PHYSICAL REVIEW D 105, 065008 (2022)

More on the operator-state map in nonrelativistic CFTs

Georgios K. Karananas

1, .
* and Alexander Monin

23,%

YArnold Sommerfeld Center, Ludwig-Maximilians-Universitit Miinchen,
Theresienstrafse 37, 80333 Miinchen, Germany
*Institute of Physics, Theoretical Particle Physics Laboratory (LPTP),
Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
3Depam‘ment of Physics and Astronomy, University of South Carolina, Columbia SC 29208, USA

® (Received 14 September 2021; accepted 15 February 2022; published 15 March 2022)

We propose an algebraic construction of the operator-state correspondence in nonrelativistic conformal

field theories by explicitly constructing an automorphism of the Schrodinger algebra relating generators in
different frames. It is shown that the construction follows closely that of relativistic conformal field

theories.
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I. INTRODUCTION

The nonrelativistic conformal group is the symmetry
group of the free Schrodinger equation.1 On top of the
Galilei subgroup, it includes nonrelativistic dilatations and
one special conformal transformation. Theories invariant
under the (centrally extended) Schrédinger group are
called nonrelativistic conformal field theories (NRCFTSs).
Examples of those are nonrelativistic particles with an =2
potential interaction and fermions at unitarity [1-3].

The name NRCFT can be somewhat misleading, for it
evokes conformal field theory (CFT) suggesting that the
former is a special case of the latter. However, NRCFT is
only (if at all) a distant cousin of CFT. The Schrodinger
group cannot be obtained (at least in the same number of
dimensions [3]) from the conformal group by considering
the nonrelativistic limit. In other words, the relation
between the two groups is not the same as between the
Poincaré and Galilei groups, where the latter is the Inonii-
Wigner contraction of the former.”

*georgios.karananas@physik.uni—muenchen.de

"alexander.monin @unige.ch

'One may argue that it is only natural to take as the non-
relativistic analog of the conformal group the transformations
commuting with the free Schrodinger equation, in view of the fact
that the conformal group corresponds to the symmetries of the
free massless Klein-Gordon operator.

2Actually, by performing the contraction of the conformal
algebra one ends up with yet another type of nonrelativistic
conformal algebra. This has the same number of generators as its
parent. For more details see [4].
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Even putting aside the central charge Q corresponding to
the particle number in nonrelativistic theory, the number of
generators for the two groups is different: CFT has as many
special conformal generators as the number of spacetime
dimensions, while in NRCFT there is only one analog of the
special conformal transformation, irrespective of the space-
time dimensionality. Dilatations are also different in the two
theories, since in CFT these do not distinguish between space
and time, while in NRCFT time and spatial coordinates scale
differently; this in turn allows one to have dimensionful
parameters, such as mass, clearly forbidden in CFT.

From an effective field theory perspective, the symmetry
group of NRCFT is an accident of the nonrelativistic limit.
Considering higher order (in inverse powers of the speed
of light) operators would bring in symmetry-breaking
terms revealing that NRCFT originates from a Poincaré
invariant theory rather than from a theory with an enhanced
symmetry such as a CFT.

Despite all the differences there are common features of
conformal field theories and their nonrelativistic counter-
parts, allowing one to draw general conclusions about the
two types of theories. For instance, the operators in both
theories are organized into primaries and descendants, and
the operator product expansions (OPE) are determined by
the corresponding contributions from primary operators. It
can be shown [5,6] that in both theories OPE has a finite
radius of convergence and, which is intimately related to
this fact, that both types of theories possess what is called
an operator-state correspondence. The latter establishes a
one-to-one map between states in the Hilbert space and the
operators of a theory. In particular, the scaling dimensions
of the operators are given by the energies of the corre-
sponding states. One of the consequences of the operator-
state correspondence is the presence of unitarity bounds on
the scaling dimensions.

Published by the American Physical Society
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The fact that OPE converges also implies that higher
order correlators can be expressed in terms of two point
functions by applying the OPE repeatedly, in the same
manner as in CFTs. However, developing a bootstrap
program for NRCFT is complicated by the fact that three
point functions are not fixed completely by kinematics
only, as opposed to CFT (see [6] for more details).

Our main objective in this paper is to put forward an
algebraic construction of the operator-state correspondence
for NRCFTs, which parallels the procedure used when
studying CFTs. Specifically, we discuss how the Hilbert
space structure is introduced on the space of Euclidean
fields. This is achieved by finding an automorphism
relating the Minkowski and Euclidean generators of the
conformal group. This way, the operator-state map is a
natural aftermath of the proposed construction.

This work is organized as follows. In Sec. II we set the
stage by rephrasing some well known results of CFTs in a
language which can be used almost verbatim in the
NRCFTs. We first give a brief overview of some basics
about the conformal algebra and its unitary representations.
Then, we turn to the operator-state correspondence and
how this emerges as a consequence of the mapping between
the Minkowski and Euclidean generators of the conformal
algebra and the operator algebra. Section III is devoted to
NRCFTs. Namely, we introduce the Schrédinger group and
discuss the algebra’s representations and action on oper-
ators. Then, we construct the appropriate map between the
generators of the algebra by finding the corresponding
coordinate transformation. Finally, we explicitly demon-
strate that in the nonrelativistic considerations, confining
the theory in a harmonic trap is completely analogous to
putting a CFT on the cylinder. We conclude in Sec. IV.
Various technical details can be found in the Appendixes.

II. CFTS

A. The conformal algebra

We start our discussion by considering the conformal
algebra in a d-dimensional Minkowski spacetime. The
commutation relations among the generators of translations
P,, Lorentz transformations J,,, dilatations D, and special
conformal transformations K, read

D,

p,]
Vs Pp) = i (mp  — NP
Ky P] = (n,wD + ),
[ K, =
s d pe) = ( wollup T JopMus = Jualup = Jupllue)
s K] = i(n,, K, = 1,,K,), (2.1)
where

=), . d-1,
is the (mostly minus) d-dimensional Minkowski metric.

It is well known that the conformal algebra is equivalent
to the algebra of SO(2, d) acting in a (d + 2)-dimensional
space endowed with metric

= diag(4,—, - uv=0,... (2.2)

nap =diag(+,—, -, —,+), (2.3)
To see this explicitly, it is convenient to introduce the

following linear combinations of generators3

J/w _%( ﬂ_Kﬂ) _%(Pﬂ—’_Kﬂ)
My =|3(P,—K,) 0 -D .
3(P, +K,) D 0

(2.4)

or in other words

1
M, =J., M, = i(P —Kﬂ),
1

Md_;'_L” - E(Pﬂ + Kﬂ), Md+1,d = D (25)

Using the commutation relations (2.1) it is straightforward
to show that the M ,p’s indeed satisfy a Lorentz algebra

[MAB ) MCD] = i(MAD’?Bc +Mpcnap —Mpphiac— MAC’?BD) .
(2.6)

B. Unitary representations of the conformal algebra

The unitary representations of SO(2,d) (for which
MZ p = M 4p) are built by considering its largest compact
subgroup which is SO(2) x SO(d). These correspond to
rotations in the (0,d + 1) and (a, b) planes, respectively;
here, a,b =1, ...,d. The Cartan generators of SO(d) and
M, can be diagonalized simultaneously; therefore, any
state in the Hilbert space can be labeled by their eigen-

values. For instance, in d = 3, every vector ) has the
following properties [71:*
) = )
M,|h, 1, m) = m|h,l,m),
MM p|h, Lm) =1L+ 1)|h, 1, m). (2.7)
Let us introduce
Mizt = Md+1.a + iMa,Ov (Maj:)T = M(T (28)

By construction Mg = —Mp,.
*For different dimensions see e.g.,

(8].
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It is straightforward to show that
[Mai10. MZ| = =M, (2.9)

meaning that the generators M= act as raising and lowering
operators for M ;. o,

+
M oMy

h,l,m) = (h+1)M:

h,1,m). (2.10)

Introducing the lowest weight vector |hy, [y, m), for which

M| hg, ly, m) =0, (2.11)
allows one to define a representation generated by the
raising operators M.

