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The moduli space approximation to kink dynamics permits a relativistic generalization if the Derrick
scaling parameter is used as a collective coordinate. We develop a perturbative approach to the resulting
relativistic moduli space by expanding the Derrick scaling parameter about unity and treating the higher-
order Derrick modes as new degrees of freedom. This approach allows us to resolve (coordinate)
singularities order by order and systematically incorporates relativistic corrections perturbatively in
kink scattering. It gives an excellent description of kink-antikink collisions in ϕ4 field theory already
at first order and at higher order reproduces the fractal structure in the formation of the final state with an
error of only 4%.
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I. INTRODUCTION

Topological solitons [1–3] are solutions of nonlinear
field equations possessing, at first glance, two quite
opposed features. On the one hand, they are particlelike
objects, whose energy density is localized in a certain
region of space. On the other, they carry a topological
charge, a quantity characterizing a solution globally, that
depends on the field behavior at infinity. Partly owing to
this juxtaposition of short-range and long-range features,
the dynamics of topological solitons is quite involved and
leads to complex patterns of final states in scattering
processes. Except in the rare cases of integrable theories,
many aspects of soliton scattering are still far from being
fully understood. Among these is the fractal velocity
dependence of the final state in kink-antikink collisions,
associated with the resonant coupling of translational

motion to oscillatory modes [4–20], which can be normal
modes or quasinormal modes [21] hosted by free solitons or
the internal modes hosted by ephemeral configurations
occurring during the collision [22,23]. Also intriguing is
the recently discovered spectral wall phenomenon [24,25],
caused by the transition of a normal mode into the con-
tinuum spectrum as solitons approach each other. Finally,
there is the famous, long-standing problem of the soliton
resolution conjecture [26,27].
One method to reduce the complexity of topological

soliton dynamics is to construct a collective coordinate
model (CCM). CCM dynamics is sometimes referred to as
moduli space dynamics. In this approximation, a field
theory Lagrangian L½ϕ� that incorporates infinitely many
field degrees of freedom is truncated to a dynamical system
L½X� with finitely many collective coordinates Xi,
i ¼ 1;…; N, also called moduli. Despite this rather drastic
simplification, under certain circumstances, the CCM
accurately describes the full soliton dynamics because only
a subset of field configurations plays an important role,
while the rest may be neglected.
The moduli space manifold M offers a more global

perspective than the local collective coordinates Xi defined
on it. In the cases we consider,M has a Riemannian metric
inherited from the kinetic term of the field theory
Lagrangian and a potential inherited from the remaining
terms including the gradient term. As we will see below,
with the obvious choice of collective coordinates for
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interacting solitons, the metric on M sometimes has a
singularity, which needs to be removed. This is not always
possible by simply changing coordinates.
For solitons that have no static interactions (solitons of

Bogomol’nyi-Prasad-Sommerfield (BPS) type) [28–34],
there is a canonical moduli space. But in general, there
is no canonical way to construct the restricted set of field
configurations in the moduli space, and one needs to make
an educated guess. This is the case for weakly interacting
solitons [35,36] and especially for processes like kink-
antikink (KAK) collisions in ϕ4 field theory, whose
configurations are far from being BPS [19].
Very frequently, the collective coordinates are chosen in

such a way that the resulting CCM is nonrelativistic, even
though the original field theory is Lorentz invariant. This is
rather undesirable, both theoretically and from the point of
view of applications. There are processes in which the
relativistic nature of the colliding solitons is crucial for
explaining the observed data. See, e.g., the role of Lorentz
contractions in KAK collisions in ϕ4 theory [19]. For the
case of kink dynamics, this shortcoming can be partially
resolved by including the Derrick scaling deformation,
which allows for a Lorentz contraction of a single kink, as
was originally observed in Ref. [37]. The result is a
relativistic CCM, although it is still not fully relativistic,
as it does not include radiation modes.
In multikink sectors, inclusion of the Derrick deforma-

tion can lead to the appearance of singularities in the
relativistic CCM. It was claimed earlier that these singu-
larities can be removed by a rather nontrivial change of the
collective coordinates [38]. This issue is reinvestigated
here, and it is shown that the singularity appears to be
essential. To circumvent this, we present a novel approach
to the relativistic CCM. We develop a perturbative expan-
sion where relativistic corrections are taken into account
order by order in the squared collision velocity, leading to a
sequence of higher-order Derrick modes. A simple redefi-
nition of the amplitudes of these Derrick modes then
permits a resolution of the singularities in the description
of kink-antikink collisions. This elevates the perturbative
relativistic collective coordinate model (pRCCM) to an
accurate quantitative tool for understanding the dynamics
of topological solitons.

II. DERRICK DEFORMATION AND
RELATIVISTIC MODULI SPACE

Consider a real scalar- or vector-valued field ϕ in (1þ 1)
dimensions (with all internal indices suppressed), governed
by the Lorentz-invariant Lagrangian

L½ϕ� ¼
Z

∞

−∞
L½ϕ�dx

¼
Z

∞

−∞

�
1

2
ð∂tϕÞ2 −

1

2
ð∂xϕÞ2 −UðϕÞ

�
dx ð2:1Þ

that combines the standard space-time derivative terms
with a non-negative potential U. Now, suppose we have a
restricted set of static field configurations—a moduli space
of configurations—capturing the main features of a soli-
tonic process at each instant of time,

M ¼ fΦðx;XiÞ; i ¼ 1;…; Ng: ð2:2Þ

In a BPS theory, there is a canonical moduli space of static
multisoliton solutions with equal energies. There is also a
canonical moduli space for a single soliton in a non-BPS
theory. Multisoliton configurations in a non-BPS theory are
not so easily defined, but a linear superposition of single
solitons and/or antisolitons is usually possible. Frequently,
further moduli parametrizing fundamental soliton excita-
tions should be included because these are excited in
soliton collisions. These moduli can be chosen to be the
amplitudes of positive-frequency modes, i.e., normal
modes or even quasinormal modes, hosted by the solitons.
However, we will make another choice later.
In the CCM, all the moduli of the interacting solitons

are promoted to time-dependent variables, XiðtÞ. Then,
inserting the restricted field configurations Φðx;XiðtÞÞ into
the Lagrangian density L and performing the spatial inte-
grations, we arrive at an effective Lagrangian for motion on
the N-dimensional moduli space M. This can be inter-
preted as a mechanical model for interacting solitons with
N degrees of freedom. The Lagrangian on M is

L½X� ¼
Z

∞

−∞
L½Φðx;XiðtÞÞ�dx ¼ 1

2
gijðXÞ _Xi _Xj − VðXÞ;

ð2:3Þ

where

gijðXÞ ¼
Z

∞

−∞

∂Φ
∂Xi

∂Φ
∂Xj dx ð2:4Þ

is the metric on M, while

VðXÞ ¼
Z

∞

−∞

�
1

2

�∂Φ
∂x

�
2

þ UðΦÞ
�
dx ð2:5Þ

is the potential energy. Ideally, the metric should not
possess any singularities except where V diverges, which
is naturally the boundary of M and of course unattainable
in any finite-energy field evolution.
However, there are examples in which the moduli space

metric is singular at points where V is finite. Note that a
metric is singular, not only where a metric component
diverges but also where the metric tensor as a whole
degenerates (i.e., is not positive definite) and its determi-
nant vanishes. Sometimes the singularity is resolved by a
better choice of coordinates, and we will encounter exam-
ples of this. In other cases, the singularity is physical, for
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example, corresponding to the location of a spectral wall, a
barrier in the soliton dynamics caused by the transition of a
normal mode into the continuum spectrum.
The simplest moduli space is that of a single kinkΦKðxÞ,

a solution of the static BPS equation

dϕ
dx

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2UðϕÞ

p
: ð2:6Þ

From (2.5), we see that the energy (mass) of the static
kink is

M ¼
Z

∞

−∞

�
dΦKðxÞ

dx

�
2

dx: ð2:7Þ

We assume throughout that the kink interpolates between
isolated vacua of the potential U and that U is symmetric
between these vacua. The kink shape is then reflection
antisymmetric. By translation symmetry, the kink center is
an arbitrary real constant a, leading to a one-parameter
family of equal-energy solutions M ¼ fΦKðx − aÞg. This
canonical moduli space is the infinite line R with coor-
dinate a.
Note that the derivative of ΦKðx − aÞ with respect to a is

minus the derivative with respect to x and that this is a
reflection-symmetric function. The metric on M is there-
fore a constant equal to the kink mass M,

gaa ¼
Z

∞

−∞

�∂ΦK

∂a ðx − aÞ
�

2

dx ¼ M; ð2:8Þ

because the integral here is a translation of (2.7). The
potential on M has the same value,

