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We revisit a class of non-Hermitian topological models that are Galois conjugates of their Hermitian
counter parts. Particularly, these are Galois conjugates of unitary string-net models. We demonstrate that
these models necessarily have real spectra, and that topological numbers are recovered as matrix elements
of operators evaluated in appropriate biorthogonal basis, that we conveniently reformulate as a concomitant
Hilbert space here. We also compute in the biorthogonal basis the topological entanglement entropy,
demonstrating that its real part is related to the quantum dimension of the topological order. While we focus
mostly on the Yang-Lee model, the results in the paper apply generally to Galois conjugates.
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I. INTRODUCTION

It is a fundamental premise of quantum mechanics that
the Hamiltonian of a closed quantum system is Hermitian,
so that the time evolution is unitary. One feature of a
Hermitian Hamiltonian is that energy eigenvalues are real,
which thus gives natural interpretation as energies of the
eigenstates. However, Hermiticity is not a necessary con-
dition for real eigenvalues. It is realized in the seminal
paper [1] that non-Hermitian Hamiltonians can also acquire
real eigenvalues if they are “parity-time-reversal” (PT)
symmetric. It is later realized that such conditions can
be further relaxed and yet preserve reality of energy
eigenvalues (See for example [2]). Physically, such non-
Hermitian Hamiltonians cannot possibly describe a closed
quantum system, since they violate unitarity. They describe
open systems at steady states [2]. These studies are mostly
restricted to Gaussian systems. Interacting theories remain
mostly open. Meanwhile, topological orders are important
classes of interacting systems that go beyond the Landau-
Ginzburg paradigm. Particularly in 2þ 1 dimensions, it
have been demonstrated that these quantum phases can
realize anyonic statistics that promise to realize robust
universal quantum gates. Explicit (exactly solvable) lattice
models that have been written down realize large classes of
these models. One important class of lattice models is the
Levin-Wen models. The input data is that contained in a
unitary fusion category—the unitary condition ensures that

the Hamiltonian of the model is Hermitian. It is thus a
curious question whether there are new topological orders
if we relax the unitary condition [3–5]. Clearly, this is more
than pure academic curiosity, since the existence of non-
Hermitian topological orders would open the possibility of
designing new classes of open systems to realize fault
tolerant quantum computations.
There are already known nonunitary fusion categories that

can be fed into the Levin-Wen formalism to produce exactly
solvable non-Hermitian models. They are called Galois
conjugates of some unitary cousins. These models have
mostly been discarded as being unphysical, such as the
renowned Yang-Lee model. In light of the new found interest
in non-Hermiticity, the model has attracted renewed atten-
tions. An early study of the Yang-Lee model involved
embedding it in a Hermitian one is in [3]. There are also
a number of studies focused on the associated nonunitary
boundary CFT [6,7]. See also [8] for a discussion of phase
transitions of the 2þ 1 model. We would like to study these
examples as standalone 2þ 1 dimensional non-Hermitian
models systematically. We found several interesting proper-
ties of this class of models. First, while it is unclear how PT
symmetry is defined in these topological models, we show
that Galois conjugates of unitary models have real energy
spectra. This has been alluded to in [3] but we give an
explicit proof here for generic Galois duals. Second, we
demonstrate that topological invariants such as the modular
matrices are components of modular operators evaluated in a
biorthogonal basis—a notion already introduced in the non-
Hermiticity literature. We use tensor network methods to
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construct these biorthogonal basis explicitly and successfully
extract the modular matrices. Third, we study the entangle-
ment entropy of the “ground state” wave functions of these
non-Hermitian models using the density matrices con-
structed from the left/right eigenstates of the Hamiltonian.
The entanglement entropy is generically complex, but we
find that the real part carries a constant term that depends on
the quantum dimension of the non-Hermitian topological
order, analogous to the Hermitian case [9].

II. HAMILTONIAN CONSTRUCTION AND THE
REALITY OF THE SPECTRUM

A. String-net model

The basic input data of a string-net model [10] is a fusion
category. A category consists of a collection of objects M,
called “string types.” These strings could fuse, and the
fusion rules are captured by the fusion coefficients Nc

ab,
which are non-negative integers, for a; b; c ∈ M. The
dual j of a string type i is one such that they fuse to the
identity object, i.e.,N1

ij ¼ 1. Each string type i is assigned a
number called quantum dimension di, which satisfies
dadb ¼

P
c N

c
abdc. We emphasize that in this paper we

will relax the positive condition for di since we are
considering non-Hermitian models. Another useful varia-
ble, which we call quantum weight, is defined as vi ≔

ffiffiffiffi
di

p
.

