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We investigate the degradation of quantum entanglement in the Schwarzschild-de Sitter black hole
spacetime, by studying the mutual information and the logarithmic negativity for maximally entangled,
bipartite states for massless minimal scalar fields. This spacetime is endowed with a black hole as well as a
cosmological event horizon, giving rise to particle creation at two different temperatures. We consider two
independent descriptions of thermodynamics and particle creation in this background. The first involves
thermal equilibrium of an observer with either of the horizons. We show that as of the asymptotically flat/
anti–de Sitter black holes, in this case, the entanglement or correlation degrades with increasing Hawking
temperatures. The second treats both the horizons combined in order to define a total entropy and an
effective equilibrium temperature. We present a field theoretic derivation of this effective temperature and
show that unlike the usual cases, the particle creation does not occur here in causally disconnected
spacetime wedges but instead in a single region. Using the associated vacua, we show that in this scenario,
the entanglement never degrades but increases with increasing black hole temperature and holds true no
matter how hot the black hole becomes or how small the cosmological constant is. We argue that this
phenomenon can have no analogue in the asymptotically flat/anti–de Sitter black hole spacetimes.

DOI: 10.1103/PhysRevD.105.065007

I. INTRODUCTION

The study of quantum entanglement between created
particle pairs in relativistic backgrounds has received
considerable attention in recent years. Such investigations
chiefly involve the Rindler or nonextremal black holes,
cosmological spacetimes, and even the Schwinger pair
creation mechanism, e.g., [1–11] and references therein. In
the Rindler or a nonextremal black hole background,
particle creation occurs in causally disconnected spacetime
wedges. Since the created particles are thermal, the
associated randomness destroys the entanglement or quan-
tum correlation between entangled states as the black hole
evaporates and gets hotter, first shown in [1], and sub-
sequently, in, e.g., [2–9].
To the best of our knowledge, all such earlier studies

were made in asymptotically flat spacetimes. However,
keeping in mind the observed accelerated expansion of our
current Universe, it is physically important to ask: how
does such degradation get affected in the presence of a
positive cosmological constant, Λ? Such spacetimes can

also model primordial black holes formed in the early
inflationary universe, e.g., [12]. The chief qualitative
difference of these black holes with that of Λ ≤ 0 is the
existence of the cosmological event horizon for the former,
an additional event horizon serving as the outer causal
boundary of our Universe. These two-event horizon space-
times admit two-temperature thermodynamics and hence,
are qualitatively much different compared to the single
horizon Λ ≤ 0 cases, e.g., [12–35]. With this motivation,
we wish to investigate in this paper the role of this two
temperature particle creation in the entanglement degrada-
tion. Our chief goal here is to see whether in this physically
well motivated spacetime, the multihorizon structure brings
in any qualitatively new feature compared to that of the
single horizon, i.e., the Λ ≤ 0 cases.
In the next section, we outline very briefly the causal

structure of the Schwarzschild-de Sitter spacetime, a static
and spherically symmetric black hole located in the de
Sitter universe. In Sec. III, we discuss the entanglement
degradation in the thermodynamical setup proposed in [12],
where an observer can be in thermal equilibrium with either
of the horizons and show that the results qualitatively
resemble with that of the single horizon spacetimes. We use
the mutual information and logarithmic negativity for a
maximally entangled, bipartite Kruskal-like state corre-
sponding to massless minimal scalar fields as appropriate
measures. In Sec. IV, we adopt the so-called total entropy-
effective equilibrium temperature description to treat both
the horizons combined, e.g., [25–30]. We first present a
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field theoretic derivation of the effective temperature and
show that unlike the previous cases, the entangled pair
creation in this scenario does not occur in causally
disconnected wedges in the extended spacetime. Most
importantly, we demonstrate that the entanglement here
actually increases with the increase in the black hole
Hawking temperature, no matter how hot the black hole
becomes or how small the cosmological constant is.

We emphasize that this phenomenon is purely an outcome
of the two-horizon geometry and hence, has no Λ ≤ 0
analogue. We shall set c ¼ ℏ ¼ kB ¼ G ¼ 1 through-
out below.