VðaÞ ¼
Z

∞

−∞

�
1

2

�∂ΦK

∂x ðx − aÞ
�

2

þ UðΦKðx − aÞÞ
�
dx

¼ M: ð2:9Þ

The CCM therefore has the Lagrangian

L½a� ¼ 1

2
M _a2 −M; ð2:10Þ

modeling a nonrelativistic point particle in a constant,
immaterial potential. Solutions of the equation of motion
ä ¼ 0 model kink motion at arbitrary constant velocity
_a ¼ v. Importantly, the Lorentz invariance of the original
field theory is lost, and this feature is inherited by the more
complicated dynamics in, for example, kink-antikink col-
lisions. This is because the simplest CCM describing such
collisions is constructed using a superposition of static
kinks and antikinks.
Typically, an improved soliton moduli space is con-

structed by including deformations arising from the linear
perturbations of the static solitons, i.e., positive-frequency

normal modes of the second variation operator, known as
shape modes.
There is, however, another physically well-motivated

deformation, the Derrick or scaling deformation, which in
one spatial dimension is simply x ↦ bx. When the Derrick
modulus, or scaling parameter, b is included in the single-
kink sector, the set of configurations is [37]

M ¼ fΦKðbðx − aÞÞg: ð2:11Þ

a still defines the position of the kink and therefore
a ∈ R. On the other hand, b > 0 because when b ¼ 0
the configuration fails to satisfy the kink boundary con-
ditions, and when b < 0, the kink becomes an antikink. For
b close to unity, the linearized deformation of the kink
centered at the origin is

ηDðxÞ ¼ x
dΦKðxÞ

dx
; ð2:12Þ

which we call the Derrick mode of the kink. The Derrick
mode is not generally related to a shape mode, but one of its
advantages is that it can be used in any model with kinks,
whether or not the kink has a shape mode.
The moduli space M is now two dimensional and has

the diagonal metric

gaa ¼
Z

∞

−∞
b2Φ02

Kðbðx − aÞÞdx ¼ Mb;

gbb ¼
Z

∞

−∞
ðx − aÞ2Φ02

Kðbðx − aÞÞdx ¼ Q
b3

: ð2:13Þ

Here, Φ0
K is the derivative of ΦK , and therefore the kink’s

translation zero mode, M is the kink mass (2.7), while the
constantQ is the second moment of the static kink’s energy
density,

Q ¼
Z

∞

−∞
x2
�
dΦKðxÞ

dx

�
2

dx: ð2:14Þ

gab ¼ 0 because the a-derivative and b-derivative of the
kink have opposite symmetries when U has the reflection
symmetry assumed earlier.
M is an anticlastic surface since it has Ricci curvature

R ¼ −
b
Q
; ð2:15Þ

which is everywhere negative and, up to a multiplicative
constant, just the Derrick modulus b.
The potential on M has the simple form

VðbÞ ¼ 1

2
M

�
bþ 1

b

�
; ð2:16Þ
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so the CCM Lagrangian is

L½a; b� ¼ 1

2
Mb _a2 þ 1

2

Q
b3

_b2 −
1

2
M

�
bþ 1

b

�
: ð2:17Þ

The resulting equations of motion on M are

d
dt

ðb _aÞ ¼ 0; ð2:18Þ

Q
d
dt

�
_b
b3

�
þ 3Q

2

_b2

b4
þM

2

�
1 −

1

b2
− _a2

�
¼ 0; ð2:19Þ

and these can be integrated once to give

Mb _a ¼ P; ð2:20Þ

1

2
Mb _a2 þ 1

2

Q
b3

_b2 þ 1

2
M

�
bþ 1

b

�
¼ E; ð2:21Þ

where P and E are the conserved momentum and energy.
Importantly, there exist stationary, nonoscillating solu-

tions with

_a ¼ v; b ¼ γ ≡ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

p ; ð2:22Þ

so Φðx; tÞ ¼ ΦKðγðx − vtÞÞ. For these solutions, P and E
obey the relativistic relation E2 − P2 ¼ M2, as originally
observed in Ref. [37]. This is the crucial result of this
section. The inclusion of the Derrick deformation allows
a moving kink to Lorentz contract. In other words, it
preserves the relativistic invariance of the field theory at the
level of the moduli space dynamics. Note that the solutions
in the moduli space are along lines characterized by the
Ricci curvature being a constant proportional to the Lorentz
contraction factor γ of the kink.
We will call this CCM the relativistic collective coor-

dinate model and the underlying moduli space M with
coordinates ða; bÞ the relativistic moduli space for a single
kink. In fact, we could eliminate the modulus b from the
CCM using the stationary solution b ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − _a2

p
, where

_b ¼ 0. Then, we find

L½a� ¼ −M
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − _a2

p
: ð2:23Þ

This is precisely the Lagrangian of a relativistic point
particle with rest mass M. Hence, we explicitly obtain a
relativistic generalization of the nonrelativistic CCM for a
single kink.
Rather remarkably, the general oscillatory dynamics on

M reduces to simple harmonic motion, for any momentum
P and energy E [37]. Let us see how this comes about in

the case P ¼ 0. Here, _a ¼ 0, so the energy conservation
equation (2.21) simplifies to

1

2

Q
b3

_b2 þ 1

2
M

�
bþ 1

b

�
¼ E; ð2:24Þ

which after the change of variable l ¼ 1=b becomes

_l2 þM
Q

�
l −

E
M

�
2

¼ M
Q

�
E2

M2
− 1

�
: ð2:25Þ

For any E ≥ M, this is the first integral of a simple
harmonic oscillator with frequency ω2 ¼ M=Q. Because
of the shift of the center of oscillation to l ¼ E=M, the
motion is restricted to the range l > 0. The linearized
Derrick mode of a kink, ηD, has the same frequency
ω2
D ¼ M=Q, with center of oscillation at l ¼ 1.