Since di might be negative, vi might be pure imaginary. We
also need another data called the F-symbol, which defines
the transformation between two basis

ð1Þ

In [10], F-symbols associated to a unitary model satisfy the
pentagon equation, respects tetrahedral symmetry, and the
unitary condition. In Galois conjugates of the unitary Levin-
Wenmodels however, it is the unitary condition that is dropped.
The Levin-Wen model is defined on a trivalent oriented

graph. Each link accommodates an object from M, but the
wave function of the ground state is only nonvanishing
when the three objects on the three links meeting at a vertex
are connected by a nonvanishing fusion coefficient. We also
demand the normalization

ð2Þ

In [11–13], they dropped the tetrahedral symmetry con-
dition. In [3,7] they dropped the unitary condition, which is
similar to this paper. Another useful notation is called G-
symbol, which is defined as Gabc

αβγ ¼ Fabα
βcγ =vcvγ . If F-

symbol has tetrahedral symmetry, G-symbol is invariant
under the permutation of indices. The Hamiltonian is
defined by two operators Av and Bp, where v is the vertex
and p is the plaquette. Av projects the states to the subspace
where the fusion rules are satisfied at each vertex. If we just
focus on the ground state subspace, it can be ignored. The
action of the plaquette operator Bp ¼ P

s dsB
s
p=D where

D ≔
P

t d
2
t and Bs

p can be expressed in the following form

ð3Þ

To avoid clutter, we will consider models where each string
type is its own dual, so the orientations on the edges cease to
matter. We will also consider placing the system on a torus.
We will prove that the Hamiltonian has real spectrum,
though it is non-Hermitian. Since the model is topological,
the reality of the spectrumwould hold for lattices of arbitrary
size on a torus. The simple lattice covering a torus we will
consider is illustrated in the following figure.

ð4Þ

B. Reality of the spectrum

We inspect the spectrum of Bp operator in the subspace
where fusion rules at vertices are satisfied. The form ofBp is
given in many places. When the lattice is the simplest one
covering the torus, it is given in the Supplemental Material
of [14].
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Bpjabci ¼
1

D

X
s;a0;b0;c0

dsFbac0
scb0F

cba0
sac0F

ac0b00
sb0a0 F

a0c0b0
sba00 F

c0b00a00
sa0c00 F

b0a00c00
sc0b00 ja00b00c00i

¼ vavbvcva00vb00vc00

D

X
s;a0;b0;c0

dsda0db0dc0Gbac
c0sb0G

cba
a0sc0G

ac0b0
b00sa0G

a0c0b
b0sa00G

c0b00a0
a00sc00 G

b0a00c0
c00sb00 ja00b00c00i: ð5Þ

Using this formula we could construct the Bp matrix
using a00b00c00 as row indices and abc as column indices.
In Hermitian case, because of the unitarity of the F-symbol,
such an Hamiltonian must be Hermitian and leads to the
entirely real spectrum. Since we drop the unitary condition,
things are sightly different: the Hamiltonian is symmetric
(it is easy to see that the matrix element is invariant under
the exchange of abc and a00b00c00) but not Hermitian.
However, the spectrum of the Hamiltonian is still entirely
real for it is a projector (the possible eigenvalue for a
projector is either 1 or 0), which means that B2

p ¼ Bp at
each plaquette p. In order to prove it as an projector, we
need another relation, called completeness relation in [12]:

ð6Þ

By definition, B2
p ¼ P

s;t dsdtB
s
pBt

p=D2, the operator Bs
p is

equivalent to adding a closed loop assigned with s in the
plaquette p, using graphical representation, we have

ð7Þ

Though the underlying category is still a nonunitary fusion
category, the Hamiltonian continues to be a projector and
its spectrum is real.

