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We revisit quantum field theory anomalies, emphasizing the interplay with diffeomorphisms and
supersymmetry. The Ward identities of the latter induce Noether currents of all continuous symmetries,
and we point out how these consistent currents are replaced by their covariant form through the
appearance of the Bardeen-Zumino currents, which play a central role in our study. For supersymmetry
Ward identities, two systematic methods for solving the Wess-Zumino consistency conditions are
discussed: anomaly inflow and anomaly descent. The simplest inflows are from supersymmetric Chern-
Simons actions in one dimension higher, which are used to supersymmetrize flavor anomalies in d ¼ 4

and, for d ¼ 2 N ¼ ðp; qÞ, flavor anomalies with p, q ≤ 3 and Lorentz-Weyl anomalies with p, q ≤ 6.
Finally, we extend the Becchi-Rouet-Stora-Tyutin algebra and the subsequent descent, a necessity for the
diffeomorphism anomaly in retrospect. The same modification computes the supersymmetrized
anomalies and determines the above Chern-Simons actions when these exist.

DOI: 10.1103/PhysRevD.105.065005

I. INTRODUCTION AND SUMMARY OF RESULTS

Perturbative anomalies [1–3] are well understood as a
failure of the path integral measure to respect the symmetry
in question [4]. Perhaps the most succinct way to compute
and phrase the anomaly is by gauging the would-be
symmetry and consider the symmetry transformation of
the effective action after integrating out the chiral fields
responsible for the anomaly. A most comprehensive com-
putation of this kind was given in Ref. [5]. Further subtleties,
such as the distinction between consistent and covariant
currents, diffeomorphisms, and Lorentz transformations,
were addressed by Ref. [6].
Through these developments, we are accustomed to

treating gravitational or diffeomorphism anomalies on an
equal footing with those associated with internal symmetries,
such as gauge or flavor symmetries. More often than not,
instead of the actual diffeomorphism anomaly we compute
what is better referred to as a Lorentz anomaly under an
SOðdÞ gauge rotation of the spin connection ω,

δωa
b ¼ dLa

b þ ωa
cLc

b − La
cω

c
b: ð1:1Þ

Although the equivalence of the gravitational and Lorentz
anomalies has been established a long time ago [6], their
precise relation is far from obvious, given that diffeomor-
phisms involve both SOðdÞ rotations and translations.
Diffeomorphisms act via the Lie derivative along a

vector field, say ξ. They induce a Lorentz transformation,
parametrized by L in (1.1), via ∇ξ, but also involve a
translational shift ofω. As we review in Sec. III, despite this
difference, the diffeomorphism anomaly is still computable
by a GLðdÞ anomaly descent on the Christoffel symbol Γ,
suitably elevated to a 1-form connection. This helps
establish the equivalence between these two anomalies,
which justifies the usual focus on the Lorentz anomaly,
especially when one is only interested in the question of
anomaly cancellation.
When it comes to the anomalous Ward identities with

nonvanishing anomalies, however, we must be more atten-
tive to such differences. After all, Lorentz rotations and
diffeomorphisms are two different operations. The diffeo-
morphism Ward identity involves not only the divergence of
the energy-momentum tensor, but also all other symmetry
currents, since the Lie derivative acts on currents universally,
which can be in turn converted to a transformation of the
associated (external) gauge fields via the path integral. Of
course, the converse is not true, since gauge/flavor rotations
do not affect the energy-momentum tensor.
Two distinct anomalous currents are often discussed:

consistent and covariant [6]. The former arise from a direct
variation of the effective action. The difference between the
currents is given by the Bardeen-Zumino (BZ) current, a
local quantity built out of the external gauge fields and

*ruben.minasian@ipht.fr
†ioannis@kias.re.kr
‡piljin@kias.re.kr

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

PHYSICAL REVIEW D 105, 065005 (2022)

2470-0010=2022=105(6)=065005(32) 065005-1 Published by the American Physical Society

https://orcid.org/0000-0002-4098-6391
https://orcid.org/0000-0001-5924-442X
https://orcid.org/0000-0003-4518-1311
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.105.065005&domain=pdf&date_stamp=2022-03-07
https://doi.org/10.1103/PhysRevD.105.065005
https://doi.org/10.1103/PhysRevD.105.065005
https://doi.org/10.1103/PhysRevD.105.065005
https://doi.org/10.1103/PhysRevD.105.065005
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


determined entirely by the anomaly descent. In the liter-
ature, its use is mostly restricted to helping clarify the
relation between different computations of anomalies.
However, as we will see, it plays a central role in our
discussion.
Since the consistent current is the one that couples to the

gauge field, it is often considered as more physical, while its
covariant counterpart has played a relatively minor role. On
the other hand, it is not difficult to see that the diffeo-
morphismWard identity is invariant under such gauge/flavor
symmetries, and so are the energy-momentum tensor and the
diffeomorphism anomaly. So, even though the consistent
currents of such internal symmetries appear naturally in the
path integral derivation of the diffeomorphismWard identity,
they must somehow be replaced by their covariant counter-
parts to ensure the gauge/flavor invariance of the diffeo-
morphism Ward identity. The way the BZ terms that relate
the consistent and covariant gauge/flavor currents arise from
a rearrangement of the diffeomorphism Ward identity is the
main subject of Sec. III.
Another importantWard identity which generally involves

other symmetry currents is that of supersymmetry. Since the
square of supersymmetry generates translations or diffeo-
morphisms, it is not surprising that the two suffer from some
common issues.1 Supersymmetry acts on all gauge fields,
external or internal, and as a consequence the conservation of
the supercurrent, as in the diffeomorphism Ward identity,
involves all gauge/flavor currents present. In a supersym-
metric theory with anomalous internal symmetries, one
naturally elevates the accompanying gauge fields to vector
supermultiplets. As a result, the supersymmetry Ward
identity involves all operators in the corresponding current
supermultiplets. In Sec. IV we demonstrate that, as with
diffeomorphisms, the BZ current terms are generated and all
consistent currents in the supersymmetry Ward identity are
eventually replaced by their covariant counterparts.
However, there are two related important differences

between diffeomorphisms and supersymmetry in this
respect. First, the presence of gauge/flavor anomalies
does not violate the diffeomorphism or Lorentz invariance
of the effective action, nor does it generate unexpected
contributions to the diffeomorphism Ward identity. In this
case, the covariantization of the current occurs via
rearrangement of existing terms. As we discuss in
Sec. IV, this is not the case for supersymmetry in the
Wess-Zumino (WZ) gauge for the gauge multiplet. In this
gauge, which is sometimes unavoidable, any perturbative
anomaly necessarily leads to noninvariance of the effec-
tive action under rigid supersymmetry, an observation

dating back to the 1980s [7–19] and often referred to as a
“supersymmetry anomaly.” An analogous observation in
the presence of a gravitational anomaly in two dimensions
was first made in Refs. [20,21]. Locally supersymmetric
contributions to gauge/flavor and R-symmetry anomalies
were pointed out in Refs. [22,23] and computed explicitly
more recently in Refs. [24–32]. See also Refs. [33–35]
for a classification of supersymmetrized supergravity
anomalies.
The second difference between supersymmetry and

diffeomorphisms is that the former does not have an
independent solution to the WZ consistency conditions.
One might naively think that the supersymmetry Ward
identity must be thus simpler than that of diffeomor-
phisms, yet the situation is actually the opposite. In the
supersymmetry Ward identities, the leading “anomalous”
term due to any other types of anomalies, gauge/flavor, R
symmetry, and diffeomorphisms, is given by the BZ
current contributions that covariantize the consistent
currents thereof. Such a noncovariant term could have
been expected on general grounds, given that the super-
symmetry Ward identity should be invariant under these
other symmetries. However, this shift by the BZ current
alone does not solve all WZ consistency conditions, and
so on the right-hand side of the Ward identity one
encounters additional invariant pieces, involving the
superpartners of the gauge fields.
These two differences are also behind the fact that the

mechanism for the appearance of the BZ currents for
gauge/flavor (and R symmetries) in the supersymmetry
and diffeomorphism Ward identities is not exactly the
same. As we explain in detail in Secs. III and IV, the
covariantization of the currents in the latter arises because
the diffeomorphism Ward identity contains a linear
combination of the anomalous Ward identities for all
gauge/flavor symmetries (and R symmetries). In both
cases, nevertheless, the covariantization of the currents is
facilitated by the fundamental relation between the BZ
current and the corresponding anomaly.
A superspace description, when it exists, ensures that the

supersymmetry invariance of the effective action may be
restored by extending the multiplet of currents to a larger
one [19,29,31,32]. This, however, does not change the
actual content of the Ward identity; it merely gives different
names to the same local terms. Furthermore the WZ gauge
for the gauge fields is often a necessity, as for theories with
extended supersymmetries. The WZ gauge is often appro-
priate and sometimes an unavoidable framework for
computing (refined) physical observables in supersymmet-
ric theories using, e.g., supersymmetric localization. It was
in this context that the supersymmetrized form of the
gauge/flavor and, in particular, R-symmetry anomalies
were recently rediscovered [24] and their consequences
for supersymmetric partition functions explored [36]. We
will refer to these phenomena as “supersymmetrized

1R symmetry share features with both gauge/flavor symmetries
and supersymmetry/diffeomorphisms. For rudimentary discus-
sions, it may be treated as one of the former but not so when we
get down to details of how it enters the Ward identities in
question. We will try to indicate such differences explicitly as it
becomes necessary in later parts of this paper.
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anomaly” or “supersymmetric completion of anomaly” in
most of this paper.2

Supersymmetrization of various anomalies is a direct
consequence of the WZ consistency conditions in super-
symmetric theories and ought to fit naturally within
established methods for solving these, such as the descent
formalism [6,37–39] and, more physically, the anomaly
inflow [40].
Anomaly inflow provides a cancellation mechanism for

gauge/flavor, R symmetry, and gravitational anomalies via,
for example, the symmetry transformation of a Chern-
Simons action in one dimension higher. It is only natural
that a supersymmetric Chern-Simons action, if it exists,
cancels all components of the supersymmetrized anomalies.
In Sec. V we show that this is indeed the case and, turning
the argument around, we use anomaly inflow as a powerful
tool to compute supersymmetric anomalies in theories with
extended rigid or local supersymmetry.
Anomaly descent provides a more abstract approach to

the solution of the WZ consistency conditions. An inter-
esting question in this context is how the interplay between
internal and spacetime symmetries is reflected in the
descent procedure. The standard anomaly descent applies
to gauge/flavor symmetries, as well as local Lorentz and R
symmetry, but it becomes less obvious already for diffeo-
morphisms, given that these generate translations as well as
GLðdÞ rotations. Supersymmetry adds a further layer of
complication. Remarkably, as we show in Sec. VI, diffeo-
morphisms and supersymmetry can be accommodated by a
single generalization of the standard descent procedure.
In both anomaly inflow and descent, Chern-Simons

actions in one dimension higher have a prominent role. In
anomaly descent, they arise from the anomaly polynomial as
an intermediate step in the computation of the consistent
anomaly, while they provide the simplest anomaly inflow
mechanism, canceling the anomaly on a codimension-one
boundary or defect. In both cases, the BZ current emerges
from the Chern-Simons action via the so-called antideriva-
tive operation, providing the key ingredient for converting
the consistent currents in the diffeomorphism and super-
symmetry Ward identities to covariant ones.
The rest of the paper is organized as follows. We start with

a preliminary review of the effective action, anomalies, and
the standard anomaly descent in Sec. II, highlighting the role
of the BZ current. We also revisit the standard anomaly
descent procedure and the corresponding Becchi-Rouet-
Stora-Tyutin (BRST) algebra as a warm-up to our sub-
sequent analysis. In Sec. III we review the diffeomorphism
anomaly and contrast it with the Lorentz one. In particular,
we explain why the anomaly descent of the Christoffel
connection computes the former, while that of the spin
connection computes the Lorentz anomaly. However, a

discussion of the BRST mechanism that underlies this
distinction is deferred to Sec. VI, where we present the
anomaly descent and the BRST algebra in a more general
context that allows us to accommodate supersymmetry
as well.
Section IV addresses some general features of the super-

symmetry Ward identity and, in particular, how the anoma-
lies associated with other symmetries give rise to new terms.
The BZ current appears precisely due to these terms, and
covariantizes the relevant consistent currents of gauge/flavor
symmetries. Unlike the diffeomorphism case, however, it
does not stop there. The WZ consistency conditions demand
further contributions with more gauginos that are gauge/
flavor invariant. An interesting question is what should
happen exactly to these induced anomalous terms if some
external inflowmechanism is introduced to cancel the gauge/
flavor anomaly to begin with. Generally, the natural expect-
ation that inflow must cancel all such terms is confirmed up
to the BZ term, showing that the supersymmetry trans-
formation of the effective action becomes gauge invariant
when combined with the bulk inflow term.
Section V takes up the remaining question of Sec. IV, on

the gauge/flavor invariant part of the induced anomalous
terms. We show that, in the case of a codimension-one
inflow from a supersymmetric Chern-Simons action, the
cancellation is complete and the combined action, i.e., the
effective action and the bulk supersymmetric Chern-Simons
action is invariant under supersymmetry transformations as
long as the underlying gauge/flavor anomaly is canceled.
This also means that one can compute the entire super-
symmetrized anomaly simply from the variation of a Chern-
Simons action in one dimension higher, with appropriate
supersymmetry, which naturally becomes a boundary term.
Such a codimension-one inflow is not the most general form
of inflow, but when it exists, it presents perhaps the most
efficient way to compute the supersymmetric completion.
Finally, we come back to the anomaly descent, or more

precisely the BRST algebra thereof, in Sec. VI, and extend
the standard BRST algebra to accommodate these phenom-
ena systemically. Although not widely recognized, this
modification is actually necessary to elevate the WZ
consistency conditions for diffeomorphisms to the BRST
algebra. A key observation is that the content of the BRST
gauge field does not need to match precisely the structure of
the BRST operator in order for a descent mechanism to
emerge and provide a solution of the WZ consistency
conditions. One can get a first glimpse of the necessity of
this from the diffeomorphism anomaly descent. The BRST
transformation involves both translations and rotations,
while the usual descent involves ghosts for the rotational
part, say the local Lorentz transformation, only.
This extension proves essential also in the context of

supersymmetry, and we use this formulation to determine
the general structure of supersymmetrized anomalies. Up to
the very first response of the anomaly to supersymmetry,

2The latter should not be mistaken to imply that the anomalies
under consideration are part of an anomaly multiplet.
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which is expressed in terms of the BZ current and described
in detail in Sec. IV, the descent procedure is universal and
independent of spacetime dimension. The additional gauge/
flavor invariant terms are sensitive to the precise super-
symmetry multiplet and spacetime dimension and are left
implicit. We end Sec. VI by demonstrating that for certain
multiplets the generalized descent determines the super-
symmetric Chern-Simons action responsible for the inflow
mechanism in Sec. V. We have tried to keep the discussion
in Sec. VI general and minimal, but for completeness we
have collected some useful related notions that have
appeared in the past literature in the Appendix.

II. AN OVERVIEW OF ANOMALIES

While gauge anomalies and anomalies of global sym-
metries come with very different consequences, the clas-
sification and computation of anomalies does not really
distinguish between the two classes. Since these anomalies
arise from the path integral of chiral fields, be they fermions
or self-dual tensors, rather than of the gauge fields, we may
as well compute these anomalies on an equal footing by
considering the relevant gauge fields to be all external and
the symmetry to be global. Only at the end of computation,
do we worry about the cancellation of the anomaly if the
relevant symmetry is gauged. Much of what we review here
can be traced back to Ref. [6].

