicated future efforts. Nevertheless, for
the sake of completeness, we conclude by showing an
explicit (and seemingly new) model with collective higher-
spin propagation of massive states. It has to be clarified,
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once again, that the shaping of a unitary and causal
Lagrangian is a first step that needs to be supported by
the modeling of possible consistent interactions. This latter
process might relegate the linear theory to irrelevance in the
presence of obstructions, confining the theory to the dull
status of a free one. The building of consistent interactions
on top of the free theory calls for a meticulous analysis
which, again, evades the scope of our work.

A. Collective modes in massive
spin-3/spin-1 propagation

With the privilege of arbitrariness, we direct our focus to
the spectrum of the mixed system for the three fields,

Aμνρ ⊃ 3−1 ⊕ 2þ1 ⊕ 1−1 ⊕ 1−4 ⊕ 0þ1 ⊕ 0þ4 ;

Vμ ⊃ 1−8 ⊕ 0þ7 ;

ϕ ⊃ 0þ8 ; ð5:1Þ

and we set the goal of finding a propagating spin-3 particle
and, possibly, other accompanying healthy massive par-
ticles. By starting with all of the parameters unconstrained,
we are forced to repeat—for each of our attempts—the
process illustrated in the previous sections, ultimately
leading to the saturated propagator. In every case we would
repeat such steps, and in the presence of pathologies we
would look for a coupling texture in order to prevent them.
To avoid redundancies and the corresponding tenfold
growth of the volume of this paper, we will refrain (when
not strictly necessary) from showing all of the details of the

process. As in the previous examples, we want to study the
action

S ¼ SAA þ SVV þ Sϕϕ þ Smix; ð5:2Þ
which, at the beginning, has the generic unconstrained form
defined by

SAA ¼
Z

d4x½a1∂αAμ
σ
σ∂μAρ

ρ
α þ a2∂αAν

σ
σ∂αAμ

μ
ν

þ a3∂αAαμν∂βAμν
β þ a4∂νAα

α
β∂βAβν

μ

þ a7∂νAμνρ∂νAμνρ þm2
1A

μνρAμνρ þm2
2A

μ
μ
νAν

ρ
ρ�;

SVV ¼
Z

d4x½v1∂μVν∂μVν þ v2∂μVν∂νVμ þm2
VVμVμ�;

Sϕϕ ¼
Z

d4xðs1∂μϕ∂μϕþm2
Sϕ

2Þ; ð5:3Þ

and

Smix ¼
Z

d4x½mASϕ∂βAα
α
β þmAVVμAμα

α þmVSϕ∂αVα�:

ð5:4Þ
The spin/parity matrices are easily found to be

af3;−gi;j ¼ 2ðm2
1 þ a7q2Þ; ð5:5Þ

af2;þg
i;j ¼ 2

�
m2

1 þ
�
a7 þ

a3
3

�
q2
�
; ð5:6Þ

af1;−gi;j ¼

0
BBBBB@

2
3
ð3m2

1 þ 5m2
2 þ q2ð5a2 þ 3a7ÞÞ

ffiffi
5

p
3
ð2m2

2 þ q2ð2a2 þ a4ÞÞ
ffiffi
5
3

q
mAVffiffi

5
p
3
ð2m2

2 þ q2ð2a2 þ a4ÞÞ 2
3
ð3m2

1 þm2
2 þ q2ða2 þ 2a3 þ a4 þ 3a7ÞÞ mAVffiffi

3
p

ffiffi
5
3

q
mAV

mAVffiffi
3

p 2ðm2
V þ v1q2Þ

1
CCCCCA
; ð5:7Þ

and

af0;þg
i;j ¼

0
BBBBB@

2ðm2
1þm2

2þq2ða1þa2þa3
3
þa7ÞÞ 2ðm2

2þq2ða1þa2þa4
2
ÞÞ mAV −imAS

ffiffiffiffiffi
q2

p
2ðm2

2þq2ða1þa2þa4
2
ÞÞ 2ðm2

1þm2
2þq2ða1þa2þa3þa4þa7ÞÞ mAV −imAS

ffiffiffiffiffi
q2

p
mAV mAV 2ðm2

Vþq2ðv1þv2ÞÞ −imAS

ffiffiffiffiffi
q2

p
imAS

ffiffiffiffiffi
q2

p
imAS

ffiffiffiffiffi
q2

p
imAS

ffiffiffiffiffi
q2

p
2ðm2

Sþs1q2Þ

1
CCCCCA
:

ð5:8Þ

We notice immediately that a unique mass parameter
appears in the combinations defining the masses of the
3− and 2þ sectors. Once we compute the saturated
propagator above and the two massive poles m2