III. MODULAR S, T MATRIX FOR
NON-HERMITIAN GALOIS CONJUGATE

STRING-NET MODEL

The modular S and T matrices are important character-
istic topological data of the topological order. In Hermitian
models, they can be obtained as overlaps between ground
state wave functions before and after modular transforma-
tion of the torus.
In non-Hermitian models, the procedure needs to be

redefined, accommodating the fact that left and right
eigenstates of a non-Hermitian Hamiltonian are not related
by complex conjugates [15,16]. Inspired by a number of
authors such as [17–19], we will introduce a concomitant
Hilbert space that essentially accommodates a Hilbert
space with a deformed inner product, which is equivalent
to the biorthogonal basis formulation. Though we only
explicitly construct the modular matrices of the Yang-Lee
model for simplicity, our method can be applied to general
Galois conjugate model. To construct ground states of the
Hamiltonian, we will need the central idempotents of the
Yang-Lee model, which has been given in [7]. They take
the following form,

P1 ¼
�
−

1ffiffiffi
5

p
ϕ0

�3
2ðT 0

000 þ ϕ0T 1
010Þ

P2 ¼
�
−

1ffiffiffi
5

p
ϕ0

�3
2ðT 0

111 þ e
2πi
5 T 1

101 þ
ffiffiffiffiffi
ϕ0p
e
πi
5T 1

111Þ

P3 ¼
�
−

1ffiffiffi
5

p
ϕ0

�3
2ðT 0

111 þ e
−2πi
5 T 1

101 þ
ffiffiffiffiffi
ϕ0p
e−

πi
5T 1

111Þ

P4 ¼
1

2

�
−

1ffiffiffi
5

p
ϕ0

�3
2

�
ϕ02T 0

000 − ϕ0T 1
010 þ ϕ0T 0

111

þ ϕ0T 1
101 þ

1ffiffiffiffiffi
ϕ0p T 1

111

�
; ð8Þ

where T s
pqr is the basis element of tube algebra attached

with multiplication rules

T s
pqrT s0

p0q0r0 ¼ δrp0
X
f;g

Fs0q0s
qrg Fs0gp

sqf F
sgr0
s0q0f

vsvs0

vf
T f

pgr0 : ð9Þ

We will show how the T-matrix is constructed and obtain
the topological spins without direct reference to the central
idempotents. Our procedure could in turn generate the
central idempotent with nontrivial topological spins. The
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canonical form of the S-matrix has to be expressed in this
anyon basis defined by the idempotent.

A. Modular T matrix

The action of modular T matrix is to twist the torus.
Physically, appropriate anyon basis—one where an anyon
loop is winding the twisted cycle, diagonalizes the T
matrix. Its eigenvalues are nontrivial phases eiθ related
to topological spins hi. i.e.

TjPii ¼ eiθi jPii ¼ ei2πhi ; ð10Þ

where jPii is anyon basis. Explicit wave functions
for unitary models based on a tensor network have been
constructed explicitly [20–26].Wewould like to adapt these
methods to construct left/right anyon basis in the
non-Hermitian model. Figure 1 illustrates the tensor
network representation of a wave function on a torus. The
value of each element in the tensor network is given below:

ð11Þ

ð12Þ

ð13Þ

In these tensor networks, a closed loop is furtherweightedby
the quantum dimension. After contracting all the auxiliary

indices of the left panel of Fig. 1, we can generate the wave
function jT n

momi. The set of suchwave function will form an
overcomplete basis fjT n

momig. We denote thewave function
after T transformation as jT 0n

momi, i.e. TjT n
momi ¼ jT 0n

momi,
while the tensor network to compute this wave function is as
the right panel of Fig. 1.

1. Detour—biorthogonal basis and
concomitant Hilbert space

Computing elements of T involves taking inner products
of these wave functions with a basis bra. It is well known
that eigenstates of non-Hermitian Hamiltonian of different
eigenvalues are not orthogonal to each other under the
definition of the usual inner product. Instead the left and
right eigenstates are in fact orthogonal. They are termed
biorthogonal basis in the literature [15,18]. Suppose
there are two sets called right eigenstates fRig and
left eigenstates fLjg, which satisfy HjRii ¼ EijRii and
H†jLii ¼ E�

i jLii. We also require that hLijjRji ¼ δij. By
using this biorthogonal basis, we could expand the
Hamiltonian as H ¼ P

i EijRiihLij. Recall that the spec-
trum of the Galois conjugate model is all entirely real, if we
define an operator called metric operator g ≔