A. Effective action and anomalous Ward identities

For a general discussion, let us introduce the effective
action WðAÞ which is a result of path integrals of all
chiral fields coupled to the “gauge fields,” collectively
denoted as A,

e−WðAÞ ¼
Z

½DΨ�e−SðΨ;AÞ; ð2:1Þ

where the chiral fields responsible for the anomaly are
denoted collectively by Ψ. Suppose that the action SðΨ;
A ¼ 0Þ is invariant under a global symmetry δ acting on Ψ.
This can be then formally elevated to a local symmetry of

SðΨ;AÞ with the gauge field A introduced, so that

SðΨþ δΨ;Aþ δAÞ ¼ SðΨ;AÞ; ð2:2Þ

or equivalently

SðΨþ δΨ;AÞ − SðΨ;AÞ
¼ SðΨ;A − δAÞ − SðΨ;AÞ
¼ −δA · J ð2:3Þ

at the linear order, with the sign convention

δS
δA

¼ J : ð2:4Þ

If the path integral measure is invariant under such trans-
formations as well, we have

Z
½DΨ�e−SðΨ;AÞ ¼

Z
½DðΨþ δΨÞ�e−SðΨþδΨ;AþδAÞ

¼
Z

½DΨ�e−SðΨ;AþδAÞ; ð2:5Þ

where, for the second equality, we used that Ψ is a dummy
variable for the integral. However, the anomaly arises
precisely because the path integral measure is not invariant,
so the very first step fails.
A gauge transformation δΦ, say, δΦA ¼ dΦþ � � �,

induces

δΦWðAÞ ¼ δΦA ·
δW
δA

¼ −Φ · h∇μJ μi; ð2:6Þ

whose anomalous value is supposed to be captured by the
so-called consistent anomaly,

Φ · h∇μJ μi ¼
Z

wð1Þ
d ðΦ;AÞ; ð2:7Þ

where wð1Þ
d is a local functional obtained from anomaly

descent. Throughout this paper we denote these standard
anomalies by GðΦ;AÞ. We will give a brief review of the
relevant manipulations in the following subsection.
More generally, however, external gauge fields of one

symmetry might interfere with such a Ward identity for
some other symmetries. The simplest example of this is
diffeomorphisms δξ; δξW can be expressed generally as

δξW ¼ δξΓ ·
δW
δΓ

þ
X
A0≠Γ

δξA0 ·
δW
δA0 ; ð2:8Þ

where the sum is over the other external gauge fields. Γ is
the Christoffel connection; δξΓ is qualitatively different
from ordinary gauge transformations since it involves
translational components as well. See Sec. III A.
In terms of the path integral we have

δξe−W ¼
Z

½DΨ�
�
ξν · ∇μTμνðΨÞ

−
X0

δξA0 · J 0ðΨÞ
�
e−SðΨ;Γ;A0Þ ð2:9Þ

with the energy-momentum tensor Tμν. What is the path
integral interpretation of this expression? Note that ξν ·∇μTμνðΨÞ downstairs is constructed out of the dynamical
fields and acts on all things made up ofΨ. Since all currents
are vectorial, the operator ∇μTμν acts on J 0 of the A0 · J 0
term as well, which means that ξν · ∇μTμνðΨÞ by itself will
not leave the effective action invariant, even in the absence
of an anomaly, but a counteracting rotation of A must
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accompany the transformation. The second term does
exactly this, so that −δξW is the quantity that is captured
by the conventional anomaly, leading to the Ward identity

ξν · h∇μTμνi −
X0

δξA0 · hJ 0i ¼ Gdiffeoðξ;AÞ: ð2:10Þ

Later we will also review the diffeomorphism anomaly
Gdiffeoðξ;AÞ. As such, it is important to keep track of the
difference between the anomaly δW and the divergence of
the would-be-conserved current h∇μJ μi.

B. Anomaly descent and Bardeen-Zumino currents

The anomaly descent solves the following functional
equation for a local functional GðΦ;AÞ:

δΦ1
δΦ2

W − δΦ2
δΦ1

W ¼ δ½Φ1;Φ2�W; ð2:11Þ

where δΦ is a gauge transformation of the relevant con-
nection A. This comes with the sign choice

δΦA ¼ dΦþ ½A;Φ�; δΦF ¼ ½F ;Φ�; ð2:12Þ

and the convention that δ does not act on the gauge
parameters, so that δΦ1

δΦ2
F ¼ ½½F ;Φ1�;Φ2�. One could

have various different conventions such as δ acts on
parameters, which could be more natural depending pre-
cisely on the computation at hand.
In the BRST formulation [41], we replace Φ by a

Grassmann odd gauge function v and recast the gauge
transformation into the anticommuting version s which
acts as

sA ¼ −dv −Av − vA;

sF ¼ Fv − vF ;

sv ¼ −v2: ð2:13Þ

We treat d and s on an equal footing, and the same with
A and v, and assign BRST odd grading on all of these.
One can recover, say, from sA, the usual gauge
transformation δΦA ¼ dΦþ � � � if we write v ¼ χΦ and
pull the Grassmann odd constant χ all the way to the left.
The same happens with sF since F is a 2-form and
thus even.
The standard anomaly descent is based on these nilpotent

operators d, s, and dþ s, which obey

d2 ¼ 0; s2 ¼ 0; ðdþ sÞ2 ¼ 0: ð2:14Þ

Recall that the nilpotency of d implies that the field
strength F ≡ dAþA2 satisfies the Bianchi identity
dF þAF − FA ¼ 0. The two key observations were
the “Russian formula” of [39]

F̂ ≡ ðdþ sÞÂþ Â2 ¼ F ; Â≡Aþ v; ð2:15Þ

and the generalized Bianchi identity

ðdþ sÞF̂ þ Â F̂ −F̂ Â ¼ 0: ð2:16Þ

The final ingredient is an anomaly polynomial Pdþ2

such that

0 ¼ dPdþ2ðF Þ; ð2:17Þ

and the related Chern-Simons form wdþ1ðA;F Þ that
satisfies Pdþ2ðF Þ ¼ dwdþ1ðA;F Þ. Similarly, the same
polynomial in F̂ , Pdþ2ðF̂ Þ is ðdþ sÞ closed.
One generates a solution to the WZ consistency con-

dition by considering an expansion in v of the right-hand
side of the identity

Pdþ2ðF Þ ¼ Pdþ2ðF̂ Þ
¼ ðdþ sÞwdþ1ðAþ v;F Þ
¼ Pdþ2ðF Þ þ swð0Þ

dþ1ðA;F Þ þ dwð1Þ
d ðv;A;F Þ

þOðv2Þ; ð2:18Þ

where the numeral superscript keeps track of the power of v,

wdþ1ðAþ v;F Þ ¼
X
k≥0

wðkÞ
dþ1−kðv;A;F Þ: ð2:19Þ

As noted above, the translation back to the bosonic version
requires v ¼ χΦ and moving the Grassmann odd piece χ all
the way to the left in all expressions. For example,

χδΦwdþ1ðA;F Þ ¼ swð0Þ
dþ1ðA;F Þjv→χΦ

¼ −dwð1Þ
d ðχΦ;A;F Þ

¼ χdwð1Þ
d ðΦ;A;F Þ: ð2:20Þ

At order v2 the equality in (2.18) yields

s
Z

wð1Þ
d ðv;A;F Þ ¼ −

Z
dðwð2Þ

d−1ðv;A;F ÞÞ ¼ 0; ð2:21Þ

which implies that the integral of wð1Þ
d gives the desired

solution to the consistency condition.
To see this it suffices to take v ¼ χ1Φ1 þ χ2Φ2 with

Grassmann odd, χ1 ≠ χ2. δΦ acts only on fields, while s is
designed to act on v as well, such that the kernel of s solves
the WZ consistency condition, modulo exact terms. This
brings us to the usual anomaly descent solving the consis-
tency condition,

−δΦW ¼ GðΦ;AÞ≡
Z

wð1Þ
d ðΦ;A;F Þ; ð2:22Þ
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with

δΦwdþ1ðA;F Þ ¼ dwð1Þ
d ðΦ;A;F Þ ð2:23Þ

via an entirely bosonic descent procedure.
A well-known ambiguity in this procedure occurs in the

very first step,

Pdþ2ðF Þ ¼ dwdþ1ðA;F Þ; ð2:24Þ

when a mixed term of type P2nðF 1Þ ∧ Pdþ2−2nðF 2Þ is
present in the anomaly polynomial. The right-hand side has
the ambiguity

� � � þ αw2n−1ðA1;F 1Þ ∧ Pdþ2−2nðF 2Þ þ βP2nðF 1Þ ∧ wdþ1−2nðA2;F 2Þ þ � � � ð2:25Þ

with αþ β ¼ 0, so that

wð1Þ
d ðΦ1;A;F Þ ¼ � � � þ αwð1Þ

2n−2ðΦ1;A1;F 1Þ ∧ Pdþ2−2nðF 2Þ þ � � � ;
wð1Þ

d ðΦ2;A;F Þ ¼ � � � þ βP2nðF 1Þ ∧ wð1Þ
d−2nðΦ2;A2;F 2Þ þ � � � : ð2:26Þ

The ambiguity is a matter of a local counterterm in d
dimensions, so one can choose which in a more convenient
description. What must be noted here, for later purposes, is
that even with such mixed terms and this ambiguity thereof,
we have the invariance

δ2

Z
wð1Þ

2n−2ðΦ1;A;F Þ ¼ 0 ð2:27Þ

and vice versa, between a pair of symmetries that are
mutually commuting; A2 does not appear explicitly in
wð1Þ

2n−2ðΦ1;A;F Þ. Only F 2 enters and only inside an
appropriate trace.
Here we wish to explore a bit more how the anomaly

descent reacts to arbitrary shifts of A → Aþ a. It is useful
to introduce a nilpotent BRST even operator Δa, which acts
on any of the above functions of A, F , and v as

Δa ¼ dla þ lad ð2:28Þ

with the replacement dA → F −A2 understood. The so-
called antiderivative la acts as

laA ¼ 0; laF ¼ a; lav ¼ 0: ð2:29Þ

We must treat la as a BRST-odd operator naturally, since a
is BRST odd just like A. On the other hand, the antider-
ivative la also obeys

lasþ sla ¼ 0; ð2:30Þ

for which we also need to remember that a, as a difference
between two connections A and Aþ a, is assumed to
transform covariantly, sa ¼ −av − va.
The action of Δa on the following two quantities is of

some interest:

Δaðwð0Þ
dþ1ðA;F ÞÞ ¼ dðla½wð0Þ

dþ1ðA;F Þ�Þ þ laðPdþ2ðF ÞÞ;
Δaðwð1Þ

d ðv;A;F ÞÞ ¼ dðla½wð1Þ
d ðv;A;F Þ�Þ

þ lað−s½wð0Þ
dþ1ðA;F ÞÞ�Þ: ð2:31Þ

Recall that, with

a · X ≡
Z

la½wð0Þ
dþ1ðA;F Þ�; ð2:32Þ

X is the so-called Bardeen-Zumino current which can be
added to J to turn the latter consistent current into its
covariant version.
From this, we find

Δa

Z
wð1Þ

d ðv;A;F Þ ¼ s
Z

laðwð0Þ
dþ1Þ ð2:33Þ

with a vanishing boundary condition at asymptotic infinity
of the spacetime. Again, coming back to the original
bosonic form,

Δa

Z
wð1Þ

d ðΦ;A;F Þ ¼ δΦ

Z
laðwð0Þ

dþ1ðA;F ÞÞ: ð2:34Þ

The integrand on the right-hand side is proportional to an
inner product of a with the so-called BZ current X as

Δa

Z
wð1Þ

d ðΦ;A;F Þ ¼ δΦða · XÞ: ð2:35Þ

Recall that this BZ current shifts the consistent current J
additively into the covariant current J cov ¼ J þ X [6].
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III. DIFFEOMORPHISM ANOMALY AND
COVARIANT CURRENTS

Let us now be more specific and split the gauge trans-
formation into two classes; those associated with spacetime
transformations, such as diffeomorphisms and supersym-
metry, and the internal gauge/flavor symmetries. The nota-
tion we will adopt is

A¼ðΓ;ψ ;AÞ; Φ¼ðξ;ϵ;ϑÞ; J ¼ðT;S;JÞ; ð3:1Þ

where the external gravitino ψ and the supersymmetry
current S would be present if the theory is supersymmetric.
For general discussion of the diffeomorphism anomaly and
the Ward identity thereof, we will adopt the Christoffel
connection Γ, although, for supersymmetry Ward identities
in Sec. V, the spin connection ω is more natural and will be
used instead.
We are now quite used to the fact that the variation of the

effective action induces the consistent anomaly which
solves the WZ consistency condition. Despite some con-
fusions in the early literature, the relation between the
consistent and the covariant anomaly was understood
already in the 1980s [6]. The consistent current J trans-
forms noncovariantly, but using the BZ term X , which is
composed entirely of the external gauge field, a covariant
current can be found, namely J cov ¼ J þ X. The diver-
gence of this combination is called the covariant anomaly.
In turn, the covariant anomaly proved to be much more
practical for computational purposes, eventually yielding
the well-known anomaly polynomials [5]. The physical
role of the covariant current has been much less prominent.
The purpose of this section is to show that the covariant
current must, in fact, appear in the Ward identity setting
generically.
The message is actually very simple. The action of

diffeomorphisms on the effective action should induce the
consistent current of the gauge/flavor symmetry as well,
since the former acts universally on all operators. On the
other hand, the diffeomorphism Ward identity itself must be
invariant under such internal symmetries. As we shall see,
the shift to Jcov ¼ J þ X occurs naturally. Another such
symmetry transformation that acts on all currents universally
is supersymmetry, which is the main subject of this paper.
This section will provide a simpler illustration for the latter,
more involved case, to which we will turn in Sec. IV.

A. Diffeomorphism anomaly

As a simple illustration, let us start with a theory with a
gauge symmetry δϑ and consider how the diffeomorphism
Ward identity is affected by the anomalous gauge sector.
For this, let us start with

A ¼ ðΓ;AÞ; Φ ¼ ðξ; ϑÞ; J ¼ ðT; JÞ; ð3:2Þ

where the Christoffel connection can be conveniently
elevated to a connection 1-form [6],

ðΓÞβα ≡ −Γα
μβdx

μ ð3:3Þ

with the curvature 2-form

Rβ
α ¼ ðdΓþ Γ ∧ ΓÞβα: ð3:4Þ

This translates to the usual Riemann curvature as

Rα
βμν ¼ ðRβ

αÞνμ: ð3:5Þ

The two are clearly the same componentwise once the
symmetry properties of the Riemann tensor are invoked.
Diffeomorphisms act on the Christoffel connection as

δξΓ ¼ L0
ξΓþ dΓð−∂ξÞ; ð3:6Þ

where L0
ξ is meant to be aware only of the 1-form index of

Γ. Note how the transformation is split into two pieces and
how the second piece can be regarded as a GLðdÞ gauge
transformation with Φμ

ν ¼ −∂μξ
ν of Γ.3

Another difference compared to gauge transformations is
how the commutator of δξ works. On any covariant tensor
V, we have

½δζ;δξ�V¼LξðLζVÞ−LζðLξVÞ¼L½ξ;ζ�V¼−δ½ζ;ξ�V; ð3:8Þ

where, as with the previous gauge variations, we let δ act on
field variables only and not on parameters. This leads to the
gravitational WZ consistency condition,

δζδξW − δξδζW ¼ δ−½ζ;ξ�W; ð3:9Þ

where one must note the unusual sign on the right-hand
side. Bardeen and Zumino addressed how to solve this in
their seminal paper [6] and found that the usual anomaly
descent procedure solves this constraint,

−δξW ¼Gdiffeoðξ;Γ;R;FÞ≡
Z

wð1Þ
d ð−∂ξ;Γ;R;FÞ; ð3:10Þ

3Its counterpart for the spin connection ω is

δξω ¼ L00
ξωþ dωξ̂K; ð3:7Þ

where L00
ξ is again aware only of the 1-form index of ω. The SO

matrix ξ̂abK ≡ −∇½aξb� − ξμΩab
μ is known as the Kosman lift [42].