II. THE BASIC SETUP

The Schwarzschild-de Sitter (SdS) spacetime,

ds2 ¼ −
�
1 −

2M
r

−
Λr2

3

�
dt2 þ

�
1 −

2M
r

−
Λr2

3

�−1
dr2 þ r2ðdθ2 þ sin2θdϕ2Þ ð1Þ

admits three event or Killing horizons for 0 < 3M
ffiffiffiffi
Λ

p
< 1, e.g., [12,16],

rH ¼ 2ffiffiffiffi
Λ

p cos
π þ cos−1ð3M ffiffiffiffi

Λ
p Þ

3
; rC ¼ 2ffiffiffiffi

Λ
p cos

π − cos−1ð3M ffiffiffiffi
Λ

p Þ
3

; rU ¼ −ðrH þ rCÞ; ð2Þ

rH < rC are, respectively, the black hole and the cosmological event horizon (BEH and CEH), whereas rU < 0 is
unphysical. As 3M

ffiffiffiffi
Λ

p
→ 1, we have rH → rC, known as the Nariai limit, whereas for 3M

ffiffiffiffi
Λ

p
> 1, the spacetime is naked

singular. Thus, unlike Λ ≤ 0, a black hole cannot be arbitrarily massive here, for a given Λ.
The surface gravities of BEH and CEH are, respectively, given by

κH ¼ Λð2rH þ rCÞðrC − rHÞ
6rH

; −κC ¼ Λð2rC þ rHÞðrH − rCÞ
6rC

: ð3Þ

Due to the repulsive effects generated by a positive Λ, the surface gravity of CEH is negative.
Since r ¼ rH; rC are two coordinate singularities, we need two Kruskal-like coordinates in order to extend the spacetime

beyond them,

ds2 ¼ −
2M
r

����1 − r
rC

����
1þκH

κC

�
1þ r

rH þ rC

�
1−κH

κUdūHdv̄H þ r2ðdθ2 þ sin2θdϕ2Þ ð4Þ

and

ds2 ¼ −
2M
r

���� r
rH

− 1

����
1þκC

κH

�
1þ r

rH þ rC

�
1þκC

κUdūCdv̄C þ r2ðdθ2 þ sin2θdϕ2Þ; ð5Þ

where

ūH ¼ −
1

κH
e−κHu; v̄H ¼ 1

κH
eκHv and ūC ¼ 1

κC
eκCu; v̄C ¼ −

1

κC
e−κCv ð6Þ

are the Kruskal null coordinates, whereas u ¼ t − r⋆ and v ¼ tþ r⋆ are the usual retarded and advanced null coordinates.
The radial tortoise coordinate r⋆ is given by

r⋆ ¼ 1

2κH
ln

���� r
rH

− 1

���� − 1

2κC
ln

����1 − r
rC

����þ 1

2κU
ln

���� r
rU

− 1

����: ð7Þ

κU is the “surface gravity” of the unphysical horizon located at rU ¼ −ðrH þ rCÞ. Note that Eqs. (4) and (5) are free of
coordinate singularities, respectively, on the BEH and CEH. However, there is no single Kruskal coordinate for the SdS
spacetime that simultaneously removes the coordinate singularities of both the horizons.
Finally, by defining the Kruskal timelike and spacelike coordinates as

ūH ¼ TH − RH; v̄H ¼ TH þ RH; and ūC ¼ TC − RC; v̄C ¼ TC þ RC;
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and using Eq. (6), we, respectively, have the relations,

−ūHv̄H ¼ R2
H − T2

H ¼ 1

κ2H

����1 − r
rC

����
−κH=κC

���� r
rU

− 1

����
κH=κC

�
r
rH

− 1

�

− ūCv̄C ¼ R2
C − T2

C ¼ −
1

κ2C

���� r
rU

− 1

����
−κC=κU

���� r
rH

− 1

����
−κC=κH

�
1 −

r
rC

�
: ð8Þ

Thus, with respect to either of the above Kruskal coor-
dinates, an r ¼ const line is a hyperbola. Figure 1 shows
the Penrose-Carter diagram of the maximally extended SdS
spacetime.

