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We investigate the SO(5) Landau problem in the SO(4) monopole gauge field background by applying
the techniques of the non-linear realization of quantum field theory. The SO(4) monopole carries two
topological invariants, the second Chern number and a generalized Euler number, specified by the SU(2)
monopole and antimonopole indices, 7, and I_. The energy levels of the SO(5) Landau problem are
grouped into Min(7,, I_) + 1 sectors, each of which holds Landau levels. In the n-sectors, Nth Landau level
eigenstates constitute the SO(5) irreducible representation with (p,q)s = (N+ 1, +1_—n,N + n)s
whose function form is obtained from the SO(5) nonlinear realization matrix. In the n = 0 sector, the
emergent quantum geometry of the lowest Landau level is identified as the fuzzy four-sphere with radius
being proportional to the difference between 7, and /_. The Laughlin-like wavefunction is constructed by
imposing the SO(5) lowest Landau level projection to the many-body wavefunction made of the Slater
determinant. We also analyze the relativistic version of the SO(5) Landau model to demonstrate the Atiyah-
Singer index theorem in the SO(4) gauge field configuration.
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I. INTRODUCTION

More than forty years ago, Yang introduced the SU(2)
monopole that epitomizes beautiful topological features of
a non-Abelian gauge field [1,2]. The SU(2) monopole on
§* realizes a natural non-Abelian generalization of the U(1)
principal fiber of the Dirac monopole on S? [3], and the
SU(2) monopole charge exemplifies a physical manifes-
tation of the second Chern number. Not only for its elegant
mathematical structure, the SU(2) monopole found its
physical applications in the SO(5) Landau model and
four-dimensional (4D) quantum Hall effect [4], which,
from a modern point of view, is the first theoretical model
of a topological insulator in higher dimension. The under-
lying geometry of the system is the nested quantum Nambu
geometry that does not have any counterpart in classical
geometry [5], which renders the system to be quite unique
also in view of the noncommutative geometry [6,7].
Tensor-type Chern-Simons theories are proposed as effec-
tive field theories [6,7] that naturally induce generalized
fractional statistics of extended objects [8—10]. The theo-
retical formulation of the quantum Hall effect has now been
generalized to even higher dimensions [11-21] and super-
symmetric versions [22,23].
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In recent years, studies of the higher dimensional
topological phases took a new turn. The idea of the
synthetic dimension and artificial gauge field allowed
researchers to access higher dimensional topological
phases with tabletop experiments. The artificial SU(2)
monopole gauge field has been implemented in systems
such as cold atoms [24] and metamaterials [25]. For
topological features specific to the 4D quantum Hall
effect, a number of experiments have been proposed in
cold atoms [26,27], photonics [28], circuit [29], and
acoustics [30], and several theoretical predictions have
already been confirmed [31,32]. Along with the develop-
ments, a five-dimensional (5D) Weyl semimetal with an
SU(2) monopole and SU(2) antimonopole structure in
the momentum space has been proposed [33,34] and
reported to host higher order topological insulators
[35,36]. Partially inspired by the recent progress of
higher dimensional topological physics, we present a
formulation of the 4D quantum Hall effect with an SO(4)
gauge structure. The SO(4) ~SU(2) ® SU(2) group is
only the semisimple group among all of the SO(n)
groups, and the SO(4) monopole can be regarded as a
“composite” of the SU(2) monopole and the SU(2)
antimonopole. This notable structure is significant in
the perspective of the topological insulator, because with
the SU(2) monopole and the SU(2) antimonopole in the
same magnitude, the system may realize a nonchiral
topological phase in a higher dimension. This feature
is quite analogous to that of the quantum spin Hall
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effect [37-39]." Also in perspectives of the string theory, the
nonchiral topological insulator is interesting. The formerly
constructed even dimensional quantum Hall systems are all
chiral that correspond to the chiral superstring theory
known as type II, while nonchiral quantum Hall systems
realize rare setups that correspond to the nonchiral super-
string theory known as type I [42,43].

The SO(4) gauge structure naturally appears in the
context of the 4D quantum Hall effect.” In the setup of
the Landau models, the gauge group is adopted to be
equal to the holonomy group of the base manifold (see
[44,45] as reviews). For the SO(5) Landau model, the
base manifold is $* whose holonomy group is SO(4),
and in former researches, one SU(2) of the SO(4) ~
SU2) ® SU(2) was adopted as the gauge group.
Notably, Yang applied the method of separation of
variables in solving the differential equation of the
SO(5) Landau problem in the SU(2) monopole back-
ground and successfully derived the eigenvalues and the
eigenfunctions [2].° Though the analysis of the SO(4)
case is obviously significant, it is still left unexplored. It
may be because the Landau problem in the SO(4)
monopole background is far more complicated compared
to the SU(2) case. To overcome such technical difficul-
ties, we adopt the techniques of nonlinear realization.
While the nonlinear realization technique has been
developed in quantum field theory [46—48], the nonlinear
realization is closely related to quantum mechanical
systems with gauge symmetries [49] and has been
successfully applied to recent analyses of the Landau
models [11,14,50,51]. We use this method and com-
pletely solve the SO(5) Landau model in the SO(4)
monopole background. With newly obtained monopole
harmonics, we unveil particular properties of the SO(5)
Landau model and 4D quantum Hall effect.

The paper is organized as follows. In Sec. II, we
present a brief review about the nonlinear realization of
the SO(3) Landau model. Section III explains the Yang
SU(2) monopole in a modern notation and derives a
general form of the SO(5) matrix generators. In Sec. IV,
we exploit the nonlinear realization for the SO(5) group.
The SO(5) Landau problem in the SO(4) monopole
background is investigated in Sec. V. In Sec. VI, we
identify the noncommutative geometry and construct a

'For a time-reversal symmetric 3D topological insulator with
Landau levels, one may consult Refs. [40,41].

“Strictly speaking, the universal cover of SO(4), i.e., Spin(4),
is adopted as the gauge group.

3Such monopole harmonics are known as the SU (2) monopole
harmonics, but in the present paper, we refer to the eigenstates as
the SO(5) monopole harmonics with emphasis on their SO(5)
covariance.

Laughlin-like many-body wave function. The relativistic
Landau model is discussed in Sec. VII to demonstrate
the Atiyah-Singer index theorem for the SO(4)
gauge field. Section VIII is devoted to summary and
discussions.

II. SO(3) MONOPOLE HARMONICS AND
NONLINEAR REALIZATION

The monopole harmonics are known as the eigenstates of
the SU(2) Casimir of the angular momentum in the Dirac
monopole background. In the Dirac gauge, the monopole
gauge field is given by

1
A= I g ) (1)

and the corresponding magnetic field is derived as

1
B; = eijkajAk = gﬁxi- (2)

Here, g takes an integer or a half-integer due to the Dirac
quantization condition.” The covariant angular momentum
operators are constructed as

A; = —ie;x; (0 + iAy), (4)
and the total angular momentum operators are

LY = A; + B, (5)

i

In detail, Eq. (5) is given by

ng) = Lgo) + g, Ls,f) = LS,?) —l—grl)%xm (m=1,2),
(6)
with
L§0> = —i€; X ;0. (7)
“The U(1) monopole charge is given by
c B =2g, (3)

_277.' 52

which represents the first Chern number of integer value. The
result (3) is consistent with the fact that g is either an integer or a
half-integer.
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We introduce a nonlinear realization of the SU(2) group for
the coset SU(2)/U(1) as’

: E (1)
¢l(9, ¢) — elg /2V'J1:1 61nl1ym(¢)sn , (11)
where

yi=cos¢,  y,=sing, (12)

and S l(-l) denote the SU(2) matrices of spin magnitude / with
their third component being

SV = diag(1,1-1,1-2.....=1). (13)

We see that the nonlinear realization (11) is a (21 + 1) x
(21 4 1) matrix that satisfies

_ o
L5 ®,(0, ) = (6, )5, (14)

By denoting the components of ®,(0, ¢) as

P (0.4) = (©,(6.9)),,

(gom=101-1,1-2,....—1+1,=I), (15)

Eq. (14) is recast into the following form:

1
(plm Z(pg’sl mm’ (16)

m=—

and then

l
¢l m Z §01 m' m

m'=—

=1+ g, (17)