It has been established that the diffeomorphism anomaly is,
modulo a counterterm, equivalent to the purely rotational SOðdÞ
Lorentz anomaly [6,43]. This is why we can usually get away
with relying on and treating ω as if it is one of the internal gauge
fields. However, the Ward identity in question is that of diffeo-
morphisms, for which Γ proved to be more suitable.
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where we treat Γ as a GLðdÞ connection and perform the
descent as if this GLðdÞ is an internal gauge symmetry.
This can be seen from

δζGdiffeoðξ;Γ; R;FÞ ¼
Z

ðL̂0
ζ þ δGLðdÞ−∂ζ Þwð1Þ

d ð−∂ξ;Γ; R;FÞ;
ð3:11Þ

where the hat and the prime on L̂0
ζ mean that it acts only on

fields and responds only to the differential form indices in Γ,
R, and F. In particular, it perceives the entire wð1Þ

d as a
differential d-form. The second variation is a purely rota-
tionalGLðdÞ gauge rotation, so one can invoke aGLðdÞWZ
consistency condition also obeyed by Gdiffeoðξ;Γ; R;FÞ,

δGLðdÞ−∂ζ
Z

wð1Þ
d ð−∂ξ;Γ; R;FÞ − δGLðdÞ−∂ξ

Z
wð1Þ

d ð−∂ξ;Γ; R;FÞ

¼
Z

wð1Þ
d ð½−∂ζ;−∂ξ�;Γ; R;FÞ: ð3:12Þ

On the other hand, the first derivative operator L̂0
ζ can be

made to act, by integration by parts and with the induced
sign flip, on the GLðdÞ parameter −∂ξ as if it is a (matrix-
valued) scalar function.
Combining the two, we find

δζGdiffeoðξ;Γ; R;FÞ − δξGdiffeoðζ;Γ; R;FÞ

¼
Z

wð1Þ
d ð∂ðζμ∂μξ − ξμ∂μζÞ;Γ; R;FÞ; ð3:13Þ

from which

δζGdiffeoðξ;Γ; R;FÞ − δξGdiffeoðζ;Γ; R;FÞ
¼ Gdiffeoð−½ζ; ξ�;Γ; R;FÞ ð3:14Þ

follows immediately, so that −δξW ¼ Gdiffeoðξ;Γ; R;FÞ
solves (3.9) with the obvious matrix multiplication rule.
Note that in the above GLðdÞ anomaly descent, Gdiffeo
depends on F but not on A, and only via symmetric traces
of F, which implies that

δϑGdiffeoð−∂ξ;Γ; R;FÞ ¼ 0: ð3:15Þ

In Sec. VI, we will see how this diffeomorphism anomaly
can be naturally embedded into a BRST algebra, but with a
twist, which will lead us to a modification that is needed for
the anomaly descent in the presence of supersymmetry
as well.

B. Covariant currents in the diffeomorphism
Ward identity

What about diffeomorphisms acting on the gauge
anomaly? The entire anomaly is a local d-form integral
which is linear in ϑ and polynomial in A, F, and R, all of

which are tensors with respect to general coordinate
transformations. Given that δξ acts on A, F, and R as
Lξ, but does not act on ϑ, we may integrate by parts to
obtain

δξ

Z
wð1Þ

d ðϑ;A;F;RÞ ¼
Z

wð1Þ
d ð−Lξϑ;A;F;RÞ

¼ −GðLξϑ;A;F;RÞ: ð3:16Þ

As such, the anomaly descents that we have accumulated so
far obey

δϑGdiffeoð−∂ξ;Γ; R;FÞ − δξGðϑ;A; F;RÞ
¼ GðLξϑ;A;F;RÞ ð3:17Þ

and thus solve a consistency condition

δϑδξW − δξδϑW ¼ δLξϑW: ð3:18Þ

This last expression can be seen to be the correct WZ
consistency condition as

ðδϑδξ− δϑδξÞW ¼ ðδϑðξ⌟dAþ dðξ⌟AÞÞ− δξðdAϑÞÞ ·
δW
δA

¼ ððdLξϑÞþLξð½A;ϑ�Þ− ½LξA;ϑ�Þ ·
δW
δA

¼ δLξϑA ·
δW
δA

¼ δLξϑW; ð3:19Þ

if we keep in mind that δ’s do not act on parameters.
Here, we wish to address the transformation property

of δξW

−δξW ¼ ξν · h∇μTμνi −
X

δξA · hJi ð3:20Þ

under δϑ. We have seen earlier that the mixed WZ
consistency condition

δϑðδξWÞ − δξðδϑWÞ ¼ δLξϑW ð3:21Þ

constrains δξW, and furthermore, given the specific form of
the gauge anomaly descent,

δϑðδξWÞ ¼ 0; δξðδϑWÞ þ δLξϑW ¼ 0 ð3:22Þ

have to hold separately. We have seen the former above,
while the latter can be seen more explicitly as follows.
Since δξ is supposed to act only on field variables and not
on the transformation parameters, such as ϑ, we have

MINASIAN, PAPADIMITRIOU, and YI PHYS. REV. D 105, 065005 (2022)

065005-8



δξðδϑWÞþ δLξϑW ¼−δξ
Z

wð1Þ
d ðϑ;A;F;RÞ

−
Z

wð1Þ
d ðLξϑ;A;F;RÞ

¼−
Z

Lξw
ð1Þ
d ðϑ;A;F;RÞ

¼−
Z

dðξ⌟wð1Þ
d Þþ ξ⌟dwð1Þ

d ¼ 0; ð3:23Þ

where for the last equality we have used dwð1Þ
d ¼ 0 as well,

which appears to contradict the formal procedure we used for
the descent, but does hold once we come back to physical
quantities and coordinates relevant to a d-dimensional
spacetime; one simply cannot have a nonzero (dþ 1)-form,
i.e., dwð1Þ

d , in a d-dimensional spacetime.4

How does this reconcile with the appearance of the
consistent gauge current in the Ward identity from δξW, as
opposed to the covariant one, in Eq. (3.20)? This is
relatively easy to see for a single Abelian A. Note that
Lξ acts on A as a vector

LξA ¼ dðξ⌟AÞ þ ξ⌟dA; ð3:24Þ

so, with F ¼ dA,

−δξW¼ ξν ·h∇μTμνi−ðξ⌟FÞ ·hJiþðξ⌟AÞ ·h∇μJμi: ð3:25Þ

On the other hand, the last piece is nothing but a pure gauge
anomaly with ϑ ¼ −ðξ⌟AÞ, so it is a local functional
involving ξ, A, and F. This last formula actually holds
for non-Abelian A as well, via F ¼ dAþ A2.
After some tedious algebra, using the explicit form of

the gauge anomaly, one realizes that this last term can be
rewritten via the BZ current X and the curvature F such
that [24,44]

−δξW ¼ ξν · h∇μTμνi − ðξ⌟FÞ · hJ þ Xi
¼ ξν · h∇μTμνi − ðξ⌟FÞ · hJcovi: ð3:26Þ

As such, the diffeomorphism Ward identity is manifestly
gauge invariant under δϑ

ξν ·h∇μTμνi−ðξ⌟FÞ ·hJcovi¼
Z

wð1Þ
d ð−∂ξ;Γ;R;FÞ: ð3:27Þ

The right-hand side is invariant under δϑ thanks to the general
fact in (2.27), so the above covariantization of the gauge
current is inevitable. Although the necessary conversion was
performed explicitly for Abelian A, δϑðδξWÞ ¼ 0 means that
the same conversion of the anomaly term to the ðξ⌟FÞ · X

occurs for non-Abelian A’s as well. The latter fact will appear
again crucially when we discuss the supersymmetrized
anomaly descent in Sec. VI.

IV. SUPERSYMMETRY AND BARDEEN-ZUMINO
CURRENTS

Let us now turn to the supersymmetry Ward identity and
discuss the local fermionic terms induced by anomalies in
other symmetries, which are therefore controlled by the same
anomaly coefficient. Such terms induced by the gauge/flavor
anomaly have been discussed long ago in [7–16,18,19],
while analogous terms induced by the gravitational anomaly
in two dimensions were first identified in [20,21], and locally
supersymmetric contributions to gauge/favor or R-symmetry
anomalies were discussed more recently in [24–32].
It was understood early on that, if a superspace descrip-

tion of the external gauge multiplet exists, such local
fermionic terms can be understood as a consequence of
the WZ gauge. In particular, if one keeps all auxiliary fields
and maintains gauge symmetry at a fully supersymmetric
level, one could move these terms to the left-hand side of
the Ward identity. However, there are several contexts
where a superspace or fully off-shell multiplet does not
exist, and therefore we do not assume its existence in the
present analysis.
As we will see, the local fermionic terms in the super-

symmetry Ward identity induced by anomalies of other
symmetries can be separated into two distinct types: gauge-
invariant ones and noninvariant ones [8]. In the analogous
case of the diffeomorphism Ward identity, the latter was a
simple consequence of the supersymmetry transformation of
the external gauge fields and is completely determined by the
BZ current. In the supersymmetry Ward identity, this non-
invariant piece is again expressed via the BZ current but the
way it emerges in theWZ gauge is rather different; it appears
as an additional inhomogeneous contribution to the Ward
identity, as demanded by the consistency condition that
involves both gauge/flavor transformations and supersym-
metry transformation.
The other gauge-invariant pieces, an analog of which does

not exist in the diffeomorphismWard identity, depends more
sensitively on the supersymmetry algebra. What remains
true, however, is that these are connected to the above
noninvariant contribution again via the consistency condi-
tion. In this section, we discuss the general shape of these
local fermion terms, with emphasis on the noninvariant BZ
current contributions, and how exactly the same structure
appears from the inflowmechanism, regardless of the precise
details of the latter.
Since the noninvariant term involving the BZ current is

entirely determined by the gauge/flavor anomaly, to begin
with, one expects that this induced BZ term and the
subsequent invariant pieces would be also canceled even-
tually if an anomaly inflow [40] cancels the gauge/flavor
anomaly in question. In principle, therefore, the anomaly

4This obvious observation will also be quite useful when we
introduce a generalized anomaly descent procedure for diffeo-
morphisms and supersymmetry in Sec. VI.
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inflow may be viewed as a tool for determining all such
fermionic terms, noninvariant and invariant, if the super-
symmetry completion of the bulk action responsible for the
inflow is known.
In general the latter is a tall order, however, given how the

bulk action is typically of higher derivatives. This is true of
the simplest inflow mechanism we use in this section for
illustration which is itself somewhat limited, modeled after
the simplest of the M5 brane inflow [45,46]. More generally,
even more elaborate inflow mechanisms [47–51] are often
unavoidable. Supersymmetry completion of such general
topological terms in string theories or in M theory are
hardly known.
On the other hand, if the inflow originates from a Chern-

Simons action in one dimension higher, the chances are
better. In Sec. V, we will delve into several explicit examples
of supersymmetric anomaly inflow of this kind and use them
to determine the local fermionic terms in the supersymmetry
Ward identity induced by anomalies in other symmetries.
The Chern-Simons formwð0Þ

dþ1 determines the contribution of
the gauge/flavor anomaly to the supersymmetry Ward
identity and plays an important role in both supersymmetric
anomaly inflow and anomaly descent. A generalized
anomaly descent mechanism that accommodates supersym-
metry will be discussed in Sec. VI.

A. Supersymmetry Ward identity revisited

The external vector multiplet is specified by

A ¼ ðψ ;AÞ; Φ ¼ ðϵ; ϑÞ; J ¼ ðS; JÞ ð4:1Þ

with the gaugino superpartner λ of A,

δϵW ¼ δϵA ·
δW
δA

þ δϵλ ·
δW
δλ

: ð4:2Þ

As in the case of diffeomorphisms above, we wish to
explore what consequences follow from the WZ consis-
tency condition,

δϑðδϵWÞ − δϵðδϑWÞ ¼ 0: ð4:3Þ

The second term on the left is

−δϵðδϑWÞ ¼ δϵ

Z
wð1Þ

d ðϑ;A; FÞ: ð4:4Þ

Recalling the algebra that leads to the BZ current X,

ΔδϵA

Z
wð1Þ

d ðϑ;A;FÞ ¼ δϑ

Z
lδϵAðwð0Þ

dþ1ðA;FÞÞ; ð4:5Þ

where lδϵA is the antiderivative we reviewed earlier, we
realize that

−δϵðδϑWÞ ¼ δϑðδϵA · XÞ; ð4:6Þ

again with the BZ current X of the gauge symmetry. This
means that, even in the absence of true anomaly term
Gðϵ;ψ ;A; λÞ, δϵW cannot vanish, but rather must obey

−δϵW ¼ δϵA · X þ � � � ð4:7Þ

with the ellipsis denoting terms that are invariant under
δϑ and are determined by the consistency condition
following from two successive supersymmetry transfor-
mations, namely

ðδϵδϵ0 −δϵ0δϵÞW¼ðδξþδΛÞW; ξμ∼ ϵ̄0γμϵ;Λ∼ξ⌟A: ð4:8Þ

Shortly we will offer an alternate method for this super-
symmetry completion via anomaly inflow, so here we
mostly focus on the term involving the BZ current.
An interesting fact is that we can rewrite this Ward

identity as [24]

ϵ · h∇μSμi − δϵA · ðhJi þ XÞ − � � � ¼ 0; ð4:9Þ

where we have moved the BZ current and its supersymmetry
completion, meaning additional gauge-invariant terms
whose presence is demanded by the WZ consistency
condition and the very first BZ piece, to the left-hand side.
Once this shift of J to Jcov ¼ J þ X is done, each compo-
nent of this Ward identity is individually δϑ invariant. Again
we see that Jcov appears naturally but the way this happens
here is a little different from the diffeomorphisms case,
where it happened via a rearrangement of the consistent
current term.
Here, the main message is that this shift is something to

be expected once we realize that in the Ward identities of
spacetime symmetries the gauge/flavor current appears
always in its covariant form. This also means that the shift
is immediate and explicitly known once the gauge anomaly
is known, without having to compute an entirely new set of
diagrams; the shift by the BZ current X is determined
entirely by the δϑ anomaly.
The local fermionic terms, δϵA · X þ � � �, in the super-

symmetry Ward identity should be distinguished from what
one might consider an inherent anomaly of supersymmetry.
Nevertheless, this shift of the Ward identity is not devoid of
physical consequences and must be kept track of carefully;
for example, it has known consequences in various super-
symmetric partition function computations that rely on
curved spacetime background and various external fluxes.
In superspace, or in terms of a fully off-shell external

vector multiplet, if such a description exists, the covariant
current and its accompanying supersymmetry partners
would have appeared naturally on the left-hand side, on
par with the diffeomorphism example of the previous
section. This would allow one to say that the effective
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action is invariant under supersymmetry transformations [8].
However, one should be mindful that such a fully off-shell
extension is not always available. Even if one is available, as
would be the casewith a smaller supersymmetry content, it is
not clear what one would gain in practice by avoiding the
WZ gauge choice. We might as well concentrate on the
nature of these anomalous contributions to theWard identity;
they would not disappear even in the superspace version, but
merely be attributed differently, and, as has been seen
recently [24,36], can produce a tangible difference in some
localization computations.