III. THE GIBBONS-HAWKING THERMAL
STATES AND ENTANGLEMENT

The two event horizons of the SdS spacetime produce
two thermodynamic relationships with temperatures κH=2π
and κC=2π,

δM ¼ κH
2π

δAH

4
; δM ¼ −

κC
2π

δAC

4
; ð9Þ

where AH and AC are, respectively, the areas of the BEH
and CEH. However, since rC ≥ rH, we have κH ≥ κC,
Eq. (3), and accordingly, one expects that any equilibrium
is not possible. One way to tackle this issue is to place a
thermally opaque membrane in the region C in Fig. 1,
thereby splitting it into two thermally isolated subregions

[12]. Thus, an observer located at the black hole side
detects Hawking radiation at temperature κH=2π and like-
wise another on the other side detects the same at temper-
ature κC=2π. Note in analogy that even in an asymptotically
flat black hole spacetime, in order to define the Hartle-
Hawking state, which describes thermal equilibrium of
the black hole with a blackbody radiation at its Hawking
temperature, one also needs to “encase” the black hole with
a perfectly thermally reflecting membrane [36].
The existence of such states in the SdS spacetime was

explicitly demonstrated in [12] via the path integral quan-
tization. For our purpose, we shall very briefly demonstrate
below their existence via the canonical quantization. For
the sake of simplicity, we shall work below in (1þ 1)-
dimensions, and consider a free, massless and minimally
coupled scalar field, □ϕðxÞ ¼ 0. In any of the coordinate
systems, the mode functions are simply plane waves.
Let us first consider the side of the membrane which

faces the BEH and call this subregion as A. The field
quantization can be done in a manner similar to that of the
Unruh effect [37,38], and we shall not go into detail of it
here. The local modes correspond to the t − r⋆ coordinates
in A and also in the causally disconnected region L (with
the time t reversed) in Fig. 1. Note that there are both right
and left moving plane wave modes characterized by the
retarded and advanced null coordinates u and v. The field
quantization can be done with both these kind of positive
and negative frequency modes. However, since the left and
right moving modes are orthogonal, the creation and
annihilation operators associated with these two sectors
commute. Accordingly, these two sectors can be treated as
independent and without any loss of generality, we may
focus on only one sector, e.g., [38]. This field quantization
yields the local vacuum, j0A; 0Li. The global vacuum,
j0iκH , in A ∪ L corresponds to the field quantization with
the Kruskal coordinate of Eq. (4), regular on or across the
BEH. Likewise, by calling the other subregion of C as B,
we use the t − r⋆ coordinate and Eq. (5) to make the field
quantization in B ∪ R. We have the Bogoliubov relation-
ships and accordingly, the squeezed state expansion similar
to that of the Rindler spacetime,

j0iκH ¼
X∞
n¼0

tanhnr
coshr

jnA;nLi and j0iκC ¼
X∞
n¼0

tanhns
coshs

jnB;nRi;

ð10Þ

FIG. 1. The Penrose-Carter diagram of the extended Schwarzs-
child-de Sitter spacetime.H�ðC�Þ, respectively, denote the future
and past black hole event horizons (cosmological event horizons).
i�, respectively, represent the future and past timelike infinities,
whereas the infinities I� are spacelike. The regions R, L are time
reversed with respect to C and all the seven wedges are causally
disconnected. The spacetime can further be extended towards
both sides indefinitely, but we do not require this for our current
purpose. Our region of interest is C (rH < r < rC), and hence, we
shall trace over the states belonging to other regions when it is
relevant. The hyperbola joining i� is a thermally opaque
membrane separating the region C into two subregions A and
B (C ¼ A ∪ B), as discussed in Sec. III. The hyperbola is drawn
with respect to the black hole Kruskal coordinate [the first of
Eq. (8)], but can be drawn with respect to cosmological Kruskal
coordinates as well. In Sec. IV however, such a membrane will
not be considered.
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where tanh r ¼ e−πω=κH and tanh s ¼ e−πω=κC . In other
words, the Kruskal or the global vacuum states are
analogous to that of the Minkowski vacuum, whereas
the states appearing on the right-hand side of the
above equations are analogous to that of the local
Rindler states confined to some particular spacetime
regions.
The squeezed state expansions of Eq. (10) correspond to