C. Operator-state correspondence and OPE

States in the so-constructed Hilbert space are in one-to-
one correspondence with fields in the theory. To make this
point clear, let us consider a field, say ¢(x), that is inert
under special conformal transformations at the origin
x =0, i.e., a primary field. We also take it to belong to
an irreducible representation of the Lorentz group. Then,
the action of the conformal algebra on ¢(x) can be
constructed as a representation induced from that of the
stability subalgebra generated by J,,, D, and K. It is
straightforward to show that [9,10] (see also [11,12])

[P ¢(x)] = —i0,p(x),
My, p(0)] = i(Zy = x,0, + x,0,)p(x).
[D,$p(x)] = —i(A + x0,)p(x),
Ky ()] = —i(2x,x" = 8,x%)0,¢p(x)

= 2i(x,A = x"Z,, )p(x), (2.12)
where £, corresponds to a finite dimensional (therefore,
nonunitary) representation of the Lorentz SO(d —1,1)
group and A is the scaling dimension. In the above,
summation over repeated indices is assumed. It follows
that at x = 0 the conformal algebra acts on primary fields as

[P/n ¢(0)] - _iay¢(0)’
[D.¢(0)] = —iAg(0),

[MﬂIJ’ ¢(0)] = izﬂb¢(0)’
(K. 9(0)] =0,

implying an analogy between the sets of generators
{M;, My, My, M;} acting on the Hilbert space
(see Sec. IB) and {P,, J,. D, K,} acting on fields.
Therefore, given an automorphism (modulo an analytic
continuation) mapping one set of generators onto the
other, the unitary representation discussed above can be
viewed as the action of the conformal algebra on fields,
where the lowest weight vectors are nothing else but

primary operators.

Since we are interested in finite-dimensional representa-
tions of SO(d) generated by M ,;,, the action on fields will be
consistent with unitarity only if we consider the Euclidean
conformal algebra. Indeed, for the Euclidean version, the
corresponding matrix X need not be infinite-dimensional
without contradicting unitarity. Similarly, it is clear that the
new generator of dilatations should be identified with
—iM 4,10, SO it is an anti-Hermitian operator.

To put differently, we are looking for a new set of
generators {P,,J,,. D, andK,},’ whose commutation
relations correspond to that of the Euclidean conformal
algebra, viz.

]
]
(Ko Py = 2i(84pD = Jp)-
[D.K,] = ik,
aps I edl = i(8acTba + 8pad ac = Sped ag = Saad be):
Japs Ke] = i(84cKp = 8pcK o), (2.13)

given by

[Pas p(2)] = =i0a(2),

[D. ()] = —i(A + 2°04) 9 (2),
Tap §(2)] = i(Zap + 240 — 2604)(2).
(Ko §(2)] = i(22,2" = 852%)0p(2)

+2i(z4A + 220 (2), (2.14)

with the matrices X, now corresponding to representations
of SO(d),°

(Zop Zea) = ObeZad + 0aaZpe — OacZpa — OpaZac-  (2.16)

Note that the automorphism we are after cannot simply
correspond to a Wick rotation. It should be followed by an
additional rotation in the (0, d) plane. Namely, it is clear
that the generators defined according to

Mg = iC0to0) M, 0 (2.17)

have commutation relations identical to that of M3, i.e.,

>We should stress that a bar over a generator does not stand for
Hermitian conjugation.
For the vector representation

Z(/zlucd = 6ac6bd - 5ad5bc- (215)
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[Map, Mcp)=i(MapGpc+ Mpegap — MppGac — Macisp)

(2.18)
but with a different metric

fap = diag(—, —, -+, =, +), (2.19)
and, at the same time, modified behavior under Hermitian
conjugation

M, =Myp, forA,B#0, and M{z=—-My.  (2.20)
In other words, the generators M,z form a nonunitary
representation of the Euclidean conformal group SO
(d + 1, 1). Performing a z/2 rotation in the (0, d) plane,
which is achieved by

My = e~ Mo , peiiMoa, (2.21)
and using a relation analogous to (2.5) to define’
Mij:jijv Mo; = J g,
_ 1 _ _ |
Md.O_E(Pd_Kd)7 Md.izi(Pz_Ki)’
_ _ _ 1 - _
Mypa=D, Mgy —E(PZ+K1)7
Myir0=75 (Pq+Kq), (2.22)

we get the following map between the Minkowski and
Euclidean conformal generators:

_ i 1
D:_E(PO"'KO)v Jij = (P —K;),

2(
1 .
=5 (Pi+ Ki) +iJoi,

j :Jij’ ‘,d,i

I . _
PiZE(Pi'i'Ki)_lJOi’ K;

- i - i
Pd:D+§(P0_K0)’ Kd:D—E(PO—Ko), (223)
with i,j=1,...,d — 1. It is easy to verify that as antici-
pated (see Appendix A for an alternative automorphism in
d=3)

jab :Mab’ D:_ideLl.O’

(2.24)

These newly defined generators have the following proper-
ties under Hermitian conjugation:

J'y=Js Di=-D, Pi=K, Ki=P, (2.25)

"For simplicity, we introduced generators carrying index d
rather than 0.

meaning that such an action defines a nonunitary repre-
sentation of SO(1,d + 1). At the same time, the fields
#(0) furnish a unitary representation of the Minkowski
conformal algebra SO(2,d); in particular, the scaling
dimensions A are in one-to-one correspondence with the
spectrum of the “conformal Hamiltonian” M, ,. Every
field should be viewed as an element of the Hilbert space,
or to put differently, we have the correspondence
$(0) < |¢). (2.26)
We note that the scalar product can be defined by
specifying it for primary operators8
<¢(l|¢ﬁ> = 6(1[)”

<¢(1|Pa¢/3> =0 (227)

The states corresponding to ¢)(z) can be naturally defined as

#(2)) = e™). (2.28)

The form of the operator product expansion, which is
convergent in CFT [13,14] (see also [15]), is heavily
restricted by the conformal symmetry; as an example,
for two primary operators it reads

ZC¢2¢]¢A

with the sum running over primary fields only and at the
same time the functions C,, 4 (z,0) are fixed up RS
several structure constants (for more see Appendix B).