III. DERRICK DEFORMATION IN THE
KINK-ANTIKINK SECTOR

To model kink-antikink collisions, we consider the field
configurations obtained by the symmetric superposition

ΦKAKðx; a; bÞ ¼ ΦKðbðxþ aÞÞ −ΦKðbðx − aÞÞ þΦvac

ð3:1Þ

with time-dependent a and b. Here,ΦKðxÞ is the basic kink
solution, and Φvac is the constant needed to satisfy the
vacuum boundary conditions. The kink and antikink are at
−a and a, respectively, and the Derrick modulus b has the
same value for both, ensuring the symmetry. The configu-
rations (3.1) are unchanged if a ↦ −a and b ↦ −b, so we
may assume that b > 0 and −∞ < a < ∞.
The moduli space is two dimensional, with metric

components gaa, gab, and gbb given by the general integral
formula (2.4). These metric components satisfy an inter-
esting identity that is actually valid for kink-kink and kink-
antikink superpositions of the general form

Φðx; a; bÞ ¼ ΦKðbðxþ aÞÞ �ΦKðbðx − aÞÞ þΦ0; ð3:2Þ

where Φ0 is any constant. The proof starts with the
derivatives of these configurations

∂aΦ ¼ bΦ0
Kþ ∓ bΦ0

K−;

∂bΦ ¼ ðxþ aÞΦ0
Kþ � ðx − aÞΦ0

K−; ð3:3Þ

where

Φ0
K� ¼ dΦKðyÞ

dy

����
y¼bðx�aÞ

: ð3:4Þ

The mixed metric component is therefore
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gab ¼
Z

∞

−∞
ð∂aΦÞð∂bΦÞdx

¼
Z

∞

−∞
ðbðxþaÞΦ02

Kþ−bðx−aÞΦ02
K−∓2abΦ0

KþΦ0
K−Þdx

¼∓2ab
Z

∞

−∞
Φ0

KþΦ0
K−dx; ð3:5Þ

where the last equality follows from the vanishing of the
first two integrals due to the kink’s reflection antisymmetry,
and the diagonal component gaa is

gaa ¼
Z

∞

−∞
ð∂aΦÞ2dx

¼ b2
Z

∞

−∞
ðΦ02

Kþ þΦ02
K− ∓ 2Φ0

KþΦ0
K−Þdx

¼ 2bM ∓ 2b2
Z

∞

−∞
Φ0

KþΦK−dx; ð3:6Þ

where M is the kink mass. (gbb is not needed here.)
Comparing (3.5) and (3.6), we obtain the identity

agaa − bgab ¼ 2Mab: ð3:7Þ

It is sometimes useful to reparametrize the kink-antikink
configurations (3.1) as

ΦKAKðx; b; cÞ ¼ ΦKðbxþ cÞ −ΦKðbx − cÞ þΦvac;

ð3:8Þ

where c ¼ ba and b > 0, −∞ < c < ∞. The metric
components, now denoted g̃bb, g̃bc, and g̃cc, satisfy the
simpler identity

b2g̃bc ¼ −2Mc; ð3:9Þ

and the same identity holds in the kink-kink case. These
identities will be verified in examples occurring below.
It is important for us to investigate whether the moduli

space of kink-antikink configurations (3.8) is globally
smooth. For c > 0, the derivatives of ΦKAK with respect
to b and c are nonzero and independent, so this subregion
of moduli space is smooth. Similarly, the region c < 0 is
smooth. However, c ¼ 0 gives the vacuum configuration
for any b, so it has zero derivative with respect to b. The two
smooth parts of the moduli space are therefore glued at a
single point, giving a total space with a singularity, some-
what like a double-cone. No change of coordinates removes
this singularity.
We can find the metric and its curvature in the neighbor-

hood of c ¼ 0 more precisely by expanding to linear order
in c. At this order, the configurations (3.8) become

ΦKAKðx; b; cÞ ¼ 2cΦ0
KðbxÞ ð3:10Þ

(dropping the constant Φvac). The derivatives needed for
the metric are

∂ΦKAK

∂b ¼ 2cxΦ00
KðbxÞ;

∂ΦKAK

∂c ¼ 2Φ0
KðbxÞ: ð3:11Þ

The metric components on the moduli space are therefore

g̃bb ¼ 4c2
Z

∞

−∞
x2Φ002

K ðbxÞdx;

g̃bc ¼ 4c
Z

∞

−∞
xΦ00

KðbxÞΦ0
KðbxÞdx ¼ −

2c
b2

M;

g̃cc ¼ 4

Z
∞

−∞
Φ02

KðbxÞdx ¼ 4

b
M: ð3:12Þ

The last result follows from (2.7), and the middle result is
obtained by integrating by parts or using the identity (3.9).
The complete metric for small c is therefore

ds2 ¼ 4M

�
Sc2

b3
db2 −

c
b2

dbdcþ 1

b
dc2

�
; ð3:13Þ

where

S ¼
R
∞
−∞ y2Φ002

K ðyÞdyR∞
−∞ Φ02

KðyÞdy
: ð3:14Þ

For c > 0, it is helpful once more to change variables, to
a variant of plane polar coordinates. Let σ ¼ c=

ffiffiffi
b

p
and

τ ¼ logðbÞ, where σ > 0 and −∞ < τ < ∞. The metric
(3.13) becomes

ds2 ¼ 4M

�
dσ2 þ

�
S −

1

4

�
σ2dτ2

�
: ð3:15Þ

This is a multiple of the standard flat metric on the plane,
but the origin is removed, and the angle τ has infinite range,
so the surface is the infinite-sheeted universal cover of the
punctured plane. By symmetry, the surface for c < 0 is
geometrically similar. These two smooth surfaces are glued
together at the single point σ ¼ 0, corresponding to the
vacuum configuration c ¼ 0. The total moduli space (for
small c) is therefore an infinite-sheeted version of a flat
double-cone and is singular.
Caputo et al. [38] carried out a similar calculation, which

they applied to both sine-Gordon (sG) and ϕ4-theory kink-
antikink pairs. They also found a smooth surface by
restricting the sign of one of the moduli and changing
variables and then stated without detailed justification that
the complete moduli space was smooth because the change
of variables could be extended to all values of the relevant
moduli. However, the calculation above indicates that a
singularity is unavoidable.
Our conclusion is that the kink-antikink moduli space

constructed by direct superposition of kink and antikink
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configurations, parametrized by their position and Derrick
moduli, is not smooth. This moduli space also suffers
from a more practical difficulty. The field configurations
with c > 0 have values everywhere greater than Φvac, and
similarly those with c < 0 have values everywhere less than
Φvac. The configurations that occur instantaneously in true
field theory simulations of kink-antikink scattering do
not generally have this property. The sG model is an
exception. Here, the exact kink-antikink scattering and
breather solutions pass from one side of Φvac to the other
at one instant, for all x. Because of this, sG solutions can
be modeled well using the moduli space we have been
considering. However, in ϕ4 theory, and probably generi-
cally in nonintegrable field theories, the instantaneous
kink-antikink field configurations often take values on
both sides ofΦvac, depending on x. Such dynamics requires
modeling with a different set of configurations and with a
different type of moduli space, and in the next section, we
introduce our proposed perturbative framework to deal
with this.

IV. PERTURBATIVE RELATIVISTIC
MODULI SPACE

Here, we present a novel and simple resolution of the
singularity at a ¼ 0 (or equivalently c ¼ 0) for KAK
collisions, when b is close to 1, i.e., b ¼ 1þ ϵ, with ϵ
small. This includes the physically relevant regime b≳ 1,
corresponding to incoming or outgoing solitons with not
too high but still relativistic velocities. For free solitons,
b¼ γ¼1þ 1

2
v2þ 3

8
v4þoðv4Þ. Therefore, ϵ¼ 1

2
v2þoðv2Þ,

so the expansion in ϵ is just an expansion in v2. In other
words, relativistic corrections are included perturbatively.
This approach can be applied to all kink models. In
addition, it introduces in a natural way an arbitrary number
of new moduli.

A. Single-kink sector

Let us begin with the single kink and set b ¼ 1þ ϵ.
The restricted set of configurations is a truncation of the
Taylor expansion

ΦKðbðx−aÞÞ ¼ΦKðð1þ ϵÞðx−aÞÞ

¼
Xn
k¼0

ϵk

k!
ðx−aÞkΦðkÞ

K ðx−aÞþoðϵnÞ; ð4:1Þ

where ΦðkÞ
K denotes the kth derivative of the kink. A key

idea is that we now replace the sequence of powers of ϵ by
new, independent moduli, denoted C1;…; Cn, leading to
the following set of configurations:

ΦKðx; a;CÞ ¼ ΦKðx − aÞ þ
Xn
k¼1

Ck

k!
ðx − aÞkΦðkÞ

K ðx − aÞ:

ð4:2Þ

The original two-dimensional relativistic CCM has been
replaced by an (nþ 1)-dimensional pRCCM, where n is
the order of the expansion. Effectively, the kth term in the
expansion introduces its own kth-order Derrick mode. Note
that the first-order Derrick mode is the same as the Derrick
mode ηD that we introduced previously.