Planck spectra of created particle pairs, respectively, with
temperatures κH=2π and κC=2π in regions A ∪ L and
B ∪ R. These spectra are detectable, respectively, by

observers located at the black hole and the cosmological
horizon side of the thermally opaque membrane. As we
mentioned earlier, this setup was first proposed in [12], and
accordingly, we shall regard these states as the Gibbons-
Hawking thermal states.
For our purpose of forming entangled states, we shall

also require the one particle excitations j1iκH and j1iκC ,
found by applying once the relevant creation operator on
j0iκH and j0iκC . Using Eq. (10) and the Bogoliubov relation
we reexpress these one particle states in terms of the local
squeezed states,

j1iκH ¼
X∞
n¼0

tanhnr
cosh2r

ffiffiffiffiffiffiffiffiffiffiffi
nþ 1

p jðnþ 1ÞA; nLi; j1iκC ¼
X∞
n¼0

tanhns
cosh2s

ffiffiffiffiffiffiffiffiffiffiffi
nþ 1

p jðnþ 1ÞB; nRi: ð11Þ

Note that even though the construction of the Gibbons-Hawking states is mathematically consistent, we may wonder how
one may practically realize such a thermally opaque membrane between the two horizons. Perhaps one possible way to
realize this will be to consider the Klein-Gordon equation in 3þ 1-dimensions, with the radial function satisfying,

�
−

∂2

∂t2 þ
∂2

∂r2⋆
�
RðrÞ þ

�
1 −

2M
r

−
Λr2

3

��
lðlþ 1Þ

r2
þ 2M

r3
−
Λ
3

�
RðrÞ ¼ 0:

The effective potential term appearing in the above Schrödinger-like equation vanishes at both the horizons and is positive
in between. This bell shaped potential thus will work as a barrier between the two horizons. Modes that cannot penetrate it
will be confined in the regions close to the horizons and hence, will be disconnected from each other. The effective potential
thus can be thought of as a natural realization of the thermally opaque membrane mentioned above.
Let us now take a maximally entangled global state,

jψi ¼ 1ffiffiffi
2

p ½j0κH ; 0κCi þ j1κH ; 1κCi�; ð12Þ

and imagine that the κH- and κC-type states are located, respectively, in subregions A and B of C, defined above. Due to this
placement, we can use Eqs. (10) and (11) to consistently reexpress jψi in terms of the local states in regions L, A and B, R.
Tracing out now the states belonging to the causally disconnected regions R and L, Fig. 1, the reduced density operator for
jψi becomes

ρAB ¼ 1

2

X∞
n;m¼0

tanh2nrtanh2ms
cosh2rcosh2s

�
jn;mihn;mj þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðnþ 1Þðmþ 1Þp
cosh r cosh s

jn;mihnþ 1; mþ 1j

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðnþ 1Þðmþ 1Þp
cosh r cosh s

jnþ 1; mþ 1ihn;mj þ ðnþ 1Þðmþ 1Þ
cosh2rcosh2s

jnþ 1; mþ 1ihnþ 1; mþ 1j
�
; ð13Þ

where in any ket or bra, the first and second entries, respectively, belong to A and B. With the help of this reduced, bipartite
and mixed density matrix, we shall compute two appropriate measures of quantum entanglement—the mutual information
and the logarithmic negativity (e.g., [39] and references therein for detail).
The quantum mutual information of A and B is defined as

IAB ¼ SðρAÞ þ SðρBÞ − SðρABÞ; ð14Þ

where S ¼ −Trðρ ln ρÞ is the von Neuman entropy. Tracing out further the states belonging to the subregion B, and A, we,
respectively, have

ρA ¼ 1

2

X∞
n¼0

tanh2nr
cosh2r

�
1þ n

sinh2r

�
jnihnj and ρB ¼ 1

2

X∞
m¼0

tanh2ms
cosh2s

�
1þ m

sinh2s

�
jmihmj: ð15Þ
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Using Eqs. (13) and (15), we now compute IAB numeri-
cally in Mathematica. Implicitly assuming Λ to be fixed,
the variation of IAB with respect to the dimensionless
parameter 3M

ffiffiffiffi
Λ

p
is depicted in the first of Fig. 2 for three

different values of the dimensionless parameter ω=
ffiffiffiffi
Λ

p
.