P
i jLiihLij

and define another Hilbert space Hc (we called it
concomitant Hilbert space in order to distinguish from
the original Hilbert space) equipped with a new inner
product hψ jχig ≔ hψ jgjχi, we immediately find that the
Hamiltonian H is now Hermitian and the right eigenstates
are orthonormal basis under this new inner product.
As we are going to see, the modular matrices would

reproduce their topological values when evaluated in the
biorthogonal basis or, equivalently, in the concomitant
Hilbert space with a deformed inner product.
To construct a biorthogonal basis, we adapt the

inner product ðjψi; jχiÞ ≔ ðjψiÞT jχi. After Gram-Schmidt
orthogonalization procedure, we get two orthonormal
basis fjRiig and fjR0

iig,1 which satisfy ðjRii; jRjiÞ ¼ δij,
ðjR0

ii; jR0
jiÞ ¼ δij and TjRii ¼ jR0

ii. It is easy to see that the
corresponding left eigenstate of jRii(or jR0

ii) is just the
conjugation of itself. The inner product h·j·ig is now ð·; ·Þ.
Now we are ready to evaluate the components of the T

matrix in the concomitant Hilbert space. Choosing the set
fjRiig as the representation, the matrix element is given by

Tij ≔ hRijjTRjig ¼ hRijR0
jig ¼ ðjRii; jR0

jiÞ: ð14Þ

By using this schemewe could construct the T matrix under
the basis fjRiig. Though it is not diagonal, we could still
read the topological spins by finding its eigenvalue. For
example, in Yang-Lee model, the topological spins corre-
sponding to the anyon basis (8) areFIG. 1. The tensor network representation of the string-net

model ground states on a torus. The wave function on the right is
twisted along the vertical cycle. The twist is equivalent to the
modular T transformation.

1Because the set fjT n
momig is overcomplete, we can just pick

the maximal linearly independent system to orthogonalize.
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h1 ¼ h4 ¼ 0; h2 ¼ −
2

5
; h3 ¼

2

5
: ð15Þ

For the nontrivial anyon basis (with nontrivial topological
spins), we can directly get them because its eigensubspace
is one dimensional. In the Appendix B, we prove that such
a representation is a real representation of T matrix. This
property immediately leads that the conjugation of the
anyon basis with nontrivial twist is also the anyon basis.
Besides, another important conclusion is that the anyon
basis will automatically form the biorthogonal basis, which
will be used in the calculation of entanglement entropy.

B. Modular S matrix

The S matrix carries information of braiding between
anyons. Under the action of the S transform, the lattice
covering the torus is rotated by 90°. We have already
constructed the wave function of the basis of the tube
algebra by using Fig. 1, which we denote by fjT n

momig. We
label the wave function after the S transformation as
fjSn

momig. The algorithm to compute it is to rotate the
MPO (the orange box in Fig. 1) and use F-moves to
transform it back into its original form, i.e.

SjT n
momi ¼ jSn

momi ¼
X
o0
Fnmn
moo0 jT m

no0ni: ð16Þ

Again, the set fjT n
momig and jSn

momi are two overcomplete
sets of basis. After choosing their maximal linearly inde-
pendent system, we orthogonalize these two sets of basis as
in the computation of T matrix, denoting them as fjRiig
and fjRS

i ig. The construction of S matrix is also similar:

ðS0Þij ≔ hRijjSRjig ¼ hRijRS
j ig ¼ ðjRii; jRS

j iÞ: ð17Þ

However, if we want to get the S matrix which satisfies the
Verlinde formula, we need to transform the representation.
The final S matrix is S ¼ U†S0U, where U is the unitary
transformation relating the basis jRii and the anyon basis.
For example, using our construction and the anyon basis in
Eq. (8), the S matrix for Yang-Lee model is