B. Kink-antikink sector

In the KAK sector, we can now resolve the singularity at
a ¼ 0. As usual, we start with simple superpositions of
kink and antikink solutions located at −a and a, respec-
tively. However, for the kink and antikink, we assume the
truncated expansion (4.2), so

ΦKAKðx; a;CÞ ¼ ðΦKðxþ aÞ −ΦKðx − aÞÞ þΦvac

þ
Xn
k¼1

Ck

k!
ððxþ aÞkΦðkÞ

K ðxþ aÞ

− ðx − aÞkΦðkÞ
K ðx − aÞÞ: ð4:3Þ

As a → 0, the terms multiplied by Ck vanish linearly, as

ðxþ aÞkΦðkÞ
K ðxþ aÞ − ðx − aÞkΦðkÞ

K ðx − aÞ
¼ 2ðkxk−1ΦðkÞ

K ðxÞ þ xkΦðkþ1Þ
K ðxÞÞaþ oðaÞ: ð4:4Þ

This produces a null vector problem for the moduli Ck, but
one that can be easily resolved by our standard technique
[19]. Namely, we make the replacement

Ck ↦
Ck

tanhðaÞ : ð4:5Þ

Because tanhðaÞ is linear in a for small a, this replacement
applied to (4.3) gives a set of smooth configurations
leading to a smooth, finite metric and potential for any
a; C1;…; Cn.

V. SINE-GORDON MODEL

In this section, we illustrate the application of the
relativistic collective coordinate model, in a case where
it works well. Two-soliton dynamics in the sG model is the
simplest case of interacting solitons, and as the theory is
integrable, we can compare the relativistic CCM with the
exact solutions. We also investigate the effect of the
perturbative modification (pRCCM).
The sG model, with Lagrangian

LsG½ϕ� ¼
Z

∞

−∞

�
1

2
ð∂tϕÞ2 −

1

2
ð∂xϕÞ2 − ð1 − cosϕÞ

�
dx;

ð5:1Þ

possesses the well-known static kink
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ΦKðx; aÞ ¼ 4 arctan ex−a; ð5:2Þ

with mass M ¼ 8. The nonrelativistic single-kink CCM
uses these configurations parametrized by a dynamical
position aðtÞ and has Lagrangian

L½a� ¼ 4_a2 − 8: ð5:3Þ

To obtain the relativistic version, we include the
Derrick deformation. This leads to the Lagrangian of the
form (2.17)

L½a; b� ¼ 4b _a2 þ π2

3b3
_b2 − 4

�
bþ 1

b

�
; ð5:4Þ

whose equations of motion have the solution (2.22),
modeling a stationary, Lorentz-contracted kink.
Note that the sG kink does not host any positive-

frequency normal modes. Despite this, the Derrick mode
still exists and has frequency ω2

D ¼ 12=π2 ≈ 1.21585,
which is above the continuum threshold ω2 ¼ 1.

A. Kink-kink solution

The exact kink-kink (KK) solution of the sG model is

ΦKKðx; tÞ ¼ 4 arctan
v sinhðγxÞ
coshðγvtÞ : ð5:5Þ

To show that this solution can be obtained within the
relativistic collective coordinate framework, we con-
sider the moduli space M of symmetric superpositions
of kinks,

ΦKKðx; a; bÞ ¼ 4 arctan ebðxþaÞ þ 4 arctan ebðx−aÞ − 2π

¼ 4 arctan
sinh bx
cosh ba

; ð5:6Þ

with b > 0. Because the kinks are identical, these con-
figurations are invariant under a ↦ −a. This means that the
modulus a can be assumed to be nonnegative, a ≥ 0.
Hence, the kinks cannot cross over, and at closest approach,
they are on top of each other. As we will see below,
the resulting moduli space M is incomplete and has a
boundary at a ¼ 0, reachable after a finite time. This
problem is resolved by extending the set of configurations
(5.6), similarly as in Ref. [39].
For the KK configurations (5.6), we obtain a two-

dimensional CCM of the general form

L½a; b� ¼ 1

2
gaa _a2 þ gab _a _bþ 1

2
gbb _b

2 − Vða; bÞ: ð5:7Þ

We find, by integration, that the metric is nondiagonal and
has components

gaa ¼ 16b

�
1 −

2ab
sinhð2abÞ

�
;

gab ¼ −16a
2ab

sinhð2abÞ ;

gbb ¼
4π2

3b3

�
1þ

�
1 −

8

π2
ðabÞ2

�
2ab

sinhð2abÞ
�
; ð5:8Þ

satisfying the identity (3.7), and that the potential is

Vða; bÞ ¼ 8

�
b

�
1þ 2ab

sinhð2abÞ
�

þ 1

btanh2ðabÞ
�
1 −

2ab
sinhð2abÞ

��
: ð5:9Þ

The CCM supports a simple solution,

b ¼ γ; a ¼ 1

γ
arcosh

coshðγvtÞ
v

; ð5:10Þ

which, when inserted into (5.6), reproduces the exact kink-
kink solution (5.5). In fact, this result can be anticipated by
directly comparing the exact solution and the restricted set
of configurations (5.6).
Let us now have a closer look at the KK moduli space

M. As expected, for a → ∞, it models two independent
relativistic solitons, and therefore the CCM has twice the
Lagrangian (5.4). On the other hand, M naively has a
boundary at a ¼ 0 because two of the metric components
have zeros:

gaa ¼
32b3

3
a2 þOða4Þ; gab ¼ −16aþOða3Þ: ð5:11Þ

However, this is only an apparent singularity. Indeed, the
Ricci curvature remains finite at a ¼ 0; see Fig. 1. This null
vector problem, resulting from the vanishing of ∂aΦ as
a → 0, can be resolved by a more appropriate choice of
coordinates, leading not only to well-behaved metric
functions but also, importantly, allowing us to extend the
moduli space beyond a ¼ 0.
The resolution is achieved by reparametrizing the con-

figurations (5.6) as

Φ̃KKðx; c; bÞ ¼ 4 arctan
sinh bx

c
; ð5:12Þ

where the new collective coordinate c is related to the old
ones via c ¼ coshðbaÞ. The metric components are now
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gcc ¼
16

b
1

c2 − 1

�
1 −

1

c
ffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 − 1

p arcoth
cffiffiffiffiffiffiffiffiffiffiffiffiffi

c2 − 1
p

�
;

gcb ¼ −
16

b2
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

c2 − 1
p arcoth

cffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 − 1

p ;

gbb ¼ −
4

b3
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

c2ðc2 − 1Þ
p

�
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2ðc2 − 1Þ

q �
ln2ðc̃Þ þ π2

3

�

þ 1

6
ln3ðc̃Þ þ π2

6
lnðc̃Þ

�
; ð5:13Þ

where

c̃ ¼ −1þ 2c2 − 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2ðc2 − 1Þ

q
; ð5:14Þ

and they are regular on the line c ¼ 1, which corresponds
to a ¼ 0. Since the potential V also has a finite value
on the line, we can extend the moduli space to c < 1. The
curvature and potential extended to the interval c ∈ ð0; 1Þ
are shown in Fig. 2. This interval is accessible in a finite
time if the initial state has sufficient oscillatory energy.
Interestingly, this interval of the moduli space can also be
obtained in the previous construction but requires imagi-
nary values of the coordinate a in the range ð0; iπ=2bÞ.