The OPE endows the space of all fields with an operator
algebra, allowing us to deﬁne the action of the operators
$(z) on the Hilbert space.'” Namely, the expression (2.29)
can also be understood as

0)¢a(0).  (2.29)

2)¢1) ZC¢¢]¢A 2, iP)|¢a). (2.30)

This construction also enables us to view the states |¢) as
obtained by acting with the corresponding field ¢ on the
vacuum |0) (which in turn corresponds to the identity
operator), i.e.,

[#) = lim ¢(2)]0). (2.31)

*Defined this way, the scalar product is positive definite
pr0v1ded all pnmary operators satlsfy unitarity bounds.

°The OPE in the context of CFTs is very useful when it comes
to computing correlation functions. The repeated use of (2.29)
breaks down any n-point function to a sum that depends only on
the CFT data.

This is reminiscent of how the adjoint representations of Lie
algebras are defined.
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D. Hermitian conjugation

We should also demonstrate how the Hermitian con-
jugation of the primary operators constructed this way
works. It is obvious from (2.14) that even for real scalar
fields ¢ (z) # ¢(z). Instead, in order to preserve the action
of the conformal algebra on the fields,'' we require
that scalars transform as

¢'(2) = 2749(I2). (2.32)
vectors as
Pa(z) = 22 1(2)y (12), (2.33)
and rank-/ tensors as
B oar(2) = 2722L00(2) - 10(2) Py, (T2). (2.34)
The matrix appearing in the above reads'?
Ip(2) = <5uh - 2ZZa2Zb>’ (2.36)
and inversion acts on the coordinates as
(I2), = i—z (2.37)

E. Explicit coordinate transformations

Since (2.23) is an automorphism of the conformal
algebra [cf. (2.21)], it is clear that (modulo the analytic
continuation) it should be given by a conformal trans-
formation of the coordinates

X =z, (2.38)
which can be found in different ways, for instance, using
embedding coordinates. However, bearing in mind that
later we will turn to NRCFTs, where we cannot avail
ourselves of embedding coordinates, it is instructive to find
the transformation by comparing the explicit representa-
tions of the conformal generators in terms of differential
operators in different reference frames. Let us illustrate how
that works with an explicit example.

1. One-dimensional “spacetime”

The embedding coordinates in this case [16] correspond
to the coordinates (&, &', £2) in R>! [where the action of
SO(2,1) is naturally defined] constrained to a cone

"See Appendix C.
It is easy to check that

I(2)lep(2) = Lap(2)- (2.35)

() = (&) + (&) =0. (2.39)

Their relation to the coordinate x parametrizing the initial
one-dimensional “spacetime” is given by
0
&+

Performing a Wick rotation [see (2.17)], followed by
another /2 rotation in the (0, 1) plane [see (2.21)], we get

(£,81.,8) - (8,8.8) = (=&, i, &),  (2.41)
translating into
B EO _ix+ 1
vz= gt = (2.42)

We will now derive the same result but in a different way,
which can be employed in NRCFTs too. In (2.23), we
found the relation between the generators of the Minkowski
and Euclidean conformal algebras. Particularizing to the
situation under consideration here, we obtain

i
2

D=--(P+K),

- 4
P=D+5(P-K).

I_(:D—é(P—K). (2.43)

Expressing the above as differential operators, acting on the
functions f(x) and f(z), namely

P =i0,, D = ix0,, K = ix?0,, (2.44)
and
P=id,, D = iz, K = -iz?0,,  (2.45)
we rewrite (2.43) as
20, = = (14 ).
i .
0, = 5(1 —ix)%0,,
20, = %(1 +ix)?0,. (2.46)

This leads to the following relation between x and z:

_ix—|—1
T o1

(2.47)

which is identical to (2.42), as it should.
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Rl,d—l

FIG. 1.

The action of the two sets of generators on fields is
consistent, provided the following identification between
the Minkowski and Euclidean fields is made'’:

1

P(z) = (z=1)7%¢ (i I J:j) (2.49)
It follows from the above that
P60 = =) (=15
-z
1\ (141
= (2-1) o(550)

=779 <é) , (2.50)

which is precisely (2.32).

2. Generalization to higher dimensions

In general, the coordinate transformation corresponding
to the map (2.23) can be found [17] from (2.17) as follows
(see Fig. 1). First, the Minkowski plane is mapped to the
R x S9! cylinder by the following change of coordinates
(see e.g., [18])14:

xo—l tanT—Hg—f—tanT_e
2 2 2 )

|| ! tanT+9 tanr_g ¥
X| == - s - =N,
2 2 2 7]

BAs an example, for translations we find

P3G = (e~ 1% D+ (P = K).$(x(2)|

- (ixz_ 1) o [A(l — ix)p(x) + % (1- ix)28¢(x)}

= —idp(2). (2.48)

"“To be more precise, this maps the Minkowski plane to a

diamond shaped region of the cylinder. Analytic continuation is
implied in extending the map to the whole cylinder.

Rd

O

Minkowski plane to cylinder to Euclidean plane.

where 7 is a unit vector parametrizing the points on a
(d — 2)-dimensional sphere. Then, the Euclidean counter-
part of the Minkowski cylinder is obtained by Wick
rotating, i.e., for iz = n. Finally, the Euclidean cylinder
is mapped to the Euclidean plane by introducing

7, = €'(nsin@, cos 0). (2.52)

For completeness, the line element written in terms of the
different coordinates reads

1

2 7460

ds2 =
210
4 cos 5rcos 57

Rl (dr* — d6* — sin’ Odi?)

Minkowski cylinder

1
= 2 2 P,
__4COSQ#COSZ%(‘1’7 + d6? + sin? 0dii?)

Euclidean cylinder

_2;7
== 2 ie 2710 ds%R“'
4 cos” = cos” 5+

(2.53)

F. Radial quantization

We finish the lightning review by commenting on the
radial quantization (2.52). Assuming that all the correlators
are obtained from a path integral with a conformally
invariant action Sy[¢] it is straightforward to derive the
operator-state correspondence [12,19]. It is usually the case
that a conformally invariant, unitary, theory can be put on a
curved manifold in a Weyl invariant way (for examples of
nonunitary theories defying this assumption see [20]). In
other words, the action Sy[¢)] capturing the dynamics of a
CFT can be generalized to S[¢, g,,] that also depends on

the background metric

SO[(}] = S[$’ 5ab] - S[&» gab]’ (254)

such that

S[e_AW”(z)v 62691/1’7] = S[q_ﬁ’ gab]’ (255)

where Ay, is the Weyl weight of the field ¢; if a field with
scaling dimension A has n; lower and n; upper indices,
then its Weyl weight is given by
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AW :A+nU—nL. (256)

Considering a diffeomorphism corresponding to the coor-
dinate transformation (2.52), i.e.,

Soldp: - (2)] = S[gy: (. ). e (di® + Q)] (2.57)

followed by a Weyl rescaling with ¢ = 7, leads to

Sl (. 1), e*!(dn® + dQ3_))]

= Sle®wigia (n. i), d? + dQ3_|].  (2.58)

The fact that the theory is Weyl invariant [cf. (2.55)]
translates into
Sle®wngpi (n, i), dn* + d€_,]

= S[p%(n, i), dp* + dQ3_ ], (2.59)

implying of course the equivalence of the system on the
plane and on the cylinder, i.e.,

Sold%(2)] = S[Pe (. i), di> +dQ2_],  (2.60)
provided we define
- o7 9b -
Py (n, i) = et #5:(z),  (2.61)

5

and 7’ stands for the cylinder coordinates parametrized by 7
and 7.