S ¼ 1

D

�
1 −1=ϕ

−1=ϕ −1

�
⊗

�
1 −1=ϕ

−1=ϕ −1

�
: ð18Þ

IV. ENTANGLEMENT ENTROPY
OF NON-HERMITIAN SYSTEM

Entanglement entropy is one important quantity charac-
terizing a topological order. In a non-Hermitian system,
density matrices have been constructed using the left/right
eigenstates of the Hamiltonian, and the entanglement
entropy is computed from these generalized density matri-
ces [27–32]. These prior studies focused mostly on free
systems. We would like to apply these methods to compute

the entanglement entropy and recover also the topological
term characterizing the non-Hermitian topological order.
Explicitly, the density operator is defined as ρG ≔ ρg

[27–32], where g is the metric operator we introduced
in the previous section. Let us continue to take Yang-Lee
model as an example. Consider the ground state on a torus
with the anyon with topological spin h2 ¼ −2=5
wrapping a noncontractible cycle and we denote the state
as jψ2i. The corresponding generalized density operator is
ρG ¼ jψ2ihψ2jg. We assume that the state can be expanded
by using fjRiig, i.e. jψ2i ¼

P
i β

i
2jRii. We can simplify the

equation

ρG ¼
X
i;j

βi2ðβj2Þ�jRiihRjj
�X

k

jLkihLkj
�

¼
X
i;j

βi2ðβj2Þ�jRiihLjj; ð19Þ

where we have used the biorthogonal relation. As we
discussed in the last section and the Appendix B, the left
eigenstate jLki ¼ jRki�. To simplify the expression further,
consider the central idempotent corresponding to h3 ¼ 2=5.
Its coefficient βj3 satisfies βj3 ¼ ðβj2Þ�. The above density
operator finally reduces to ρ ¼ jψ2iðjψ3iÞT , where jψ3i is
the state associated to a winding anyon with spin h3 ¼ 2=5
generated by the corresponding idempotent. Consider the
reduced entanglement entropy of region R1 and R2 as
labeled in Fig. 2. One can verify that the entropy for
arbitrary regions (for example, the region R1) strictly obeys
the formula given in [33],

SR ¼ −
X
fXg

Q
mdqm
Dn−1 log

�Q
ldql

Dn−1

�
; ð20Þ

where fXg denotes all the possible string structure in region
R, qm denotes the leg crossing the boundary of R and n
denotes the number of the legs crossing the boundary.
Noticing that some of the quantum dimensions are neg-
ative, the log function can not be simplified in the sameway
as in [33]. The entanglement entropy is generically com-
plex. The real part of the topological entanglement entropy
however is similar to the usual Hermitian case,

FIG. 2. The subregions we choose on a torus in the computation
of the entanglement entropies.
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ℜ½Stop� ¼ − logD; ð21Þ

recovering the quantum dimension of the non-Hermitian
model.

V. CONCLUSION

In this paper, we revisit the Galois conjugates of unitary
string net models. These models are epitome of non-
Hermitian systems that demonstrate topological properties.
While it is demonstrated that they cease to be topological
when embedded into Hermitian systems, in this paper we
study these models as they are—and demonstrated that
topological quantities are embedded in operators computed
in biorthogonal basis, or equivalently, the “concomitant”
Hilbert space with a deformed inner product. Specifically,
quantities like the modular matrices and entanglement
entropies recover topological invariants, exactly as their
Hermitian counterpart. This is in contrast with previous
works [3] which observed that keeping only the right (left)
eigenstates and embed them in a Hermitian model destroys
the topological properties of the model.
For interacting models like topological orders, it is not

entirely clear how time reversal symmetry should be
defined. Therefore it is not immediately clear how one
should explain the reality of the spectrum, even though we
prove this generically in Galois conjugated Levin-Wen
models.
Much more is needed to understand non-Hermitian

topological orders and how to utilize their topological
robustness in open systems in light of the concomitant
Hilbert space. For example, we would expect that expect-
ation values computed via the deformed inner product
should correspond to the expectation values of operators

actually measured in a steady state, which can be checked
in experiments. These are important questions that we will
hopefully revisit in the near future.
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APPENDIX A: DATA OF GENERAL
suð2Þk MODEL

For completeness and preparing for the backgrounds
for the proof below, we review the computation of the
F-symbol and G-symbol of suð2Þk model along the lines
adopted in [34]. The associated category is calledAkþ1 and
its simple objects are labeled by 0; 1