The boundary at c ¼ 0 is unattainable since the potential

Vðc; bÞ ¼ 8

bcðc2 − 1Þ3=2
�
c

ffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 − 1

p
ðb2ðc2 − 1Þ þ c2Þ

þ ðb2ðc2 − 1Þ − c2Þarcoth
�

cffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 − 1

p
��

ð5:15Þ

diverges as c → 0. A second line of M where the metric
behaves badly is b ¼ 0. This is also a true boundary toward
which the potential diverges, so no finite-energy KK
trajectories reach it.
To conclude, the extended relativistic moduli space

provides a well-defined dynamical system for KK dynam-
ics in the sG model, and also reproduces the exact KK
scattering solution.

B. Kink-antikink solution

We turn now to the KAK solutions of the sG model, both
the scattering solution

ΦKAKðx; tÞ ¼ 4 arctan
sinhðγvtÞ
v coshðγxÞ ð5:16Þ

and the breather

FIG. 2. The Ricci curvature R (upper panel) and the potential V
(lower panel) for the extended sine-Gordon KK moduli space
with coordinates ðc; bÞ. The region c ∈ ð0; 1Þ was excluded in
Fig. 1. At the boundary c ¼ 0, the potential diverges.

FIG. 1. The Ricci curvature R (upper panel) and the potential V
(lower panel) for the sine-Gordon KK moduli space with
coordinates ða; bÞ. At a ¼ 0, there is an apparent boundary,
reachable after a finite time.
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ΦBðx; tÞ ¼ 4 arctan

� ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ω2

p

ω

sinðωtÞ
coshð

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ω2

p
xÞ

�
; ð5:17Þ

where 0 < ω < 1.
These solutions can be obtained by using the KAK

superposition

ΦKAKðx; a; bÞ ¼ 4 arctan ebðxþaÞ − 4 arctan ebðx−aÞ

¼ 4 arctan
sinh ba
cosh bx

: ð5:18Þ

Here, the configurations are not symmetric under a ↦ −a,
so a can have any real value. However, there is a symmetry
under the combined transformation a ↦ −a and b ↦ −b,
so it makes sense to require b > 0. The configuration with
b ¼ 0 is the vacuum configuration for any a, but this
configuration also occurs for a ¼ 0 with b > 0.
The restricted set of configurations (5.18) defines the

KAK moduli space M with metric components

gaa ¼ 16b

�
1þ 2ab

sinhð2abÞ
�
;

gab ¼ 16a
2ab

sinhð2abÞ ;

gbb ¼
4π2

3b3

�
1 −

�
1 −

8

π2
ðabÞ2

�
2ab

sinhð2abÞ
�

ð5:19Þ

and potential

Vða; bÞ ¼ 8

�
b

�
1 −

2ab
sinhð2abÞ

�

þ tanh2ðabÞ
b

�
1þ 2ab

sinhð2abÞ
��

: ð5:20Þ

The identity (3.7) is again satisfied. Contrary to the KK
case, the potential is finite; see Fig. 3. However, for a ≠ 0,
the configurations with b → 0 are rather far from the
physical regime b ≈ 1 and so are unimportant for KAK
scattering.
The relativistic CCM has the solution

b ¼ γ; aðtÞ ¼ 1

γ
arsinh

sinhðγvtÞ
v

; ð5:21Þ

fully reproducing the analytical KAK scattering solution
for all velocities. As before, it can be obtained by
comparing the exact solution with the restricted configu-
rations (5.18). For the breather solution,

b ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ω2

p
;

aðtÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ω2

p arsinh

� ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ω2

p

ω
sinðωtÞ

�
: ð5:22Þ

C. KK and KAK moduli spaces compared

The KAK moduli space has metric components gab and
gbb whose behavior for small a is

gab ¼ 16aþOða3Þ;

gbb ¼
8

9b
ð12þ π2Þa2 þOða4Þ: ð5:23Þ

These components vanish at a ¼ 0, producing a metric
singularity, whereas it was gaa and gab that vanished at
a ¼ 0 in the KK case. The Ricci curvature is still finite for
all a and b; see Fig. 3. This suggests the KK and KAK
sectors have different types of null vector. To understand
this better, we expand the restricted configurationsΦKK and
ΦKAK for small a, finding

ΦKKðx; a; bÞ ¼ 4 arctanðsinhðbxÞÞ

−
2 sinhðbxÞ

1þ sinh2ðbxÞ b
2a2 þOða4Þ ð5:24Þ

and

ΦKAKðx; a; bÞ ¼
4

coshðbxÞ baþOða3Þ: ð5:25Þ

ForΦKK, the derivative with respect to a vanishes as a → 0,
while for ΦKAK, it is the derivative with respect to b. In the

FIG. 3. The Ricci curvature R (upper panel) and the potential V
(lower panel) for the KAK moduli space in the sine-Gordon
model. The boundary at b ¼ 0, containing a possible singularity,
is not included.
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former case, it was sufficient to introduce the coordinate
c ¼ coshðbaÞ ≈ 1þ 1

2
b2a2, but this does not help in the

latter case, where the singularity is essential, as we argued
in Sec. III.
We recall here that there exists a relativistic model of two

interacting point particles on the line, whose dynamics
precisely reproduces the kink-kink (or kink-antikink)
solution of the sine-Gordon model. This is the famous
Ruijsenaars-Schneider model with a particular pair poten-
tial [40]. Undoubtedly, it would be very interesting to
understand possible relations between this model and the
relativistic CCM.

D. Perturbative framework applied to sG model

Here, we set b ¼ 1þ ϵ and expand in ϵ. For the single
sG kink, we find

ΦKðx; a; bÞ ¼ 4 arctan ebðx−aÞ ¼ 4 arctan eðx−aÞ

þ ϵ
2ðx − aÞ

coshðx − aÞ − ϵ2
ðx − aÞ2 tanhðx − aÞ

coshðx − aÞ
þ oðϵ2Þ: ð5:26Þ

The set of configurations up to first order is therefore

ΦKðx; a; CÞ ¼ 4 arctan eðx−aÞ þ C
2ðx − aÞ

coshðx − aÞ ; ð5:27Þ

where C≡ C1. Their two-dimensional moduli space has a
diagonal metric with components

gaa ¼ 8þ 8Cþ 2

9
ð12þ π2ÞC2;

gCC ¼ 2π2

3
: ð5:28Þ

The quadratic character of gaa makes this a wormhole-type
metric.
The potential, up to fourth order in C, is

VðCÞ ¼ 8þ 4C2 þ 2

9
ðπ2 − 6ÞC3

þ 1

450
ð240 − 100π2 þ 7π4ÞC4: ð5:29Þ

Importantly, the equations of motion of the resulting
pRCCM have a stationary solution satisfying

ä ¼ 0; ð5:30Þ

1

2
∂Cgaa _a2 ¼ ∂CV: ð5:31Þ

The first equation has the constant-velocity solution _a ¼ v,
while the second becomes the nonlinear algebraic equation

0 ¼ 4v2 þ
�
2

9
ð12þ π2Þv2 − 8

�
C −

2

3
ðπ2 − 6ÞC2

−
2

225
ð240 − 100π2 þ 7π4ÞC3; ð5:32Þ

with a real solution whose truncated expansion is

C̃ ≈ 0.5v2 þ 0.223127v4 þ 0.072637v6 þ 0.016753v8:

ð5:33Þ

This expansion reproduces the true value of C with good
precision.
Obviously by enlarging the model, taking into account

more terms in the expansion, we approach the exact
Lorentz-boosted kink with arbitrary accuracy. The price
is the growing dimension of the moduli space and the
complexity of the resulting equations.
Although the perturbative expansion seems to be an

unnecessary complication for a single kink, its usefulness
becomes clear when we apply it to the KAK solutions in
sG. We consider only the terms up to first order, using the
moduli ða; CÞ. The restricted set of configurations, where
the null vector is already removed, is