It follows from (2.52) that the generator controlling
translations in the cylinder’s “time” # is identical to
dilatations D on the Euclidean plane. Indeed, on the
cylinder we have

L a7¢  ob ==
D3] = e e g D)
) 07¢ 07’ = o
_ _leAwna_Zc. o (Ay + 0,5 (2)

= —i0, B (. 7). (2.62)
which means that the eigenstates of the Hamiltonian
(controlling the evolution in real time) on the cylinder
are in one-to-one with the dimensions of the fields. There
are other manifolds where Hamiltonians are related to
different generators of the Euclidean conformal algebra.
For instance, in [21] it was shown that for AdS,_, x S!, the
eigenstates of the Hamiltonian are given by the twists of the
corresponding operators.

III. NONRELATIVISTIC CFTS

In this section we present a similar construction for
nonrelativistic conformal field theories.

A. The Schriodinger algebra

The Schrodinger algebra comprises the generators of
temporal and spatial translations H and P;, respectively,
spatial rotations J;;, Galilean boosts K;, dilatations D, and
special conformal transformations S. As usual, the algebra
is also centrally extended by adding the particle number
operator Q commuting with the rest of the generators.

The standard commutation relations for the Galilei
algebra,

Jijs Tl = i(J ji0ix + Jadjs = Jybjc — J j16i1),
[Jijs Pi] = i(6uPj — 8 Py),

J
[Jijs Ki] = i(6K; — 6k K;),

i (3.1)
should be supplemented by the way the momenta and
Hamiltonian are transformed under boosts,

[Kl’Pj] - —léuQ, [KI,H] - —lPl, (32)
as well as the nonvanishing commutators involving dilation
and special conformal transformations

[D.H] = =2iH,  [D,P;] = —iP,,
[D.K,) = iK;,  [D.S]=2is,
[S.H]=iD, [S.P]=iKk,. (3.3)

Several comments are in order here. From (3.2), we notice
that P; and K; (we are in R x R?, and the indices i, j, ...,
run from 1 to d — 1) are vectors of SO(d — 1). Meanwhile,
inspection of (3.3) reveals that the scaling dimensions of H,
P;, K;, and S are 2, 1, —1, and —2, respectively.

B. Representations

The representations of the Schrodinger algebra can be
built in the following way. We can choose the subalgebra
spanned by Q, E'= H — S and J;; to label any state with the
eigenvalues m, ¢, j, and o of Q, E, and the spins
corresponding to SO(d — 1). For instance, in d =4 we
have

E|m,e, j, o) = elm, ¢, j, o),

Tydghm,e,j,0) = i+ Dlm, e, .o},
J3lm, e, j,0) =o|lm,¢€,j,0),
Olm, e, j, o) = m|m,e, j, o). (3.4)

It is straightforward to show that for the following linear
combinations:

K, L iP;

N

Fi

Gt — % DLiH+S), (3.5)

065008-7



GEORGIOS K. KARANANAS and ALEXANDER MONIN

PHYS. REV. D 105, 065008 (2022)

we have

[E,FF] = FF, [E,G*] = 2G*, (3.6)
and therefore, these operators act as raising and lowering
operators for the eigenvalues of E. Noting also that
(G~,F;7) and (G',F;) form two Abelian subalgebras,
we can define a lowest weight state as

Fi|m,e, j,o) =G |m,¢, j,6) =0 (3.7)
and generate the whole Hilbert space by acting on it
repeatedly with (G*,F;). It may be advantageous to
introduce spin eigenstates F, with a = (+,0, —)

Ft=—(F +F,), F{=Fi, (3.8)

1
V2
such that

(U3, Ff] = aF}. (3.9)

As aresult the Hilbert space is given by a span of vectors of
the form

|m, e, j,o3n,,ng,n_, k)
= (FL)" (Fg)(F*)"-(G")|m.e.j.0).  (3.10)

with n,, ny, n_, and k integers; the corresponding
eigenvalues of E and J; are

E|m,e, j,o5n,,ny,n_, k)
= (e+ny +ny+n_+2k)|m,e, j,o;n,,ng,n_, kj,
J3|m’ 85j70-;n+’n09 n—7k>

(3.11)

=(+n,—n_)|mye josn,, ng,n_k.

We note in passing that the four-dimensional Schrodinger
algebra possesses three Casimir operators [22,23]. One of
them is obviously Q, while the others are quadratic and
quartic in the generators of the algebra.

C. Action of the algebra on fields

The way the algebra acts on fields is derived in the
standard way by constructing a representation induced
from that of a subalgebra generated by (Q,J,D,K,S)—
this obviously leaves the origin (r = 0,X = 0) invariant;
therefore, we can define its action on fields there. Namely,
since the generators Q, J, D commute with each other,
we have

(D, ¢(0)] = —iA¢(0),
[0.¢(0)] = —m(0),
[Jijv(p(o)] = izij(p(o)’
where A, m are numbers and %;; is a finite-dimensional
matrix corresponding to an irreducible representation of the

SO(d — 1) spatial rotations. Assuming that a subset of
fields is closed under the action of K; and S, in other words,

(3.12)

[S,#(0)] = is¢p(0).  [K;, ¢(0)] = ix;p(0),  (3.13)
with s and «; matrices, it follows that
(A, k] = &, (A, s] =2, (3.14)

which means that s = x = 0 and operators S and K, are
realized trivially,

[$.¢(0)] =0, [K;.¢(0)] =0.  (3.15)

Now from

[H,(1,5)] ==i0,(1,%),

equivalently,

[Pi.¢(1.X)]=i0,¢(1.x). (3.16)

¢<l, xi) — eth—iP"Xi(ﬁ(O)e_th+iPin, (317)

[ij (2, %)] = i(Z;;¢(x) + x;0; — x;0,;)p(x),
[S.¢(t,X)] = i(tA + 120, + x;10; — ;mx,2> (1,%),

;. (1. 3)] = i(10; — imx,) (1. 5). (3.18)

D. Automorphism

To be able to construct the Hilbert space from fields the
way it was done for the case of relativistic CFTs, we need to

BFor instance,
(K, (. %)] = [K;, eH=iPixi p(0) e~ iHI+iPixi]
= eiHi=iPixi[gmiHI+iPixi [ oiHI=iPixi | gh((0)]=iHITiPixi
= oM=iPxi[K, 4 tP; — x;Q, (0)]e~ HI+iPii
— eth—iP,vx,v(l-taiqb(O) +xim¢(0))e—th+iP,x,
= i(t0; — imx;) (1, X),

where we used Eq. (D3) from Appendix D.
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find an automorphism (up to an analytic continuation) of
the Schrodinger generators

H,Pi,Jij,D,Ki,S—)I:I,P,ji, (319)
such that the new, barred, ones have the appropriate
conjugation properties.