3− ¼ − a7
m2

1

and m2
2þ ¼ − a7þa3=3

m2
1

, we find (as is common when spin

sectors stem from the same field) that it is impossible to
simultaneously require causality and unitarity for both (see
also Ref. [64]). We solve this by requiring

a7 ¼ −1; m2
1 > 0; and a3 ¼ 3: ð5:9Þ
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These conditions will allow the nonpathological propaga-
tion of a massive spin-3 particle and make the 2þ sector
innocuous. For the larger 1− and 0þ sectors the first
obstacle is represented by higher-order poles q2n, which
show up already when computing the determinant of the
corresponding spin/parity matrices. In looking for physical
propagation, we can explore different ways to reduce the
degree of such polynomials in q2 and check, for each
possibility, if they welcome unitarity and causality. After
trial and error we find a workable parameter space by
asking the poles of the 0þ sector to disappear and 1− to
have a single massive pole in q2. These requirements define
a limited set of different parameter textures which we can
explore in full detail. Again, this choice was dictated by an
apparent simplicity of the constraints and is in no way
unique. In principle, it is possible to let the determinant be
higher order in q2 without this translating into higher-order
poles of the propagator (for instance, nmassive scalar fields

would generate a q2n polynomial in the af0;þg
i;j determinant).

Moreover, to coherently follow the initial choice of the
model’s degrees of freedom Aμνρ, Vμ, and ϕ, we have only

explored cases with nonzero quadratic mixing. Once we
narrow the parameter space, the constraining power of
unitarity and causality can fully unfold and remove all but
one surviving possibility. This is greatly simplified by
setting the free parameter a4 ¼ 0 and, by simply solving
the algebraic equations that nullify the unwanted coeffi-
cients of higher-order poles, getting the restrictions

a1¼−
3

4
; a2¼

3

4
; m2

2¼−
9

8
m2

1;

mAS¼
m2

S−4m2
1s1

4
ffiffiffiffiffiffiffiffiffi
2m2

S

p ; m2
V ¼0; mAV ¼−

m2
1mVSffiffiffiffiffiffiffiffiffi
2m2

S

p : ð5:10Þ

Once these conditions are adopted, the saturated propagator
over the mass

m2
1− ¼ −

3m2
1m

2
VS

2m2
VS þ 15m2

Sv1
ð5:11Þ

can be promptly computed. We find three propagating
states with the same residue Resq2→m2

1−
,

Resq2→m2
1−

¼ −
3ð56m6

VS þ 5625m6
Sv

2
1 þ 20m4

VSm
2
Sð5þ 6v1Þ þ 300m2

VSm
4
Sv1ð5þ 6v1ÞÞ

10ð2m2
VS þ 15m2

Sv1Þ3
: ð5:12Þ

Solutions that are causal and unitary exist provided that

mVS ≠ 0; m2
V < 0; m2

S > 0; v1 < 0;

m2
1 > 0; and 2m2

VS þ 15m2
Sv1 < 0: ð5:13Þ

VI. CONCLUSIONS

With this work we have completed the full set of
operators needed to uncover the propagating spin/parity
components expressed in quadratic Lagrangians of tensor
fields up to rank 3. We did so by supporting the already
known projectors with the tensor functions connecting
different representations of the same spin/parity sector.
We have illustrated how a dedicated sequence of manip-
ulations can help to assess, unambiguously and in a gauge-
invariant way, the physical properties of the particle quanta.
By focusing on the saturated propagator, all possible
cases—massless and critical ones—can be tackled, and
the only drawback is represented by the inversion of large
matrices when multiple components belong to the same
sector. With such machinery, we have studied the spectrum
of well known theories exhibiting quadratic mixing, like
Stueckelberg and Einstein gravity in the Palatini formalism,

as well as more exotic ones like the Singh-Hagen model
and the gauge-based Klishevich-Zinoviev system. The
latter for the first time subjected to a spectral analysis
based on the use of projector algebra. Finally, after a long
scrutiny through the strong constraints of ghost and
tachyon elusion, we have defined a new model collectively
propagating a massive vector together with a massive spin-
3 particle.
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APPENDIX: SPIN-PROJECTOR OPERATORS
INCLUDING RANK-0 AND RANK-1 FIELDS