*When [ = 1/2, Eq. (11) is represented as

A , cos? sinZ e
@1/2(97 4)) — e%z:”:] EnnYm (9)0, — ( ) 2 ) 2 )
—sinfe  cos?
1 1 —+ X3 X, — i.XZ
= ( . > (8)
2(1 +X3) —X| — Xy 1+X3
where
X, = sinfcos ¢, X, = sinfsin ¢, x3 =cosf. (9)
One may readily check that @ /,(6, ¢) (8) satisfies (14):
Lo, (0 ®, (0, 4) 2, 10
; 12(0.¢) = @y o ¢)2 (10)

which indicates that go%(é, ¢) realize the monopole
harmonics introduced in [52]. With normalization factors,
the normalized monopole harmonics are expressed as

2041

L Pin(0.9). (18)

Notice that the nonlinear realization (11) is factorized as

®)(0,¢) = emit8! 4105, pigs! D¢, —0.—¢). (19)

Here, D is Wigner’s D functions (see [53] for instance):
Dl()(ﬂ 97 ¢) - e—i)(Sgl) e—iesfﬁ €_i¢S§’) . (20)

Equation (15) is equal to Dy(¢,—0,-¢),,, =
dpgm(—0)e e'm=9 with d; ., being Wigner’s small D
matrix’:

sV
dj.m,m’<9) = (6 05, )m.m" (23)

With the monopole harmonics that satisfy (17), it is now
feasible to solve the SO(3) Landau problem on a sphere
[52,54]:

3 3
He g >oar = (S e
3
(). ()

While [/ was assumed to be a given quantity, the input
parameter in the Landau Hamiltonian is the monopole
charge g, and then [ should be determined by ¢. In the
following we assume g > 0 for simplicity. The SU(2) spin
index [ is greater than or equal to g, and so [ starts from g
(not from 0). Therefore, the Landau level index N may be
identified as

N=l-g=0,12,.... (25)

®The explicit form of (23) is given by

| o\ m+m'
I (COS E)

(+m)(j -

o\ m—m',m+m’
« <sin§) P (o5 6), 1)

J—m

where P\ (x) stand for the Jacobi polynomials:

Pl(laﬂ)(x) (-1 .n (1=x)"(1 +x)7 &

1 = x)"te(1 n+/1.
2"n! dx" (1=x)™(1 +x)

(22)
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(D1=N+¢(0,0))gm =
D=2N+2g+1

Landau level

. Nth LL eigenstates in the monopole bgd with charge g
N g P1 $2 »3 aen aan ane aee ©D

FIG. 1.
realization.

We then identify the SU(2) spin index / of the nonlinear
realization (11) as

[=N-+g. (26)

From (15), we can now derive the (N + 1)th column of
®;_y4(0. @) as the set of the Nth Landau level eigenstates:

iy ggm = O g (m=L1=11=2, .. —I).

(27)

See Fig. 1. Equation (17) implies that the eigenenergy of
(24) is given by

1 (I=N+g)2 2
Ey =—(S; =
N 2M( i g )
1
:m(l(lJr Dlimyig — %)
1

=5 NN+ 1) +g@N +1).  (28)

and (27) denotes the Nth Landau level eigenstates. Notice
that we first identified the Landau level eigenstates as the
nonlinear realization, and later we derived the Landau
energy levels from the SU(2) covariance of the nonlinear
realization.

Let us summarize the essence of the nonlinear realization
technique. Once the nonlinear realization was constructed,
we can read off the lowest and higher Landau level
eigenstates from its matrix elements. In the construction
of the nonlinear realization (11), what we needed was just
the higher spin matrices. The explicit form of the higher
spin matrices has been known, but even if we did not know
them, we can derive them by sandwiching the angular

g : half-integer

(P1=N+(0,9)) g m =
D=2N+2g9+1
|

o N4g iNdg-lNgg2] mee | | P 1 ees ! | v
Landau level i i {N+s | 140 1 i | POV

: Nth LL eigenstates in the monopole bgd with charge g
N g Y1 P2 w3 wee e s e YD

The Nth Landau level eigenstates are realized as the components of the red enclosed (N + 1)th column of the nonlinear

momentum operators with some appropriate irreducible
representation, say, the lowest Landau level (LLL) eigen-
states.” In the following sections, we apply these observa-
tions for solving the SO(5) Landau problem in the SO(4)
monopole background.

III. SO(5) MATRIX GENERATORS FROM
YANG’S MONOPOLE HARMONICS

We first need to derive the matrix generators of arbitrary
SO(5) irreducible representations. Fortunately, Yang
already derived a complete basis set of the SO(5) irreduc-
ible representations as the SO(5) monopole harmonics [2].
Sandwiching the SO(5) angular momentum operators with
the SO(5) monopole harmonics, we can in principle derive
the SO(5) matrix generators of arbitrary representations.
In this section, we review Yang’s work with a modern
notation [5] and derive a general matrix form of the SO(5)
generators.

A. Basics of the SO(5) representation

The SO(5) algebra holds two non-negative integer
Casimir indices, p and ¢ (p > g); the SO(5) Casimir
eigenvalue for the SO(5) irreducible representation,
(P.4q)s, is given by

1 1
Mp.q) =§p2 +5q2+2p+q; (30)

7Using the LLL eigenstates (pﬁ,g,),, we can construct the higher

spin matrices with spin magnitude g by the formula:

B doltn L0, = () (9)

A g.m’' mm
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and the corresponding dimension is

D(p.g)=¢(p+2)a+1)(p+g+3)(p=g+1). (1)

The SO(4) ~ SU
given by (Fig. 2)

(p.a)s= D (J: k)a- (32)

(2) ® SU(2) subgroup decomposition is

where

The symbols, j and k, denote the bi-spin indices of
the SO(4)~SU(2) ® SU(2) group, while n = j+ k—
P4(=0,1,2,....q) and s=j— k(= -5 2201,
—5544-2,...,259) indicate the Landau level index and
the chirality parameter in the SO(4) Landau model [5]. The
notations, (j, k), and [n, s], are both useful according to

context, and we hereafter utilize them interchangeably:
(J: k)y < [n,s]. (34)

Let us call the oblique lines in Fig. 2 specified by
j+k=n+24 the SO(4) lines. Each filled circle

pta 4
2
.
e | UGm=
rP-a
& +2 .\
e e
P-aq
Bl e @ @
\\
o O
\

e o e 2,

P g
Soz e © @© \‘ '<— Q=G0
L e @ eve -
1
2,
orl
’ LN NN
01 jor2 e e e P-4 P-4,y P-4, 4 o e Pt4
2 2 2 2
L T J
a+1

FIG. 2. Each of the filled circles represents an SO(4) irreduc-
ible representation. The SO(4) irreducible representations rep-
resented by the filled circles amount to the SO(5) irreducible
representation (p, g)s. (Taken from [5].)

represents an SO(4) irreducible representation (j, k), with
dimension (2j + 1)(2k + 1). On the nth SO(4) line, there
are (p — g + 1) SO(4) irreducible representations, and the
total dimension of those SO(4) irreducible representations
is counted as

dnp-q)= S @i+ DEk+1)

<<t

1

=P —a+1)((p-a)+(6n+5)(p-aq)

+6(n+1)?%). (35)
As depicted in Fig. 2, the SO(4) irreducible representations
onthe (¢ + 1) SO(4) lines (n = 0, 1,2, ..., g) constitute the
SO(5) irreducible representation (p, q)s:

q
> d(n,p-q)=D(p.q), (36)
n=0

where D(p, q) is given by (31).

B. SO(5) monopole harmonics
in the SU(2) background

In the Dirac gauge, the SU(2) antimonopole gauge
field [4] is represented as

A, =— )ﬁi,man,- (m,n=1,2,3,4), As=0,

(37)

where S; (i = 1, 2, 3) denote the SU(2) matrix of the spin
I/2 representation,

1/
§;8; = > (E + 1>1I+lv (38)

and 7', signifies the *t Hooft symbol:

A
Mmn = €mnia + 5mi5n4 - 5m46niv

ﬁinn = €pnia — 5mi5n4 + 5m46ni' (39)

We construct the covariant angular momentum operators as
Atlb = _ianb + ibea (Da = aa + iAa) (40)

and the total SO(5) angular momentum operators as

Luy, = Agp + r*F g (41)
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The field strength, F,, = 0,A, — 0,A, + i[A,, Ap]
(a.b=1,2,3,4,5), is derived as®

1 1 1
an = _ﬁxmAn +ﬁanm +ﬁ71mnsi’

1
F,s=—Fs, = ﬁ(r+x5)Am’ (44)

and (41) is given by

0

Low = L+ S Lps =L~ i s,
mn mn +’7mn i mS MnnXn9i»

mS r 4 Xs
(45)

where Lg,)) denote the SO(5) free angular momentum

operators:
o _ . .
L,, = —ix,0, + ix,0,. (46)

Now the eigenvalue problem of the SO(5) Casimir operator
reads

5
> Lptw =y (47)

a<b=1

Yang showed that with a given SU(2) monopole index 1, p
and ¢ are related as

p—q=1 (48)
or
(p.q)s = (N+1I,N)s. (49)

Here N denotes a non-negative integer value that corre-
sponds to the Landau level of the SO(5) Landau model [4].
Substituting (49) into (30) and (31), respectively, we
readily obtain the SO(5) Casimir eigenvalues of (47)
and the degeneracies as

1
AN +1,N)=N*+N(I+3) +§1(1 +4),  (50a)

¥The nontrivial topology of the SU(2) monopole field con-
figuration is accounted for by
75(SU(2)) = Z, (42)

and the corresponding second Chern number is evaluated as

1 1
oy = 72/ CF = - 1 D142, (43)
87 st 6

where F = %Fabdxa A dx; with (44).