ΦKAKðx; a; CÞ ¼ 4 arctan eðxþaÞ − 4 arctan eðx−aÞ

þ 2C
tanhðaÞ

�
xþ a

coshðxþ aÞ −
x − a

coshðx − aÞ
�
:

ð5:34Þ
The resulting metric is nonsingular for any finite ða; CÞ, but
as the formulas for the metric components are very long,
we do not present them. Furthermore, in our numerical
investigations of KAK dynamics, we obtain the metric
and potential numerically, not referring to their analytical
formulas (see Appendix). In this way, we arrive at a well-
defined two-dimensional pRCCM for modeling KAK
collisions in the underlying field theory. This procedure
could be repeated up to any order n.
We also need appropriate initial conditions for the

approaching kink and antikink. These are provided by
the moving single-kink solution of the pRCCM with C
given by (5.33), which leads to the following initial
conditions at t ¼ 0,

að0Þ ¼ a0; _að0Þ ¼ v;

Cð0Þ ¼ 0.5v2 þ 0.223127v4 þ 0.072637v6 þ 0.016753v8;

_Cð0Þ ¼ 0; ð5:35Þ
where a0 is half the initial distance between the solitons.
In Fig. 4, left and center columns, we present the

time evolution of aðtÞ and CðtÞ obtained in the pRCCM,
based on the configurations (5.34) and the initial conditions
(5.35). The initial velocity has the range of values v ¼ 0.2,
0.4, 0.6, and 0.8. For comparison, we also plot the position
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of the kink (and antikink) obtained from the sG KAK
solution aexactðtÞ given in (5.21).
To better see the agreement between the pRCCM

computation and the exact solution, we plot the difference
aðtÞ − aexactðtÞ in Fig. 4, right column. The difference is
small even for quite relativistic velocities. For example, for
v ¼ 0.4, the maximum difference is about 0.003, while at
large times, it oscillates between �0.001.
In Fig. 5, we plot the maximum of this difference as a

function of the initial velocity v. For small velocities, where
our first-order relativistic approximation should work well,
the agreement is extremely good. For example, for v≲ 0.2,
the difference is less than 10−4. This should be compared
with the one-dimensional moduli space computation where
for v ¼ 0.2 the corresponding difference is of order 10−2

[39]. Hence, the inclusion of the first Derrick mode leads to
results which are 2 orders of magnitude more precise.
It is also important to notice that the inclusion of the

Derrick mode does not spoil the integrability of the model.
The result of the KAK scattering is always a KAK pair. We
do not observe any bounce windows or bion formation.
This is obviously a crucial test for the validity of our
perturbative relativistic framework.

The same pRCCM can be used to study the breather
solution, provided the initial conditions have energy less
than twice the static energy of a kink. In Fig. 6, we present
examples of oscillatory solutions ðaðtÞ; CðtÞÞ. The coor-
dinate aðtÞ is also compared with the exact expression
(5.22) derived from the breather solution. We find good

FIG. 4. KAK collision in the pRCCM for the sine-Gordon model with moduli ða; CÞ. Left: aðtÞ; center: CðtÞ; right: difference between
aðtÞ obtained in the pRCCM and the exact expression aexactðtÞ. From top to bottom, v ¼ 0.2, 0.4, 0.6, and 0.8.

FIG. 5. Maximum of the difference between aðtÞ obtained in
the pRCCM for the sine-Gordon model and the exact expression
aexactðtÞ, as a function of v.
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agreement for ω ≪ 1. For larger frequencies, we notice
some discrepancy. There is also a departure from exact
periodicity. In any case, it is an important result in our
framework that the addition of the new collective coor-
dinate does not lead to the disappearance of the bound
orbits. It should be underlined that in the one-dimensional
CCM [39] the existence of periodic solutions is guaranteed
if the energy condition for a breather is satisfied. In higher-
dimensional moduli spaces, on the other hand, it is a
nontrivial phenomenon, which relies on the details of the
moduli space metric and potential.

VI. ϕ4 THEORY

We consider next the prototypical, nonintegrable scalar
field theory supporting topological solitons, the ϕ4 theory
in (1þ 1)-dimensional space-time. The Lagrangian is

Lϕ4 ½ϕ� ¼
Z

∞

−∞
dx

�
1

2
ð∂tϕÞ2 −

1

2
ð∂xϕÞ2 −

1

2
ð1 − ϕ2Þ2

�
;

ð6:1Þ
and the field equation has the static BPS kink solutions

ΦKðx; aÞ ¼ tanhðx − aÞ ð6:2Þ
interpolating between the vacua −1 and þ1. The modulus
a ∈ R is the position of the kink, and the resulting canonical
moduli space has the constant metric gaa ¼ M ¼ 4=3, so the
CCM Lagrangian is

L½a� ¼ 2

3
_a2 −

4

3
: ð6:3Þ

In this description, the kink moves at an arbitrary velocity v
as a nonrelativistic particle with mass M, and the Lorentz

FIG. 6. Oscillatory solutions aðtÞ (left) and CðtÞ (right) of the pRCCM for the sine-Gordon model. Here (from top to bottom),
ω2 ¼ 0.04, 0.16, 0.36, and 0.64. The dotted line represents aðtÞ computed from the exact breather solution.
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invariance of the original field theory is lost. The antikink
Φðx; aÞ ¼ − tanhðx − aÞ interpolates between þ1 and −1
but otherwise has similar properties to the kink.
The ϕ4 kink has one positive-frequency normal mode,

the normalized shape mode

ηshðxÞ ¼
3

2

sinhðxÞ
cosh2ðxÞ ; ð6:4Þ

whose frequency ω2
sh ¼ 3 is below the continuum threshold

ω2 ¼ 4. This mode plays a distinguished role in multikink
dynamics in ϕ4 theory.

A. Relativistic moduli space

Including the Derrick scaling deformation, with modulus
b > 0, the single-kink configurations are

ΦKðx; a; bÞ ¼ tanh bðx − aÞ: ð6:5Þ

The resulting two-dimensional moduli space has the
diagonal metric

gaa ¼
4

3
b; gbb ¼

π2 − 6

9

1

b3
ð6:6Þ

and potential

VðbÞ ¼ 2

3

�
bþ 1

b

�
; ð6:7Þ

so the relativistic CCM combining these has Lagrangian

L½a; b� ¼ 2

3
b _a2 þ π2 − 6

18b3
_b2 −

2

3

�
bþ 1

b

�
: ð6:8Þ

As before, the equations of motion have solutions describ-
ing relativistic, Lorentz-contracted kinks moving at con-
stant velocity.
The normalized Derrick mode is now

ηDðxÞ ¼
3ffiffiffiffiffiffiffiffiffiffiffiffiffi

π2 − 6
p x

cosh2ðxÞ ; ð6:9Þ

which is known to be almost identical to the shape mode
[19]. Indeed, the Derrick mode frequency ω2

D ¼ 12=ðπ2 −
6Þ ≈ 3.101 is very close to the shape mode frequency, and
the inner product of the normalized Derrick and shape
modes ðηD; ηshÞ ≈ 0.98 is very close to unity.
Exactly as in the sine-Gordon case, the construction of a

relativistic CCM describing KAK collisions encounters
difficulties. The superposition of kink and antikink,