Thus, the mutual information increases monotonically with
increasing M and saturates to two in the Nariai limit,
3M

ffiffiffiffi
Λ

p
→ 1. Equations (3) and (2) shows that the increase

in this parameter corresponds to the decrease in both the
surface gravities, eventually becoming vanishing in the
Nariai limit. On the other hand, as 3M

ffiffiffiffi
Λ

p
→ 0, we have

κH ∼M−1 and κC ∼
ffiffiffiffi
Λ

p
. Thus, for a fixed value of Λ, the

black hole’s Hawking temperature becomes very large in
this limit, resulting in an extremely high rate of particle
creation.
Intuitively, the increase in the Hawking temperature

increases the degree of randomness of the created thermal
particles, which degrades or destroys quantum correlation,
as has been reflected in Fig. 2, analogous to that of the
single horizon spacetimes reported earlier [1–9]. We also
note that for a given value of ω, the mutual information
degrades more with increasingΛ. This is due to the increase
in the Hawking temperature of the CEH with increasing Λ,
resulting in degradation in the correlation further, compared
to the Λ ¼ 0 case.
The logarithmic negativity is related to the eigenvalues

of Eq. (13), but after transposing one of sectors (say A),
ðρABÞTA . It is defined as LN ¼ log

P
i jλij, where λi’s are

the eigenvalues ðρABÞTA , e.g., [39]. We have also computed
it numerically in Mathematica and have plotted in the
second of Fig. 2. The qualitative conclusions remain the
same as that of the mutual information.
While the entanglement degradation with the Gibbons-

Hawking states thus seems to be intuitively well accep-
table, we wish to present below another viable description
of the SdS thermodynamics, where such intuitions seems
to fail.

IV. THE TOTAL ENTROPY AND THE
EFFECTIVE TEMPERATURE

The Gibbons-Hawking framework discussed in the
preceding section allows us to treat the two event horizons
of the Schwarzschild-de Sitter spacetime separately and
provides a thermal description of them in terms of their
individual temperatures κH=2π and κC=2π. As we men-
tioned earlier, these individual temperatures correspond to
individual entropies AH=4 and AC=4, respectively, Eq. (14).
Since the entropy is a measure of lack of information to an
observer, for an observer located in region C in Fig. 1, one
can also define a total entropy S ¼ ðAH þ ACÞ=4. Thus, for
a fixed Λ,

δS ¼ 1

4

�
δAH

δM
þ δAC

δM

�
δM:

Using Eqs. (2) and (3), one then obtains after a little algebra
a thermodynamic relationship with an effective equilibrium
temperature [25–35],

δM ¼ −
κHκC

2πðκH − κCÞ
δS ¼ −TeffδS: ð16Þ

Even though various computations including that of phase
transition has been done using Teff , e.g., [31–35], a clear
understanding of it in terms of field quantisation and
explicit vacuum states seems to be missing.
Let us first try to understand the emergence of this

effective temperature intuitively. We note that in this picture
where the two horizons are combined, we must consider
emission as well as absorption of Hawking radiations, both
of which change the horizon areas. For example, ignoring
the grey body effects, a particle emitted from the BEH will
propagate towards CEH and will eventually get absorbed.
Likewise, a particle emitted from the CEH will propagate
inward and will be absorbed by the BEH. Since κH > κC,

0.4 0.5 0.6 0.7 0.8
3M 3M1.96

1.97

1.98

1.99

2.00
Mutual Information

0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
Logarithmic Negativity

FIG. 2. Left: The mutual information for the maximally entangled state jψi, Eq. (12), vs. the dimensionless parameter 3M
ffiffiffiffi
Λ

p
.

The black, blue, red, green curves correspond, respectively, to ω=
ffiffiffiffi
Λ

p ¼ 0.94, 1, 1.1, 1.2. Right: The logarithmic negativity vs. 3M
ffiffiffiffi
Λ

p
.

The black. blue, red, green curves correspond, respectively, to ω=
ffiffiffiffi
Λ

p ¼ 0.6, 1, 1.7, 3. For smaller values of ω=
ffiffiffiffi
Λ

p
, the curves will show

further smaller values of the information quantities, for a given 3M
ffiffiffiffi
Λ

p
. This is because such lesser values (for a fixed ω) would

correspond to higher Λ values, leading to higher rate of cosmological particle creation, eventually degrading the entanglement more.
See main text for discussion.