D(N+1.N) :é(N+1)(1+1)(1+N+2)(1+2N+3).
(50b)

Thus, once the identification (49) was established, the
derivation of the eigenvalues is an easy task, but the
derivation of the eigenstates needs a different task. Yang
used the method of the separation of variables for solving
the differential equation (47) [2]. We will not here repeat
that derivation but just write down the results in a modern
notation [5]. With the polar coordinates on a four-sphere
(with unit radius)

x; = sin&sin y sin @ cos ¢, X, = sin £ sin y sin @ sin ¢,

X3 = sin £ sin y cos 6,
x4 = sinécosy,

(0<é<m,

X5 = cos ¢,

0<y<zm 0<£0<zn 0<L¢<2n),

(51)

the normalized SO(5)
represented as’

monopole harmonics are

V’N;j,mj;k,mk(94) = GN.j,k(g) : Yj,mj;k.mk (Q3>

Q3 = (1.0, )], (54)
where
Gy ix(&)=(=1)¥114 /N+£+§Ld , o (&)
N.j.k - 2 2Sin§ N+5+1,—jt+k, j+k+1 ’
(55a)

k,my,
Cj’mk;%éq)j,mj;j,mk (93)

. ke,

J Cj,mR;éé_lq)j.m_,-;j.mR <QB)

Yj,mj;k,mk (93) - Z

mr=—j

(55b)

chme @

a1 P im (
Jimgi5,—5 Jomjij,mg

Q;3)

“The orthonormal relation for the SO(5) monopole harmonics
is given by

/ dQ4V’N;j.mj;k,mk (94)TWN’;j’,m3 A (94)
= 6NN’5jj/6kk/5mjm}6mkm2’ (52)
where

dQ, = sin’¢ sin’y sin O dédydOdg. (53)
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Here, dN+L+1 —jtkjt+k+1 10 (S55a) stand for the Wigner’s
small D matrix (23), Cf;:k 1/2.5. in (55b) represent the

Clebsch-Gordan coefficients, and @, .; ,,, (€23) denote the

SO(4) spherical harmonics [51]. From (49), the SO(4)
bi-spins (33) now become

1 n [ s
k), = -t - —— 56
(- K)s <2+4+2 2% 2>4’ (56)
where
I 1 1
=0,1,2,3,... ==, —=1,...,—=. 7
n 07 ’ 737 7N7 N 272 ’ ’ 2 (5)

Equation (56) implies that the Hilbert space of the Nth
SO(5) Landau level consists of the smaller Hilbert spaces
of the inner SO(4) Landau levels:

HES N = @ @ Ml (59)

0<n<N _L<\<l

For instance, the LLL (N = 0) of I =1 holds fourfold
degeneracy made of two SO(4) irreducible representations,
[n,s] = [0,1/2] and [0,~1/2],"

V3. &
V= 1/’01/21/200——5 5
V3 §< i siny sin @e~ >
=Wo.1/21/2:00 = — SN~ ,
V2 =Wouja-i/z00 =580 —cosy — isinycos@

ﬂ(cos%)

V3 =¥0.00.1/2.1/2 = “on 0

V3 0
V4 =V0,00:1/2-1/2 = _E < ¢>~ (60)

COs 3

cosy —isinycos®
—isin y sin Qe'?

C. SO(5) matrix generators for arbitrary
irreducible representation

We next investigate the matrix form of the SO(5)
generators of arbitrary irreducible representations. For
notational brevity, with the understanding of (49) we
simply represent y . Jomskmy (54) as

l[l((lp#)s, (61)

"The states of (60) are essentially equal to those of (B3):

_ V3 oy V3 0y
lI/1—2ﬂ'l/1 s V’l—zﬂlllz )
V3 0t V3 0t
Vs = _ng L oy= —gllh[x n (59)

where
= (Jymjik.mp) = 1,2,....D(p. q). (62)

As the SO(5) monopole harmonics realize a (p,q)s
irreducible representation under the transformations gene-
rated by L,

Lablll((zp’q)s — W}}P-Q)s (ZEIII’;‘!)S )ﬁa’ (63)

we can derive the SO(5) matrix generators of (p, g)s by
sq)s T B

S5 = [ 2 L (64

For instance, from (60), 221;]’0)5

5 (10); :l <’7§nn6i ‘O >
2 0 ﬁinnai

1o, 1[0 =g,
z =i- , 67
s (qm 0 (©7

. 1
are derived as

where #i,, and 7, are the 't Hooft symbols (39), and g,,
and g, denote the quaternions and their quaternion
conjugates:

qm = {_iai’ 1}’ qm = {io-i’ 1} (68)

The SO(4) decomposition (58) implies

+u_z

mn @ @ (7<j 2+l q+2k 4 2) 5 (69)

0<n<q -Ii<s<ld

where o) are the SO(4)~SU(2), ® SU(2); matrix
generators with index (j, k),
G(j X = nmn ® 12k+1 + 12j+1 ® nmn k)' (70)

More specifically,

"'With the SO(5) gamma matrices

(0 g, (-1 0
Egs. (67) are simply given by

X 1
z" = =i gt o) (66)
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D(p,q)
L
( - d(0,p —q)
0 _

0 -- d(1l,p—q)
Zq(q%q)s = ...O - d(2,p—q)

o N J
\ O - d(q,p —q)

FIG. 3.

squares and rectangles.

GLZHZ y 0 0 0 0

0o o= 0 0 o0
PDs=1 0 0 o) 0O 0 |, (71
0 0o . 0
0 0 0 o9

where o denotes the d(n,p—q) xd(n,p —q) square

matrix that is further block-diagonalized:

(5L453)s

Omp 2 0 0 0
[n] 0 UﬁJr’zl_%'%Jr%)A O 0
Omn =
0 - 0
0 0 ogitT

(72)

See the left of Fig. 3. Since L,,5 behave as an SO(4) vector
of the SO(4) bi-spins,

(k) = (%%)4

the SU(2) selection rule indicates that the matrix elements
of L,5 take nonzero values only for

11 11
Aj,AK), = (=.= — =
wan=(12), (1),

11 11

27 2)) 27 2),

In other words, Zifs’q) have finite matrix elements only
between nearest SO(4) irreducible representations in

Fig. 2, and the matrix form of the Z,(nps"’) is depicted in

Fig. 3. The matrices (67) actually fit the general matrix

(73)

(74)

-d(0,p—q)
Ld(1,p—q)
Fd(2,p—q)
Fd(g,p—q)

General matrix form of the SO(5) generators. The SO(4) block matrices with nonzero elements are denoted as the filled

form of Fig. 3. It should be emphasized that while we
utilized Yang’s monopole harmonics, the obtained SO(5)
matrix generators do not depend on the functional forms
specific to Yang’s monopole harmonics and are universal
for any SO(5) irreducible representations.

IV. SO(5) MONOPOLE HARMONICS AS
NONLINEAR REALIZATION

Here, we discuss how the nonlinear realization is related
to quantum mechanics with gauge symmetry. While we
focus on the SO(5) case, the obtained results can easily be
generalized to arbitrary groups.