B. Symmetry restoration via gauge/flavor
anomaly inflow

The simplest form of anomaly inflow can be found from
a topological coupling of the type

Sinflow ¼ ð−1Þp
Z
XD

Hpþ1 ∧ wð0Þ
dþ1ðAÞ ð4:10Þ

in an ambient spacetime XD with p ¼ D − d − 2. A
d-dimensional world volume enters the picture as a
magnetic defect to the spacetime gauge field strength
Hpþ1 ¼ dAp þ � � � such that

dHpþ1 ¼ δMd
ð4:11Þ

and supports an anomalous field content. Suppose that we
have an effective action WðAÞ on Md whose anomaly
polynomial is Pdþ2 ¼ dwð0Þ

dþ1ðAÞ.
A gauge variation of Sinflow leads to

ð−1Þp
Z
XD

Hpþ1 ∧ δΦw
ð0Þ
dþ1ðAÞ ¼

Z
Md

wð1Þ
d ðΦ;AÞ; ð4:12Þ

so that the combined effective action

WðAÞ ¼ WðAÞ þ Sinflow ð4:13Þ

is gauge invariant, δΦW ¼ 0. While one must consider
more involved versions of this to cover all known types of
anomaly inflow, the essence of the inflow mechanism is
well represented by the example above.
Here, let us ask a slightly different question, namely

whether δϵW is gauge invariant. Recall that the WZ
consistency condition demands that we have

−δϵW ¼ δϵA · X þ � � � ; ð4:14Þ

where the BZ current X can be traced back to the gauge
anomaly δϑW ≠ 0. If the latter is canceled by the anomaly
inflow from Sinflow, it is only natural to expect that δϵA · X
on the right-hand side of the supersymmetry variation is
also canceled as well, so that the quantity δϵW is gauge
invariant.

The relevant quantity to compute is5

�
ð−1Þp

Z
XD

Hpþ1 ∧ ΔδϵAw
ð0Þ
dþ1ðAÞ

�
: ð4:15Þ

Using the descent mechanism we have learned in the
previous sections, this becomes

ð−1Þp
Z
XD

Hpþ1 ∧ ðdlδϵAþ lδϵAdÞðwð0Þ
dþ1ðAÞÞ

¼ ð−1Þp
Z
XD

Hpþ1 ∧ ðd½δϵA∧X� þ lδϵAPdþ2ðF ÞÞ: ð4:16Þ

The first term, when integrated by parts, reduces to

δϵA · X: ð4:17Þ

Combining the two contributions, we find

δϵW ¼ δϵW þ δϵSinflow ¼ 0þ � � � ; ð4:18Þ

where the ellipsis denotes all terms we have neglected so
far, namely the gauge-invariant part of δϵW and the second
piece of (4.16), which does not naturally reduce to the
world volume. Therefore, we learn that, modulo the bulk
piece in δϵSinflow, the gauge invariance of δW is restored
through the gauge anomaly inflow, such that

δϑðδϵWÞ ¼ 0 ð4:19Þ

on the world volume.
So, what about the bulk pieces in the variation of Sinflow?

Once we embed these discussions to supersymmetric the-
ories in the bulk, we should expect any leftover bulk terms,
such as the second piece in (4.16) to be canceled by the
transformation of the superpartners. As such, in order to
complete the study, we need to start from the fully super-
symmetrized form of δϵW and Sinflow. For minimal rigid
supersymmetry the former is known from, e.g., [8–10] for up
to d ¼ 6, off shell and in the WZ gauge, while the latter
could prove more involved. After all, such topological terms,
Sinflow, involve generically higher derivative terms and were
often discovered only via the anomaly cancellation of the
entire string theory or M theory.
On the other hand, there are simpler subclasses where

this kind of question can be asked. One is when the inflow
is achieved by a Green-Schwarz mechanism with D ¼ d
and another is where

5We think of the world volume spinors as a chiral projection of
spacetime spinors on XD. Some specific examples of such
embedding are discussed in Sec. V.
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Sinflow ¼
Z
Xdþ1

wð0Þ
dþ1ðAÞ þ � � � ð4:20Þ

on a bulk Xdþ1 whose boundary is the world volumeMd. In
fact, the entire class of anti–de Sitter ðAdSÞdþ1 theories
coupled to boundary conformal field theory belong to such
a class. With the proper supersymmetry instituted in these
Sinflow, one could ask what happens to the supersymmetry
variation of the combined action δϵW.
We will see in the next section, example by example, that

once all these terms are delineated, we find that not only
gauge invariance is restored

δΦðδϵWÞ ¼ 0 ð4:21Þ

with W ¼ W þ Sinflow, but the combined action is fully
supersymmetric,

δϵW ¼ 0: ð4:22Þ

Thus, let us call this mechanism of anomaly cancellation a
“supersymmetric anomaly inflow.”

V. SUPERSYMMETRIC ANOMALY INFLOW

In the previous section we considered supersymmetric
theories with an anomaly

−δϑW ¼
Z

wð1Þ
d ðΦ;A;F Þ; ð5:1Þ

for which the supersymmetry Ward identity acquires
unexpected terms on the right-hand side,

−δϵW ¼
Z

lδϵAw
ð0Þ
dþ1ðA;F Þ þ � � � ð5:2Þ

with the usual anomaly descent relating the two right-hand
sides as δϑw

ð0Þ
dþ1 ¼ dwð1Þ

d . Although we have discussed this
explicitly for gauge/flavor symmetry here, a similar struc-
ture arises for R-symmetry and diffeomorphism anomalies,
which we will revisit in later sections.
On the other hand, given a canceling anomaly inflow

term Sinflow, we saw that the combined effective action
W ¼ W þ Sinflow satisfies

δΦW ¼ 0; δΦðδϵWÞ ¼ 0: ð5:3Þ

Given that the two right-hand sides of δW above originate
from a common gauge anomaly, it is quite natural to
expect that

δϵW ¼ 0; ð5:4Þ

as long as the inflow action is properly supersymmetrized.
In this section, we demonstrate this mechanism for several
examples where a supersymmetric Sinflow is available.
Note that this means that there are alternate ways to

compute the right-hand side of (5.2), without having to
solve directly the WZ consistency conditions. In a sense,
such an alternate computation via Sinflow can be regarded
as a supersymmetrized anomaly descent especially when
Sinflow ¼ SCS. This is not to say that one can always achieve
the same kind of universal procedure as in the usual
anomaly inflow, since the crucial supersymmetrization of
SCS is often cumbersome. One complication is that, with a
physical inflow mechanism, given the typically higher
dimensional nature of Sinflow, both supersymmetry and
the field content thereof tends to be enlarged, beyond
what is strictly necessary for W. In the next section we
explore a more streamlined and mathematically compact
version of the supersymmetric anomaly descent, inspired
by these inflow phenomena. As we show at the end of that
section, however, the two approaches coincide for certain
multiplets, with the descent procedure determining the
supersymmetric Chern-Simons form implementing the
codimension-one inflow.
In the concrete examples of supersymmetric anomaly

inflow that we present in the remaining of this section, we
wish to emphasize the utility of such a mechanism as an
efficient way to determine the form of supersymmetrized
anomalies. To this end, we flip the sign of the Chern-
Simons terms relative to the discussion above, Sinflow ¼
−SCS, in the following such that

δϵW ¼ δϵSCS: ð5:5Þ

A. Gauge/flavor anomaly inflow

The first example of a supersymmetric anomaly inflow
we consider is in the context of flavor anomalies in d
dimensions. The anomaly inflow mechanism we focus on
relies on the existence of a suitable supersymmetric Chern-
Simons action in dþ 1 dimensions. Higher codimension
inflow may also be possible in certain cases, such as on the
world volume of D-branes, but we will not consider this
mechanism here.
A supersymmetric Chern-Simons action for a given gauge

multiplet in dþ 1 dimensions determines the supersymmet-
ric flavor anomaly in d dimensions for any theory that can
consistently couple to the background gauge multiplet
obtained from that in dþ 1 dimensions by dimensional
reduction. The flavor anomalies for all multiplets with less
supersymmetry can be obtained by consistently truncating
the resulting d-dimensional multiplet.
However, given a theory with N -extended supersym-

metry in d dimensions, there may not exist a corresponding
Chern-Simons action with the same amount of supersym-
metry in dþ 1 dimensions. In such cases, the d-dimensional
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gauge multiplet must first be embedded in one with a larger
amount of supersymmetry, for which a supersymmetric
Chern-Simons action does exist. This situation arises, for
example, for theories with ðp; qÞ supersymmetry in two
dimensions when p ≠ q. In order to cancel the anomaly
through anomaly inflow in such cases, the ðp; qÞ multiplet
must be embedded in the closest nonchiral one, namely
the flavor multiplet with ðp0; p0Þ supersymmetry, where
p0 ¼ maxðp; qÞ. As long as p0 ≤ 3, there exists an N ¼ p0
supersymmetric Chern-Simons action that provides an
anomaly inflow mechanism for the ðp0; p0Þ anomaly in
two dimensions. The original ðp; qÞ anomaly is obtained by
multiplet truncation.

1. 3D to 2D anomaly inflow

The simplest examples of supersymmetric anomaly
inflow arise for d ¼ 2, since the relevant Chern-Simons
actions in three dimensions are typically known. The most
general 3D Chern-Simons action without matter multiplets
involves the N ¼ 3 vector multiplet [52,53], which con-
sists of a gauge field Aμ, three Majorana gauginos λI , I ¼ 1,
2, 3, three real scalars σI , and real auxiliary scalars DI, as

well as a Majorana fermion χ. All fields are in the adjoint
representation of the gauge group.6 As we now show, the
N ¼ 3 supersymmetric Chern-Simons action provides a
supersymmetric inflow mechanism for the flavor anomaly
of the N ¼ ð3; 3Þ vector multiplet in two dimensions and
hence for any N ¼ ðp; qÞ vector multiplet with p, q ≤ 3.
We should clarify at this point that the flavor anomalies

for nonchiral theories, such asN ¼ ð3; 3Þ theories in 2D or
N ¼ 2 ones in 4D that we consider below, are somewhat
formal and discussed only as nontrivial solutions of the WZ
consistency conditions. Their coefficients vanish in all
Lagrangian theories, as well as in non-Lagrangian theories
obtained through renormalization group flows from
Lagrangian ones, due to ‘t Hooft anomaly matching.
More relevant to the present discussion, however, is the
fact that such anomalies for nonchiral multiplets appear as
an intermediate step for the computation of supersymme-
trized flavor anomalies in chiral theories via anomaly
inflow.
The supersymmetry transformations of theN ¼ 3 vector

multiplet are parametrized by three real Majorana spinors ϵI

and are given by

δQðϵÞσI ¼ εIJK ϵ̄
JλK − ϵ̄Iχ;

δQðϵÞAμ ¼ ϵ̄Iγμλ
I;

δQðϵÞλIα ¼
1

2
ðγμνϵIÞαFμν þ εIJKϵ

J
αDK þ εIJKðγμϵJÞαDμσ

K − i½σI; σJ�ϵJα;

δQðϵÞχα ¼ −ϵIαDI þ ðγμϵIÞαDμσI −
i
2
εIJK½σJ; σK�ϵIα;

δQðϵÞDI ¼ εIJK ϵ̄
JγμDμλ

K þ ϵ̄IγμDμχ − i½ϵ̄JλJ; σI� þ i½ϵ̄IλJ þ ϵ̄JλI; σJ� − iεIJK½ϵ̄Jχ; σK�; ð5:6Þ

where we follow the spinor conventions of [54] and we
have suppressed the gauge group indices. The gauge-
covariant derivative and field strength are respectively

Dμ ¼ ∂μ − i½Aμ; �; ð5:7Þ

Fμν ¼ ∂μAν − ∂νAμ − i½Aμ; Aν�: ð5:8Þ

Moreover, the indices I, J, K are raised and lowered with
the Kronecker delta δIJ, δIJ. Notice that εIJK ¼ εIJK
denotes the Levi-Civita symbol in R3 spanned by
the I, J, K indices, while εμνρ is the Levi-Civita symbol
in R1;2.
The N ¼ 2 and N ¼ 1 vector multiplets can be

obtained from the N ¼ 3 one by setting specific

components to zero. The resulting nonzero components
for these multiplets are

SUSY parameters Nonzero components

N ¼ 2 ϵ1, ϵ2 Aμ, σ3, D3, λ1, λ2
N ¼ 1 ϵ1 Aμ, λ1

It is straightforward to check that these are consistent
truncations of the off-shell supersymmetry (SUSY) trans-
formations (5.6).
Using the 3D identities

δI½KεL�
PQ þ δI½PεQ�

KL ¼ 0;

δI½KεL�
PQ þ δP½KεL�

QI þ δQ½KεL�
IP ¼ 0; ð5:9Þ

one can show that, together with rigid translations δDðξÞ ¼
ξμ∂μ and gauge transformations, which act on the vector
multiplet fields as δGðϑÞAμ ¼ Dμϑ, and δGðϑÞ ¼ i½ϑ; � for
all other fields, the transformations (5.6) close off shell and
obey the algebra

6In this section we use Hermitian generators for the gauge
group, while we find it convenient to formulate the anomaly
descent in terms of anti-Hermitian generators. The two choices
are related as taH: ¼ itaa:H:.
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½δQðϵ1Þ; δQðϵ2Þ� ¼ δDðξÞ þ δGðϑÞ; ð5:10Þ

with the composite translation and gauge parameters given
respectively by

ξμ ¼ 2ϵ̄I2γ
μϵ1I; ϑ ¼ −ξμAμ − 2εIJKðϵ̄I2ϵJ1ÞσK: ð5:11Þ

Notice that ξμ is constant (as required) while ϑ is not, due to
the explicit field dependence.
The N ¼ 3 supersymmetric Chern-Simons Lagrangian

is [53]

LCS ¼
k
4π

tr

�
κεμνρ

�
Aμ∂νAρ −

2i
3
AμAνAρ

�
− λ̄IλI

þ χ̄χ − 2σIDI þ
i
3
εIJKσ

I½σJ; σK�
�
; ð5:12Þ

where k is the Chern-Simons level, while κ ¼ �1 para-
metrizes a choice in the 3D Clifford algebra through the
identity

γμν ¼ −κεμνργρ; κ ¼ �1: ð5:13Þ

A generic variation of the Chern-Simons Lagrangian
(5.12) takes the form

δLCS¼
k
4π

trðκεμνρð∂ρðAνδAμÞþδAμFνρÞ−2λ̄IδλI

þ2χ̄δχ−2σIδDI−δσIð2DI− iεIJK½σJ;σK�ÞÞ: ð5:14Þ

Specializing this variation to gauge and N ¼ 3 supersym-
metry transformations, we find that in both cases (5.12) is
invariant up to a total derivative term, namely

δGðϑÞLCS ¼
k
4π

κεμνρ∂μtrðϑ∂νAρÞ;

δQðϵÞLCS ¼
k
4π

∂μtrðκεμνρδQðϵÞAνAρ

− 2σIðεIJK ϵ̄JγμλK þ ϵ̄Iγ
μχÞÞ: ð5:15Þ

The boundary term resulting from a gauge transformation
matches the usual non-Abelian anomaly, i.e., the bosonic
part of the 2D flavor anomaly. As we now discuss, the
boundary term arising from supersymmetry transforma-
tions corresponds to its (3,3) supersymmetric completion,
i.e., the (3,3) supersymmetry completion of the anomaly in
the WZ gauge, which follows from the WZ consistency
conditions.
Upon dimensional reduction to two dimensions, the 3D

N ¼ 3 vector multiplet reduces to the 2D N ¼ ð3; 3Þ
vector multiplet (see, e.g., [55] for the Abelian case). This
has the same field content as the 3D N ¼ 3 vector
multiplet, except that the 3D gauge field gives rise to an
extra scalar: Aμ ¼ ðAμ̂;ϕÞ, where μ̂ ¼ 0, 1. The supersym-
metry transformations of the 2D N ¼ ð3; 3Þ vector multi-
plet follow from the 3D N ¼ 3 transformations in (5.6),
namely

δQðϵÞσI ¼ εIJK ϵ̄
JλK − ϵ̄Iχ;

δQðϵÞAμ̂ ¼ ϵ̄Iγμ̂λ
I;

δQðϵÞϕ ¼ κϵ̄Iγ�λI;