2
; 1; 3

2
;…; k

2
. The fusion

rule for these objects are Na
bc ¼ 1 if aþ b ≥ c, bþ c ≥ a,

cþ a ≥ b, aþ bþ c ∈ Z, and aþ bþ c ≥ k, and other-
wiseNa

bc ¼ 0. It is easy to verify that all the integer element
(or we called integer spin) will form a subalgebra, which we
used as examples in this paper. The G symbol is computed
by the following formula,

Gabc
def ¼

�
a b c

d e f

�
q

ð−1Þp; ðA1Þ

where

p ≔
3ðaþ bþ cþ dþ eþ fÞ2 − ðaþ dÞ2 − ðbþ eÞ2 − ðcþ fÞ2

2
ðA2Þ

Since we only focus on the integer object, when a; b; c; d; e; f are all integers, pmust be an integer. The other part is called
q-deformed Wigner-6j symbols, it is computed via the Racah formula,

�
j1 j2 j3
j4 j5 j6

�
q

¼ Δðj1; j2; j3ÞΔðj1; j5; j6ÞΔðj4; j2; j6ÞΔðj4; j5; j3Þ

×
X
z

ð−1Þz½zþ 1�!
½z − a1�!½z − a2�!½z − a3�!½z − a4�!½b1 − z�!½b2 − z�!½b3 − z�! : ðA3Þ

where

q ≔ e
2gπi
kþ2; ½m� ≔ qm=2 − q−m=2

q1=2 − q−1=2
¼ sinðgmπ

kþ2
Þ

sinð gπ
kþ2

Þ ; ½n�! ≔

8>><
>>:

Q
n
m¼1½m� n > 0

1 n ¼ 0

∞ n ≤ 0

: ðA4Þ
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The summation
P

z is over integers z such that every term in the summand is well defined, i.e., the summation
is from maxfa1; a2; a3; a4g to minfb1; b2; b3g where a1 ¼ j1 þ j2 þ j3, a2 ¼ j1 þ j5 þ j6, a3 ¼ j4 þ j2 þ j6,
a4 ¼ j4 þ j5 þ j3, b1 ¼ j1 þ j2 þ j4 þ j5, b2 ¼ j2 þ j3 þ j5 þ j6 and b3 ¼ j3 þ j1 þ j6 þ j4. The rest term is the
function Δðj1; j2; j3Þ, it is defined as

Δðj1; j2; j3Þ ≔
( ð½j1þj2−j3�!Þ1=2ð½j3þj1−j2�!Þ1=2ð½j2þj3−j1�!Þ1=2

ð½j1þj2þj3þ1�!Þ1=2 Nj1
j2j3

¼ 1

0 otherwise
: ðA5Þ

The quantum dimension of the simple object x is dx ¼
½2xþ 1�. The integer factor g is a new parameter compared
to the formula in [34]. Galois conjugation is to change the
factor g, expanding the allowed value g ¼ 1 by 1;…;
fk=2g, where fag denotes the integer part of number a. For
example, Fibonacci model is in fact the subset of integer
spin of suð2Þ3 model, where we set g ¼ 1 and deformation
parameter q ¼ e

2πi
5 . If we set g ¼ 2, q ¼ e

4πi
5 , we obtain the

Yang-Lee model. The nonunitarity comes from the possible
negative sign of the function ½� � ��. The F-symbol can be
computed by the formula Fabα

βcγ ¼ vcvγGabc
αβγ .

Let us further consider these suð2Þk models with integer
spins. One important observation is that the summation
must be a real number. The only possible imaginary part
comes from the function like Δðj1; j2; j3Þ. In the following
discussion, we will make use of the observation that for
arbitrary combination of a; b; c;m; n; o; α1; α2; α3; α4 the
product of the following G-symbol must be real, i.e.