A. SO(5) nonlinear realization
and SO(4) gauge symmetry

Let us consider the nonlinear realization of the SO(5)
group for the coset manifold
§*~S0(5)/S0(4). (75)
In the context of quantum field theory, the coset represents
the field manifold associated with the spontaneous sym-
metry breaking of SO(5) — SO(4). With the broken
generators

=Pas (m=1,2,3,4) (76)

we can construct the associated nonlinear realization matrix

(pa)s

Pra)s(Q,) = ol D et On(Q)Z, (77)

where a,, are parameters to be determined. With an element
of the unbroken SO(4) group,

1 4 (r.a)s
5 O3
H 2 _ mn<~mn
=e mn=1 N

(78)

the SO(5) group element is locally represented as
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Hi . pra)s, (79)

Equation (71) implies that H (78) is expressed as a
completely reducible representation of the SO(4),

q
=@ n,  (80)
=0

n

and each of the block matrices is further block-diagonalized,

Al 0 0 0

0 ArEEN 00
hlnl =
0 0 0
0 0 0 A7
= sl (81)
—ri<s<l

Recall that [n, s| specifies the SO(4) bi-spin indices (34).
Assume that the unbroken SO(4) transformation acts as a
“gauge” transformation, 12

pra)s — g . pra)s, (82)

while the global transformation G € SO(5) acts as a right
action,

yra)s - pras . G. (83)
The corresponding connection is introduced as

A, = —iPr9s9 plrast

ALO] ALOJ] . AEJJI]
ALI,O] ALI] ALl,q]

= (34)
ALCI’O] AL@-” .. AL‘I]

Under the transformation (82), Eq. (84) transforms as an
SO(4) gauge field as anticipated:

A, » H AH—iH 0 ,H. (85)
However, note that A, (84) is a pure gauge whose curvature

identically vanishes. To realize a physical gauge field, we
utilize the block-diagonal parts of (84),

In the context of field theory, Eq. (82) is called the hidden
local symmetry of nonlinear realization.

S
5}
Il

0 0 0 A9

and each of the block matrices is given by

AT 0 0o

o AU oo
i a
Al =
0 0 - 0
0 0 0 A7
= Al (87)
<yt

Under the transformation (82), A, transforms similarly
to (85):

A, —» H'A,H—iH"0,H. (88)

We see that A, is no longer a pure gauge field in the sense
that the corresponding curvature, F,, = d,A, — 0,A,+
i[A,, Ap], does not vanish. It is also obvious that A, are
invariant under the global SO(5) transformation (83). With
the A,, we can introduce the covariant derivatives and
angularmmomentum operators for the nonlinear representa-
tion as

D, YPa)s =9, Pras 4 jA, PPras,

Jap WP s = (=ix,Dy, + ix, Dy + r*F o, ) ¥ (91)

Let us focus on the smaller SO(4) gauge transformations
denoted by A"l of (81) that carry the SO(4) bi-spin

indices:

. n p—q S n
(j.k), <2+ T Tyt 2)4 (92)

We represent ¥ (77) as

BUnder the gauge and the global transformations, the quan-
tities defined by (91), respectively, transform as

Dalp<l’v‘1>5 S HT .Dalp<p-q>5’ Jablpmq)s S HT .Jab\p(p,q%’ (89)

and

D, Y»9s - p Wras.G,  J, PP - g, Praos.G. (90)
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(0] (0] (0]
o TD(/W)
pl ol gll]
pr.a)s — ' : bip-a) . (93)
[q] [g] [g]
¥ lPD(M)

1] _ :
and each block ‘P(a 12, D(p) (n=0,1,2,...,q) which
we call the n sector of W(P9)s takes the form of

llll[;,l’l’;‘l]
[l"’%—l]
pll — [:1 e (94)
Va
AN

The gauge (82) and the global transformations (83),

respectively, act to the y/g' ) (-5 <s <59 as

(5] b ] []D(P,q)[]

wi = Hm iy S G (99)
p=1

The gauge field A" in (87) is represented as

a :_l Zv/[ﬂY a¥ ([:H ’ (96)

which transforms as

AL s Bl AT i) —plnsli gl (97)

Using (96), we can construct the covariant derivatives and
the angular momentum operators as

DLn,s]y/([;z,s] _ ag'[’([r 5] + lA[n S]w[ s]’
= (—ix, D" + ix, DI 4 P2 Uyl
(98)

JL”I;S] y/([;@s]

The second equation of (95) implies that the set

I[I([:lj’z ..... D(p.q) CODStitutes an SO(5) irreducible represen-
[n.s]

tation with (p, ¢)s, and at the same time, y, "~ enjoys the
SO(4) gauge symmetry of the SO(4) bi-spin indices (92).
The physical quantities that hold such features are nothing
but the SO(5) monopole harmonics.

B. Determination of the SO(5) nonlinear realization

Our next task is to determine the parameters «,, of the
nonlinear realization (77). For this purpose it is sufficient

to consider the simplest case Z 0)s (67), in which the

nonlinear realization (77) reads

COS( )12 Sln(a) mLIm ) (99)

cos(§)1,

w00  (

- Sin(f) 2%m9m

with @ = +/a,,?. According to the discussions of Sec. IVA,
we rewrite (99) in the following form:

[0.] [0.] [0, [0.]
lP(l’O)S (Q) — wl lIl2 II/3 II/4 (100)
[0.—3) [0.~3] [0.~3] [0.3]
v '4) V3 L

to see that the set of the upper and lower two columns,
respectively, represents the monopole harmonics of
(p.q)s = (1,0)5 in the SU(2) monopole background
and in the SU(2) antimonopole background. Recall the
(anti)monopole harmonics (60) to construct

(vi w2 w3 —yy)
L
=7\ Xnqn

2(1+XS)

SIN

(I+x5)l2), (101

which should be identified as the lower two columns
of (99). Now «,, can be identified as

W (Q4) (102)

=&V

where y,, (m =1, 2, 3, 4) denote the coordinates on the
hyperlatitude at the azimuthal angle £ on S*:

1
Ym :@xm
= {siny sin@ cos¢,siny sind sing,siny cosf,cosy} € S>.

(103)
The nonlinear realization (99) is represented as

1 ((1 +X5)12 xmém )
2(1 +xs) ~Xum (1 +x5)1 )
(104)

0)s (Q4) =

For general representation (p, ¢)s, the nonlinear realization
is given by

)5

Plra)s(Q,) = & ey InE (105)
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which naturally generalizes the SO(3) case (11). It is
straightforward to check that (105) covariantly transforms
under the SO(5) rotations generated by J,;, (91),

T W5 (Qy) = Wras(Q) s, (106)
which implies
DLW @) = WO (@) Y5l
a<b a<b
= Mp. q)¥P" s (Qy). (107)

In the language of y/gl <, Eq. (107) is translated as

n.s [ns]
§ :‘Iah Va

a<b

= 2p. Qi (108)

Note that (108) signifies that 1//31 | are the SO(5)
monopole harmonics with the eigenvalue value A(p,q)
in the SO(4) monopole background with (%,%)4 =
G+E0 4554509,

V. SO(5) LANDAU PROBLEM IN THE SO(4)
MONOPOLE BACKGROUND

We now apply the techniques of the nonlinear realization
to the SO(5) Landau problem in the SO(4) monopole
background. In the context of the Landau model, p and ¢
are quantities to be determined.

A. The SO(4) monopole and SO(5) Landau
Hamiltonian

Before proceeding to the SO(5) Landau problem, we
explain topological features of the SO(4) monopole gauge
field. The SO(4) monopole is simply introduced with
replacement of the SU(2) spin matrices of the Yang
monopole (37) with the SO(4) bi-spin matrices:

As=0, (109

where

G <’

Omn = nmn &1 1+ 11++1 ® ’7mn (T_) (110)

The SO(4) monopole is conformally equivalent to the
SO(4) instanton on R* that is a solution of the pure Yang-
Mills field equations [10,55,56]. The SO(4) monopole
gauge field (109) can be expressed as
A=Audx, =AY ®1, , +1, ., ®AC), (111

where A(t) and A=) denote the SU(2) monopole field and
the SU(2) antimonopole field, respectively,

(S
A = ——nﬁnnSE;)xndxm,
r(r+ xs)
1_
A == g Ty gy 112
gy TS (112)

The corresponding field strength, F,, = 0,A, — 0pA,+
i[A,, Ap], is derived by

1 1 | Ay
Fpy = —X mAn + 5 X Am + 0£ﬂ2" T s
r
1
F,s=—Fs, = p(r +x5)Amv (113)
which satisfy
S oFa = o
a<b r4 m<n
1
= 2 4 L+ 2,
(114)

With the vierbein e of $*, Eq. (113) can be concisely
expressed as

1 1 m n (%*%)4
FZEFabdxa/\dbeEe N\ e " Opn .

