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We revisit a class of non-Hermitian topological models that are Galois conjugates of their Hermitian
counter parts. Particularly, these are Galois conjugates of unitary string-net models. We demonstrate that
these models necessarily have real spectra, and that topological numbers are recovered as matrix elements
of operators evaluated in appropriate biorthogonal basis, that we conveniently reformulate as a concomitant
Hilbert space here. We also compute in the biorthogonal basis the topological entanglement entropy,
demonstrating that its real part is related to the quantum dimension of the topological order. While we focus
mostly on the Yang-Lee model, the results in the paper apply generally to Galois conjugates.
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I. INTRODUCTION

It is a fundamental premise of quantum mechanics that
the Hamiltonian of a closed quantum system is Hermitian,
so that the time evolution is unitary. One feature of a
Hermitian Hamiltonian is that energy eigenvalues are real,
which thus gives natural interpretation as energies of the
eigenstates. However, Hermiticity is not a necessary con-
dition for real eigenvalues. It is realized in the seminal
paper [1] that non-Hermitian Hamiltonians can also acquire
real eigenvalues if they are “parity-time-reversal” (PT)
symmetric. It is later realized that such conditions can
be further relaxed and yet preserve reality of energy
eigenvalues (See for example [2]). Physically, such non-
Hermitian Hamiltonians cannot possibly describe a closed
quantum system, since they violate unitarity. They describe
open systems at steady states [2]. These studies are mostly
restricted to Gaussian systems. Interacting theories remain
mostly open. Meanwhile, topological orders are important
classes of interacting systems that go beyond the Landau-
Ginzburg paradigm. Particularly in 2 + 1 dimensions, it
have been demonstrated that these quantum phases can
realize anyonic statistics that promise to realize robust
universal quantum gates. Explicit (exactly solvable) lattice
models that have been written down realize large classes of
these models. One important class of lattice models is the
Levin-Wen models. The input data is that contained in a
unitary fusion category—the unitary condition ensures that
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the Hamiltonian of the model is Hermitian. It is thus a
curious question whether there are new topological orders
if we relax the unitary condition [3-5]. Clearly, this is more
than pure academic curiosity, since the existence of non-
Hermitian topological orders would open the possibility of
designing new classes of open systems to realize fault
tolerant quantum computations.

There are already known nonunitary fusion categories that
can be fed into the Levin-Wen formalism to produce exactly
solvable non-Hermitian models. They are called Galois
conjugates of some unitary cousins. These models have
mostly been discarded as being unphysical, such as the
renowned Yang-Lee model. In light of the new found interest
in non-Hermiticity, the model has attracted renewed atten-
tions. An early study of the Yang-Lee model involved
embedding it in a Hermitian one is in [3]. There are also
a number of studies focused on the associated nonunitary
boundary CFT [6,7]. See also [8] for a discussion of phase
transitions of the 2 + 1 model. We would like to study these
examples as standalone 2 4 1 dimensional non-Hermitian
models systematically. We found several interesting proper-
ties of this class of models. First, while it is unclear how PT
symmetry is defined in these topological models, we show
that Galois conjugates of unitary models have real energy
spectra. This has been alluded to in [3] but we give an
explicit proof here for generic Galois duals. Second, we
demonstrate that topological invariants such as the modular
matrices are components of modular operators evaluated in a
biorthogonal basis—a notion already introduced in the non-
Hermiticity literature. We use tensor network methods to
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construct these biorthogonal basis explicitly and successfully
extract the modular matrices. Third, we study the entangle-
ment entropy of the “ground state” wave functions of these
non-Hermitian models using the density matrices con-
structed from the left/right eigenstates of the Hamiltonian.
The entanglement entropy is generically complex, but we
find that the real part carries a constant term that depends on
the quantum dimension of the non-Hermitian topological
order, analogous to the Hermitian case [9].