ΦKAKðx;a;bÞ ¼ tanhbðxþ aÞ− tanhbðx− aÞ− 1; ð6:10Þ

leads to a CCM with metric components

gaa ¼ b

�
8

sinh2ð2abÞ
�
−1þ 2ab

tanhð2abÞ
�
þ 8

3

�
;

gab ¼
8a

sinh2ð2abÞ
�
−1þ 2ab

tanhð2abÞ
�
;

gbb ¼
2

9b3

�
π2 − 6þ 3

sinh2ð2abÞ

×

�
π2 −

2ab
tanhð2abÞ ðπ

2 − 8a2b2Þ
��

ð6:11Þ

and potential

Vða; bÞ ¼ 4b
3

�
3

sinh2ð2abÞ
�
1 −

2ab
tanhð2abÞ

�
þ 1

�

þ 4

3b

�
−17 − 24ab −

3ð5þ 12abÞ
sinh2ð2abÞ

þ 6

tanhð2abÞ
�
3þ 4abþ 5ab

sinh2ð2abÞ
��

:

ð6:12Þ

The metric components satisfy (3.7), and once again, the
Ricci curvature is finite for any a ∈ R and b > 0, but the
metric still degenerates at a ¼ 0. There is a null vector
problem at a ¼ 0 because the field configurations (6.10)
become the vacuum, which has zero derivative with res-
pect to b. However, as argued earlier, there is no simple
resolution of this singularity. The configuration space for
a > 0 is a smooth two-dimensional manifold, and similarly
for a < 0. These two surfaces are glued together at the
single point a ¼ 0, and the result is singular.
If we introduce the coordinate c ¼ ab in (6.10), then

ΦKAKðx; b; cÞ ¼ tanhðbxþ cÞ − tanhðbx − cÞ − 1: ð6:13Þ

The corresponding metric components on the moduli
space are

g̃bb ¼
2

9b3

�
12c2 þ π2 − 6þ 3

sinh2ð2cÞ

×

�
12c2 þ π2 −

2c
tanhð2cÞ ð4c

2 þ π2Þ
��

;

g̃bc ¼ −
8

3

c
b2

;

g̃cc ¼
1

b

�
8

sinh2ð2cÞ
�
−1þ 2c

tanhð2cÞ
�
þ 8

3

�
; ð6:14Þ

which satisfy the identity (3.9), and the potential V
simplifies when expressed in terms of b and c.
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B. Perturbative approach to KAK collisions

To avoid the singularity at a ¼ 0, we use the perturbative
approach. As before, we begin with the Derrick deformed
single kink ΦK ¼ tanhðð1þ ϵÞðx − aÞÞ with modulus b ¼
1þ ϵ and perform an expansion in ϵ. If we keep only the
first Derrick mode ηD, then

ΦKðx; a; CÞ ¼ tanhðx − aÞ þ C
x − a

cosh2ðx − aÞ ; ð6:15Þ

where we have identified C ¼ ϵ. These configurations have
a moduli space with the diagonal metric

gaa ¼
4

3
þ 4

3
Cþ 4π2

45
C2;

gCC ¼ π2 − 6

9
; ð6:16Þ

and the potential

VðCÞ ¼ 4

3
þ 2

3
C2 þ 1

45
ð4π2 − 30ÞC3

þ 1

450
ð120 − 70π2 þ 6π4ÞC4: ð6:17Þ

As in the case of the sG kink, the pRCCM has a stationary
solution obeying the equations of motion (5.30) and (5.31).
Specifically, the equation for C reads

0 ¼ 2v2

3
þ 4

45
ðπ2v2 − 15ÞC −

1

15
ð4π2 − 30ÞC2

−
2

225
ð120 − 70π2 þ 6π4ÞC3; ð6:18Þ

when we set _a ¼ v. This can be solved exactly, but as the
solution has a long, unilluminating form, we use its
truncated expansion in v2,

C̃ ≈ 0.5v2 þ 0.210507v4 þ 0.027428v6 − 0.0302351v8;

ð6:19Þ

in our numerical simulations.
Keeping the first two Derrick modes, the single-kink

configurations are

ΦKðx; a;CÞ ¼ tanhðx − aÞ þ C1

x − a
cosh2ðx − aÞ

− C2ðx − aÞ2 tanhðx − aÞ
cosh2ðx − aÞ ; ð6:20Þ

which leads to a pRCCM with three moduli,

L½a;C� ¼ 1

2
gaa _a2 þ

1

2
gij _Ci

_Cj − VðCÞ: ð6:21Þ

Here, we explicitly use the fact that gai ¼ 0, i ¼ 1, 2.
Although the metric functions and the potential can be
found analytically, the formulas are again long, so we do
not display them. In any case, in our calculations, they
are computed numerically. There is a stationary solution
approximating the boosted kink moving at constant veloc-
ity _a ¼ v, having nonzero Derrick mode amplitudes C̃k
determined using the algebraic equations

1

2
∂Ck

gaav2 ¼ ∂Ck
V: ð6:22Þ

We turn now to KAK collisions, and compare the results
from the pRCCM keeping either one or two Derrick moduli
to results from full field theory simulations and also to the
results found in Ref. [19] using the CCM based on the
shape mode.
The configurations in the pRCCM are kink-antikink

superpositions expanded to finite order in the Derrick
modes,

ΦKAKðx; a;CÞ ¼ ΦKðx;−a;CÞ −ΦKðx; a;CÞ − 1: ð6:23Þ

Inserting these into the ϕ4 theory Lagrangian gives

LKAKða;CÞ ¼
Z

∞

−∞
Lϕ4 ½ΦKAKðx; a;CÞ�dx; ð6:24Þ

and after integrating over x, we obtain the Lagrangian of the
pRCCM, which is a well-defined dynamical system pro-
vided the null-vector problems are cured by redefining the
moduli via

Ck ↦
Ck

tanhðaÞ : ð6:25Þ

The resulting second-order equations of motion for the
moduli require initial conditions

að0Þ ¼ a0; _að0Þ ¼ v;

Ckð0Þ ¼ C̃k; _Cð0Þ ¼ 0; ð6:26Þ

corresponding to a well-separated KAK pair boosted
toward each other.
More explicitly, the configurations modeling KAK

collisions with just one Derrick mode are

ΦKAKðx;a;CÞ ¼ tanhðxþaÞ− tanhðx−aÞ− 1

þ C
tanhðaÞ

�
xþa

cosh2ðxþaÞ−
x−a

cosh2ðx−aÞ
�
:

ð6:27Þ

The resulting pRCCM has equations of motion that must be
supplemented by the single-kink initial conditions
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að0Þ ¼ a0; _að0Þ ¼ v;

Cð0Þ ¼ 0.5v2 þ 0.210507v4 þ 0.027428v6 − 0.0302351v8;

_Cð0Þ ¼ 0: ð6:28Þ

In the full ϕ4 field theory simulations of KAK collisions,
the kink and antikink are boosted toward each other at
speeds vin, through the initial conditions

ϕinðx; 0Þ ¼ tanhðγðxþ a0ÞÞ − tanhðγðx − a0ÞÞ − 1;

∂tϕinðx; 0Þ ¼
γvin

cosh2ðγðxþ a0ÞÞ
−

γvin
cosh2ðγðxþ a0ÞÞ

:

ð6:29Þ

In the field theory, the kink and antikink either perform a
few bounces before escaping to infinity, or they annihilate
to the vacuum via the formation of an oscillating state,
called a bion, which slowly radiates, decaying to the
vacuum. Interestingly, these two possibilities exhibit an
amazingly complicated pattern depending on the incoming
soliton velocities, with multibounce windows and bion
chimneys occurring in a fractal manner; see Fig. 7, upper

left panel. The fractal structure starts at vmin ≈ 0.18 and
ends at vcrit ¼ 0.2598. Below vmin, only bion chimneys
exist, while above vcrit, only one-bounce scattering is
observed.
For a comparison with the nonrelativistic CCM based on

the shape mode [19], see Fig. 7, upper right panel. The
fractal structure is qualitatively reproduced, but there are
important details which do not fully agree: (i) There is an
overall shift toward larger values of vin, e.g., vcrit ≈ 0.28.
(ii) There is an unwanted, wide two-bounce window that
dominates the low-velocity dynamics for vin ≲ 0.11.
(iii) There are many three-bounce and higher-bounce
windows in the field theory’s bion regime, i.e., for
0.11≲ vin ≲ 0.2. Of course, the appearance of bounce
windows with a large number of bounces is unsurprising
as the CCM has no radiation modes that could transfer
energy from the bion. In the CCM, bions can decay only to
a free KAK pair. However, the existence of additional two-,
three-, or four-bounce windows is a rather unwanted
feature. Despite this, the results provide convincing evi-
dence that resonant energy transfer between kink motion
and an oscillatory mode is the mechanism responsible for
the observed fractal structure in the final state formation.