Gα1bα2
cα4a Gα4cα2

aα3b
Gaα3α2

nα1α4G
mα1α4
bα3α2

Gnom
α2α3α4G

onm
α1α4α2 ∈ R

for all possible cases: ðA6Þ

The proof of this observation more generally is direct.
Since the only possible imaginary term is Δð�; �; �Þ, we
denote each term in the product as

Gα1bα2
cα4a ∝Δðc;b;aÞΔðc;α4;α2ÞΔðα1;b;α2ÞΔðα1;α4;aÞ;

Gα4cα2
aα3b

∝Δða;c;bÞΔða;α3;α2ÞΔðα4;c;α2ÞΔðα4;α3;bÞ;
Gaα3α2

nα1α4 ∝Δða;α1;α4ÞΔðb;α3;α4ÞΔðm;α1;α4ÞΔðm;α3;α2Þ;
Gmα1α4

bα3α2
∝Δðb;α1;α2ÞΔðb;α3;α4ÞΔðm;α1;α4ÞΔðm;α3;α2Þ;

Gnom
α2α3α4 ∝Δðα2;α3;mÞΔðn;o;mÞΔðn;α3;α4ÞΔðα2;o;α4Þ;

Gonm
α1α4α2 ∝Δðα1;α4;mÞΔðo;n;mÞΔðα1;n;α2ÞΔðo;α4;α2Þ:

ðA7Þ

It is easy to see that Δði; j; kÞ ¼ Δðj; i; kÞ ¼ Δðk; i; jÞ,
each Δ appears in pairs and Δ2 must be real. We then finish
the proof.

APPENDIX B: T MATRIX PROPERTY

In this Appendix we will prove several important
properties of the T matrix and anyon basis. First, the T
matrix remains unitary, i.e. T−1 ¼ T†. The second theorem
we want to prove is that under the basis fjRiig, T matrix is
in addition a real matrix. Before we prove this theorem, we
need several lemmas. Recall that the wave function
fjT n

momig and fjT 0n
momig are generated by the left/right

panel of Fig. 1 separately. If we write down the wave
function explicitly,

jT n
momi ¼

X
abc

vavbvcvmvnvo
X

α1;α2;α3;α4

�Y4
i

dαi

�
Gα1bα2

cα4a Gα4cα2
aα3b

Gaα3α2
nα1α4G

mα1α4
bα3α2

Gnom
α2α3α4G

onm
α1α4α2 jabci; ðB1Þ

jT 0n
momi ¼

X
abc

vavbvcvmvnvo
X
αi

�Y
j

dαj

�
Gα1bα2

cα4a Gα4cα2
aα3b

Gaα3α2
nα4α5G

mα4α5
aα4α1 G

mα1α4
bα3α2

Gnom
α2α3α5G

onm
α4α5α2 jabci: ðB2Þ

Similar to the expression (5), the product of G symbol is
real, which can be verified by following the procedure in
the last Appendix A. Immediately we obtain the fact below:
the inner product of two basis (for arbitrary combination)
takes the following form

ðjT n
momi; jT n1

m1o1m1
iÞ ¼ vmvm1

vnvn1vovo1B
mnom1n1o1 ; ðB3Þ

ðjT 0n
momi;jT 0n1

m1o1m1
iÞ¼vmvm1

vnvn1vovo1B
0mnom1n1o1 ; ðB4Þ

ðjT n
momi; jT 0n1

m1o1m1
iÞ¼vmvm1

vnvn1vovo1C
mnom1n1o1 ; ðB5Þ

where the factors Bmnom1n1o1 , B0mnom1n1o1 and Cmnom1n1o1

are all real. The set fjT n
momig is complete,2 there must exist

a unique combination of the coefficient αjmno and α0jmno

such that

2Here we just pick the maximal linearly independent system.
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jRji ¼
X
m;n;o

αjmnojT n
momi; ðB6Þ

jR0
ji ¼

X
m;n;o

α0jmnojT 0n
momi: ðB7Þ

The second lemma we want to prove is that αjmno ∝ vmvnvo
and α0jmno ∝ vmvnvo. Because the procedures to prove
these two cases are totally the same, we just need to
prove that αjmno satisfies the condition. In order to simplify
our notations, we relabel the indices m, n, o, and define
vi ≔ jT ni

mioimii. The Gram-Schmidt orthogonalization proc-
ess can be explicitly written as the following form

jRji ¼
1

Dj−1

��������������

ðv1; v1Þ ðv2; v1Þ … ðvj; v1Þ
ðv1; v2Þ ðv2; v2Þ … ðvj; v2Þ

..

. ..
. . .

. ..
.