II. HAMILTONIAN CONSTRUCTION AND THE
REALITY OF THE SPECTRUM

A. String-net model

The basic input data of a string-net model [10] is a fusion
category. A category consists of a collection of objects M,
called “string types.” These strings could fuse, and the
fusion rules are captured by the fusion coefficients N¢,,
which are non-negative integers, for a,b,c € M. The
dual j of a string type i is one such that they fuse to the
identity object, i.e., N }j = 1. Each string type i is assigned a
number called quantum dimension d;, which satisfies
d,d, =3 .N¢,d.. We emphasize that in this paper we
will relax the positive condition for d; since we are
considering non-Hermitian models. Another useful varia-
ble, which we call quantum weight, is defined as v; := \/d;.
Since d; might be negative, v; might be pure imaginary. We
also need another data called the F-symbol, which defines
the transformation between two basis

a b c a b c
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In [10], F-symbols associated to a unitary model satisfy the
pentagon equation, respects tetrahedral symmetry, and the
unitary condition. In Galois conjugates of the unitary Levin-
‘Wen models however, it is the unitary condition that is dropped.

The Levin-Wen model is defined on a trivalent oriented
graph. Each link accommodates an object from M, but the
wave function of the ground state is only nonvanishing
when the three objects on the three links meeting at a vertex
are connected by a nonvanishing fusion coefficient. We also
demand the normalization

In [11-13], they dropped the tetrahedral symmetry con-
dition. In [3,7] they dropped the unitary condition, which is
similar to this paper. Another useful notation is called G-
symbol, which is defined as G&¢ = Fgb*/v.v,. If F-
symbol has tetrahedral symmetry, G-symbol is invariant
under the permutation of indices. The Hamiltonian is
defined by two operators A, and B ,, where v is the vertex
and p is the plaquette. A, projects the states to the subspace
where the fusion rules are satisfied at each vertex. If we just
focus on the ground state subspace, it can be ignored. The

action of the plaquette operator B, =  dB),/D where

D:=Y",d* and Bj, can be expressed in the following form
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To avoid clutter, we will consider models where each string
type is its own dual, so the orientations on the edges cease to
matter. We will also consider placing the system on a torus.
We will prove that the Hamiltonian has real spectrum,
though it is non-Hermitian. Since the model is topological,
the reality of the spectrum would hold for lattices of arbitrary
size on a torus. The simple lattice covering a torus we will
consider is illustrated in the following figure.

= |abc) . (4)

B. Reality of the spectrum

We inspect the spectrum of B, operator in the subspace
where fusion rules at vertices are satisfied. The form of B, is
given in many places. When the lattice is the simplest one
covering the torus, it is given in the Supplemental Material
of [14].
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Using this formula we could construct the B, matrix
using a”b"c¢" as row indices and abc as column indices.
In Hermitian case, because of the unitarity of the F-symbol,
such an Hamiltonian must be Hermitian and leads to the
entirely real spectrum. Since we drop the unitary condition,
things are sightly different: the Hamiltonian is symmetric
(it is easy to see that the matrix element is invariant under
the exchange of abc and a”b”c"”) but not Hermitian.
However, the spectrum of the Hamiltonian is still entirely
real for it is a projector (the possible eigenvalue for a
projector is either 1 or 0), which means that B = B, at
each plaquette p. In order to prove it as an projector, we
need another relation, called completeness relation in [12]:

i J

X T

k L)
i

(6)

By definition, B3 = ", d,d,B3 B!, /D?, the operator B, is
equivalent to adding a closed loop assigned with s in the
plaquette p, using graphical representation, we have
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Though the underlying category is still a nonunitary fusion
category, the Hamiltonian continues to be a projector and
its spectrum is real.
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III. MODULAR S, T MATRIX FOR
NON-HERMITIAN GALOIS CONJUGATE
STRING-NET MODEL

The modular § and T matrices are important character-
istic topological data of the topological order. In Hermitian
models, they can be obtained as overlaps between ground
state wave functions before and after modular transforma-
tion of the torus.