δQðϵÞλIα ¼
1

2
ðγμ̂ ν̂ϵIÞαFμ̂ ν̂ þ κðγμ̂γ�ϵIÞαDμ̂ϕþ εIJKϵ

J
αDK þ εIJKðγμ̂ϵJÞαDμ̂σ

K

− iκεIJKðγ�ϵJÞα½ϕ; σK� − i½σI; σJ�ϵJα;
δQðϵÞχα ¼ −ϵIαDI þ ðγμ̂ϵIÞαDμ̂σI − iκðγ�ϵIÞα½ϕ; σI� −

i
2
εIJK½σJ; σK�ϵIα;

δQðϵÞDI ¼ εIJK ϵ̄
Jγμ̂Dμ̂λ

K − iκεIJK ϵ̄Jγ�½ϕ; λK� þ ϵ̄Iγμ̂Dμ̂χ − iκϵ̄Iγ�½ϕ; χ�
− i½ϵ̄JλJ; σI� þ i½ϵ̄IλJ þ ϵ̄JλI; σJ� − iεIJK½ϵ̄Jχ; σK�; ð5:16Þ

where γ� ≡ κγ2 ¼ κγ2 is the chirality matrix in two
dimensions (also denoted by γ3; see [54]). These satisfy
the algebra (5.10) with 2D parameters

ξμ̂¼2ϵ̄I2γ
μ̂ϵ1I; ϑ¼−ξμ̂Aμ̂−2κϵ̄I2γ3ϵ1Iϕ−2εIJKðϵ̄I2ϵJ1ÞσK:

ð5:17Þ

When expressed in terms of the 2D vector multiplet, the
symmetry variations (5.15) of the N ¼ 3 Chern-Simons
action provide—by construction—a solution of the WZ
consistency conditions for the 2D (3,3) symmetry algebra.
We therefore conclude that the (3,3) flavor anomaly in two
dimensions takes the form
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δGðϑÞW ¼ k
4π

εν̂ ρ̂
Z

d2x trðϑ∂ ν̂Aρ̂Þ;

δQðϵÞW ¼ k
4π

Z
d2x trðεν̂ ρ̂δQðϵÞAν̂Aρ̂

− 2κσIðεIJK ϵ̄Jγ�λK þ ϵ̄Iγ�χÞÞ; ð5:18Þ

where εμ̂ ν̂ð2Þ ≡ κε2μ̂ ν̂ð3Þ . This generalizes known results for 2D
gauge anomalies for theories with less supersymmetry
[10,12,14]. The ðp; qÞ flavor anomaly for any p, q ≤ 3
can be obtained from the (3, 3) anomaly in (5.18) by a
suitable truncation of the vector multiplet.

2. 5D to 4D anomaly inflow

N ≤ 2 flavor symmetry in four dimensions presents
another example of supersymmetric anomaly inflow. The
N ¼ 1 off-shell gauge multiplet in five dimensions
[54,56–59]7 comprises a gauge field Aμ, a symplectic
Majorana spinor λi that transforms as a doublet of the
SUð2Þ R-symmetry group, a real scalar σ, and an auxiliary
real symmetric tensor Yij ¼ Yji, all in the adjoint repre-
sentation of the gauge group. Following again the con-
ventions of [54], the supersymmetry transformations are

δQðϵÞAa
μ ¼

1

2
ϵ̄iγμλ

a
i ; δQðϵÞσa ¼

i
2
ϵ̄iλai ;

δQðϵÞYija ¼ −
1

2
ϵ̄ðiðDλjÞa þ ifbcaσbλjÞcÞ;

δQðϵÞλia ¼ −
1

4
γμνFa

μνϵ
i −

i
2
Dσaϵi − Yijaϵj; ð5:19Þ

where the covariant derivative and field strength of the
gauge field are given by

Dμϕ
a≡ ðDμϕÞa ¼ ∂μϕ

aþ fbcaAb
μϕ

c; ϕa ¼ any field;

ð5:20Þ

Fa
μν ¼ ∂μAa

ν − ∂νAa
μ þ fbcaAb

μAc
ν: ð5:21Þ

Together with rigid translations, δDðξÞ ¼ ξμ∂μ and gauge
transformations that act as δGðϑÞAa

μ ¼ ðDμϑÞa ¼ ∂μϑ
a þ

fbcaAb
μϑ

c and δGðϑÞϕa ¼ fbcaϕbϑc on all other compo-
nents of the multiplet, the supersymmetry transformations
(5.19) satisfy the algebra

½δQðϵ1Þ; δQðϵ2Þ� ¼ δDðξÞ þ δGðϑÞ; ξμ ¼ 1

2
ϵ̄i2γ

μϵ1i;

ϑa ¼ −ξμAa
μ −

i
2
ϵ̄i2ϵ1iσ

a: ð5:22Þ

An important subtlety in five dimensions is that there
exists no pure Chern-Simons action for the vector multiplet.
N ¼ 2 supersymmetric Lagrangians are specified by a
prepotential F ðσÞ, which couples the Chern-Simons and
Yang-Mills parts of the action. Although a pure Yang-Mills
Lagrangian is obtained from a quadratic prepotential, a
supersymmetric Chern-Simons Lagrangian requires a cubic
prepotential and necessarily contains a Yang-Mills part. In
particular, the supersymmetric Chern-Simons Lagrangian
takes the form

LCS ¼
�
−
1

4
Fa
μνFbμν −

1

2
λ̄iaDλbi −

1

2
Dμσ

aDμσb þ Ya
ijY

ijb

�
F ab

þ
�
κ

24
εμνρστAa

μ

�
Fb
νρFc

στ þ fdebAd
νAe

ρ

�
−
1

2
Fc
στ þ

1

10
ffgcA

f
σA

g
τ

��

−
i
8
λ̄iaγμνFb

μνλ
c
i −

i
2
λ̄iaλjbYc

ij þ
i
4
fdecσaσbλ̄idλei

�
F abc; ð5:23Þ

where again κ ¼ �1 parametrizes a choice in the repre-
sentation of the Clifford algebra in five dimensions through
the relation γμνρστ ¼ −iκεμνρστ. Moreover, F ab, F abc de-
note respectively the second and third derivatives of the
prepotential F , which we take to be

F ðσÞ ¼ k
48π2

dabcσaσbσc; ð5:24Þ

where dabc ¼ trðtaftb; tcgÞ is the completely symmetric
rank-3 invariant tensor on the Lie algebra of the gauge
group and k is the gauge/flavor anomaly coefficient that
depends on the microscopic theory.
The prepotential (5.24) is chosen such that the gauge

transformation of the Chern-Simons action (5.23) coincides
with the bosonic part of the consistent gauge/flavor
anomaly in four dimensions upon the identification
εμνρσð4Þ ≡ κε4μνρσð5Þ , namely

7To avoid cluttering the notation we use μ; ν; ρ;… to denote
both 4D and 5D spacetime indices, since the distinction should be
clear from the context.
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δGðϑÞLCS ¼
k

48π2

Z
d4xdabcϑaεμνρσ∂μ

×

�
Ab
ν∂ρAc

σ þ
1

4
fdecAb

νAd
ρAe

σ

�
: ð5:25Þ

The supersymmetry transformation of the Chern-Simons
Lagrangian (5.23) is also a total derivative, which we
determine next. By construction, the two symmetry trans-
formations of the 5D supersymmetric Chern-Simons action
provide a solution of the WZ consistency conditions for the

N ¼ 2 symmetry algebra in four dimensions and therefore
determine the N ¼ 2 supersymmetric flavor/anomaly.
A lengthy computation using several identities for 5D

symplectic Majorana spinors (see Appendix A of [57]) and
the Lie algebra relation

dcðabfeÞdc ¼ 0 ð5:26Þ

determines that the supersymmetry variation of (5.23) takes
the form

δQðϵÞLCS ¼ ∂μ

��
−
1

4
ðϵ̄iγνλai ÞFbμν −

i
4
ðϵ̄iλai ÞDμσb −

1

2
ðϵ̄iγμλaj ÞYijb

−
1

8
ðϵ̄iγμρσλai ÞFb

ρσ −
i
4
ðϵ̄iγμνλai ÞDνσ

b

�
F ab

þ κ

6
εμνρστ

�
δQðϵÞAa

ν

�
2Ab

ρ∂σAc
τ þ

3

4
fdebAc

ρAd
σAe

τ þ
1

8
λ̄ibγρστλ

c
i

�

þ 1

32
ðϵ̄iγνρλai Þðλ̄jbγστλcjÞ

�
F abc

�
: ð5:27Þ

Once expressed in terms of the 4D N ¼ 2 multiplet fields
arising from the dimensional reduction of the 5D N ¼ 1
vector multiplet, this variation coincides with the super-
symmetric completion of the N ¼ 2 gauge/flavor anomaly
in four dimensions.
The 4D N ¼ 2 vector multiplet possesses the same field

content as the corresponding 5D multiplet, except that the

components Aa
4 of the 5D gauge field combine with the

scalars σa into a complex scalar: Xa ¼ 1
2
ðAa

4 − iσaÞ.
Moreover, the 5D symplectic Majorana gaugino reduces
to an SUð2Þ doublet of either chiral or Majorana gauginos
in four dimensions. Following [54], we decompose the 5D
gaugino and supersymmetry parameter in terms of chiral
spinors in four dimensions as (see Appendix 20.B in [54])

λai ¼ −λjað4Þεji þ λað4Þi; λ̄ai ¼ λ̄jað4Þεji þ λ̄að4Þi; λað4Þi ¼ PLλ
a
ð4Þi; λiað4Þ ¼ PRλ

ia
ð4Þ;

ϵi ¼ ϵjð4Þεji þ ϵð4Þi; ϵ̄i ¼ ϵ̄jð4Þεji − ϵ̄ð4Þi; ϵð4Þi ¼ PRϵð4Þi; ϵið4Þ ¼ PLϵ
i
ð4Þ; ð5:28Þ

where PL ¼ 1
2
ð1 − κγ�Þ and PR ¼ 1

2
ð1þ κγ�Þ are the 4D chirality projectors and γ� ¼ −κγ4. In particular, ϵið4Þ, ϵð4Þi and λ

ia
ð4Þ,

λað4Þi are charge conjugate pairs so that ϵið4Þ þ ϵð4Þi and λiað4Þ þ λað4Þi are Majorana.

Inserting this decomposition in (5.19) and dropping the subscript (4) leads to the 4D N ¼ 2 supersymmetry
transformations

δQðϵÞXa ¼ 1

2
ϵ̄iλai ;

δQðϵÞλai ¼ DXaϵi þ
1

4
γμνFa

μνεijϵ
j þ Ya

ijϵ
j þ XbX̄cfbcaεijϵj;

δQðϵÞAa
μ ¼

1

2
εijϵ̄iγμλ

a
j þ

1

2
εijϵ̄

iγμλ
ja;

δQðϵÞYija ¼ 1

2
ϵ̄ðiDλjÞa þ fbcaXbεðikϵ̄kλjÞc þ

1

2
εðikεjÞlϵ̄kDλal − fbcaX̄bϵ̄ðiλcl ε

jÞl; ð5:29Þ

where now μ, ν ¼ 0, 1, 2, 3. Together with gauge transformations and translations, these satisfy the same algebra as in five
dimensions, but with composite parameters
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ξμ ¼ 1

2
ϵ̄i2γ

μϵ1i þ H:c:; ϑa ¼ −ξμAa
μ þ Xaεijϵ̄2iϵ1j þ X̄aεijϵ̄

i
2ϵ

j
1: ð5:30Þ

We can now evaluate the symmetry transformations (5.25) and (5.27) of the 5D Chern-Simons Lagrangian in terms of the
4D N ¼ 2 vector multiplet components in order to obtain the N ¼ 2 supersymmetric gauge/flavor anomaly in four
dimensions,

δGðϑÞW ¼ k
48π2

Z
d4xdabcϑaεμνρσ∂μ

�
Ab
ν∂ρAc

σ þ
1

4
fdecAb

νAd
ρAe

σ

�
;

δQðϵÞW ¼ k
16π2

Z
d4xdabc

�
iðXc − X̄cÞ

�
εijðϵ̄iγνλjaÞDνXb þ εijðϵ̄iγνλaj ÞDνX̄b

− ðϵ̄iλai − ϵ̄iλ
iaÞfdebXdX̄e þ ðϵ̄jλai þ ϵ̄iλ

jaÞYib
j −

1

4
ðϵ̄iγρσλai þ ϵ̄iγ

ρσλiaÞFb
ρσ

�

þ 1

3
ενρστ

�
δQðϵÞAa

ν

�
2Ab

ρ∂σAc
τ þ

3

4
fdebAc

ρAd
σAe

τ þ
1

8
λ̄ibγρστλ

c
i þ

1

8
λ̄bi γρστλ

ic

�

þ 1

32
ðϵ̄iγνρλai − ϵ̄iγνρλ

iaÞðεklλ̄kbγστλlc þ εklλ̄bkγστλ
c
l Þ
��

: ð5:31Þ

This generalizes well-known results for theN ¼ 1 gauge/flavor anomaly, which we can easily recover from (5.31) through
a truncation of the N ¼ 2 multiplet.
The 4D N ¼ 1 vector multiplet with a Majorana gaugino and the corresponding supersymmetry transformations can be

obtained from the N ¼ 2 multiplet by setting

ϵ1 ¼ ϵ1 ¼ 0; λa2 ¼ λ2a ¼ 0; Xa ¼ 0; Y11a ¼ Y22a ¼ 0;

ϵ≡ ϵ2 þ ϵ2; λa ≡ λa1 þ λ1a; Da ≡ −2iκY12a: ð5:32Þ

Inserting these in (5.29) results in the N ¼ 1 supersymmetry transformations

δQðϵÞAa
μ ¼ −

1

2
ϵ̄γμλ

a; δQðϵÞλa ¼
�
1

4
γμνFa

μν þ
i
2
γ�Da

�
ϵ; δQðϵÞDa ¼ i

2
ϵ̄γ�γμDμλ

a; ð5:33Þ

which satisfy the algebra (the subscripts 1 and 2 here should not to be confused with the SUð2Þ indices of the N ¼ 2
multiplet)

½δQðϵ1Þ; δQðϵ2Þ� ¼ δD

�
1

2
ϵ̄2γ

μϵ1

�
þ δG

�
−
1

2
ϵ̄2γ

μϵ1Aμ

�
: ð5:34Þ

Evaluating the transformations (5.31) on the truncated multiplet (5.32) results in theN ¼ 1 supersymmetric gauge/flavor
anomaly in four dimensions [8–10]

δGðϑÞW ¼ k
48π2

Z
d4xdabcϑaεμνρσ∂μ

�
Ab
ν∂ρAc

σ þ
1

4
fdecAb

νAd
ρAe

σ

�
;