(115)
The SO(4) group hosts two invariant tensors, i.e.,
Kronecker delta symbol and Levi-Civita four-rank tensor,
which allow us to introduce two SO(4) gauge invariant
topological invariants [57], the (total) second Chern num-
ber and a generalized Euler number (see Appendix A for
details):

1
=52 ) ")
1
:@ leszm3n14tr(0m]m26m3m4), (11621)
~ 1
C = g tI‘(Ff)
1
= —Z/U'(]:F)
T
1
= W gM3mamsmeg pmymy Fm3m4tr(6mlmz‘7m5mﬁ),
(116b)
where
FEllemZG R f51€n1|m2n13m4F . ' (117)
2 iy 4 mymyY msmy
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Iy 1-
For F,,, = e,, A e, and 6,,, = 0%’7)4, Eq. (116) is evalu-
ated as'

D = L0+ )4 )L +2) = (- +2),

(121a)
&5 1
G, —6(I++1)(1_+1)(I+(I++2)+I_(I_+2)).
(121b)
Meanwhile, from the homotopy theorem
73(S0(4)) 2 m3(SU(2)) @ n3(SU2))~Z ® 7, (122)

we can introduce two distinct second Chern numbers
corresponding to the monopole and the antimonopole,

1 1
c;—méu(ﬁ)—+81+(1++1)(1++2), (123a)
1 1

s=— [ w(F)=——1_(I_+1)(I_+2). (123b
5 =33 [ ) = =gl (I D +2). (123b)
which are related to ¢, (121a) and ¢, (121b) as

Iy I

ST = U+ 1)+ s+ 1),

&7 = U+ 1) =5, + 1), (124)

The second Chern number c, essentially represents the
sum of the two monopole charges, while the generalized

“For (j,k)=(1/2,0).(0.1/2),(1/2,0)® (0.1/2).(1/2,1/2),
the SO(4) matrix generators are, respectively, given by

L e VL
mn 72’1’”" 1’2,1m11 152 0 ﬁinno-’ )

1 . 1_.
Eﬂfnnﬁi L+1,® Efﬂnngiv (118)

and the topological invariants (116) are evaluated as

(c2.82) = (1.1),(=1.1),(0.2),(0.4). (119)

In deriving (121), we used the formula

(o ok = 2T FDCk+ 1)

OmymyOmymy) = 3

(GG +1) +k(k+1))

X (6m|m36m2m4 - 5m|m46MZM3)

+ (.](.] + 1) - k(k + 1))€m1n12m3m4)' (120>

Euler number ¢, represents their difference. They may be
reminiscent of the topological invariants of (S, conserved)
quantum spin Hall effect [37-39]; the sum of two Chern
number signifies quantized charge Hall conductance, while
their difference indicates quantized spin Hall conductance.
In the nonchiral case I, =1_=1% (1=0,2,4,6,...),
though the second Chern number is trivial, the generalized
Euler number is finite,

” o
¥ =0, d = (1221 +4),

48 (125)

and ¢, is the unique topological quantity of the system.

Replacing the SU(2) gauge field with the SO(4) gauge
field, we introduce the SO(5) angular momentum operators
in the SO(4) monopole background in a similar manner to
Sec. 1II B:

Lmn = LE’S)! + 651%1’]7_)4,
o_ 1
mep g Xs

&5
Omin ° 4)6,1.

Lms = _LSm - L (126)

With covariant angular momentum operators A,, =
—ix,Dy, + ix,D,, we construct the SO(5) Landau
Hamiltonian in the SO(4) monopole background,

1
H=—-— iA,)?
2M(aa+l a) 1
1
— 2
_mZA“b
a<b
1 2 2
=337 (St~ F)
a<b a<b
! (ZL 2 1(1 (I, +2)+1_(1 +2))>
=57 ab” — 5 U Uy == ’
M a<b 2

(127)
and hence the energy eigenvalues of (127) are expressed as

1

E= (ﬂ(p,q) —%(I+(I+ ) 4TI+ 2))). (128)

Since the gauge field was introduced as an external gauge
field that does not change its sign under the time-reversal
transformation, the Landau Hamiltonian (127) does not
respect the time-reversal symmetry even in the nonchiral case.

B. SO(5) Landau level eigenstates
Let us first address how the SO(5) Landau level
eigenstates can be identified as the nonlinear realization.

As discussed in Sec. IVA, wg'jllyz ..... D(p.q) CMIOY the SO(4)
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WD) e (NI NA4n) =

FIG. 4. The Nth Landau level eigenstates in the n sector, y/,\',i
region) in the n sector of ‘I‘(f’~q>|p:N+,_n'q:N+n.

gauge symmetry with the SO(4) bi-spin indices (92), which
in the context of the Landau model are identified with the
SO(4) monopole indices,

n

Iy 12\

2°2), \2
Since n runs from O to ¢, ¢ should be greater than or equal
to n," so we can define non-negative integers N for each n,

N=g-n=0,1,2,.... (130)

The non-negative integer N indicates the Landau level
([:isl].Z ,,,,, D(p.q)
Nth Landau level eigenstates of the n sector. We will
discuss the energy levels in Sec. V C.

In the Landau problem, the SO(4) monopole indices, I,
and /_, are input parameters, and we need to specify p and
q for the given I, and /_. The former two conditions,
Egs. (129) and (130), uniquely specify the SO(5) indices as

index in the n sector, and then y represent the

p=N+I-n, g=N +n, (131)

where
I=1,+1_. (132)

Since p > g, Eq. (131) implies that n has an upper limit and
the range of n may be given by

"“Recall the similar discussions in the SO(3) Landau model
around (25). Equation (130) is a generalization of (25).

(n)

N D(®, D (p,g)=(N-+I—n,N+n)
sector\ [ . .
0 | rd(0,I-mn)
1 } (1,1 -n) Goka
i I
2 k d(2,1-n) G353
; I'n 1n 1
G 277272
n L d(n,I —n)
| (&
\ o
G2
N+n d(N +n,I —n)

(n
1 WNQ?

D(p7 q) | (p,q)=(N+I-n,N+n)
|

,,,%1)1 1/,5\7;)2 1/,%133 } e+ D +1)

) ---*'1’1(5,)0, can be found as the block matrix (the blue shaded

n=0,12, ... Min(l. 1) (133)

We give a precise prescription for deriving the Nth
Landau level eigenstates in the n sector. We first need to

derive the SO(5) matrix generators, Zg’;’q)5, with (p,q)s =
(N +1—n,N + n)s. That is doable by taking the matrix
elements of the SO(5) angular momentum operators with
Yang’s monopole harmonics as discussed in Sec. III C.
Next from the matrix generators, we construct the nonlinear

realization using the formula

4
w(Q,) - exp<i5§jymz£:f>s) (134)
m=1

p=N+I-n,q=N+n

Finally, as indicated in Fig. 4, we extract an appropriate
block matrix from the n sector of . The components 1115\',121
denote the Nth Landau level eigenstates in the n sector,

. . 1
which are normalized as'®

(), (136)

%The connection of l//;?)a

field (109),

yields the SO(4) monopole gauge

D(p.q) ) .
WN.(ldy/N,

a=1

)t

a

A=—i

Note that the A in (135) does not depend on either N or n.
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D(1,0)
1

=S+ DI 420+

w0 = &L

N~
N

N~ N

I+ +1)0-+1)

[—

A0 = LU+ DU+ +3)

} a

} I+1

FIG.5.

nonlinear realization W0,

with A($*) = 872 /3. Especially for the LLL (N = 0) in the
n = 0 sector, the eigenstates are given by the red shaded
region in Fig. 5.

Mathematical software is highly efficient in practically
deriving the nonlinear realization. Computation time will
be significantly reduced using the Euler decomposition
form of (134):

W(Q) = H(Qy) e H(Q), (137)

where
H<Q3) — o 34 pib%31 pIT 1y

(138)

Following the above prescription, we have derived the
SO(5) monopole harmonics in several SO(4) monopole

n=20 N=0 n=20

For the SO(4) monopole with (’7* , ’7‘), the eigenstates of the LLL in the n = 0 sector are realized as the red shaded region of the

backgrounds (see Appendix B also), and their probability
densities are depicted in Fig. 6.