FIG. 7. KAK collision in ϕ4 theory: time dependence of the field at the origin, ϕðx ¼ 0; tÞ, and final velocity of backscattered antikink
vout for various initial velocities vin. Upper left: the full field theory dynamics; upper right: the CCM based on the shape mode [19];
lower left: the pRCCM with moduli ða; CÞ; lower right: the pRCCM with moduli ða; C1; C2Þ.
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The dynamics found in the pRCCM with only one
Derrick modulus C looks similar; see Fig. 7, lower left
panel. The overall shift to higher velocities persists, e.g.,
vcrit ¼ 0.2853. The velocity shift compared with the field
theory is Δvcrit ¼ 0.0255, a 10% error. However, there is
an important improvement in the low-velocity regime, as
the number of unwanted low-velocity bounce windows is
drastically reduced. Specifically, there is no low-velocity
two-bounce window, and there is only one unwanted three-
bounce window.
A spectacular improvement is observed if we use the

pRCCM keeping two Derrick moduli C1 and C2; see Fig. 7,
lower right panel. Basically, almost all bions in the bion
chimneys behave as in the field theory; i.e., they do not decay
into free solitons after just a small number of bounces.Hence,
there are very few bounce windows in the low-velocity
regime, and each exhibits a large number of bounces. A
similar improvement is observed in the higher-velocity
regime. Furthermore, the critical velocity is substantially
reduced, to vcrit ¼ 0.2490, for whichΔvcrit ¼ 0.0108, which
is only a 4% error. Additionally, the small wiggles in the final
velocities of the solitons, occurring in both the two-dimen-
sional CCMs, are now absent.
Interestingly, the frequency of the first Derrick mode

tends to the frequency of the shape mode as the dimension
of the pRCCM increases. Specifically, it decreases from
ω2
1 ¼ 3.1011 to ω2

1 ¼ 3.0221 when the modulus C2 is
included. In the latter case, the second Derrick mode has
frequency ω2

2 ¼ 6.9283, which is above the continuum
threshold. Therefore, oscillations of this mode may parti-
ally simulate some aspects of radiation.

VII. CONCLUSIONS

In the present work, we have explored the relativistic
collective coordinate model for (multi)kink dynamics,
which arises when the Derrick scaling deformation with
modulus (scale parameter) b > 0 is included. For a moving
single kink, the model reproduces the Lorentz contraction
of the kink [37], and its reduced Lagrangian is that of a
relativistic point particle.
The model can be extended to kink-kink and kink-

antikink collisions. For the KK sector of the sine-Gordon
model, we have constructed a globally well-defined moduli
space whose metric and potential lead to a Lagrangian
reproducing the exact KK solution.
In the case of general KAK dynamics, the construction

encounters some difficulties. The moduli space has a metric
singularity ata ¼ 0, i.e., when the kink and antikink coincide
and pass through the vacuum solution. We have shown that
this is an essential geometric singularity that cannot be
removed by a redefinition of the collective coordinates.
To circumvent this issue, we have introduced a pertur-

bative version of the relativistic collective coordinate
model, where the Derrick modulus is expanded around
its undeformed value b ¼ 1. This corresponds to an

expansion in the squared kink velocity and therefore
incorporates relativistic corrections in a perturbative man-
ner. Here, a key idea is to treat all the terms in the field
expansion as independent higher-order Derrick modes
whose amplitudes are independent collective coordinates.
The field configurations are less constrained than before,
even if just the first-order (original) Derrick mode is
retained. Each of these new collective coordinates has a
null vector problem at a ¼ 0, but these can all be resolved
by a coordinate redefinition that absorbs a factor tanhðaÞ.
Note that such a coordinate redefinition has no physical
effect for a > 0, but it smoothly extends the moduli space
through a ¼ 0 and allows for a smooth dynamics.
In contrast to previous treatments of the singularity of the

relativistic CCM, this is a straightforward approach that can
easily be implemented. Furthermore, it provides an arbi-
trary number of collective coordinates, which can be used
to improve the description of multikink collisions in any
(1þ 1)-dimensional scalar field theory. It has been tested in
the sG model and in ϕ4 theory, and the results are very
encouraging.
In the case of KAK collisions in the sG model, we found

that the pRCCM does not spoil the integrability property.
The inclusion of the first Derrick mode gives a model where
there is always a separating kink and antikink in the final
state. There is no annihilation or particle production, as
expected. In fact, the two-dimensional pRCCM gives a
more accurate approximation, by 2 orders of magnitude,
than the simpler one-dimensional CCM constructed from a
superposition of an undeformed kink and antikink.
The pRCCM framework, applied to KAK collisions in

ϕ4 theory, reproduces the fractal structure of the velocity
dependence of the final state formation rather well. When
the first-order Derrick mode is included, there is a small
improvement in comparison with the CCM incorporating
the kink’s shape mode [19]. The improvement is particu-
larly striking when both the first-order and second-order
Derrick modes are included. The results from the pRCCM
appear to be converging to those of the field theory as the
number of retained Derrick modes increases.
This shows the universality of the Derrick deformation

framework. Namely, it works for qualitatively distinct
kinks, one having a shape mode and the other not. It
would be interesting to extend this relativistic framework to
field theories with kinks that are not spatially antisym-
metric, e.g., to the kinks of the ϕ6 model.
Finally, one would like to extend the framework to

higher dimensions. For example, in the context of (3þ 1)-
dimensional skyrmions, it may improve the vibrational
quantization procedure [41]. This is, of course, related to
the question of possible quantum corrections to kink
dynamics, recently reconsidered by Evslin [42]. Quantum
corrections can contribute to shape mode dynamics and
therefore presumably to the dynamics of Derrick modes at
any order.
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APPENDIX: NUMERICAL METHOD FOR
SOLVING THE CCM

The collective coordinate model for field configurations
Φðx;XÞ with Lagrangian (2.3) has the Euler-Lagrange
equations

Ẍi

Z
∞

−∞

∂Φ
∂Xi

∂Φ
∂Xk dxþ _Xi _Xj

Z
∞

−∞

∂2Φ
∂Xi∂Xj

∂Φ
∂Xk dx

¼ −
Z

∞

−∞

∂W
∂Xk dx; ðA1Þ

where

WðΦÞ ¼ 1

2

�∂Φ
∂x

�
2

þUðΦÞ: ðA2Þ

This can be rewritten as a matrix differential equation for
the moduli Xi,

�Z
∞

−∞
eiekdx

�
Ẍiþ

�Z
∞

−∞
Hijekdx

�
_Xi _Xj¼−

Z
∞

−∞

∂W
∂Xkdx;

ðA3Þ

where

ei ¼
∂Φ
∂Xi ; Hij ¼

∂2Φ
∂Xi∂Xj : ðA4Þ

In solving this set of equations, it turns out that
calculating the integrals numerically, even for the metric
integrand eiek, is more stable than implementing analytical
expressions. The cost is similar to the cost of calculating the
integral on the right-hand side, as we need to numerically
calculate the vectors ei anyway. Direct analytical calcu-
lations are prone to many numerical errors, arising, for
example, from the catastrophic cancellation problem.
Therefore, we calculated each required integral at every
time step.
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