δQðϵÞW ¼ k
48π2

Z
d4xdabcεμνρσδQðϵÞAa

μ

�
2Ab

ν∂ρAc
σ þ

3

4
fdebAc

νAd
ρAe

σ þ
1

8
λ̄bγνρσλ

c

�
: ð5:35Þ

B. Current multiplet anomaly inflow

We now turn to anomaly inflow for local supersymmetry, which forms an algebra with diffeomorphisms, local Lorentz
transformations, and R symmetry. The gauge fields corresponding to these local symmetries comprise an off-shell
supergravity multiplet, which couples minimally to the current multiplet containing the stress tensor, supercurrent, and R
current.
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For a fixed amount of supersymmetry in a given space-
time dimension there exist different off-shell supergravity
multiplets that differ in auxiliary field content and the
symmetries they gauge. The gravity multiplet with the
minimal auxiliary field content is off-shell conformal super-
gravity that gauges the entire superconformal group and
includes Weyl and S-supersymmetry transformations. Any
other off-shell supergravity multiplet with the same amount
of supersymmetry can be obtained by coupling specific
matter multiplets to conformal supergravity and imposing
suitable gauge-fixing conditions. This results in a larger field
content relative to conformal supergravity, but less sym-
metries due to the partial gauge-fixing conditions. For
example, old minimal [60–62], new minimal [63–66], and
16þ 16 [67–69] supergravities in four dimensions can all be
obtained in this way from N ¼ 1 conformal supergravity
[70–73]. These couple respectively to the Ferrara-Zumino,
R-, and S-current multiplets [74], while conformal super-
gravity couples to the conformal current multiplet.
Gravitational and Lorentz anomalies exist in d ¼ 4kþ 2

dimensions and can be obtained from a Chern-Simons action
in d ¼ 4kþ 3 dimensions [5,6]. Like flavor anomalies,
gravitational and Lorentz anomalies result in an associated
Q-supersymmetrized anomaly, which contributes a local
term to the divergence of the supercurrent [10,20,21]. For
the minimalN ¼ ð1; 0Þ supergravity in two dimensions, the
supersymmetric completion of the gravitational anomaly has
also been shown to follow from a supersymmetric gravita-
tional Chern-Simons action in three dimensions [20].
Another local contribution to the divergence of the super-
current arises in all even dimensions in the presence of an
R-symmetry anomaly [24,26–28,30,31]. The R-symmetry
anomaly can be obtained from a Chern-Simons action in
dþ 1 dimensions too, and one expects that its supersym-
metric completion should follow similarly from a super-
symmetric Chern-Simons action.
In this subsection we discuss the gravitational/Lorentz

anomaly of the ðp; qÞ conformal current multiplet in two
dimensions and, in particular, all mixed anomalies it gen-
erates. As we will see, there are two effects that control the
structure of these anomalies. First, local supersymmetry
requires that the gravitational/Lorentz and R-symmetry
anomalies be considered in tandem, since the underlying
algebra mixes the corresponding symmetries. Second, both

the gravitational/Lorentz and R-symmetry anomalies pro-
duce mixed anomalies for all other symmetries of the
multiplet. Our goal here is to obtain all these anomalies
through an inflow mechanism from an off-shell supergravity
Chern-Simons action in three dimensions [75–83].
As a side comment, we note that all anomalies of the

ðp; qÞ conformal current multiplet in two dimensions may
alternatively be obtained holographically from the Chern-
Simons action of the (on-shell) ðp; qÞ AdS3 supergravity of
Achucarro and Townsend [84,85], which gauges the super-
group OSpðpj2;RÞ ×OSpðqj2;RÞ.8 Such a holographic
calculation would reproduce not only the gravitational/
Lorentz anomaly and the resulting mixed anomalies
[87,88], but also the Weyl anomaly [89] and its super-
symmetric completion [24,25]. However, here we are
interested specifically in obtaining the current multiplet
anomalies through anomaly inflow, and so we focus on the
gravitational/Lorentz anomaly.

1. 3D to 2D anomaly inflow

The maximal off-shell conformal supergravity (Weyl)
multiplet is the N ¼ 8 multiplet [77,78], but a Chern-
Simons action is known only for up toN ¼ 6 [82,83]. The
R-symmetry group of these multiplets is SOðN Þ with the
exception of the N ¼ 6 multiplet, in which case it is
enhanced to SOð6Þ ×Uð1Þ ≅ Uð4Þ. Upon dimensional
reduction to two dimensions, the 3D gravity multiplets
reduce to ðN ;N Þ off-shell conformal supergravity in
two dimensions, which gauges the OSpðN j2;RÞ ×
OSpðN j2;RÞ conformal group. A peculiarity of 2D
supergravity is that a single SOðN Þ gauge field gauges
both left and right copies of the SOðN ÞL × SOðN ÞR R
symmetry [90].
We follow the component formulation of [82] and focus on

the N ¼ 6 Weyl multiplet since it is the maximal one for
which a Chern-Simons action is known. All multiplets with
less supersymmetry can be obtained by suitable truncations,
as shown in Table II. The field content of the off-shellN ¼ 6
Weyl multiplet consists of the dreibein eμa, six Majorana
gravitinos ψ I

μ, I ¼ 1;…; 6, and the SOð6Þ ×Uð1Þ
gauge fields, respectively BIJ

μ and Bμ, as well as two sets
of auxiliary Majorana spinors λIJK and λI , and two sets
of auxiliary scalars EIJ and DIJ. The SOð6Þ indices

TABLE I. The field content of the off-shell N ¼ 6 conformal
supergravity field content. All SOð6Þ indices I; J; K ¼ 1;…; 6
are totally antisymmetrized. Notice that all components are
neutral under the Uð1Þ factor of the R-symmetry group.

Field eμa ψ I
μ BIJ

μ Bμ λIJK λI EIJ DIJ

Weyl weight 1 1
2

0 0 − 3
2

− 3
2

−1 −2
SUð4Þ representation 1 6 15 1 20 6 15 15
Uð1Þ charge 0 0 0 0 0 0 0 0

TABLE II. Consistent truncations of theN ¼ 6Weyl multiplet.

Nonzero components

N ¼ 5 eμa, ψ I
μ, BIJ

μ , λIJK , λ6, EI6, DI6

N ¼ 4 eμa, ψ I
μ, BIJ

μ , λIJK , E56, D56

N ¼ 3 eμa, ψ I
μ, BIJ

μ , λ123

N ¼ 2 eμa, ψ I
μ, B12

μ

N ¼ 1 eμa, ψ1
μ

8See [86] for an early special case of such a derivation.
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I; J; K ¼ 1;…; 6 in all fields are totally antisymmetrized. The Weyl weight and R-symmetry representation of all components
are given in Table I.
The local symmetries of the N ¼ 6 Weyl multiplet comprise diffeomorphisms, parametrized by the infinitesimal vector

field ξμðxÞ, local Lorentz transformations, λabðxÞ ¼ −λbaðxÞ, Weyl rescalings, σðxÞ, SOð6Þ ×Uð1Þ R-symmetry trans-
formations parametrized by θIJðxÞ ¼ −θJIðxÞ and θðxÞ, as well as Q- and S-supersymmetry transformations, parametrized
respectively by the local Grassmann-valued Majorana parameters ϵIðxÞ and ηIðxÞ. The infinitesimal transformations of all
fields under the bosonic symmetries take the form

δBeμa ¼ ξν∂νeμa þ ∂μξ
νeνa − λabeμb þ σeμa;

δBψ
I
μ ¼ ξν∂νψ

I
μ þ ∂μξ

νψ I
ν −

1

4
λabγ

abψ I
μ þ

1

2
σψ I

μ − θIJψJ
μ;

δBBIJ
μ ¼ ξν∂νBIJ

μ þ ∂μξ
νBIJ

ν þ ∂μθ
IJ þ BIKθKJμ þ BJKθIKμ ;

δBBμ ¼ ξν∂νBμ þ ∂μξ
νBν þ ∂μθ;

δBλ
IJK ¼ ξν∂νλ

IJK −
1

4
λabγ

abλIJK −
3

2
σλIJK − θILλLJK − θJLλILK − θKLλIJL;

δBλ
I ¼ ξν∂νλ

I −
1

4
λabγ

abλI −
3

2
σλI − θILλLJK;

δBEIJ ¼ ξν∂νEIJ − σEIJ − θIKEKJ − θJKEIK;

δBDIJ ¼ ξν∂νDIJ − 2σDIJ − θIKDKJ − θJKDIK; ð5:36Þ

where we have used the shorthand notation δB ≡ δDðξÞ þ δLðλÞ þ δWðσÞ þ δRðθÞ.
Under Q supersymmetry the components of the Weyl multiplet transform as

δQðϵÞeμa ¼
1

4
ϵ̄Iγaψ I

μ; δQðϵÞψ I
μ ¼ Dμϵ

I;

δQðϵÞBIJ
μ ¼ −ϵ̄½IψJ�

μþ þ 1

2
ffiffiffi
2

p ϵ̄Kγμλ
IJK þ 1

4
ffiffiffi
2

p εIJKLMN ϵ̄KψL
μEMN;

δQðϵÞBμ ¼
1

2
ffiffiffi
2

p ϵ̄Iγμλ
I −

1

2
ffiffiffi
2

p ϵ̄IψJ
μEIJ;

δQðϵÞλIJK ¼ −
3

4
ffiffiffi
2

p γμνϵ½IĜJK�
μν þ 1

2
εIJKLMNϵLDMN þ 1

4
εIJKLMNγμϵLD̂μEMN −

3ffiffiffi
2

p ϵLE½IJEKL�;

δQðϵÞλI ¼ −
1

4
ffiffiffi
2

p γμνϵIĜμν þ ϵJDIJ −
1

2
γμϵJD̂μEIJ þ 1

8
ffiffiffi
2

p εIJKLMNϵJEKLEMN;

δQðϵÞEIJ ¼ 1

2
ϵ̄½IλJ� −

1

24
εIJKLMN ϵ̄KλLMN;

δQðϵÞDIJ ¼ 1

2
ϵ̄½IλJ�þ þ 1

24
εIJKLMN ϵ̄KλLMNþ ; ð5:37Þ

while S supersymmetry acts as

δSðηÞeμa ¼ 0; δSðηÞψ I
μ ¼ γμη

I; δSðηÞBIJ
μ ¼ 1

2
η̄½IψJ�

μ ;

δSðηÞBμ ¼ 0; δSðηÞλIJK ¼ −
1

2
εIJKLMNηLEMN; δSðηÞλI ¼ ηJEIJ;

δSðηÞEIJ ¼ 0; δSðηÞDIJ ¼ −
1

4
η̄½IλJ� −

1

48
εIJKLMN η̄KλLMN: ð5:38Þ

Following [82], we have introduced the abbreviations
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ψ I
μþ ¼ 1

4
γρσγμψ

I
ρσ; ψ I

μν ¼ D½μψ I
ν�;

λIJKþ ¼ −
1

2
γμD̂μλ

IJK þ 1

2
εIJKLMNγμψL

μþEMN −
3

4
ffiffiffi
2

p εMNPQ½IJλK�MNEPQ þ 3ffiffiffi
2

p λ½IEJK�;

λIþ ¼ −
1

2
γμD̂μλ

I − γμψJ
μþEIJ þ 1

2
ffiffiffi
2

p λIJKEJK;

ĜIJ
μν ¼ GIJ

μν þ 2ψ̄ ½I
½μψ

J�
ν�þ −

1ffiffiffi
2

p ψ̄K
½μγν�λ

IJK −
1

4
ffiffiffi
2

p εIJKLMNψ̄K
μ ψ

L
νEMN;

Ĝμν ¼ Gμν −
1ffiffiffi
2

p ψ̄ I
½μγν�λ

I þ 1

2
ffiffiffi
2

p ψ̄ I
μψ

J
νEIJ;

D̂μEIJ ¼ DμEIJ −
1

2
ψ̄ ½I
μ λJ� þ 1

24
εIJKLMNψ̄K

μ λ
LMN;

D̂μλ
IJK ¼ Dμλ

IJK þ 3

4
ffiffiffi
2

p γρσψ ½I
μ Ĝ

JK�
ρσ −

1

2
εIJKLMNψL

μDMN −
1

4
εIJKLMNγρψL

μ D̂ρEMN þ 3ffiffiffi
2

p ψL
μE½IJEKL�;

D̂μλ
I ¼ Dμλ

I þ 1

4
ffiffiffi
2

p γρσψ I
μĜρσ − ψJ

μDIJ þ 1

2
γρψJ

μD̂ρEIJ −
1

8
ffiffiffi
2

p εIJKLMNψJ
μEKLEMN; ð5:39Þ

where GIJ
μν and Gμν denote the field strengths of the

R-symmetry gauge fields

GIJ
μν ¼ ∂μBIJ

ν − ∂νBIJ
μ þ BIK

μ BKJ
ν − BIK

ν BKJ
μ ;

Gμν ¼ ∂μBν − ∂νBμ; ð5:40Þ

and the covariant derivative Dμ includes the R-symmetry
transformation of the fields, e.g.,

Dμϵ
I ¼

�
∂μ þ

1

4
ω̂μabγ

ab

�
ϵI þ BIJ

μ ϵ
J: ð5:41Þ

The quantity ω̂μabðe;ψÞ is the torsionful spin connection

ω̂μabðe;ψÞ ¼ ωμabðeÞ þ
1

8
ðψ̄ I

aγμψ
I
b þ ψ̄ I

μγaψ
I
b − ψ̄ I

μγbψ
I
aÞ;

ð5:42Þ

with ωμabðeÞ denoting the torsion-free connection. In
particular,

Dμeνa −Dνeμa ¼
1

4
ψ̄ I
μγ

aψ I
ν: ð5:43Þ

Moreover, the Riemann curvature of ω̂μabðe;ψÞ

R̂μν
a
b ≡ 2ð∂ ½μω̂ν�ab þ ω̂½μacω̂ν�cbÞ ð5:44Þ

satisfies the Bianchi identities

R̂μνρσ þ R̂ρμνσ þ R̂νρμσ ¼
3

2
ðϒμνρσ þϒρμνσ þϒνρμσÞ;

R̂½μν� ¼ −
3

4
ϒρ

ρμν; ð5:45Þ

where

ϒμ
νρσ ≡ ψ̄ I

½νγ
μψ I

ρσ�: ð5:46Þ

The key reason for introducing the torsionful spin con-
nection is that it transforms nicely under both Q and S
supersymmetry, namely

δQðϵÞω̂μab ¼ −
1

4
ϵ̄Iðγμψ I

ab þ γaψ
I
μb − γbψ

I
μaÞ;

δSðηÞω̂μab ¼ −
1

4
η̄Iðγabψ I

μ þ eμaψ I
b − eμbψ I

aÞ: ð5:47Þ

The local transformations of the N ¼ 6 Weyl multiplet
close off shell. In particular, the commutators between the
fermionic transformations satisfy [78]

½δQðϵ1Þ;δQðϵ2Þ� ¼ δDðξÞþδLðλÞþδRðθÞþδQðϵ0ÞþδSðη0Þ;
½δQðϵÞ;δSðηÞ� ¼ δWðσÞþδLðλ0ÞþδRðθ0ÞþδSðη00Þ;

½δSðη1Þ;δSðη2Þ� ¼ 0; ð5:48Þ

where the composite transformation parameters on the
right-hand side are given by
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ξμ ¼ 1

4
ϵ̄I2γ

μϵI1; λab ¼ −ξμω̂μab;

θIJ ¼ −ξμBIJ
μ þ 1

4
ffiffiffi
2

p εIJKLMN ϵ̄K2 ϵ
L
1E

MN;

θ ¼ −ξμBμ −
1

2
ffiffiffi
2

p ϵ̄K2 ϵ
L
1E

KL; ϵ0I ¼ −ξμψ I
μ;

η0I ¼ 1

2
ξμγρσγμψ

I
ρσ −

1

16
ϵ̄½I2 ϵ

J�
1 γ

ρσψJ
ρσ −

1

2
ffiffiffi
2

p ϵ̄K2 ϵ
L
1 λ

IKL −
1

16
ϵ̄ðI2 γ

μϵJÞ1 ð2γρσγμ þ γμγ
ρσÞψρσ;

σ ¼ −
1

4
ϵ̄IηI; λ0ab ¼

1

4
ϵ̄Iγabη

I; θ0IJ ¼ −
1

2
ϵ̄½IηJ�;

θ0 ¼ 0; η00I ¼ 1

8
γμϵIðη̄JψJ

μÞ: ð5:49Þ

A supersymmetric Chern-Simons action for the N ¼ 6 Weyl multiplet was found in [82,83]. In the component
formulation of [82] it takes the form