C. SO(5) Landau levels
With (131), we may derive the energy levels of (128) as

EE\?) 2;4 (/I(P C])|( q)=(N+I-n,N+n)
— % (I (I +2)+1_(I_+ 2)))
—M(N(N+ 3) +I(N—n)+n(n—-1))
+ﬁ(1+z+1_), (139)
where

Ts

S

r1,2,3

Iy I, _ 11 1+I— 12
GF=G3 GP=G3
n=20 N=0 n=1 N=0

FIG. 6. Probability densities of the SO(5) monopole harmonics. The different colored probability densities correspond to distinct
SO(5) monopole harmonics. For I, # I_ (the left two) each of the probability distributions is asymmetric with respect to x5 = 0 in
general, while for /, = I_ (the right two) each probability distribution is symmetric with respect to x5 = 0.
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B . (2Mm)
S AR S SR e
I+10
N=1_—Y¥ 11+6 I+8 1o
I1+4 N=1 N=2 —x— V=S T
N=0re V¥ oo o] B S ey S
I-I N=0 1]+4 N=1 —ie N=2 —% I+10
21+1) I+4 146 N=3 —f——
N=0 — PP N=1__Y¥Y .
I+4 Neo — ¥
N=0 —¥%—
1+6
IpI-+Min(I4, 1) Ne1_ Vv
e I+a
N=0 —%—
Max(Iy,1-)
n 0 1 2 n nmax = Min(Iy,1-)

FIG. 7. For the SO(4) monopole with ([7*,%

N=0,1,2,... and n=0,1,2,....Min(/,1_). (140)
Since all possible (p, g)s are exploited by changing N and
nin (131) for a given I, Eq. (139) exhausts all energy levels
of the SO(5) Landau Hamiltonian. Figure 7 schematically
depicts the energy levels of (139). The corresponding
degeneracy (31) is also derived as

n 1
z&%n:gav+n+mu_mw%mu+N+z—m

x (I 4+ 2N +3). (141)

We here mentioned specific features of the energy levels.
The original Landau levels in the SU(2) monopole back-
ground correspond to the n = 0 sector of the preset energy
levels. Indeed, for (I,,7_) = (0,7) and n = 0, the above
formulas exactly reproduce the results of Sec. IIIB.
The Landau level spacing and the degeneracy depend only
on the sum /=1, +I_ rather than both 7, and /_.
Furthermore, the Landau level spacing does not depend
on the sector index n and is common in all of the sectors:

1
(N +1+4).

B = 5h

-

(142)
The Landau level energy monotonically lowers as n
increases,

1

2M

B _ ) _

= (I-2n)<0,  (143)

and the minimum energy level is realized at the LLL of the
Nmax = Min(1,,1_) sector,

)4, there are Min(7,,7_) + 1 sectors, each of which exhibits the Landau levels.

E(n:nmax)

N=0 (144)

1
= WMaX(I+,I_).
Recovering the radius R of the $* in (139), we take the
thermodynamic limit, 7, R — co with //R? being fixed.
From (142), we see that every Landau level spacing in all
sectors becomes identical,

1

S 145
2MR*’ (145)

£ 0=

which is the usual Landau level spacing on a (4D) plane.

VI. NONCOMMUTATIVE GEOMETRY AND
MANY-BODY WAVE FUNCTION

Here, we investigate matrix geometries in the Landau
levels by applying the Landau level projection [5,50,51].
With the Nth Landau level eigenstates in the n sector, we
take matrix elements of the S* coordinates,

(a.p=12,..DV

).
(146)

n) T n
Kooy = [ w5

We introduce the (I, + 1)(I_+1) x Dg\';)(l) matrix that
represents the blue shaded region in Fig. 4,

n

‘1’1(\7) V/N,)2

which satisfies

(148)
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Using a Dg\?) (I) x Dg\'})(l) projection matrix Pg';) made

of (147)"

n n)Tyy(n n)2 n
Py =wey (PP =Py (149)

we can concisely represent the matrix coordinates (146) as

X, = / dQux, P\, (150)

which obviously signifies the projection of the S$* coor-
dinates to the level.

A. The nonchiral LLL in the n=1/2 sector

Let us first consider the nonchiral LLL eigenstates of
the n,,, = I/2 sector in the SO(4) monopole background
with (I.,1_) = (1/2,1/2) (I:even). While the second
Chern number vanishes, the zero-point energy I/(4M) is
finite and the LLL degeneracy is large as given by

D%’:é) (I) =5 +2)(I+3)(I+4). Therefore, even
though the second Chern number is zero, the nonchiral
SO(4) monopole system is not quite the same as a simple
free system without the SO(4) monopole. The LLL
eigenstates constitute

s = (55) (1s1)

and x, are

(p.q)s = (1, 1)s, (152)

so the SO(5) decomposition rule for x,p in (146)
signiﬁes18

I 1 I 1 I I
e (3),= (3+13+1) 0 (3 031),
I I
®(3-15-1),

The LLL irreducible representation (151) does not exist on
the right-hand side of (153), and then

(153)

X, =0. (154)

"The P%l) holds two eigenvalues, 1 and 0, with degeneracies,

(I, +1)(I_+ 1) and DV (1) = (I + 1)(I_ + 1).
18See [5] and references therein.

An intuitive explanation for this result is as follows. For
nonchiral cases (see the right two of Fig. 6), the “center” of
every probability distribution is at the origin, and hence the
expectation values of the coordinates for such states are
expected to be zeros as in the case of the spherical
harmonics. Careful readers may derive the projection
matrix (149) and explicitly check (154) by performing
the integration (150).

For nonchiral LLL eigenstates, we explicitly computed
the Fisher information metric

D
G = 1r (Z(a;ﬂl,aavwl + aby/aaﬂw;)

a=1
D
-2 Z aﬂ"’a‘l’i‘l’ﬁauwg)
ap=1
— (0,90 0,9 + 0,9 0,

S0 O =00

(155)
to have

G o diag(1, sin?é, sin’& sin’y, sin® Esin’y sin®6),
(156)

which is the polar coordinate metric on S*. This is the
same result as the SU(2) monopole case [58] whose fuzzy
geometry is the fuzzy four-sphere. The Fisher metric
reflects the information of the manifold on which the wave
functions are defined, while the matrix geometry reflects
the shapes of the wave functions also.

B. The LLL in the n =0 sector

Next, we proceed to the matrix geometry of the LLL in
the n = 0 sector with degeneracy

DY () =—(I+D)I+2)(I+3) (=1, +1),

AN =

(157)

and X, (146) are represented by Dl(\i':(?)(l) X Dx':g)(l)

matrices.

For the SU(2) monopole (I, = I,1_ = 0), the previous
studies [5,58] showed the emergent matrix geometry is the
fuzzy four-sphere,

X, = 10,

— 158
@ I+4 (158)
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(1)

where I'; are fully symmetric tensor products of I SO(5)

gamma matrices."” The basic properties of Fg” are given by

[Fuv Fhv ch Fd] = 8(1 + 2)€abcdere’
) = 1(1 + 4)1,

D

(160)

(n=0)

N—o (D

where the four bracket [,,,] denotes the fully antisym-
metric combinations of the four quantities inside the
bracket,

[Fa s Fb’ Fc ’ Fd] = ngn(o)rﬂ(a)ro'(h) Fo’(c)rc(d) . (1 6l )

For the SO(4) monopole background with index

(17* , %) 4, we explicitly evaluate X, (150) using several
low dimensional representations. From the obtained results,
we deduce that the matrix geometry in the SO(4) monopole

background becomes

L —1_ o)
= r.. 162
“I(I+4) (162)

This naturally generalizes the original result (158). Notice
that the matrix size of X, depends only on the sum of the
SO(4) bi-spin indices while the overall coefficient depends
on the difference of the SO(4) bi-spin indices. The matrix
coordinates (162) satisfy the quantum Nambu geometry of
the fuzzy four-sphere,

201, 1)

[Xo Xp. X Xa] = (1+2)< I(I+4)

3
) eabcdeXe ’ ( 163)

and the radius is

(I —1.)

X Xg= 01
CETTI(I v 4) DD

(164)

Equation (164) implies that the monopole and antimono-
pole oppositely contribute to the radius of the fuzzy four-
sphere, and notably at the nonchiral case [, =1_, the
radius apparently vanishes. The Fisher metric is again given
by the classical four-sphere metric (156).