ðv1; vj−1Þ ðv2; vj−1Þ … ðvj; vj−1Þ
v1 v2 … vj

��������������
;

ðB8Þ

where the factor Dj−1 is

Dj ¼

�����������

ðv1; v1Þ ðv2; v1Þ … ðvj; v1Þ
ðv1; v2Þ ðv2; v2Þ … ðvj; v2Þ

..

. ..
. . .

. ..
.

ðv1; vjÞ ðv2; vjÞ … ðvj; vjÞ

�����������
ðB9Þ

with D0 ¼ 1.
First we need to prove that Dj is real for all j.

Using the Levi-Civita symbol, the determinant can be
expanded as

Dj ¼
Xj

i1;…ij¼1

ϵi1i2…ijðv1; vi1Þ � � � ðvj; vijÞ: ðB10Þ

for each label ij, there must exist a positive integer that
equals to it, which means that there must exist two copies of
vmij

vnij voij . All the possible imaginary part will be can-

celed and thus the resultantDj must be real. The same trick
applies to Eq. (B8). Expanding the result

jRji ¼
1

Dj−1

Xj

i1;…;ij¼1

ϵi1;…;ijðv1;vi1Þðv2;vi2Þ � � � ðvj−1;vij−1Þvij

ðB11Þ

Again, in the term ðv1; vi1Þðv2; vi2Þ � � � ðvj−1; vij−1Þvij ,
for ik ≠ ij, there must exist a positive integer k that equals
to ik,whichwill cancel the possible imaginary part (the product

of the form vmvnvo). The imaginary part only comes from
ðvij ; vlÞ. It will leave the possible imaginary part vmij

vnij voij ,

which completes the proof thatαjmno ∝ vmvnvo. Recall that the
construction of the T matrix Eq. (14)

Tij ¼ ðjRii; jR0
jiÞ

¼
X

m;n;o;m1;n1;o1

αimnoα
0j
m1n1o1ðjT n

momi; jT 0n1
m1o1m1

iÞ: ðB12Þ

Using the conclusion αjmno ∝ vmvnvo and the Eq. (B5),
we can see that all the possible imaginary parts will
cancel exactly and thus Tij must be a real number as claimed.
Several interesting facts follow. We denote the eigen-

state as jPR
λi
i, where the capital R denotes the right

eigenstate and λi is its corresponding eigenvalue, i.e.
TjPR

λi
i ¼ λijPR

λi
i. Since T matrix is a real matrix, we

automatically have

T�jPR
λi
i� ¼ λ�i jPR

λi
i� ¼ TjPR

λi
i� ¼ λ�i jPR

λ�i
i: ðB13Þ

The last equalitymeans that jPR
λi
i� is also an eigenstate,which

corresponds to the eigenvalue λ�i . Particularly, noticing that λi
must be the root of unity (Vafa’s theorem), if λi ≠ 1, we could
generate the dual anyon basis by conjugation. Another
important property is that the corresponding left eigenstate
of the anyon basis jPR

λi
i is itself, i.e. jPL

λi
i ¼ jPR

λi
i. Recalling

the definition of the biorthogonal system, what we need to
prove is that hPR

λi
jPR

λj
i ¼ δλiλj . The proof relies on the

unitarity of the T matrix.

hPR
λi
jPR

λj
i ¼ jPR

λi
i†jPR

λj
i

¼ 1

λj
jPR

λi
i†λjjPR

λj
i ¼ 1

λj
jPR

λi
i†TjPR

λj
i

¼ 1

λj
ðT†jPR

λi
iÞ†jPR

λj
i ðB14Þ

Since T is unitary, T† is its inverse. Also, λ−1i ¼ λ�i because λi
must be the root of unity. We have

TjPR
λi
i ¼ λijPR

λi
i ⇒ T†jPR

λi
i ¼ λ�i jPR

λi
i: ðB15Þ

Then Eq. (B14) can be simplified into

1

λj
ðT†jPR

λi
iÞ†jPR

λj
i ¼ λi

λj
hPR

λi
jPR

λj
i ðB16Þ

If λi ≠ λj, we directly have hPR
λi
jPR

λj
i ¼ 0. If λi ¼ λj, we can

normalize the anyon basis to let hPR
λi
jPR

λi
i ¼ 1. One might

worry about degeneracies, but we argue that we can always
orthogonalize the eigenstates with the same eigenvalue in the
corresponding eigensubspace.
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