LCSG ¼ k
4π

�
1

2
εμνρ

�
ω̂μ

a
b∂νω̂ρ

b
a þ

2

3
ω̂μ

a
bω̂ν

b
cω̂ρ

c
a

�
þ 1

4
eψ̄μνγ

ρσγμνψρσ

− εμνρ
�
BIJ
μ ∂νBJI

ρ þ 2

3
BIJ
μ BJK

ν BKI
ρ

�
− 2εμνρBμ∂νBρ

þ 1

3
eλ̄IJKλIJK − 2eλ̄IλI − 8eDIJEIJ þ 1

3
ffiffiffi
2

p eεIJKLMNEIJEKLEMN

þ 1

6
eεIJKLMN λ̄IJKγμψL

μEMN þ 2eλ̄IγμψJ
μEIJ

þ eψ̄ I
μγ

μνψJ
ν

�
EIKEJK −

1

4
δIJEKLEKL

��
; ð5:50Þ

where e≡ detðeμaÞ and we have chosen the convention κ ¼ 1 in (5.13). All off-shell Chern-Simons actions for Weyl
multiplets with less supersymmetry found earlier [75,76,79–81] can be obtained by consistently truncating the N ¼ 6
multiplet as indicated in Table II.
The Chern-Simons Lagrangian (5.50) is invariant under diffeomorphisms tangent to the boundary, but all other

symmetries, namelyWeyl, Lorentz, R symmetry, and Q and S supersymmetry, result in a nonvanishing total derivative term.
In particular, we find

δWðσÞLCSG ¼ k
4π

εμνρ∂μ

�
1

2
δWðσÞω̂ν

a
bω̂ρ

b
a

�
¼ k

4π
εμνρ∂μðω̂νρ

σ∂σσÞ;

δLðλÞLCSG ¼ k
8π

εμνρ∂μðλab∂νω̂ρ
b
aÞ;

δRðθÞLCSG ¼ k
4π

εμνρ∂μðθIJ∂νBIJ
ρ − 2θ∂νBρÞ;

δQðϵÞLCSG ¼ k
4π

εμνρ∂μ

�
1

2
δQðϵÞω̂ν

a
bω̂ρ

b
a þ δQðϵÞBIJ

ν BIJ
ρ − 2δQðϵÞBνBρ

�

þ k
4π

∂μ

�
−
1

6
eεIJKLMN ϵ̄NγμλKLMEIJ þ 2eϵ̄IγμλJEIJ

þ 2eϵ̄IγμνψJ
ν

�
EIKEJK −

1

4
δIJEKLEKL

��
;

δSðηÞLCSG ¼ k
4π

εμνρ∂μ

�
1

2
δSðηÞω̂ν

a
bω̂ρ

b
a þ δSðηÞBIJ

ν BIJ
ρ þ η̄Iψ I

νρ

�
: ð5:51Þ
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Upon dimensional reduction to two dimensions these
boundary terms produce the Lorentz anomaly of the 2D
N ¼ ð6; 6Þ multiplet and all associated mixed anomalies,
demonstrating that they are obtainable through an inflow
mechanism. The corresponding anomalies for any
N ¼ ðp; pÞ multiplet with p ≤ 6 can be obtained by a
suitable truncation of the 3D N ¼ 6 multiplet as indicated
in Table II. For chiral multiplets with N ¼ ðp; qÞ, q < p,
one must first dimensionally reduce the boundary terms
obtained from the N ¼ p Chern-Simons action to two
dimensions to obtain the anomalies for the N ¼ ðp; pÞ
multiplet, and then further truncate the 2D multiplet
to N ¼ ðp; qÞ.
We should stress that theWeyl anomaly in (5.51) is not the

usual 2DWeyl anomaly, but rather a supersymmetric version
of the mixed Lorentz-Weyl anomaly [91]. Moreover, once
truncated to N ¼ 1 supersymmetry, (5.51) reproduces the
result of [20] for minimal Poincaré supergravity. To see this,
one must first truncate the N ¼ 6 conformal supergravity
multiplet to theN ¼ 1 one as indicated in Table II, and then
construct the corresponding N ¼ 1 Poincaré supergravity
by coupling a compensating chiral multiplet. This is
directly analogous to the construction of old minimal
supergravity in four dimensions from N ¼ 1 conformal
supergravity (see [31] for a recent review of this construc-
tion). The supersymmetry transformation of the Poincaré
multiplet is a field-dependent linear combination of the Q-
and S-supersymmetry transformations of conformal super-

gravity, namely δ
PoincaréðϵÞ¼δQðϵÞþδSðη¼SϵÞ
Q , where S is an

auxiliary real scalar field, a component of the compensating
chiral multiplet. As a result, the supersymmetric completion
of the Lorentz anomaly for minimal Poincaré supergravity is
the sum of the Q and S anomalies in (5.51), with all
R-symmetry gauge fields and (conformal supergravity)
auxiliary fields set to zero.

VI. ANOMALY DESCENT WITH
MISMATCHING GHOST

We have seen earlier that, for diffeomorphisms, the
standard anomaly descent mechanism does not quite reflect
the relevant WZ consistency condition: the latter should
hold for full diffeomorphisms, while the usual descent
procedure relies only on the GLðdÞ rotational part of
diffeomorphisms. Even though the resulting GLðdÞ
anomaly descent yields the correct diffeomorphism
anomaly [6], it is not entirely transparent how this can
be packaged into the BRST algebra. For the case of the
supersymmetry Ward identity and anomalous terms
thereof, we find another deviation from the standard
anomaly descent, simply because there seems to be no
place for the supersymmetry parameters in the usual BRST
algebra for anomaly descent.
The two share a common need for generalizing the

anomaly descent procedure. We should comment here that

such a generalization of the BRST algebra and the descent
procedure thereof has been studied in the context of
supersymmetrized anomaly in the past. The most notable
work is Refs. [14,15] which inspired the bulk of what we do
here. Another such attempt was given later in Refs. [17,18],
although their choice of the BRSToperator and of the ghost
differ from ours. We should clarify that we focus on rigid
supersymmetry and gauge/flavor anomalies here. See
Refs. [92,93], e.g., for recent related discussions in the
supergravity context.
Recall that the usual anomaly descent arises from a

BRST algebra where we replace

d → dþ s; A → Â≡Aþ v; ð6:1Þ

with s2 ¼ 0 ¼ ðdþ sÞ2, so that

F ¼ F̂ ≡ ðdþ sÞÂþ Â2: ð6:2Þ

Together they lead to

Pdþ2ðF Þ ¼ Pdþ2ðF̂ Þ ¼ ðdþ sÞwdþ1ðÂ; F̂ Þ
¼ ðdþ sÞwdþ1ðÂ;F Þ ð6:3Þ

for any given anomaly polynomial Pdþ2. As discussed in
Sec. II, the rightmost expression is now expanded in the
ghost number and equated to the leftmost expression with
no ghost dependence, resulting in the standard descent
formulas.
The generalized descent structure we are interested in

arises when, in addition to s, there exists an additional
BRST odd operator c such that

ðdþ sþ cÞ2 ¼ 0; ð6:4Þ

as well. Of course, s was meant to represent multiple types
of gauge transformation so the point of this additional
operator c is that the action of c on the connections and the
ghosts is not standard, i.e., as in sv ¼ −v2. In our actual
examples below, c corresponds either to diffeomorphisms
or to rigid supersymmetry. Note that we do not necessarily
demand that c2 ¼ 0 or ðsþ cÞ2 ¼ 0 holds either, although
they do hold when c represents diffeomorphisms.
In order to generalize the BRST algebra in the presence

of c, we also add a new ghost u and extend the BRST gauge
field further to Âþ u. However, the relation between the u
ghost and the operator c would be rather different from that
between v and s. We need an additional ghost to define c
but these do not necessarily appear as u. In fact, for our two
classes of examples in this section, we will take u ¼ 0,
while c and the ghost parameters thereof remain nontrivial.
Defining the BRST field strength

Ĝ≡ ðdþ sþ cÞðÂþ uÞ þ ðÂþ uÞ2; ð6:5Þ

MINASIAN, PAPADIMITRIOU, and YI PHYS. REV. D 105, 065005 (2022)

065005-22



where Â ¼ Aþ v as before, this field strength satisfies the
generalized Bianchi identity

ðdþ sþ cÞĜþ ðÂþ uÞĜ − ĜðÂþ uÞ ¼ 0; ð6:6Þ

by virtue of the nilpotency of dþ sþ c. We must empha-
size that we no longer have Ĝ equal toF , in view of how the
u ghost, or the absence thereof in examples below,
mismatches the BRST operator dþ sþ c.
It follows that

ðdþ sþ cÞPdþ2ðĜÞ ¼ 0; ð6:7Þ

and hence, locally

Pdþ2ðĜÞ ¼ ðdþ sþ cÞwdþ1ðÂþ u; ĜÞ: ð6:8Þ

Subtracting either of the two relations in (6.3) leads to the
identity

ðdþ sþ cÞwdþ1ðÂþ u; ĜÞ − dwdþ1ðA;F Þ
¼ Pdþ2ðĜÞ − Pdþ2ðF Þ: ð6:9Þ

The right-hand side does not vanish, since Ĝ ≠ F in
general. Instead, we find that

Ĝ¼ ðdþ sþ cÞðÂþ uÞþ ðÂþ uÞ2
¼ F̂ þ duþðsþ cÞðÂþ uÞþ Âuþ uÂþ u2

¼F þ cAþ suþfv;ugþ cvþ cuþ dÂuþ u2: ð6:10Þ

The difference Ĝ − F depends on the operator c and the
choice of u. Conversely, u may be fixed by requiring the
difference Ĝ − F to be of a specific form.9

Given that Ĝ − F is nonzero in general, we proceed by
defining

Pdþ2ðĜÞ − Pdþ2ðF Þ≡X
k≥1

XðkÞ
dþ2−k; ð6:11Þ

where the integer k again indicates the (generalized) ghost
number. The nonzero X’s can be viewed as obstructions to
the standard anomaly descent procedure.
As we shall see, in relevant examples, these X’s can be

themselves reconstructed by the action of ðsþ cÞ and d on
more elemental quantities, to be denoted as Y’s and Z’s
respectively, provided that we remember that we want a
local functional on d-dimensional spacetime. This way, we
once again obtain a generalized anomaly annihilated by

ðsþ cÞ. The resulting anomaly would receive contributions
from both the left- and right-hand sides of (6.9).
A simplest example of this, it turns out, is the familiar

diffeomorphism anomaly. Although we are accustomed to
computing the diffeomorphism anomaly via GLðdÞ
descent, we have reviewed in Sec. III how the result
actually obeys the consistency condition of full diffeo-
morphisms. Next, we will illustrate the above generalized
anomaly descent for this example and move on to
supersymmetry later. In fact, our generalized descent
procedure is inspired by an early attempt of constructing
a supersymmetric descent procedure [14–16].

A. Diffeomorphism anomaly revisited

Let us start by considering how the diffeomorphism WZ
consistency condition can be elevated to a BRST form. For
this we elevate Lξ to an operator c, with the unit ghost
number, such that

0 ¼ d2 ¼ ðdþ sgÞ2 ¼ ðdþ sg þ cÞ2; ð6:12Þ

with sg, for now, restricted to the internal gauge trans-
formation. The entire diffeomorphisms are carried by c.
Given how Lξ ¼ L0

ξ þ δGLðdÞ−∂ξ in general, more care is
needed to define the action of c on the Christoffel
connections and the accompanying ghost. On the connec-
tions

cA ¼ LxA ¼ L0
xA; cΓ ¼ L0

xΓþ dΓð−∂xÞ ð6:13Þ

while the action of c on the ghosts is

cvg ¼ Lxvg; cxμ ¼ xα∂αxμ; sgx ¼ 0 ð6:14Þ

where vg is the gauge part of the ghost. It follows that

cð−∂xÞ ¼ −ð−∂xÞ2 þ L0
xð−∂xÞ ð6:15Þ

where again L0 treats ð−∂xÞ as if the latter is a matrix-
valued function. One can see that c in part plays the role of
s on the diffeomorphism sector but incorporates a full
diffeomorphism rather than GLðdÞ only.
With this, c2 ¼ 0 by itself. For instance,

c2v ¼ cðxα∂αvÞ ¼ ðxα∂αxμÞ∂μv − ðxα∂αðxμ∂μvÞÞ
¼ −xαxμ∂α∂μv ¼ 0 ð6:16Þ

due to the Grassmannian properties of xμ. On tensors (as
well as on the Christoffel connection), it suffices to
consider x ¼ χζ þ χ0ξ with a pair of Grassmannian coef-
ficients χ and χ0, and a pair of arbitrary vectors ζ and ξ,
whereby cðxμÞ ¼ χχ0½ζ; ξ�μ holds so that

9As mentioned earlier, we shall take u ¼ 0 below, as it allows a
single modification of the descent procedure to cover both
diffeomorphisms and supersymmetry. Another natural choice
for u is discussed in the Appendix.
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ccV ¼ LcðxÞV − Lχζþχ0ξðLχζþχ0ξVÞ
¼ χχ0ðL½ζ;ξ�V − ½Lζ;Lξ�VÞ ¼ 0: ð6:17Þ

With sg being restricted solely to gauge transformations and
c representing diffeomorphisms, sg and c anticommute.
Together with c2 ¼ 0, this suffices to verify the nilpotency
of the BRST operator (6.12) dþ sg þ c.
On the other hand, different from vg, the x ghost

cannot be naturally added to A, since it is really a vector,
hence a directional derivative. Instead we can define
v ¼ vg þ ð−∂xÞ which includes all gauge rotations plus
the GLðdÞ rotation generated by diffeomorphisms.
Concurrently it is natural to split

c ¼ sGLðdÞ þ c0 ð6:18Þ
so that c0 retains the purely translational part, L0

x. Its
rotational part can be treated on an equal footing with sg
leading to the redefinition of the BRST operator

dþ sg þ c ¼ dþ sþ c0 ð6:19Þ

with s ¼ sg þ sGLðdÞ. One may now take v ¼ vg þ ð−∂xÞ
and since there is no other ghost that can be added
naturally, u ¼ 0. With such a mismatching ghost, we
construct the BRST field strength

Ĝ≡ ðdþ sþ c0ÞÂþ Â2 ¼ F̂ þ c0Â ¼ F þ c0ðAþ vÞ
ð6:20Þ

which nevertheless obeys the same Bianchi identity as
above

ðdþ sþ c0ÞĜþ Â Ĝ−Ĝ Â ¼ c0½F �
−c0½ðdþ sÞðÂÞ þ ðÂÞ2� ¼ 0: ð6:21Þ

We have invoked here ðc0Þ2 þ fdþ s; c0g ¼ 0 that follows
from (6.12).
An immediate consequence of the Bianchi identity is that

an invariant polynomial Pdþ2ðĜÞ satisfies

ðdþ sþ c0ÞPdþ2ðĜÞ ¼ 0;

Pdþ2ðĜÞ ¼ ðdþ sþ c0Þwdþ1ðÂ; ĜÞ: ð6:22Þ

The two sides of the second equation can be expanded
respectively as

Pdþ2ðĜÞ¼Pdþ2ðF Þþ
X
k≥1

XðkÞ
dþ2−kðx;v;A;F Þ;

wdþ1ðÂ;ĜÞ¼wdþ1ðA;F Þþ
X
k≥1

WðkÞ
dþ1−kðx;v;A;F Þ ð6:23Þ

where k keeps track of the net number of ghosts. A pair of
descent towers now follows:

ðsþ c0ÞXðkÞ
dþ2−k þ dXðkþ1Þ

dþ1−k ¼ 0;

Xðkþ1Þ
dþ1−k ¼ ðsþ c0ÞWðkÞ

dþ1−k þ dWðkþ1Þ
d−k ð6:24Þ

with Xð0Þ
dþ2 ≡ Pdþ2ðF Þ and Wð0Þ

dþ1 ≡ wdþ1ðA;F Þ.
Given ðsg þ cÞ2 ¼ 0, the first equation in (6.24) implies

that

ðsþ c0Þ
Z

XðkÞ
dþ2−k ¼ 0 →

Z
XðkÞ
dþ2−k ¼ ðsþ c0Þ

Z
Yðk−1Þ
dþ2−k

ð6:25Þ

for some Y’s that are not d exact. Taking k ¼ 1 in (6.24) we
obtain

0 ¼ ðsþ c0Þ
Z
Md

ðWð1Þ
d − Yð1Þ

d Þ; ð6:26Þ

a solution to the WZ consistency conditions, which now
due to sþ c0 ¼ sg þ c are extended to include general
diffeomorphisms δξ.
This may appear to be a tautology, since Yð1Þ ¼ Wð1Þ is

seemingly also acceptable, leading to a trivial solution
to the BRST version of the WZ consistency conditions.
However, the point is that a different nontrivial solution for
Yð1Þ can be found from

X
k≥0

Xðkþ1Þ
dþ1−k ¼ Pdþ2ðĜÞ − Pdþ2ðF Þ

¼ ðdþ sþ c0Þ
X
l≥0

ðWðlÞ
dþ1−l − wðlÞ

dþ1−lÞ

þ c0
X
l≥0

wðlÞ
dþ1−l: ð6:27Þ

In particular, the action of c0 on the d-form wð1Þ
d is nothing

but L0
x, given that all GLðdÞ indices are summed over.