In non-Hermitian models, the procedure needs to be
redefined, accommodating the fact that left and right
eigenstates of a non-Hermitian Hamiltonian are not related
by complex conjugates [15,16]. Inspired by a number of
authors such as [17-19], we will introduce a concomitant
Hilbert space that essentially accommodates a Hilbert
space with a deformed inner product, which is equivalent
to the biorthogonal basis formulation. Though we only
explicitly construct the modular matrices of the Yang-Lee
model for simplicity, our method can be applied to general
Galois conjugate model. To construct ground states of the
Hamiltonian, we will need the central idempotents of the
Yang-Lee model, which has been given in [7]. They take
the following form,

Py = ( \/_4?/) (T%00 + ' Tt10)

2 i xi
P, = (_\/_?(f?/> (T + ¥ Ty + VA TH)
1 \: oxi _a
Pa= (_\/_?45/> (T(l)ll tes 7}01 + Ve T}n)

1 1 /’ / /
Py = B <_ \/§¢/> (¢ *Tooo =T oo +¢'TH,

1
+¢'T}y, +\/—¢77{11>7

where 77,,, is the basis element of tube algebra attached
with multiplication rules

(8)
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We will show how the T-matrix is constructed and obtain
the topological spins without direct reference to the central
idempotents. Our procedure could in turn generate the
central idempotent with nontrivial topological spins. The
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canonical form of the S-matrix has to be expressed in this
anyon basis defined by the idempotent.

A. Modular 7 matrix

The action of modular 7 matrix is to twist the torus.
Physically, appropriate anyon basis—one where an anyon
loop is winding the twisted cycle, diagonalizes the T
matrix. Its eigenvalues are nontrivial phases e related
to topological spins h;. i.e.

TIPy) = [Py = e, (10)

where |P;) is anyon basis. Explicit wave functions
for unitary models based on a tensor network have been
constructed explicitly [20-26]. We would like to adapt these
methods to construct left/right anyon basis in the
non-Hermitian model. Figure 1 illustrates the tensor
network representation of a wave function on a torus. The
value of each element in the tensor network is given below:

'\ B
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o

In these tensor networks, a closed loop is further weighted by
the quantum dimension. After contracting all the auxiliary
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FIG. 1. The tensor network representation of the string-net
model ground states on a torus. The wave function on the right is
twisted along the vertical cycle. The twist is equivalent to the
modular 7' transformation.

indices of the left panel of Fig. 1, we can generate the wave
function |7%,,,,). The set of such wave function will form an
overcomplete basis {|7},,,,) }- We denote the wave function
after T transformation as |777%,,,.),1.€. T|T %om) = |7 om)>
while the tensor network to compute this wave function is as
the right panel of Fig. 1.

1. Detour—nbiorthogonal basis and
concomitant Hilbert space

Computing elements of 7" involves taking inner products
of these wave functions with a basis bra. It is well known
that eigenstates of non-Hermitian Hamiltonian of different
eigenvalues are not orthogonal to each other under the
definition of the usual inner product. Instead the left and
right eigenstates are in fact orthogonal. They are termed
biorthogonal basis in the literature [15,18]. Suppose
there are two sets called right eigenstates {R;} and
left eigenstates {L;}, which satisfy H|R;) = E;|R;) and
H|L;) = E;|L;). We also require that (L;||R;) = §;;. By
using this biorthogonal basis, we could expand the
Hamiltonian as H = ), E;|R;)(L;|. Recall that the spec-
trum of the Galois conjugate model is all entirely real, if we
define an operator called metric operator g :=>_;|L;)(L;|
and define another Hilbert space H¢ (we called it
concomitant Hilbert space in order to distinguish from
the original Hilbert space) equipped with a new inner
product (wly), = (v|gly), we immediately find that the
Hamiltonian H is now Hermitian and the right eigenstates
are orthonormal basis under this new inner product.

As we are going to see, the modular matrices would
reproduce their topological values when evaluated in the
biorthogonal basis or, equivalently, in the concomitant
Hilbert space with a deformed inner product.

To construct a biorthogonal basis, we adapt the
inner product (|w), [¥)) := (|w))T|y). After Gram-Schmidt
orthogonalization procedure, we get two orthonormal
basis {|R;)} and {|R)}," which satisfy (|R;). R;)) = 6,
(IR}), [R})) = 6;; and T|R;) = |RY}). Itis easy to see that the
corresponding left eigenstate of |R;)(or |R})) is just the
conjugation of itself. The inner product (:|-), is now (-, -).