We list here the independent set of spin-projector
operators which completes the ones of Refs. [29,33] by
including representations carried by scalar and vector
fields. The operators missing from this list can be recovered
via Eq. (2.10).
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1. P0;p
fi= 1���7;7g

P0;p
f1;7g

αβγ

μ
¼ ðq2gβγqα þ q2gαγqβ þ ðq2gαβ − 3qαqβÞqγÞqμ

3q4
;

P0;p
f2;7g

αβγ

μ
¼ ð2gβγqα − gαγqβ − gαβqγÞqμ

3
ffiffiffi
2

p
q2

;

P0;p
f3;7g

αβγ

μ
¼ ðgαγqβ − gαβqγÞqμffiffiffi

6
p

q2
;

P0;p
f4;7g

αβγ

μ
¼ qαqβqγqμ

q4
;

P0;p
f5;7g

αβ

μ
¼ ðq2gαβ − qαqβÞqμffiffiffi

3
p ðq2Þ3=2 ;

P0;p
f6;7g

αβ

μ
¼ qαqβqμ

ðq2Þ3=2 ;

P0;p
f7;7g

α

β
¼ qαqβ

q2
: ðA1Þ

2. P1;m
fi= 1���8;8g

P1;m
f1;8g

αβγ
μ
¼ 1ffiffiffiffiffi

15
p

q4
ðq4gαβδγμ − q2δγμqαqβ − q2δβμqαqγ þ q2δαμðq2gβγ − qβqγÞ − q2gβγqαqμ − q2gαβqγqμ

þ 3qαqβqγqμ þ q2gαγðq2gβμ − qβqμÞÞ;

P1;m
f2;8g

αβγ
μ
¼ 1

2
ffiffiffi
3

p
q2

ðq2gαβδγμ − δγμqαqβ − δβμqαqγ − 2δαμðq2gβγ − qβqγÞ

þ 2gβγqαqμ − gαβqγqμ − gαγð−q2δβμ þ qβqμÞÞ;

P1;m
f3;8g

αβγ
μ
¼ qαð−δγμqβ þ δβμqγÞ þ gαγð−q2gβμ þ qβqμÞ þ gαβðq2δγμ − qγqμÞ

2q2
;

P1;m
f4;8g

αβγ
μ
¼ q2δγμqαqβ þ qγðq2δβμqα þ qβðq2δαμ − 3qαqμÞÞffiffiffi

3
p

q4
;

P1;m
f5;8g

αβγ
μ
¼ δγμqαqβ þ δβμqαqγ − 2δαμqβqγffiffiffi

6
p

q2
;

P1;m
f6;8g

αβγ
μ
¼ qαðδγμqβ − δβμqγÞffiffiffi

2
p

q2
;

P1;m
f7;8g

αβ
μ
¼ q2δβμqα þ qβðq2δαμ − 2qαqμÞffiffiffi

2
p ðq2Þ3=2 ;

P1;m
f8;8g

α
β
¼ δαβ −

qαqβ
q2

: ðA2Þ
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3. P0;p
fi= 1���8;8g

P0;p
f1;8g

αβγ ¼ q2gβγqα þ q2gαγqβ þ ðq2gαβ − 3qαqβÞqγ
3ðq2Þ3=2 ;

P0;p
f2;8g

αβγ ¼ 2gβγqα − gαγqβ − gαβqγ

3
ffiffiffi
2

p ðq2Þ1=2 ;

P0;p
f3;8g

αβγ ¼ gαγqβ − gαβqγffiffiffi
6

p ðq2Þ1=2 ;

P0;p
f4;8g

αβγ ¼ qαqβqγ

ðq2Þ3=2 ;

P0;p
f5;8g

αβ ¼ q2gαβ − qαqβffiffiffi
3

p
q2

;

P0;p
f6;8g

αβ ¼ qαqβ

q2
;

P0;p
f7;8g

α ¼ qα

ðq2Þ1=2 ;

P0;p
f8;8g ¼ 1: ðA3Þ

[1] S. N. Gupta, Phys. Rev. 96, 1683 (1954).
[2] S. Deser, Gen. Relativ. Gravit. 1, 9 (1970).
[3] J. Fang and C. Fronsdal, J. Math. Phys. (N.Y.) 20, 2264

(1979).
[4] G. Barnich and M. Henneaux, Phys. Lett. B 311, 123

(1993).
[5] G. Barnich, M. Henneaux, and R. Tatar, Int. J. Mod. Phys. D

03, 139 (1994).
[6] G. Barnich, F. Brandt, and M. Henneaux, Commun. Math.