ENTANGLEMENT DEGRADATION IN MULTI-EVENT HORIZON … PHYS. REV. D 105, 065007 (2022)

065007-5



Eq. (3), the flux of outgoing particles emitted from the BEH
at any point rH < r < rC will be greater than the flux of
particles propagating inward emitted from the CEH,
resulting in an effective outward flux and evaporation of
the black hole. The existence of such an effective temper-
ature can then be intuitively understood as follows. Let
PH
E ðPH

A Þ and PC
EðPC

AÞ, respectively, be the single par-
ticle emission (absorption) probabilities for the BEH and
CEH, so that PH

E ¼ PH
A e

−2πω=κH and PC
E ¼ PC

Ae
−2πω=κC . By

treating the above probabilities as independent, we may
define an effective emission probability, PE

eff ≔ PC
EP

H
A ¼

PC
AP

H
E e

−ω=Teff , corresponding to the effective inward flux of
the cosmological Hawking radiation on the BEH. Likewise,
the effective absorption probability, PA

eff ¼ PC
AP

H
E , corre-

sponds to the effective outward flux of black hole’s
Hawking radiation on the CEH. Since PA

eff > PE
eff , the

black hole gets evaporated.
From Eqs. (2) and (3), we also have

lim
3M

ffiffiffi
Λ

p
→0
Teff →

κC
2π

≈
1

2π

ffiffiffiffi
Λ
3

r
; lim

3M
ffiffiffi
Λ

p
→1
Teff ≈

1

2π

3
ffiffiffiffi
Λ

p

4
:

ð17Þ

Thus, even though individually the surface gravities κH and
κC become vanishing in the Nariai limit (3M

ffiffiffiffi
Λ

p
→ 1), Teff

is nonvanishing. Moreover, the effective temperature in the
Nariai limit is greater than that of when the black hole is
extremely hot (3M

ffiffiffiffi
Λ

p
→ 0, with Λ fixed). This corre-

sponds to the fact that Teff is related to an emission
probability, which corresponds to the inward particle flux
on the BEH created by CEH, as described above. As the
black hole Hawking temperature increases due to decrease
in 3M

ffiffiffiffi
Λ

p
, the black hole radiates more resulting in larger

outward flux on CEH, corresponding to reduced effective
inward flux or reduced effective temperature.
However, a thermodynamic relationship such as Eq. (16)

always needs to be proven via the explicit demonstration of
particle creation. Accordingly, we now wish to explicitly
find out the quantum states corresponding to the above
description. Since we are treating both the horizons
together, it is natural to ask, could there be a global
vacuum in L ∪ C ∪ R in Fig. 1, which plays a role here?
The answer is no, for there exists no analytic Feynman
propagator that connects both the horizons [12]. This
implies that (unlike the single horizon cases) one cannot
construct any single global mode, which is analytic on or
across both the horizons and hence, in L ∪ C ∪ R. Such
nonexistence should be attributed to the fact that there
exists no single Kruskal-like coordinates that remove the
coordinate singularities of both the horizons.
We recall that once we relax the idea of Lorentz

invariance such as in a curved spacetime, we have the
liberty to choose any coordinate system to describe a given
phenomenon, as each such coordinate system represents a

viable observer. For example, in the Schwarzschild space-
time, one chooses different null coordinates to construct
various vacuum states, e.g., [17] and references therein.
Thus, we shall now introduce a new coordinate system to
address the issue of this effective temperature, as follows.
Note that the “surface gravity” κU, Eq. (7), of the

unphysical horizon at rU ¼ −ðrH þ rCÞ is given by
−∂rgttðrUÞ=2. From Eq. (3), it is easy to see that

1

κU
¼ 1

κC
−

1

κH
:

Using Eq. (7), let us now try to remove the “singularity” of
the metric at r ¼ rU. Accordingly, we rewrite the t − r part
of Eq. (1) as

ds2 ¼ −
2M
r

����1 − r
rC

����
1þκU

κC

���� r
rH

− 1

����
1−κU

κH
dūdv̄; ð18Þ

where we have defined,

ū ¼ −
1

κU
e−κUu; v̄ ¼ 1

κU
eκUv: ð19Þ

Apparently, it might appear that we are analytically
extending the spacetime metric at rU. However, due to
the singularity at r ¼ 0, the spacetime cannot be extended
to negative radial values. Note also that the metric in
Eq. (18) is not well behaved on or across any of the event
horizons. Thus, Eqs. (18) and (19) do not correspond to
the beyond horizon extensions of Fig. 1, and hence,
they represent a coordinate system only in region C,
rH < r < rC, which is our region of interest anyway. By
considering incoming and outgoing null geodesics, it is
easy to check that,

uinðrCÞ → −∞; uinðrHÞ → ∞;

voutðrHÞ → −∞; voutðrCÞ → ∞;

yielding −∞ < ū ≤ 0 and 0 ≤ v̄ < ∞. It is also easy to see
the hyperbolic locus of the r ¼ const curves with respect to
ū and v̄, as of the previous cases, Eq. (8).
We now define a field quantization in terms of ðū; v̄Þ and

an alternative one in terms of the usual ðu; vÞ coordinates as
earlier. Using the ranges of coordinates and following
the standard procedure, e.g., [16], we can compute the
Bogoliubov coefficients by choosing the integration sur-
face infinitesimally close to, e.g., the BEH. Denoting the
vacuum defined by the ðū; v̄Þ modes by j0̄i, we have the
squeezed state relationship between the two kind of states
corresponding to the above two field quantizations,

j0̄i ¼
X∞
n¼0

tanhn w
cosh w

jn;ni; with tanh w¼ e−πω=κU ; ð20Þ
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the above corresponds to a pair creation with tempera-
ture Teff ¼ κU=2π. We emphasize once again that the
(entangled) pair creation is occurring in this case only in
rH < r < rC and not in the causally disconnected wedges
as of the preceding section. Accordingly, j0̄i should not be
regarded as any analogue of the global or Minkowski
vacuum. We also emphasize that the appearance of κU
(instead of κH or κC) in Eq. (19) has guaranteed the
emergence of the temperature Teff . Due to this reason,
the coordinate system in Eqs. (18) and (19) seems to be
unique, as far as this effective description is concerned.
Since we are quantizing the field using two different
coordinations (u, v, and ū; v̄), the associated vacua are
energetically different, giving rise to the Bogoliubov
relationship and particle creation. Since the global and
the local vacua are confined in the single region
rH < r < rC, the particle creation here qualitatively rather
resembles with that of in the cosmological spacetimes,
e.g., [11].
We now take a maximally entangled state analogous to

Eq. (12),

jχi ¼ 1ffiffiffi
2

p ½j0̄; 0̄i þ j1̄; 1̄i�; ð21Þ

and expand it using Eq. (20). We then trace out parts of it in
order to form a mixed bipartite system and compute as
earlier the mutual information and the logarithmic nega-
tivity, plotted in Fig. 3. As expected from the characteristics
of Teff discussed above, the entanglement does not degrade
even when the black hole is extremely hot (3M

ffiffiffiffi
Λ

p
→ 0,

for a fixed Λ), but actually it is maximum in this limit.
Moreover, the entanglement degrades as we approach the
Nariai limit. This is completely contrary to what was
obtained with the Gibbons-Hawking states in Sec. III, or
to the best of our knowledge, what has been reported in the
literature so far, [1–9]. Note also from the figure that (for a
fixed ω) the entanglement degrades with increasing Λ
value, corresponding to the increasing temperature and
particle creation by the CEH. In the next section, we have

explained that Teff can have no analogue in single horizon
(i.e., Λ ≤ 0) spacetimes.