Now we are ready to evaluate the components of the T
matrix in the concomitant Hilbert space. Choosing the set
{|R;)} as the representation, the matrix element is given by

Tij = (Ri[|TR;), = (Ri|R}), = (IR;). |R})).  (14)

By using this scheme we could construct the 7" matrix under
the basis {|R;)}. Though it is not diagonal, we could still
read the topological spins by finding its eigenvalue. For
example, in Yang-Lee model, the topological spins corre-
sponding to the anyon basis (8) are

'Because the set {|77,,,)} is overcomplete, we can just pick
the maximal linearly independent system to orthogonalize.
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hzz—— ]’l3 = —=. (15)

For the nontrivial anyon basis (with nontrivial topological
spins), we can directly get them because its eigensubspace
is one dimensional. In the Appendix B, we prove that such
a representation is a real representation of 7" matrix. This
property immediately leads that the conjugation of the
anyon basis with nontrivial twist is also the anyon basis.
Besides, another important conclusion is that the anyon
basis will automatically form the biorthogonal basis, which
will be used in the calculation of entanglement entropy.

B. Modular S matrix

The S matrix carries information of braiding between
anyons. Under the action of the S transform, the lattice
covering the torus is rotated by 90°. We have already
constructed the wave function of the basis of the tube
algebra by using Fig. 1, which we denote by {|77%,,,.) }. We
label the wave functlon after the § transformation as
{|8"om)}- The algorithm to compute it is to rotate the
MPO (the orange box in Fig. 1) and use F-moves to
transform it back into its original form, i.e.

S|Tm()m m()m ann (16)

moo’ no' }’l

Again, the set {|7",,,,)} and |S,,,,) are two overcomplete
sets of basis. After choosing their maximal linearly inde-
pendent system, we orthogonalize these two sets of basis as
in the computation of 7' matrix, denoting them as {|R;)}
and {|R%)}. The construction of S matrix is also similar:

(IR:). IR7)). (17)

However, if we want to get the S matrix which satisfies the
Verlinde formula, we need to transform the representation.
The final S matrix is S = U'S,U, where U is the unitary
transformation relating the basis |R;) and the anyon basis.
For example, using our construction and the anyon basis in
Eq. (8), the S matrix for Yang-Lee model is

n(e ey )

IV. ENTANGLEMENT ENTROPY
OF NON-HERMITIAN SYSTEM

(So)ij = (Ril[SR;), = (R|R}), =

Entanglement entropy is one important quantity charac-
terizing a topological order. In a non-Hermitian system,
density matrices have been constructed using the left/right
eigenstates of the Hamiltonian, and the entanglement
entropy is computed from these generalized density matri-
ces [27-32]. These prior studies focused mostly on free
systems. We would like to apply these methods to compute

the entanglement entropy and recover also the topological
term characterizing the non-Hermitian topological order.

Explicitly, the density operator is defined as pg := pg
[27-32], where g is the metric operator we introduced
in the previous section. Let us continue to take Yang-Lee
model as an example. Consider the ground state on a torus
with the anyon with topological spin h, =—-2/5
wrapping a noncontractible cycle and we denote the state
as |y,). The corresponding generalized density operator is
6 = |w2) (w2|g. We assume that the state can be expanded
by using {|R;)}, i.e. [w,) = >, B5|R;). We can simplify the
equation

po = SRR (R, (Zwm)
i.Jj k
= BB IR, (19)

where we have used the biorthogonal relation. As we
discussed in the last section and the Appendix B, the left
eigenstate |L;) = |Ry)*. To simplify the expression further,
consider the central idempotent corresponding to 3 = 2/5.
Its coefficient ﬂé satisfies ﬁé = (ﬁé)* The above density
operator finally reduces to p = |y,)(Jy3))?, where |y3) is
the state associated to a winding anyon with spin 73 = 2/5
generated by the corresponding idempotent. Consider the
reduced entanglement entropy of region R; and R, as
labeled in Fig. 2. One can verify that the entropy for
arbitrary regions (for example, the region R)) strictly obeys
the formula given in [33],