Phys. 174, 93 (1995).
[7] G. Barnich, F. Brandt, and M. Henneaux, Commun. Math.

Phys. 174, 57 (1995).
[8] S. Deser and R. Arnowitt, Nucl. Phys. 49, 133 (1963).
[9] R. J. Rivers, Nuovo Cimento (1955–1965) 34, 386 (1964).

[10] P. Van Nieuwenhuizen, Nucl. Phys. B60, 478 (1973).
[11] M. Ostrogradsky, Mem. Ac. St. Petersbourg 4, 385 (1850).
[12] R. P. Woodard, Scholarpedia 10, 32243 (2015).
[13] P. D. Mannheim, Found. Phys. 37, 532 (2007).
[14] D. Anselmi and M. Piva, J. High Energy Phys. 05 (2018)

027.
[15] D. Anselmi and M. Piva, J. High Energy Phys. 11 (2018)

021.
[16] J. F. Donoghue and G. Menezes, Phys. Rev. D 100, 105006

(2019).
[17] T. Hurth and K. Skenderis, Nucl. Phys. B541, 566 (1999).
[18] E. S. Fradkin and T. E. Fradkina, Phys. Lett. 72B, 343

(1978).
[19] X. Gao, Phys. Rev. D 90, 104033 (2014).
[20] C. Burdik, A. Pashnev, and M. Tsulaia, Mod. Phys. Lett. A

16, 731 (2001).

[21] R. R. Metsaev, J. Phys. A 47, 375401 (2014).
[22] I. L. Buchbinder, V. A. Krykhtin, L. L. Ryskina, and H.

Takata, Phys. Lett. B 641, 386 (2006).
[23] P. Y. Moshin and A. A. Reshetnyak, J. High Energy Phys.

10 (2007) 040.
[24] I. L. Buchbinder and V. A. Krykhtin, Nucl. Phys. B727, 537

(2005).
[25] A. Fotopoulos and M. Tsulaia, Int. J. Mod. Phys. A 24, 1

(2009).
[26] D. E. Neville, Phys. Rev. D 18, 3535 (1978).
[27] D. E. Neville, Phys. Rev. D 21, 867 (1980).
[28] E. Sezgin and P. van Nieuwenhuizen, Phys. Rev. D 21, 3269

(1980).
[29] R. Percacci and E. Sezgin, Phys. Rev. D 101, 084040

(2020).
[30] G. K. Karananas, Classical Quantum Gravity 32, 055012

(2015).
[31] E. Sezgin, Phys. Rev. D 24, 1677 (1981).
[32] Y. C. Lin, M. P. Hobson, and A. N. Lasenby, Phys. Rev. D

99, 064001 (2019).
[33] E. L. Mendonca and R. Schimidt Bittencourt, Adv. High

Energy Phys. 2020, 8425745 (2020).
[34] N. Arkani-Hamed, T. C. Huang, and Y. t. Huang, J. High

Energy Phys. 11 (2021) 070.
[35] A. Falkowski, G. Isabella, and C. S. Machado, SciPost Phys.

10, 101 (2021).
[36] J. C. Criado, A. Djouadi, N. Koivunen, M. Raidal, and H.

Veermäe, J. High Energy Phys. 05 (2021) 254.
[37] J. C. Criado, A. Djouadi, N. Koivunen, K. Müürsepp, M.

Raidal, and H. Veermäe, arXiv:2106.09031.