V. DISCUSSION

We have analyzed the entanglement degradation for
maximally entanglement Kruskal-like states in the
Schwarzschild-de Sitter spacetime, by exploring two viable
descriptions of thermodynamics and particle creation in
this background. In Sec. III, we have taken the Gibbons-
Hawking proposition [12], where an observer can be in
thermal equilibrium with either of the horizons, by the
means of placing a thermally opaque membrane in between
the two horizons. We have shown that the entanglement
degrades in this case with increasing Hawking temperature
of either of the horizons. This is qualitatively similar to the
earlier results found for single horizon spacetimes [1–9]. In
Sec. IV, we have addressed the total entropy-effective
temperature formalism [25–27], in order to treat both the
horizons in an equal footing. By introducing a suitable
coordinate system, we have found the vacuum states
necessary for such description and have shown that
entanglement degradation never happens in this scenario,
no matter how hot the black hole becomes or how small the
cosmological constant is. Note from Eq. (2) that the total
entropy is minimum in the Nariai limit (3M

ffiffiffiffi
Λ

p
→ 1) and

maximum as 3M
ffiffiffiffi
Λ

p
→ 0. Thus, if we begin from the

Nariai limit (where the Hawking temperature of both
horizons are vanishingly small), assuming Λ is fixed the
black hole will evaporate and the spacetime will evolve
towards 3M

ffiffiffiffi
Λ

p
→ 0. In this course, we shall keep recov-

ering the entanglement or correlation, Fig. 3. This is in
complete qualitative contrast with the existing cases [1–9].
Finally, note from Eqs. (3) and (16) that Teff → 0 as Λ → 0.
Also, there can be no cosmological event horizon for
Λ ≤ 0. This means that Teff and the associated entangle-
ment phenomenon can have no Λ ≤ 0 analogue. Since a
black hole spacetime endowed with a positiveΛ furnishes a
nice toy model for the global structure of a black hole
spacetime in the current as well as in the early inflationary

0.0 0.2 0.4 0.6 0.8 1.0
3M 3M1.9980

1.9985

1.9990

1.9995

2.0000
Mutual Information

0.0 0.2 0.4 0.6 0.8 1.0
0.995

0.996

0.997

0.998

0.999

1.000
Logarithmic Negativity

FIG. 3. Left: The mutual information corresponding to the maximally entangled state jχi, Eq. (21), vs 3M ffiffiffiffi
Λ

p
. Right: The logarithmic

negativity vs 3M
ffiffiffiffi
Λ

p
. The black, blue, red, green curves correspond, respectively, to ω=

ffiffiffiffi
Λ

p ¼ 0.95, 1, 1.07, 1.15. Note the complete
qualitatively opposite behavior with respect to the Gibbons-Hawking states, Fig. 2. See main text for detail.
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universes, these results seem to be physically interesting in
its own right.
Note that the “entanglement degradation” here (and also

in the earlier relevant works [1–9]) does not correspond to
some dynamical decoherence procedure, but rather to some
observers who use different coordinate systems and hence,
different physically well motivated vacuum states. On the
other hand, the decoherence mechanism is likely to involve
a more realistic collapse scenario, in order to see the time
evolution of a given initial vacuum state. Nevertheless,
since particle creation in an eternal black hole spacetime
may effectively model that of in a collapsing geometry [36],
one may expect that the above demonstrations indeed
have connections to the Hawking radiation and entangle-
ment degradation/decoherence in a collapsing geometry.
However, we are unaware of any such explicit computa-
tions and certainly this warrants further attention.
Although we have simply worked in 1þ 1-dimensional

Schwarzschild-de Sitter spacetime, the qualitative features
of entanglement we have found here would certainly
remain the same in higher dimensions. This is because
the Bogoliubov coefficients and hence, the particle creation
does not depend upon the angular eigenvalues for a
spherically symmetric spacetime, e.g., [36]. Similar analy-
sis for fermions may be interesting. The rotating black hole

spacetimes, due to the existence of various exotic vacuum
states for a massless scalar [40] also seems to be interesting
in this context. However, perhaps it may be more interest-
ing in this context to consider the acoustic analogue
gravity phenomenon [41], where the propagation of the
perturbation in a fluid is associated with an internal acoustic
geometry endowedwith a sonic causal structure and horizon.
Accordingly, there is creation of phonons with Hawking like
spectra. For a multicomponent fluid, perhaps one may
naively then expect a multisonic horizon structure analogous
to the SdS. For such an acoustic analogue system, we may
look for analogous entanglement properties as that of the
SdS. These constructions, like the other analogue gravity
phenomenon, might make some interesting predictions
testable in the laboratory. We hope to return to these issues
in future works.
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