1.4y, (114,
= Z Dntll Di‘l—? ’ (20)
{x}

where {X} denotes all the possible string structure in region
R, q,, denotes the leg crossing the boundary of R and n
denotes the number of the legs crossing the boundary.
Noticing that some of the quantum dimensions are neg-
ative, the log function can not be simplified in the same way
as in [33]. The entanglement entropy is generically com-
plex. The real part of the topological entanglement entropy
however is similar to the usual Hermitian case,

FIG. 2. The subregions we choose on a torus in the computation
of the entanglement entropies.
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[S,op) = — log D, 1)

recovering the quantum dimension of the non-Hermitian
model.

V. CONCLUSION

In this paper, we revisit the Galois conjugates of unitary
string net models. These models are epitome of non-
Hermitian systems that demonstrate topological properties.
While it is demonstrated that they cease to be topological
when embedded into Hermitian systems, in this paper we
study these models as they are—and demonstrated that
topological quantities are embedded in operators computed
in biorthogonal basis, or equivalently, the “concomitant”
Hilbert space with a deformed inner product. Specifically,
quantities like the modular matrices and entanglement
entropies recover topological invariants, exactly as their
Hermitian counterpart. This is in contrast with previous
works [3] which observed that keeping only the right (left)
eigenstates and embed them in a Hermitian model destroys
the topological properties of the model.

For interacting models like topological orders, it is not
entirely clear how time reversal symmetry should be
defined. Therefore it is not immediately clear how one
should explain the reality of the spectrum, even though we
prove this generically in Galois conjugated Levin-Wen
models.

Much more is needed to understand non-Hermitian
topological orders and how to utilize their topological
robustness in open systems in light of the concomitant
Hilbert space. For example, we would expect that expect-
ation values computed via the deformed inner product
should correspond to the expectation values of operators

|

a+b+c+d+e+f)P -

actually measured in a steady state, which can be checked
in experiments. These are important questions that we will
hopefully revisit in the near future.
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APPENDIX A: DATA OF GENERAL
su(2), MODEL

For completeness and preparing for the backgrounds
for the proof below, we review the computation of the
F-symbol and G-symbol of su(2), model along the lines
adopted in [34]. The associated category is called Ay, ; and
its simple objects are labeled by 0,3, 1,3, ...,4 The fusion
rule for these objects are N, = 1ifa+b >c,b+c > a,
c+a>b,a+b+ce”Z, and a+ b + ¢ > k, and other-
wise N§ . = 0. Itis easy to verify that all the integer element
(or we called integer spin) will form a subalgebra, which we
used as examples in this paper. The G symbol is computed
by the following formula,

we | @ b ¢ B
af={y . ;e e

where

(a+d)?—(b+e)?—(c+f)?

p::

> (A2)

Since we only focus on the integer object, when a, b, ¢, d, e, f are all integers, p must be an integer. The other part is called
g-deformed Wigner-6j symbols, it is computed via the Racah formula,

Ji J2 3 ... L. .. ..
{ } = A(j1. J2: J3) AU Jss Je) AU J2. ) Aljas Js. J3)
q

Ja Js Js

(=1)*[z + 1]!

where

X . A3
2 e = el = i~ alios = 5~ 6l -
m/2 _ g=m/2 gin(22) metlm] n>0
1 1/2 q_l/z = k;zz ) [I’l]' = 1 n = O (A4)
q'" —q sin(35) - <0
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The summation ) is over integers z such that every term in the summand is well defined, i.e.,

the summation

is from max{a;.a,,a3,a,} to min{by, by, b3} where a; = j, +jo+j3. ay=ji+js+ je a3 = js+ j2+ Je
ay = ja+js+js by =ji+j2+js+Jjs, br=jr+j3+js+js and by = j3+ j; + jo + js. The rest term is the

function A(j, js, j3), it is defined as

(1t2=i3])" 2 (s +ii=d2) )2 (Lo +is =i )2 NJI _
A1 jasJj3) = Wrtia i+ Jos = (AS)
0 otherw1se