C. 4D quantum Hall wave function

The noncommutative geometry is the underlying geom-
etry of the quantum Hall effect and governs the LLL

YIn particular,

_ 0 qn _ L 0
T 1):< ):YW F§1 1):( ):—75.
qm 0 0 -1,

physics [59-61]. As the LLL geometry in the n = 0 sector
is given by the fuzzy four-sphere geometry the same as the
original 4D quantum Hall effect, a Laughlin-like many-
body wave function is expected to be realized in the present
system. Recall that in the original 4D quantum Hall effect
[4], the many-body wave function is constructed as the mth
power of the Slater determinant,

W) (x1, %0, .. xp) = P (X1, X2, X )™ (165)
where
Wota (X1, X2, ..., xp) = €iiy-ipWl (xi, )'I/Z(xiz) o 'lI/D(xi,,)-

(166)

The symbol m is taken to be an odd integer due to the Fermi
statistics. The right-hand side of (166) is the tensor products
of the Yang’s LLL monopole harmonics with degeneracy
D =} (I+1)(I+2)(I+3). Since Yang’s LLL monopole
harmonics are given by the symmetric products of the
SO(5) fundamental spinors, it is legitimate to adopt ¥(") as
a Laughlin-like many-body function [4]. We see that the
power of each one-particle state is equally given by ml,
which implies the corresponding SU(2) monopole index to
be mi.

In the same spirit, we construct a Laughlin-like many-
body wave function for the LLL of the n = 0 sector in the
SO(4) monopole background with indices,

I
—,m— . 167
<m 2" 2)4 (167)
The filling factor is given by
(n=0)

D I, +1) 5L+l-01
- <,iv(;0(++ )t —3. (168)

Dy_y (ml, +ml_) m

It is straightforward to derive the Slater determinant wave
function at filling v = 1 using the LLL monopole harmon-
ics in the n = 0 sector. The obtained Slater determinant is a
singlet under the SO(5) rotations and represents a uni-
formly distributed noninteracting many-body state on a
four-sphere. However, in the construction of the Laughlin
wave function, the situation is rather involved; powers
of the Slater determinant are not generally confined in the
LLL. This is because the LLL one-particle states in the
SO(4) monopole background are not simply given by
homogeneous polynomials unlike the original SU(2) case.
Therefore, we have to implement the projection to the LLL,
P (x1, Xy, ... (169)

7XD) = Prip Wt (1, %2, ‘-wxiD)m»

where P;;; denotes the projection operator constructed by
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P = Z |singlet) (singlet|. (170)

singlet

The states |singlet) signify the SO(5) singlets made of the
Dxfg ) (1) tensor products of the LLL monopole harmonics
in the n = 0 sector with the SO(4) background of indices
(167). Applying the projection operator, we extract the
LLL components of the mth power of the Slater deter-
minant not ruining the SO(5) symmetry. In this way, we
can construct a Laughlin-like many-body ground state at
filling (168).

VII. RELATIVISTIC SO(5) LANDAU MODEL

We explore the relativistic version of the SO(5)
Landau model for a spinor particle and demonstrate the
Atiyah-Singer index theorem for the SO(4) monopole
gauge field.

A. Synthetic gauge field and the
relativistic Landau levels

With
! (x,,d dx,,) (171)
@y = Xpdx, — x,dx,,),
mn 1 _'_ xS m n n m
the spin connection of $* is given by20
w = Ewmn( @ mn >’ (173)
and the SO(4) monopole gauge field (109) is
1 Iy 1o
A= 2 a)mnagrm T (174)

The relativistic SO(5) Landau model describes a spinor
particle on S*, which interacts with the SO(4) gauge field
and the spin connection as well, and so their synthetic
connection is the concern
A=o® Ly 1)

1)+ 14 ® A. (175)

The Dirac-Landau operator on S* is constructed as

—ip = —iy"e,(0, +iA,), (176)
where u denote the local coordinates on S* such
as &, 7,0, ¢.

The matrices of (173) are
T . R (172)
2 mn=i» 2 mn+>i

Since the coordinate-dependent parts of @ and A are
identical (171),”' the synthetic gauge field is simply
obtained by taking the tensor product of the SO(4) matrices
of (173) and (174). According to the SO(4) decomposition
rule

[EREMIE

we see that the synthetic connection consists of the four
sectors:

1 i_
2

AGFE) = AGHE): @ AGFEH: @ Al

A standard way for deriving the spectra of the Dirac-
Landau operator is to take its square and make use of the
results of the corresponding nonrelativistic Landau prob-
lem. The formula is given by [6,62]

:Zﬁab ZFb + - Rs4

a<b a<b

(180)

The symbol R = 6 is the scalar curvature of S*, and £,
denote the angular momentum operators with the synthetic
gauge field

‘Cab = _ixa(ab + lAb) + ixb(aa + lAb) + rzfab’ (181)
where F,, = 0,4, — 0, A, + i[A,, A,]. The operators
L., are just the familiar SO(5) angular momentum
operators with the SO(4) monopole gauge field of the

indices (IT , 7) We apply the results of Sec. V C to derive

the spectra

'Recall that we have chosen the gauge group as the holonomy
group of S*.
*Since SO(4) ~ SU(2) ® SU(2), we can apply the SU(2)
decomposition rule to each of the SU(2) s:

Jt+J k+k'
(Jik)y ® (', K)y = (J,K)y (177)
J=|j=J'| K=[k=K'|
or
( 1 1 ('K )a
b ® et lajrnekin) & om
, [T Y
—out = D @ o (178)

Jf\j*j’\ K=|k=K'|
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(<P = i(p. @) 5 (L. (1, +2) +1_(L_+2)) +3 20

(182)
Similar to (131), the SO(5) indices p and ¢ are given by
p=N+7T-n,

g=N +n, (183)

where

I=7.+7_., n=0,1.2 .. Min(Z,.7_). (184)

In the first two cases of (179), wehave Z =7, +7_+1 =
I + 1, and then

—ip=4\/NN+3)+T+1)(N=n)+n(n—1)+20 +1.1_+4, (185)

in which each of the positive and negative Landau levels holds the same degeneracy
D(N+1+1—-n,N+n) :é(N—i—n—l— DI -2n+2)I+N+3—-n)(I+2N +4). (186)
The minimum energy eigenvalue in magnitude is achieved at N =0, n=Min(Z,,Z_) to yield |—ip|=

v/2Max(1,,1_) + 4, and the spectra (185) do not realize zero modes. Meanwhile in the last two cases of (179), we

have 7 =7, +7_—-1=1-1;

—ip=+\/NN+3)+(I-1)(N=n)+nn—1)+1,1_,

in which each of the positive and negative Landau levels
of (187) holds the same degeneracy

D(N+I1-1-n,N+n)

6
(188)

For fixed N, n, I, and I_, the eigenvalues of (187) are
smaller than those of (185) in magnitude and realize zero
modes at N =0, n = np,, = Min(Z,,Z_).

B. Zero modes and the Atiyah-Singer index theorem

The Atiyah-Singer index theorem signifies equality
between the zero-mode number and the Chern number.”
For the present system, the Atiyah-Singer index theorem
may be expressed as

ind(—ip) = dimKer(—ip, ) — dimKer(—ip_) = ¢,
(189)

where P, are defined as

(1£75)P (190)

1
pi=>

“Since the Dirac genus of sphere is trivial, we only need to
take into account the Chern number in (189).

N )2 N+ =)+ 2N +2).

(187)

|
and c, is the second Chern number of the SO(4) monopole
(121a). We evaluate the left-hand side of (189) to vali-
date (189).

For I, > 1_, the zero modes are realized as those

of —ip, in (ZT*,%) = (1*2_1,17‘) at N=0 and
n=Min(Z,,Z_)=1_. We then find dimKer(-ip,) =

D(I, —1,1_) and dimKer(—ipp_) = 0:

ind(—ip) = DI, —1,1.)
1

= A DI+ D)L+ 1 +2)(I, —1).

‘ (191)

Similarly for I, < [_, the zero modes are realized as

those of —ipp_ in (17*1—2*) = %%) at N=0 and
n=Min(Z,,7_)=1,. We then have dimKer(—ip,)=0
and dimKer(—-ip_)=D(I_-1,1,)=-D(I,  —-1,1_),
and so ind(—ip) =D(I, —1,1_), which yields (191)
again. Finally, in the case I, =1_=1 (I=2,4,6,...),
the LLL of the n,, = % — 1 sector (187) does not realize
the zero modes ((—ip) ==+1#0), i.e., dimKer(—ip) = 0,
which is also realized at /, = I_ in (191). After all, for
arbitrary SO(4) indices, Eq. (191) generally holds and the
most right-hand side is exactly equal to the second Chern
number (121a). This obviously demonstrates the Atiyah-
Sinder index theorem.