The commutation relations involving the new generators,
as well as their action on (barred) fields are of course
similar to the ones we presented above. From the “barred
counterpart” of (3.12), we notice that J and Q should be
Hermitian while D should be anti-Hermitian
D" = -D.

I,=1;  0'=0, (3.20)

As Q is just the central charge, we can immediately fix
QO = Q. To preserve the structure of the commutation
relations (3.2) and (3.3), one should impose specific
conjugation properties for the rest of the operators. For

instance,

[D,H')|=-[D",H')=[D,H|" = (=2iH)" =2iH", (3.21)
which can be satisfied, provided we identify
H =35§. (3.22)

This automatically implies

[S,H]=—[H,S]=—[S",H"|=[S,H|"=(iD)"=iD, (3.23)
which is essentially the same as for the relativistic con-

formal group (2.25). The difference comes for P; and K.
Indeed, we have

[D.P]) = —[D", P} = [D,P,]" = (=iP;)" = iP], (3.24)

which is clearly satisfied for

Pl =K, (3.25)
with a; a complex number. Similarly,
[D.K]|=~[D".K]]=D.K,]" = (iK;)" =~iK]. ~ (3.26)
for which

Kl = aP;, (3.27)

where o, is also a complex number. Note that for operators
with Q # 0, the constants «; and @, are constrained as'®

1For operators with Q = 0 there is no constraint for &; and a,
except (3.33), and one may choose

(3.28)

ajop = —1, (3.29)
since
[I_(,-,Pj]T = alaz[l_(j,l_’,] = léuQ (3.30)
and
Ki. Pj] = —i6,;0 (3.31)
Taking also into account that
P;=(P))'.  Ki=(K}) (3.32)
leads to
ajy = —ap, (3.33)
so we choose a; = a, =i, i.e.,
Pl =ik, K| =iP, (3.34)

Now we move to finding the needed automorphism.
Noting that the subalgebra generated by H, S, and D is
identical (modulo the sign of ) to that generated by P, K,
and D, we can guess immediately the appropriate trans-
formation. Namely [compare with (2.21)] we consider an
automorphism of the Schrodinger algebra generated by a
linear combination of H and S,

exp [% (H + s)} (335)

Using the results of Appendix E we obtain (Q = Q and

Jij:-]ij)

P 1(P K;)
i = e\,
V2
K 1( P, + K;)
i = e\ T i)
V2
- 1
SZE(H—FS—HD),
_ 1
HZE(H+S—1'D),
D=-i(H-2S5). (3.36)

Comparing with (3.5) we see that, as we wanted, the newly
constructed generators are in one-to-one correspondence
with those used in Sec. III B to construct the representations
of the Schrodinger algebra
S=iG",

(3.37)

065008-9



GEORGIOS K. KARANANAS and ALEXANDER MONIN

PHYS. REV. D 105, 065008 (2022)

Using expressions completely analogous to the ones
presented in Egs. (2.28)—(2.31) for the nonrelativistic case
finalizes the construction of the Hilbert space in terms of
local operators.

E. Coordinate transformations

We will now identify the coordinate transformation
that actually corresponds to the automorphism of the
Schrodinger algebra discussed above. Let us denote the
new coordinates by (s,7). As in Sec. (ILE 1), we shall use
the explicit representation of the generators in the two
coordinate systems in terms of differential operators, i.e.,

Piz—iﬁf, H:iat,

D:l<2tat+xlaf), Kl:_ltaf,
Sz—l(tzat—i-x,taf), J,/:—l(xlaj—xjaf), (338)
and
Pl:—lalz, H:l’as,
D =i(2s50,+7;0%), K;=—isd?,
S = —i(sza, +zl-s3f), jlj = —l(Zlaj —Z/af) (339)
From the above expressions we obtain
14 it X;
s = , i=V2——. 3.40
e A R el (3.40)

The corresponding transformation of a scalar primary
field can be deduced from (F18) (see Appendix F for the
explicit derivation) and reads'’

. A/2 m® \-/ 1+it ¥V2
P(1.%) = (1—inA eXp<2(1 - it))¢<_l 1—it’'1- it>‘
(3.41)

Given the r_elation between fields in different frames we can
find how ¢ transforms under Hermitian conjugation18

YFor tensor fields the transformation will involve matrix
factors analogous to the ones in Eq. (2.34). The general
form may be found using the results from Appendix F.

"®For a closer analogy with the relativistic case we can consider
Euclidean time ¢ = is and introduce a new field

p(0.7) = $(—i0.7), (3.42)
whose Hermitian conjugation
=g -
(s T) — A Kl_a 7% 15 3.43
902 =0 eXp(ZolJrU o5 (3.43)

is reminiscent of its relativistic counterparts (2.32) and (2.50).

P1(5.7) = (=is) P exp (i%l - is) P (1,"—Z>. (3.44)

1—1is s s

One can check that the so-defined Hermitian conjugation
preserves the action of the Schrodinger algebra on fields
(3.18) and at the same time is consistent with the con-
jugation properties (3.22) and (3.34).

F. NRCFT and geometric data

It is well-known [1,3,24-26] that coupling a nonrelativ-
istic system to a nontrivial gravitational background
(geometry) can be achieved by introducing appropriate
gauge fields (analogs of metric and connection in general
relativity; see Appendix G). Namely, the needed geometric
data are the temporal and spatial parts of a vielbein—n,,, el,
respectively—and a gauge field A, corresponding to the
U(1) transformations generated by the particle number
operator.

The nonrelativistic conformal transformations can be
defined similarly to the relativistic ones. Starting from a
trivial (flat) background, corresponding to

n(t,X)=5), el(1,X)=4, (3.45)
we call conformal those coordinate transformations that
lead to a change of the geometric data by a conformal factor

A, (t.%)=0,

n, (7. %) = f(1,%)8), (3.46)

e X)) =~ f(1,X)8, (3.47)

AL (1, X)) =0. (3.48)

Here “~” is understood as equality modulo possible gauge

transformations listed in Table (Gl11). Introducing the
infinitesimal change of coordinates

' =t+¢, xXi=x;+ &, (3.49)
and denoting f = 1 + y, we see from (3.46) that &, = &,()
and

1
w(t) = _Eatfz- (3.50)
The temporal (¢ = f) component of (3.47) can be satisfied
by using a boost transformation with parameter v; = —0,¢;.
For the spatial (4 = j) components of (3.47) we get
(3.51)

(1 +w)d;; = 6;; — 0;&; + rij,

where r;; is an antisymmetric matrix corresponding
to gauge rotations of the vielbein (see Table (GI11).
Symmetrizing the above and using (3.50) we obtain
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0;&; + 0;&; = 6;0,&,, (3.52)
whose solution is clearly at most linear in x;,
1
& :Earétxi+bij(t>xj+ci(t)’ bij(t)=—bj(t).  (3.53)

Bearing in mind that the U(1) gauge field produced by the
boost transformation with parameter v; = —0,¢;,

1
Aj=—0,¢&=— (zarzftxi +0,bij(1)x; + azci(f)) . (3.54)

can be eliminated by a U(1) transformation only if
07&, =const, 9,b;;(1) =0, and 9,¢;(r) = const, we
find the following expression for the infinitesimal
transformations:

E =c, +2At + ut,

& = c;+dit + byjx; + Ax; + ptx;. (3.55)
The above correspond to time and space translations,
rotations, boosts, dilations, and special conformal
transformations.