The quantum dimension of the simple object x is d, =
[2x + 1]. The integer factor g is a new parameter compared
to the formula in [34]. Galois conjugation is to change the
factor g, expanding the allowed value g=1 by 1,...,
{k/2}, where {a} denotes the integer part of number a. For
example, Fibonacci model is in fact the subset of integer
spin of su(2); model, where we set g = 1 and deformation
parameter g = ¢35 If we set g=2,q= €%, we obtain the
Yang-Lee model. The nonunitarity comes from the possible
negative sign of the function [- --]. The F-symbol can be
computed by the formula F;f;,’ = V.0 Ga[}y

Let us further consider these su(2), models with integer
spins. One important observation is that the summation
must be a real number. The only possible imaginary part
comes from the function like A(j;, j,, j3). In the following
discussion, we will make use of the observation that for
arbitrary combination of a, b, c,m,n,o0,a;,a, a3, a, the
product of the following G-symbol must be real, i.e.

a1 bay ~aucy ~A03A ~MA ~pom onm
GC(’W Gaa b G””lﬂmeazaa Gazaz%Gal%az eER

for all possible cases. (A06)
The proof of this observation more generally is direct.
Since the only possible imaginary term is A(x, %, %), we
denote each term in the product as

|

mom E VaUpVeVp Uy Uy E

abc ap,0,a3,0,

n
|T mom

abc

Similar to the expression (5), the product of G symbol is
real, which can be verified by following the procedure in
the last Appendix A. Immediately we obtain the fact below:
the inner product of two basis (for arbitrary combination)
takes the following form

(I Fiom)-

(B3)

1 mnom;n,o
myogm, ) = U mUm, UnUn, Voo, B 1oy

(7" 0om)-

— /mnomno
m101m1>)_Umvm,vnvnlvovolB e <B4)

4
a1bay ~aycay ~aazay ~maiay ~nom onm | >
(H dai>Gca4“ Gaa3 G’lalfmea;az Gaza3a4Ga1a4a2 abc),
i

Zv Vp VoV Uy ¥ Z(Hd ) GarrG

Géai < Ale.b.a)A(c.ap.m)Alar.boa)Alar.ay.a),
Gy % A(a,c,b)A(a,a3,00) Aay, c,ar) Ay, a3,b),
Ghaja, x Ala,ay,a4) A(b,az,a,) A(m,ay,a4) A(m, a3, a),
Gl < A(b,ay,a0) A(b,az,a4) A(m,ay,a4) A(m,a3,a,),
Gasara, <A@z, a3, m)A(n,0.m)A(n,a3,04) A(az,0.04),
Goltna, X Alay,ay,m)A(o,n,m)A(ay,n,ay)A0,a4,a5).
(A7)
It is easy to see that A(i,j, k) = A(j,i, k) = A(k, i, j),

each A appears in pairs and A must be real. We then finish
the proof.

APPENDIX B: T MATRIX PROPERTY

In this Appendix we will prove several important
properties of the 7 matrix and anyon basis. First, the T
matrix remains unitary, i.e. 7~! = 7. The second theorem
we want to prove is that under the basis {|R;)}, T matrix is
in addition a real matrix. Before we prove this theorem, we
need several lemmas. Recall that the wave function
{|7"om)} and {|7"%,,,)} are generated by the left/right
panel of Fig. 1 separately. If we write down the wave
function explicitly,

(B1)
Guaaty Gnsias Gacya; Gy Gasetsas Gatyitga |ADC).- (B2)

[
(leom> |T/nm]101m1 >) = vmvml Un Un] Uovol crnonmima ’ (BS)

where the factors B™nomimor = Blmnommoy gqnd Crmmomnio,
. 2 .

are all real. The set {|7 %,,,) } is complete,” there must exist

a unique combination of the coefficient e and a4,

such that

*Here we just pick the maximal linearly independent system.
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Zai'l’lO'Tmom <B6)
|Rl Za m"O'T/mom (B7)