VIII. SUMMARY AND DISCUSSIONS

In this work, we fully solved the SO(5) Landau problem
in the SO(4) monopole background and explored non-
commutative geometry and 4D quantum Hall effect. For the
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SO(4) monopole with a bi-spin index, (%%‘) we dem-
onstrated that the SO(5) Landau model is endowed with
Min(7,, I_) sectors, each of which hosts the Landau levels
whose level spacing is determined by the sum of the SO(4)
bi-spins (Fig. 7). It was shown that the Nth Landau level
eigenstates in the n sector can be obtained as a block matrix
of the nonlinear realization (the blue shaded block matrix in
Fig. 4) with

(p.q)s=(N+I,+I_—nN+n)s. (192)
The matrix geometry of the LLL in the n = 0 sector was
identified as the fuzzy four-sphere whose radius is deter-
mined by the difference between the SO(4) bi-spin indices,
while the matrix geometry of the nonchiral case is trivial.
The classical $* geometry was recovered as the Fisher
information metric in any cases. We constructed the Slater
determinant from the newly obtained monopole harmonics
and derive a Laughlin-like many-body wave function in the
SO(4) monopole background by applying the LLL
projection. We also investigated the SO(5) relativistic
Landau model and derived the relativistic spectrum and
the degeneracy. The number of the zero modes exactly
coincides with the second Chern number of the SO(4)
monopole as anticipated by the Atiyah-Singer index
theorem.

The SO(4) monopole is quite unique for its gauge group
being the only semisimple group among the SO(n) groups,
which endows the present system with a particular multi-
sector structure of the Landau levels. It may be interesting
to speculate experimental realizations of the present model
in real condensed matter systems of synthetic dimensions.
Of particular interest will be the nonchiral case I, =1_,
in which the second Chern number vanishes while the
generalized Euler number does not and its physical
implications have not been understood yet. There are many
to be clarified in the present model itself, such as edge
modes, effective field theory, and extended excita-
tions. More explorations will be beneficial not only for
further understanding of higher dimensional topological
phases but also for noncommutative geometry and string
theory.
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APPENDIX A: THE PONTYAGIN NUMBER AND
THE EULER NUMBER

On the 4D manifold, the (first) Pontryagin number P,
and the Euler number y, are introduced as [57]

4 1 mym
PI(M):S_ﬂ_Q M4R ! szlmz

1
- 327[2 1,14 lemsz3m4tr(Xm1szm3m4)» (Ala)
4 —1 M mymzm
)(4(M ):32”2 4e 1myms 4Rm1m2R1n3m4
M
= M3Mmalnsie RIMM R tr(X X
_T&tz M4€- \ mszmy r( myny m5m6),

(Alb)

where R™™ gstand for the curvature two-form of the
manifold and X, ,,, denote the SO(4) adjoint representa-
tion matrices:

Xy Jmsm, (A2)

= _i5n1]m35m2m4 =+ i5m1m45m2m3'
The topological quantities for the gauge field (116) are
generalizations of (Al) by replacing the curvature two-
form of the adjoint representation matrices with the field
strength of arbitrary representation matrices.

For spheres S¢, we have

Ryn =€ A €, (A3)
and (A1) becomes
P1(54) =0, )(4(54) =2 (A4)
Equation (A4) is realized as a special case of (121) for
the SO(4) vector representation (5,%) = (1,1). This is
11
because X, ,,, (A2) are unitarily equivalent to ag,%’f,),;‘z (70):
1 0 0 -1
11 1 i 0 0 [
e = U Xy U, U=—
. V210 -1 =1 0
o i —-i 0
(A5)

Consequently,

11 1_@t
PiSH =c5?. (s =30 (ae)

APPENDIX B: NONCHIRAL SO(5) MONOPOLE
HARMONICS

For a better understanding, we derive several SO(5)
monopole harmonics. We represent the nonlinear realiza-
tion matrix (104) as
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SO0 0 o8 o
PO = oy oy oy o]t Y
vi e T ey

0.1
The upper column quantities, 1//[l 21,![/[2 ],l//\[ 21,1114[; 2],

denote the fourfold degenerate LLL eigenstates in the

SU(2) monopole background (15 5= (3.0
0y 1—|—x5(1> B (cos%)
1 2 0 0 ’

oy  [1+xs/0\ (0
V2 2 1 cos% ’

0. 2] 1 < X4 + i)C3 )
V3 = .
2(1 4 x5) \ =x +ix;

<sin§ (cosy + isiny cos6)

)

. . é . . i
i sin§ sin y sin Ge’®

i 1 (x2+ix]>

2.

Vy =0 .
2(1 +x5) X4 — IX3

i sin§ sin y sin G~
- ) -
sin$ 5 (cosy —isinycos®)
- s 0.3 [0.—3  [0.—
while the lower column quantities, y;" *,y, *,y5 7,
L
l//&o’ g , represent the fourfold degenerate LLL eigenstates in
the SU(2) antimonopole background (17* , %‘) = (0,3):
-y 1 ( —X4 + ix3 )
L4 =T .
2(1+x5) —xz—l—lx]
(—s1n‘5(cos;( — isiny cos®) )
a i sin§ sin y sin e ’
(0,4 1 Xy +ix
V, T == .
2(1 -+ XS) —X4 — IX3
< i sin§ sin y sin G~ )
- sm‘f (cosy + isiny cos6) ’
0.~y T+xs5/1 Cosg
[I/3 = = s
2 0 0
Vs V 2 \1 cos§ )’ (B3)

Following the prescription in the main text, we can derive
the tenfold degenerate LLL SO(5) eigenstates inthen=20
sector of the SO(4) background (7, 5, = (1), From
the nonlinear realization matrix of (p,q)s = (2,0)5, we
have

065010-21

isin?

—isin

—isin?

isin? &

—isin?

—sin &(cos y — i siny cos @)
i sin &sin y sin fe’®
0
0
i sin & sin y sin @e~¢
—sin(cos y + isiny cos )
—sin &(cos y — i siny cos )
i sin & sin y sin e'?
0
0
i sin & sin y sin fe~¢
—sin &(cos y + i siny cos 0)
cos?§ — sin?5 (cosy + sin?ycos?0)
£ siny sin@(cos y + i siny cos )™

2£siny sin O(cos y — isin y cos 0)e™

2¢ 2igh

—sin? § sin?ysin’fe

% siny sin@(cos y — i siny cos 0)e

2§ 2¢

COs~ 3 — sin” 5sin 2ysin’6

—sin?$ (cos y — i sin y cos §)?

2

isin z:sm)(sm9(cos;(—1sm;(005¢9) i¢

5 siny sin@(cos y + i sin y cos 6) e~

—sin?$§ (cos y + i siny cos 0)?

2§ 2¢

Cos” 5 — sin” 5 sin 2ysin®0

—isin?$ 5 (cos y + isin y cos 6) sin y sin @

2¢ —2i¢

—sin? 5sin 2ysin’fe

2£siny sin O(cos y — i sin y cos 0)e™

26 _
cos” 3

isin
sin?£ (cosy + sin?ycos?0)
sin &(cos y + i siny cos 0)
0
i sin & sin y sin fe’?
0
i sin & sin y sin fe
sin&(cos y + i siny cos 0)
sin&(cos y — i siny cos 0)
—isin £sin y sin fe'®
0
i sin & sin y sin fe ¢
0

sin&(cos y — i siny cos 0)

—igp

£siny sin@(cos y + i siny cos @) e~
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Equation (B4) is realized as a symmetric combination of
the direct products of the monopole harmonics (B2) and the
antimonopole harmonics (B3):

o [ 1 Sap (04 [0,-]] 04 0.-Y
W(aﬁﬁ) - <> (lI/a ® Vs + U] ® yq )

V2
(@.f=1,2,3,4). (B5)
With the SO(5) charge conjugation matrix

0O 1 0 O

-1 0 0 O
C= . (B6)

0 0 0 1

0 0 -1 0

1 i
we see that (B5) is equivalent to (CZE:b’O)S)a ,w[az’o] ® y/g)’z].

In (B5), the monopole and antimonopole harmonics

equivalently contribute to the nonchiral monopole harmon-
ics. In the group theory point of view, Eq. (B5) corresponds
to the symmetric (2, 0)5 representation made of two (1,0)s
representations. Since the monopole harmonics and anti-
monopole harmonics, respectively, have the SU(2) gauge
symmetry, their tensor products (B5) enjoy the SU(2) ®
SU(2) ~SO(4) gauge symmetry. In general, the LLL
nonchiral monopole harmonics in the n = 0 sector of the
SO(4) monopole background (£,4), (I:even integers) can
be obtained as the symmetric representation of the tensor
product of two LLL monopole harmonics of the SU(2)
monopole background (£, 0), and the antimonopole back-

ground (0,1,
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