G. The analog of radial quantization

In order to have complete analogy with the rela-
tivistic case, we will show here what happens if one
considers dilatations generated by D as the corresponding
Hamiltonian. It was shown in [26] that with minor
assumptions an NRCFT can be coupled to a nontrivial
background (geometric data) in a Weyl invariant manner;
i.e., one constructs the curved-spacetime counterpart of a
Schrodinger-symmetric action

Solg] = S[o, 0,52,5’} - S[gb,A#,nﬂ,em, (3.56)

such that it is manifestly invariant under Weyl rescalings

S[pQ2 A, n, Q% el QY = S, A, n,. e

Anng.el], (3.57)

with Q the conformal factor.

For the case at hand we start from flat space and consider
the following change of coordinates'”:

PNote that from (3.40) and (3.59), we get

Vi (3.58)

COST

t=tanr, X; =

These coordinates parametrize the so-called harmonic or oscil-
lator frame.

is = ", 2 = V2ye”, (3.59)
which amounts to replacing the temporal and spatial
Kronecker symbols by the corresponding vielbeins (the
relevant transformation properties for the geometrical
quantities can be derived using Table (G11)

n, =2e¥°(1,0), e, =v2e(iy,1).  (3.60)
We find that the action becomes
S[¢(s5.2).0,8,.6.] = S[¢/ (2.5),0,n,. €f],  (3.61)

with ¢/'(z,¥) = ¢(s, 7). Then, we perform a Weyl rescaling

with Q = v/2¢, yielding
Sl(s.2).0,n,, €]
= S[2872eM g/ (7,5),0,8%, (iy. 1)].  (3.62)
Next, in order to bring the vielbein to its original
form, we consider a boost with parameter v; = —iy;, such
that
S[2872e™7¢(z.5). 0. 67, (i3, 1)]
= S[282eib g/ (1,5),A,,85. 8], (3.63)

which results also in the generation of the following U(1)
gauge field

Last,

32 P .
parameter o = i% we can eliminate the spatial part A; to
obtain

performing a U(1) gauge transformation with

Sold(s.2)] = S[d(z. 7). A,(x.5). 5. 5], (3.65)

with

2 _ n V2
D(2.5) = BT h(s.7), A, = % (3.66)

Note that the form of the transformed field (;5 is consistent
with (F18). Equation (3.65) is the analog of putting a CFT
on the cylinder. It tells us that the systems with and without
harmonic potential are equivalent.

A straightforward computation—completely analogous
to the one we explicitly carried out in Sec. IIF [see
Eq. (2.62)]—reveals that in this frame, dilatation D acts
on operators (,1’3 as time translations; i.d. it plays the role of
Hamiltonian
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my

iD.d(z.5)] = 2D, B(s.7)]
— 2Bt (A + 250, + 2)P(s.7)

= —i0,¢(7,¥). (3.67)
Clearly, this means that the spectrum of the Hamiltonian in
the harmonic frame is in one-to-one correspondence with
the spectrum of scaling dimensions of operators.20

IV. CONCLUSIONS

A powerful tool when it comes to studying relativistic
and nonrelativistic conformal field theories is the operator-
state map, in particular, the correspondence between the
scaling dimensions of operators and the “energy spectrum”
of the associated states.

In this paper we introduced an algebraic in nature
perspective on the aforementioned correspondence. The
crucial observation is that the Hilbert space associated with
the conformal algebra may be constructed by Euclidean
fields. This implies that the operator-state map is obtained
by establishing the appropriate relation (automorphism)
between the generators of the Minkowski-space conformal
algebra and their Euclidean-space counterparts together
with the OPE.

Using the derivation in CFT as a guide, we extended the
construction to NRCFTs, for which we recover the well-
known correspondence between the operators in the theory
and states of the system supplemented by an oscillator
potential.
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APPENDIX A: AN ALTERNATIVE
AUTOMORPHISM IN d =3 DIMENSIONS

In this Appendix we discuss an alternative to the auto-
morphism discussed in the main text. For clarity, we
confine ourselves to d = 3. As before, we denote with
M 4y the generators of SO(2,3) that satisfy the commuta-
tion relations (2.6), i.e.,

Similar to (3.42), introducing the Euclidean version of the
field

o(n.5) = d(=in.5),  n=ir, (3.68)

we get
[D,p(n.5)] = =id,p(n, ¥),

which is identical to (2.62).

(3.69)

M 5. Mcpl=i(Mspngc+Mpgcniap —Mgphiac—Machpp)-
(A1)

with the five-dimensional metric

Nag = (+,— = = +). (A2)
The automorphism we are after corresponds to introducing
the rotated, “barred generators” M 45, which are related to
the original ones via successive z/2 rotations in the (0, 3),
(4, 1), and (0, 2) planes:

Myp = e~ Mo eitMa oB5Mos pf o= 5M03 e=5Mu pB5M02 - (A3)
Explicitly, the above yields
My =My, Myp=Msy, Mp=DMy,
M3y =—iM3y, My =—iMy, My =iMg,,
M40:M3l’ M4l :M41’ M42:_M017 M43:iM]2,
(A4)
which in turn results in the following map:
D:iJIQ, .701 :D,
- 1 1
Joz—E(Po—Ko% J12=§(P0+K0),
1 .
Py :E[Pl - K, —i(P, - K,)],
_ 1 .
Ky —§[P1 - K, +i(P, - K;)],
1 .
P, :E[Pl + Ky —i(P, + K)],
_ 1 ,
K, :E[Pl + K, +i(P, + K>)],
P, = ~(Jo1 — iJg2), K, = —(Jo1 +iJp).  (AS)

The first thing to note here is that the generators J v are
Hermitian. Therefore, if we want to realize the Hilbert
space on the space of fields, or in other words,

@) = @(0)[0), (A6)

the equation

7

w P(0)] = iZ, @(0) (A7)
necessitates that ®(0) be an infinite-component field
[27-30]. From Egs. (2.7) we find that its spin is A, therefore
not bound to be half-integer, and at the same time

1D, ®(0)] = im®(0). (A8)
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The corresponding expressions for the lowering generators
(2.8) are given by

Ml_: [P]—ipz+kl—il_(2],

M5 =[P, —iP, — (K| —iK;)],

I =~ N =

M5 = Jo — iy (A9)

Clearly, in this frame the states in the Hilbert space are not
given by primary fields at zero. Instead, the fields should
satisfy the following constraints:

(01 —i9,)@(0) =0, [kl -
(Zo1 — iZ2)@(0) = 0.

iK,, ®(0)] =0,
(A10)

APPENDIX B: CONFORMAL OPE

Here we discuss the constraints conformal invariance
imposes on the OPE. We start from the general expression

$2(22)¢h1 (21) chzo 2,21)0(z1), (B1)

without assuming that the sum runs only over primary
fields.