The second lemma we want to prove is that Ao Vi Up U,
and a’{;mo x v,,0,0,. Because the procedures to prove
these two cases are totally the same, we just need to
prove that a,’}mo satisfies the condition. In order to simplify
our notations, we relabel the indices m, n, o, and define
v; := |T pi,0,m,)- The Gram-Schmidt orthogonalization proc-
ess can be explicitly written as the following form

(vi,vy) (v2,v1) (Vj’vl)
(Vi,V2) (V2,V2) (Vj’VZ)
1
Rj) = ;
D;_;
(Vi.vjim1) (V2 Vo) (Vi vio1)
Vi \{) VJ'
(B8)
where the factor D;_; is
(vi,vi) (v, V1) (V_/" vi)
(vi,v2) (v, V) (V;,Vz)
D; = (B9)
(vi.v;)  (va,v;) ... (vj,V))

with Dy = 1.

First we need to prove that D; is real for all j.
Using the Levi-Civita symbol, the determinant can be
expanded as

J
Dj: Z €i|i2...l‘j(vl’vil)".

iy =1

(vj.vi). (B10)

for each label i;, there must exist a positive integer that
equals to it, which means that there must exist two copies of
Um;, Un;, Vo, . All the possible imaginary part will be can-
celed and thus the resultant D; must be real. The same trick
applies to Eq. (BS). Expandmg the result

1 J
|Rj> :D- Z €i ..., i_,v(Vl’Vi, (Vz,Viz)"'(Vj—hVi,,l)Vi/
J=Li =1
(B11)
Again, in the term (vi, V) (V2. Vi) o (Vioi, Vi )Vis
for iy # i, there must exist a positive integer k that equals

to i, which will cancel the possible imaginary part (the product

of the form v,,v,v,). The imaginary part only comes from
(Vi,» v1). It will leave the possible imaginary part Uy, Un,, ¥

0,’

which completes the proof that a’m,m x v,U,v,. Recall that the
construction of the 7 matrix Eq. (14)

Ti; = (IR:). R}))

- ¥

m,n,0,my,ny,0,

Tlﬁ?ll”lml >) (B12)

ainnoa/{mnlol (lTnmom>’

Using the conclusion a’,gm, x v,,v,v, and the Eq. (BS),
we can see that all the possible imaginary parts will
cancel exactly and thus 7';; must be a real number as claimed.
Several interesting facts follow. We denote the eigen-
state as |73/'f’_ ), where the capital R denotes the right
eigenstate and 4; is its corresponding eigenvalue, i.e.
T|Pf) = 4|Pf). Since T matrix is a real matrix, we
automatically have
TPy = AIPL)

= T|73/’f[>* = | PR). (B13)

The last equality means that |73§1 )* is also an eigenstate, which
corresponds to the eigenvalue 4] . Particularly, noticing that 4
must be the root of unity (Vafa’s theorem), if 4; # 1, we could
generate the dual anyon basis by conjugation. Another
important property is that the corresponding left eigenstate
of the anyon basis [P5 ) is itself, i.e. [P} ) = |Pf). Recalling
the definition of the biorthogonal system, what we need to
prove is that <73§[ |Pfj ) = 63,,- The proof relies on the
unitarity of the 7" matrix.

(PRIPER) = [PR)[PF)
1 1
=7 PRYAIPE) = I|P5>TT|P§,>
J J
1
= (TPE)TP) (B14)
J
Since T is unitary, 7" is its inverse. Also, 47! = 17 because 4
must be the root of unity. We have
T|PY) = 4|PF) = T'[PF) = 4|P§).  (BIS)
Then Eq. (B14) can be simplified into
U i prVVi1pRY — 4 (DR | DR
T (TPRYIPE) = HPEPE) - (BI6)
]

If 7; # A;, we directly have (P[P} ) = 0.1f ; = 4;, we can
normalize the anyon basis to let (P [PF) = 1. One might

worry about degeneracies, but we argue that we can always
orthogonalize the eigenstates with the same eigenvalue in the
corresponding eigensubspace.
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