GHOST AND TACHYON FREE PROPAGATION UP TO SPIN 3 … PHYS. REV. D 105, 065017 (2022)

065017-13

https://doi.org/10.1103/PhysRev.96.1683
https://doi.org/10.1007/BF00759198
https://doi.org/10.1063/1.524007
https://doi.org/10.1063/1.524007
https://doi.org/10.1016/0370-2693(93)90544-R
https://doi.org/10.1016/0370-2693(93)90544-R
https://doi.org/10.1142/S0218271894000149
https://doi.org/10.1142/S0218271894000149
https://doi.org/10.1007/BF02099465
https://doi.org/10.1007/BF02099465
https://doi.org/10.1007/BF02099464
https://doi.org/10.1007/BF02099464
https://doi.org/10.1016/0029-5582(63)90081-6
https://doi.org/10.1007/BF02734585
https://doi.org/10.1016/0550-3213(73)90194-6
https://doi.org/10.4249/scholarpedia.32243
https://doi.org/10.1007/s10701-007-9119-7
https://doi.org/10.1007/JHEP05(2018)027
https://doi.org/10.1007/JHEP05(2018)027
https://doi.org/10.1007/JHEP11(2018)021
https://doi.org/10.1007/JHEP11(2018)021
https://doi.org/10.1103/PhysRevD.100.105006
https://doi.org/10.1103/PhysRevD.100.105006
https://doi.org/10.1016/S0550-3213(98)00813-X
https://doi.org/10.1016/0370-2693(78)90135-1
https://doi.org/10.1016/0370-2693(78)90135-1
https://doi.org/10.1103/PhysRevD.90.104033
https://doi.org/10.1142/S0217732301003826
https://doi.org/10.1142/S0217732301003826
https://doi.org/10.1088/1751-8113/47/37/375401
https://doi.org/10.1016/j.physletb.2006.08.060
https://doi.org/10.1088/1126-6708/2007/10/040
https://doi.org/10.1088/1126-6708/2007/10/040
https://doi.org/10.1016/j.nuclphysb.2005.07.035
https://doi.org/10.1016/j.nuclphysb.2005.07.035
https://doi.org/10.1142/S0217751X09043134
https://doi.org/10.1142/S0217751X09043134
https://doi.org/10.1103/PhysRevD.18.3535
https://doi.org/10.1103/PhysRevD.21.867
https://doi.org/10.1103/PhysRevD.21.3269
https://doi.org/10.1103/PhysRevD.21.3269
https://doi.org/10.1103/PhysRevD.101.084040
https://doi.org/10.1103/PhysRevD.101.084040
https://doi.org/10.1088/0264-9381/32/5/055012
https://doi.org/10.1088/0264-9381/32/5/055012
https://doi.org/10.1103/PhysRevD.24.1677
https://doi.org/10.1103/PhysRevD.99.064001
https://doi.org/10.1103/PhysRevD.99.064001
https://doi.org/10.1155/2020/8425745
https://doi.org/10.1155/2020/8425745
https://doi.org/10.1007/JHEP11(2021)070
https://doi.org/10.1007/JHEP11(2021)070
https://doi.org/10.21468/SciPostPhys.10.5.101
https://doi.org/10.21468/SciPostPhys.10.5.101
https://doi.org/10.1007/JHEP05(2021)254
https://arXiv.org/abs/2106.09031


[38] M. Fierz and W. Pauli, Proc. R. Soc. A 173, 211 (1939).
[39] L. P. S. Singh and C. R. Hagen, Phys. Rev. D 9, 898 (1974).
[40] S. M. Klishevich and Y. M. Zinovev, Phys. At. Nucl. 61,

1527 (1998).
[41] Y. M. Zinoviev, Classical Quantum Gravity 26, 035022

(2009).
[42] See Supplemental Material at http://link.aps.org/

supplemental/10.1103/PhysRevD.105.065017 for the list
of operators (originally computed in this work) used to
investigate the mixing between fields up to rank 3.

[43] J. M. Martin-Garcia, R. Portugal, and L. R. U. Manssur,
Comput. Phys. Commun. 177, 640 (2007); D. Brizuela,
J. M. Martin-Garcia, and G. A. M. Marugan, Gen. Relativ.
Gravit. 41, 2415 (2009).

[44] D. Brizuela, J. M. Martin-Garcia, and G. A. Mena Marugan,
Gen. Relativ. Gravit. 41, 2415 (2009).

[45] M. B. Fröb, arXiv:2008.12422.
[46] J. Schwinger, Particles, Sources, and Fields (Addison-

Wesley Publishing Company, Reading, 1970), Vol. 1,
p. 425.

[47] Y. C. Lin, M. P. Hobson, and A. N. Lasenby, Phys. Rev. D
101, 064038 (2020).

[48] M. Porrati, Phys. Rev. D 78, 065016 (2008).