Let us start with translations. Acting with P, on both
sides of the above, we immediately find

3310120(22,21) +3220120(12’Zl) =0, (B2)

meaning that

ClZO(ZZ’Zl) = 6120(22 - Z1>‘ (B3)

For the Lorentz transformations—generated by J,,—the
expansion (B1) gives21

! f
Zab {L}{I’} Jlig(}’){ }{ }( )+2ab {d}{p}cizé{p}{ }( )

tz uh{f}{p} {%{d}{p}(z)ﬂz Oy —2p0,)c) C}{d}{f}( )—0,
(B4)

where {-} stands for (possibly multiple) indices corre-
sponding to the SO(d) representation of the operators.
This relation implies that if ¢;, ¢,, and O are traceless
symmetric tensors of ranks /, m, and n, respectively, we get
for the function ¢y

D
Cigé{ i (Z) =Ze; 2o %dy T Rd, B 'anAl—&-m-&-n (ZZ) + 5c’1d1 Loyt %Ry Xd, 2 anAlliern—Z (Zz)
+5C1f1ZCz T Zo)%dy T Rd, R 'anAll}rmﬂz—Z(Zz) +5d1f1 Loyt % Rdy " Xd Ly "anAlzJSrern—Z(Zz) tee (BS)
[
e ' Z
where . st;'md. for all othe.r terms that.can be obtained from cno(z) = 2|2 2172 F(n,), n, =, 2| = /242"
contracting indices belonging to the different sets {c}, {d}, |z

Similarly, acting with D on the OPE, we obtain

(A; + Ay = A)cpo(z) + 2%0,¢120(2) = 0. (B6)
In other words, dilatations fix the coefficient functions to be

of the following form:

{a},z( )¢{b}1, (0) = lele—Al—Az [ﬂgIHZHO)n“‘

+/1(11+lz+10 2)5a|

where the sum still runs over all possible operators.

b]n”Z ..

Using all the constraints we got so far, we can write
down the OPE of two primary fields with spins /; and [,
(i.e., two traceless symmetric tensors of ranks /; and /5,
respectively); this reads

. nalgnbl . nbll ncl - nclo

. .]O{C}lo (0).

all nhZ e nblz nCl . nclo +

What remains to be understood is what new information on the OPE we extract once we require that it be consistent with
special conformal transformations. It turns out that the contributions of descendants are intrinsically linked to those of the
corresponding primaries. Schematically, for every A (their number can be found in [31]), we get

*'To keep the discussion maximally clear and without loss of generality, in what follows we take z, = z, z; = 0.
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{‘1}12 { }11
12

Note that owing to conformal symmetry, all the coefficients
appearing in front of the descendants are fixed. For the OPE
of scalar operators those can be found in [32]. On the other
hand, for operators with nonzero spin we get

26 +10)
Ay = Ay — Ay,

albit+h+l) —

121 - 12 - ll' (BS)

APPENDIX C: HERMITIAN CONJUGATION
AND COMPATIBILITY WITH THE
CONFORMAL ALGEBRA

It is instructive to explicitly show that the way we
defined Hermitian conjugation [see Egs. (2.32)-(2.34)]
does not spoil the action of the conformal algebra on
fields. In what follows we work with vectors, for which

$i(z) = 272 15(2) i (12). (C1)
Before moving on, let us present some useful formulas. We
note that

5 I 225

[Pa’d)b(z)] [Kav¢h( )]

A Kz ZaZ
(C.1) 7

Moving to Lorentz transformations, it is easy to see that

wwhmwz—wwﬂ@]
%1) lZZb c¢d( ) —
(c.

= ? lng C¢d( )

Z‘Z‘AO A- AZ{A htbtl) pay o pbi . e

Qm&VMﬁwa&mw

5 (z.11(2)

< [geren(0) + a(11+12+1)zcac¢01“'01 )+ ]+--}.

0 = 2’13(2) 05, (C2)

and

aclab (Z) =

2 (22,252,
2 2

- 5aczb - 6bcza> ’ (C3)
Z Z

which imply

HD0 (@) = 5 (e —ade)  (C4)
and
27221 (2) 0y (I2) = Dol (2) + 24 j_z da(2)
+§m%=q%ﬁm»(@>

Using the above, we now turn to the action of the generators
on the vector field; the computations are straightforward
but a bit long.

We start from translations, for which

c Z_ZA [z 2 d cyd iy
- & p 1{(2)0%py(Iz) +Z7(zaA¢5h + 2728, )4(2)

2 -
% Gl + 254, B2

(Co)

— 2,14(2)) 0 b (I2)

2 (2401(2) = 2p14(2))IE(2) D3pc (12)
(Zgbc (z 8b—2b8a)5§1)€$2(2)’

(€7)

where the spin matrices X, ., for vectors are defined in (2.15).
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For dilatations, a completely analogous computation

shows that
- = »(225), = -
D, ds(2)) 2D, $}(2)]
g (2) — i TR Q)0 12)
D _iadi(2) — izt I () 4 (2) b (2)
(€3)

i(A+290,)¢; (2). (C8)

Finally, the action of special conformal transformations
reads

Ko ()] 2 = [P B} (2)]
%4)) iz (2) 0% . (12)

(C:'z)izzlad(z)z‘mlbc (2)05¢.(Iz)

) il(2z,2 - 265)590,

+2(2,88 + 2%, )Idh (). (C9)

Inspection of the commutators (C6)—(C9) reveals that
they are indeed consistent with (2.14).

APPENDIX D: SCHRODINGER ALGEBRA

In a d-dimensional spacetime the Schrodinger algebra
satisfies the following commutation relations:*

[ijs Pi] = i(6uP; — 8 P;),

]
]
i Ki) = i(84K; — 83K),
K, P,| = —i5;;0,
K, H] = —iP,,
D, H] = —2iH,
[D, P;] = —iP;,
[D’Ki] = iK;,
D, S] = 2iS,
[S,H| = iD,
[S,P;] = iK;. (DI1)

In what follows we present the expressions for the
generators of the Schrodinger group away from the origin.
These are useful for obtaining the action of the algebra on
fields; see (3.18). In deriving them, we used the

*The commutator of P and K is obtained by central extension.

commutation relations presented above and the Baker-
Campbell-Hausdorff formula for two operators A and B,

¢ Bet = B + [B.A] +%[[B,A],A] 4o, (D2)

(1) Translations (we denote Py = Hyy — y;P;)

e e = Jii 4 y:P;— yP;.
e K™ = K; + yoP; = y:0.
e PYDe?Y = D + 2y H — y,P;,
e PSel”r = § — yoD + y;K; — yiH

1,
+yoyiPi —5y; 0.

. (D3)

(i) Angular momentum®

—iJ 2 iJ}, 2

e’ K/ P,»e’ K/ = PjRji,
—iJ oy /2 iy /2

e K/ J,-je K/ - Jkleile’

e_i-’klakl/zKieijklakl/z = K;R;;.