[49] X. Bekaert, N. Boulanger, and P. Sundell, Rev. Mod. Phys.
84, 987 (2012).

[50] M. A. Vasiliev, Phys. Lett. B 243, 378 (1990).
[51] M. A. Vasiliev, Int. J. Mod. Phys. D 05, 763 (1996).
[52] M. A. Vasiliev, arXiv:hep-th/0002183.
[53] S. Deser and A. Waldron, Nucl. Phys. B607, 577 (2001).
[54] S. Deser and A. Waldron, Phys. Lett. B 513, 137 (2001).
[55] S. Deser and A. Waldron, Phys. Rev. Lett. 87, 031601

(2001).
[56] S. Deser and A. Waldron, Phys. Lett. B 508, 347 (2001).
[57] P. Breitenlohner and D. Z. Freedman, Ann. Phys. (N.Y.)

144, 249 (1982).
[58] Y. M. Zinoviev, Nucl. Phys. B808, 185 (2009).
[59] Y. C. Lin, M. P. Hobson, and A. N. Lasenby, Phys. Rev. D

104, 024034 (2021).
[60] E. Alvarez, J. Anero, S. Gonzalez-Martin, and R. Santos-

Garcia, Eur. Phys. J. C 78, 794 (2018).
[61] K. Aoki and K. Shimada, Phys. Rev. D 100, 044037 (2019).
[62] M. Blagojević and B. Cvetković, Phys. Rev. D 98, 024014

(2018).
[63] P. Baikov, M. Hayashi, N. Nelipa, and S. Ostapchenko, Gen.

Relativ. Gravit. 24, 867 (1992).
[64] D. Anselmi, J. High Energy Phys. 07 (2020) 176.

C. MARZO PHYS. REV. D 105, 065017 (2022)

065017-14

https://doi.org/10.1098/rspa.1939.0140
https://doi.org/10.1103/PhysRevD.9.898
https://doi.org/10.1088/0264-9381/26/3/035022
https://doi.org/10.1088/0264-9381/26/3/035022
http://link.aps.org/supplemental/10.1103/PhysRevD.105.065017
http://link.aps.org/supplemental/10.1103/PhysRevD.105.065017
http://link.aps.org/supplemental/10.1103/PhysRevD.105.065017
http://link.aps.org/supplemental/10.1103/PhysRevD.105.065017
http://link.aps.org/supplemental/10.1103/PhysRevD.105.065017
http://link.aps.org/supplemental/10.1103/PhysRevD.105.065017
http://link.aps.org/supplemental/10.1103/PhysRevD.105.065017
https://doi.org/10.1016/j.cpc.2007.05.015
https://doi.org/10.1007/s10714-009-0773-2
https://doi.org/10.1007/s10714-009-0773-2
https://doi.org/10.1007/s10714-009-0773-2
https://arXiv.org/abs/2008.12422
https://doi.org/10.1103/PhysRevD.101.064038
https://doi.org/10.1103/PhysRevD.101.064038
https://doi.org/10.1103/PhysRevD.78.065016
https://doi.org/10.1103/RevModPhys.84.987
https://doi.org/10.1103/RevModPhys.84.987
https://doi.org/10.1016/0370-2693(90)91400-6
https://doi.org/10.1142/S0218271896000473
https://arXiv.org/abs/hep-th/0002183
https://doi.org/10.1016/S0550-3213(01)00212-7
https://doi.org/10.1016/S0370-2693(01)00756-0
https://doi.org/10.1103/PhysRevLett.87.031601
https://doi.org/10.1103/PhysRevLett.87.031601
https://doi.org/10.1016/S0370-2693(01)00523-8
https://doi.org/10.1016/0003-4916(82)90116-6
https://doi.org/10.1016/0003-4916(82)90116-6
https://doi.org/10.1016/j.nuclphysb.2008.09.020
https://doi.org/10.1103/PhysRevD.104.024034
https://doi.org/10.1103/PhysRevD.104.024034
https://doi.org/10.1140/epjc/s10052-018-6250-x
https://doi.org/10.1103/PhysRevD.100.044037
https://doi.org/10.1103/PhysRevD.98.024014
https://doi.org/10.1103/PhysRevD.98.024014
https://doi.org/10.1007/BF00759092
https://doi.org/10.1007/BF00759092
https://doi.org/10.1007/JHEP07(2020)176