(iii) Boosts (Ka = K;a;)

(iv) Dilatations

e—iDaHeiDa — He—Za
e—iDaPieiDa — Pie—a’
e—iDaKieiDa — Kiea,
e—iDaSeiDa — SeZa
(v) Special conformal transformations
e Sa eSSt — H 4 D — a2,
—iSaP iSa __ P K
e et =P+ ak;,
e S7DelS* = D — 2q8. (D8)

'We define the rotation matrix R; ; as the vector representation
of the rotation group

R = Prec (€ Hiii/2), (D4)
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APPENDIX E: COORDINATE
TRANSFORMATION

To derive the automorphism relating the two frames, we
used
emiH=S)ap oi(H=S)a — p.cosq — K, sina,
emiH=-Sag oilH=-S)a — p.sing + K, cos a,

) . 1
e~ iH=S)agei(H=S)a — §cos? g — H sin® a — 3 sin2aD.,

) . 1
e~ iH=-S)apoi(H=Sa — H cos? @ — S sin® a — > sin2aD,

e~ iH=S)api(H=S)a — D cos2a + (H + S) sin 2a. (El)

APPENDIX F: NRCFT FIELD
TRANSFORMATIONS

Here we discuss how a primary field behaves under an
arbitrary Schrodinger transformation

$(1.%) = g¢' (1.%)77", (F1)

with g belonging to the Schrodinger group. We note that we
can always write

g = ge, (F2)

Since the action of rotations is obvious, we can focus on
transformations that do not involve J.

As usual, in order to find an explicit expression for (F1),
we first consider the action of the element g on the
coordinates, namely

Q= gethe—if“)?’ (F3)

and rewrite it as the action on the coset space
Q— ein’e—ii’}’e—iaDe—iﬁl?eipSein7 (F4)

with new coordinates (¢ = #(¢,X),X' = X'(¢,X)) and the
yet to be derived parameters ¢ = o(1,X), E: E(t, X),
p=p(tX), and w =y(t,X). Equating the Maurer-
Cartan forms Q—laﬂg for both (F3) and (F4), we get

HS, —P;8,; =He* 0,1 — P(e°0,x; — 0,1 B;)
—-D(8,06—¢*9,p)
- Ki[a/lﬁi +ﬂiaﬂ6 +p(€daﬂx; - ezgaﬂt’ﬂiﬂ

+8(0,p — p*e* 0,1 +2pd,0)

i

1
+0 <3,,l// -I-Eﬁzez"@ﬂt’ - e”ﬁﬂxﬁ-ﬁ,) . (F5)

Comparing the coefficients of the various generators in the

above allows one to express the parameters o, /3, p, and y in
terms of transformed coordinates.

We start from H, for which we first observe that 9, = 0,
and also

1
o=-5 log 9,7 (F6)

Moving to P;, for the spatial derivative we find

e”ajxi- = 5i (F7)

jy
which implies that
xh = x;\/ 0,1 + gi(1), (F8)
with g;() being an arbitrary function of 7. For the time
derivative we obtain
0 0,g;
_ Mgt G
2 9,1 o, ’

Pi (F9)

Similarly, from the coefficients of D and Q we, respec-
tively, get

10%¢
= ———, F10
P="597 (F10)
and
Oy = p; = ﬁa?t/ 0.9:
' ' 2 8tt/ 8,1" '
2 1 . 2t/ N\ 2
9, :/31:<x,a,/ a,g,> S (FID
2 2\2 0, 0.7

The latter two relations are consistent provided that
8tﬁi = ﬁjaiﬂp (F12)

which translates into the Schwarzian derivative of ¢
vanishing

o 3 (07\?
SOt =-—= - (= =0, F13
500 =353 (57) (F13)
and at the same time g¢;(¢) being subject to
o
979; = 0,9: ﬁ (F14)

The solution to (F13) is an arbitrary M&bius transformation

_at+b
Cct+d’

/

(F15)
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while (F14) fixes g; to be a linear function of 7,
9i(1) = vit (1) + a;, (F16)

with v; and q; arbitrary constants.

Knowing that, Eq. (F11) can be integrated to produce

2 924 24

X204t vt

=" ox /O, +——+a, a=const
4 0t 2

(F17)

Collecting everything together, we conclude that

o, )—5) _ Qg{)’(O)Q" _ eiHr'e—iﬁ?c’e—iaDein¢/(0)€-in€iaDeiﬁz'e—in/
_ e—imwe—Anein’e—iﬁz’(p/( 0)e iPY p=iHt _ e—imwe—qub/(t/j/)
w2 2t
= (0,/')A? exp [_lm (46’+ VX, a)]qb’(t’,)_c"). (F18)
|
APPENDIX G: NONTRIVIAL GEOMETRY with
In this section we quickly recap how nonrelativistic
systems can be coupled to a nontrivial background geom- 7 — K. l 097 1+ A G6
etry. This can be done using the so-called coset construc- = Ot 2 H AL (G6)

tion [26,33]. Considering the Galilei group Gal, we
introduce the following coset representative:

Q = i) g=iPiw'(x), (G1)
The Maurer-Cartan form is given by
0,=-iQ"'D,Q
-! (8,,+iﬁﬂH—iéLPi+ia)LK,-+%0,"/J,-j+iAﬂQ>Q
(G2)

where 71, &}, @}, 6,/, and AM are gauge fields corresponding
to time and space translations, boosts, spatial, and U(1)
phase rotations, respectively. Their transformation proper-
ties are meant precisely for canceling the left action of the
group; i.e., for g € Gal we demand that™*
g0, +iX;,)9Q =Q7'(9, +

+iX,)Q,  (G3)

leading to
X, =gX,g7" +i0,997" (G4)

Note that neither 71, nor é,", transform as vielbeins. In order
to get the latter, the auxiliary fields wy(x) and w(x) should

be absorbed into the new definitions of n,, e,;, and A,,.
Simplifying (G2) we get
©,=n,H-e,P,+Z, (G5)

*The gauge fields are collectively denoted by X,

The fields n, and eL transform as temporal and spatial
vielbeins, while the transformation of Z, is that of a gauge
field. Explicitly, we can deduce the transformations of all
fields from the standard transformations of the coset.
Namely, for

9Q = Q'h, (G7)

with & being an element of a subgroup of Gal generated by
rotations, boosts, and U(1) transformations, which we

denote by Gal\{H, P}, we get
@, = —i(Q)"'D,Q = hOh~' + id,hh™', (G8)
while for matter fields ¢ (¢, X) belonging to a representation

p of Gal\{H, P} (which can be read off the commutation
relations p(X)¢(0) = —[X, ¢(0)]), we obtain

(G9)
The covariant derivatives of matter fields are given by
D, = 0,9 +ip(Z,)9.

(G10)

In Table (G11) we present the transformations of the
geometric data and matter fields under rotations, boosts,
and U(1) phase rotations with parameters «a;;, v;, and «a,
respectively:

lj’
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e—iJija,-j/Z —iK7v e~ iQa
n, My "y ny
e Rie}, e, +v'n, el (G11)
A, A, A, +viel, +30°n, A, +0,a
¢ p(R)Q é pe=me

It should be noted [26] that under boosts the actual transformation of the matter and gauge fields ¢ and A, contains an
additional U(1) rotation, which is a pure gauge transformation; therefore, it was dropped.
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