Using the identity L0
xð� � �Þ ¼ x⌟dð� � �Þ − dðx⌟ � � �Þ we find

Xð2Þ
d ¼ ðsþ c0ÞðWð1Þ

d − wð1Þ
d Þ þ dðWð2Þ

d−1 − wð2Þ
d−1 − x⌟wð1Þ

d Þ
þ x⌟dwð1Þ

d ð6:28Þ

which gives a different, nontrivial solution for Yð1Þ
d .

We may recall once again that dwð1Þ
d actually vanishes

identically once we restrict to the physical d dimension and
coordinates thereof, and the equation (6.28) yields

0¼ ðsþ c0Þ
Z
Md

ðWð1Þ
d − Yð1Þ

d Þ ¼ ðsþ c0Þ
Z
Md

wð1Þ
d ðv;A;F Þ

ð6:29Þ

or more concretely
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0¼ðsgþcÞ
�Z

wð1Þ
d ð−∂x;Γ;R;FÞþ

Z
wð1Þ

d ðvg;A;F;RÞ
�
;

ð6:30Þ
bringing us to the known solution, but via a simpler BRST
route with diffeomorphisms now honestly incorporated.

B. Anomaly descent with supersymmetry

Now we can apply the same procedure to include
supersymmetry in the presence of gauge/flavor anomalies.
For this, we use the same s ¼ sg, v ¼ vg and add

c ¼ qþ a ð6:31Þ

where a acts universally as a translation by a constant
vector-valued ghost aμ,

að� � �Þ ¼ aμ∂μð� � �Þ ¼ Lað� � �Þ ð6:32Þ

while q is the BRST version of the rigid supersymmetry.
Let us now use these in the generalized anomaly descent.
Unlike with the diffeomorphism case above, however,

the descent process remains universal only down to the first
term in the supersymmetry completion of the anomaly,
which as we have seen earlier can be expressed in terms of
the BZ current. The rest, which is manifestly gauge
invariant, depends very much on the spacetime dimension
and amount of supersymmetry. We will therefore concen-
trate on outlining the general procedure only up to this
universal supersymmetry completion. This way we can
distill the previous attempts of constructing a supersym-
metric descent formalism. The full form of the supersym-
metry completion of the gauge/flavor anomaly in different
cases can be found in Sec. V or in the literature. See, for
example, Refs. [8–10,14–16].
Let us consider an arbitrary even dimension d and the

minimal supersymmetry thereof. For off-shell multiplets, the
smallest possible field content arises for d ¼ 6 N ¼ ð1; 0Þ,
while for one-shell multiplets, one can go up to d ¼ 10,
N ¼ 1. As such the fermions would obey a Majorana
condition of some kind. The action of q involves the c-
number-valued Majorana spinor ghost α and takes the form

qAμ ¼ −
1

2
ᾱγμλ;

qλ ¼ 1

4
γμνFa

μν þ � � �

qv ¼ 1

4
ᾱγμαAμ;

qα ¼ 0;

� � �

qaμ ¼ −
1

4
ᾱγμα ð6:33Þ

where the ellipsis denotes transformations involving aux-
iliary fields for off-shell transformations, e.g., as in (5.29).
Let us also note that the translation operator a acting on a
and on α vanishes as these ghosts are taken to be constant.10

Choosing u ¼ 0, the generalized descent for c works
precisely the same way as already outlined. In particular,
for rigid supersymmetry

Xð2Þ
d ¼ ðsþ cÞðWð1Þ

d − wð1Þ
d Þ þ dðWð2Þ

d−1 − wð2Þ
d−1Þ þ cwð1Þ

d

ð6:34Þ

where in the last term wð1Þ
d depends neither on c ghost nor

on the superpartner. The c operation on it can be decom-
posed into three parts: one is the SUSY transformation q
acting on A and F, the other is also q acting on v, and
finally the action of a as a gradient on v, A, and F. In
particular the last a acting on the differential d-form
produces total derivative terms, which will eventually
vanish upon Md integration.
The first part can be written, using the same antider-

ivative l, as

δqA ¼ −dlqA þ lqAd: ð6:35Þ

The sign flip [cf. Eq. (2.28)] is due to the fact that lqA not
only carries a single ghost number but also reduces the rank
of the differential form and hence is BRST even. Modulo
terms that drop out upon Md integration,

cwð1Þ
d ¼−lqAððswð0Þ

dþ1ðA;FÞÞþwð1Þ
d ðqv;A;FÞþ � � �

¼ ðsþ cÞð−lqAwð0Þ
dþ1ðA;FÞÞ

þ cðlqAwð0Þ
dþ1ðA;FÞÞþwð1Þ

d ðqv;A;FÞþ � � � ð6:36Þ

since wð1Þ
d is linear in v. Thus, we arrive at

Xð2Þ
d ¼ ðsþ cÞðWð1Þ

d −wð1Þ
d − lqAw

ð0Þ
dþ1Þ

þqðlqAwð0Þ
dþ1ðA;FÞÞþwð1Þ

d ðqv;A;FÞþ � � � ð6:37Þ

where we again used the fact that a produces a total
derivative term at most. Note that the last term in the first
line is

Z
lqAw

ð0Þ
dþ1 ¼ qA · XðA;FÞ ð6:38Þ

10Elevating these to position-dependent quantities must entail
couplings to external supergravity and is needed if we wish to
extend this to the cases with a diffeomorphism anomaly. We
believe that the same supersymmetric descent mechanism can be
extended to that case as well.
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where X is the BZ current. This is exactly the λ-linear term
that we would have found by imposing the mixed SUSY-
gauge WZ consistency condition as in Refs. [8–10].
The question is then, does the second line produce a term

which has the form ðsþ cÞ acting on something else? A
useful middle step is to separate out those terms with no
gaugino attached by rewriting

ðqAÞ · qXðA; FÞ þ ððqqAÞ · XðA; FÞ þ wð1Þ
d ðqv;A; FÞÞ:

ð6:39Þ

Now, we know from the above that

qv ¼ ξ⌟A; ξμ ≡ 1

4
ᾱγμα ð6:40Þ

while

qqAρ ¼ q

�
−
1

2
ᾱγρλ

�
¼ 1

16
ᾱ½γρ; γμν�αFμν ¼ −ðξ⌟FÞρ

ð6:41Þ

where we use ᾱγρμνα ¼ 0 for c-valued Majorana α.11

Combining the two, we find

ððqqAÞ · XðA;FÞ þ wð1Þ
d ðqv;A;FÞÞ

¼ −ðξ⌟FÞ · X − ðξ⌟AÞ · h∇ · Ji ¼ 0 ð6:42Þ

for exactly the same reason how the covariant gauge
current, rather than the consistent current, had to enter in
the diffeomorphism Ward identity as in Sec. II.
As such, we are left with a single term that can further

contribute to Yð1Þ. Its form from Sec. III suggests that the

answer must be gauge invariant so we hope to find ΔYð1Þ
inv

such that

ðqAÞ · qXðA; FÞ ¼
Z

ðsþ cÞΔYð1Þ
inv ¼

Z
qΔYð1Þ

inv ð6:43Þ

where again, a acting on ΔYð1Þ
inv turns into a total derivative.

This, together with (6.42), would precisely elevate the
solutions of [8–10] to the SUSY-SUSY WZ consistency
condition to the BRST level in our generalized descent
context.
For this to work, one necessary condition is that the left-

hand side is itself invariant under gauge transformations. In
fact, we claim that this pattern of qA · qX being gauge
invariant is universal, even though the BZ current X is not
gauge covariant. One can see this formally via the very
definition of the BZ current,

X ¼ Jcov − J ¼ Jcov −
δW
δA

ð6:44Þ

whereby

qA · qX ¼ qA · qJcov − ðqAÞðqAÞ · δ
2W

δAδA
: ð6:45Þ

The first piece is manifestly invariant with qA being
covariant, while the second, potentially noninvariant piece
vanishes since, componentwise, qAμ is BRST odd while,
Aμ is BRST even.
Given the anomaly polynomial Pdþ2ðFÞ, a sum of

products of symmetrized traces of its d=2þ 1 arguments
as usual, what would be the explicit expression for
qA · qX? We start from the usual transgression formula

for wð0Þ
dþ1 and arrive at

qA · X ¼ ðd=2Þðd=2þ 1Þ
Z

1

0

dt
Z
Md

Pdþ2ðA; tqA;Ft; Ft;…; FtÞ ð6:46Þ

with At ≡ tA and Ft ≡ dAt þ A2
t ¼ tF þ ðt2 − tÞA2. The integrand of qA · qX becomes

Pdþ2ðqA; tqA;Ft;…; FtÞ þ ðd=2 − 1ÞPdþ2ðA; tqA; dtAðtqAÞ; Ft;…; FtÞ

¼ 1

2
∂tPdþ2ðtqA; tqA;Ft; Ft;…; FtÞ þ � � � ð6:47Þ

11The transformation of λ into the auxiliary field can potentially spoil this; however, one can see that the Majorana nature of α is such
that this piece vanishes identically, for the same reason that ᾱγρμνα ¼ 0.
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which gives, dropping the d-exact term in the ellipsis,

qA · qX ¼ ðd=2Þðd=2þ 1Þ
2

Z
Md

Pdþ2ðqA;qA; F; F;…; FÞ

ð6:48Þ

with d=2 − 1 F’s inside.
In short, we have shown that the supersymmetry com-

pletion of the anomaly has the universal decomposition

Z
ðwð1Þ

d þ lqAw
ð0Þ
dþ1 − ΔYð1Þ

invÞ ð6:49Þ

that is, the standard anomaly, the BZ current contracted
against qA, and the last, invariant part of the supersym-
metry completion that solves

q
Z

ΔYð1Þ
inv ¼

ðd=2Þðd=2þ 1Þ
2

Z
Md

Pdþ2ðqA;qA;F;F;…;FÞ

ð6:50Þ

where Pdþ2 is the anomaly polynomial responsible for
wðkÞ

dþ1−k’s via the standard anomaly descent.
As we warned earlier, the precise solution for ΔYð1Þ

inv
strongly depends on spacetime dimensions, number of
supersymmetries, and on shell vs off shell. For d ≤ 4, we
have already given several answers via Chern-Simons
anomaly inflow. For examples in higher dimensions, such
as d ¼ 10 and N ¼ 1 or d ¼ 6 and N ¼ ð1; 0Þ, we refer
the readers to Refs. [14–16], which in fact inspired the
general descent procedure we gave in the section.
Even though we started with minimal supersymmetry in

even d, the actual spacetime dimension is flexible. In other
words, the same descent mechanism works as long as the
theory comes from dimensional reduction and truncation of
some higher d0 > d theory with minimal supersymmetry;
we only need to make sure that the γ matrices above are
those of the original d0-dimensional Majorana spinor. For
example, one can make use of the d ¼ 6 N ¼ ð1; 0Þ
example for d ¼ 4 N ¼ 2, although in this latter case,
the chirality is lost and gauge/flavor anomaly would be
absent. A more interesting example would come about by a
further truncation of supersymmetry as we reduce d0 → d.
In fact the same sort of idea was employed in the previous
section where, for example, we start with anomaly inflow
from a single d ¼ 3 N ¼ 3 Chern-Simons to generate the
anomaly of d ¼ 2 N ¼ ðp; qÞ for various p, q ≤ 3.
Finally, we should mention again that the supersym-

metry completion of anomalies has been the subject of past
studies, and much of what we outlined in this section has
already appeared in bits and pieces. For instance, an
equivalent form of (6.48) has appeared as early as in
Refs. [8,10], albeit as an on-shell statement and without a
BRST formulation. The present discussion combines and

organizes these earlier works in a single coherent frame-
work, where the central role is played by the Bianchi
identity (6.6) and the generalized Russian formula (6.10).

C. Supersymmetric anomaly inflow
from anomaly descent

A direct connection between the supersymmetric
anomaly inflow mechanism discussed in Sec. V and the
generalized anomaly descent exists if and only if Xð1Þ

dþ1

satisfies the normality condition (A8), i.e.,

Xð1Þ
dþ1 ¼ ðsþ cÞYð0Þ

dþ1 þ dZð1Þ
d ; ð6:51Þ

for some nontrivial Yð0Þ
dþ1 ≠ Wð0Þ

dþ1. If X
ð1Þ
dþ1 can be expressed

in this form, then the second descent equation in (A1)
determines that

ðsþ cÞðWð0Þ
dþ1 − Yð0Þ

dþ1Þ ¼ dðZð1Þ
d −Wð1Þ

d Þ; ð6:52Þ

which allows us to identify Wð0Þ
dþ1 − Yð0Þ

dþ1 with a super-

symmetric Chern-Simons form and Zð1Þ
d −Wð1Þ

d with the
nontrivial solution of the WZ consistency conditions.
In order to verify that Zð1Þ

d −Wð1Þ
d coincides [up to

ðsþ cÞ-exact terms, i.e., local counterterms] with the
solution of the WZ conditions obtained earlier in this
section, we observe that the first descent equation in (A1)
implies that

dððsþ cÞZð1Þ
d − Xð2Þ

d Þ ¼ 0; ð6:53Þ
and hence,

Xð2Þ
d ¼ ðsþ cÞZð1Þ

d þ dZð2Þ
d−1: ð6:54Þ

We recognize this as the normality condition on Xð2Þ
d we

saw above. In particular, we identify

Zð1Þ
d ¼ Yð1Þ

d ; ð6:55Þ

up to ðsþ cÞ-exact terms. This confirms that the nontrivial
solution of the WZ consistency conditions can be obtained
from the Chern-Simons form Wð0Þ

dþ1 − Yð0Þ
dþ1 and takes the

form

anomaly ¼ Zð1Þ
d −Wð1Þ

d ¼ Yð1Þ
d −Wð1Þ

d

þ ðsþ cÞ-exact terms: ð6:56Þ

To illustrate this connection between supersymmetric
anomaly inflow and generalized descent, let us consider a
simple example from Sec. V. From the supersymmetric
anomaly inflow analysis in Sec. V we expect that Xð1Þ

dþ1 can
be expressed in normal form for all multiplets in d
dimensions that can be obtained by dimensional reduction
from dþ 1 dimensions, without any further truncation.
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The 4D N ¼ 1 flavor anomaly is therefore not a suitable
example, since it must first be embedded in the N ¼ 2
flavor multiplet in order to be obtainable from a 5D
supersymmetric Chern-Simons action. The simplest exam-
ple where Xð1Þ

dþ1 can be expressed in normal form is the
N ¼ ð1; 1Þ flavor anomaly in 2D and the corresponding
N ¼ 1 supersymmetric Chern-Simons action in three
dimensions.
The N ¼ 1 vector multiplet in three dimensions can be

obtained by consistent truncation of the N ¼ 3 multiplet,
as we discussed in Sec. V. Changing to anti-Hermitian
generators, taH: → itaa:H:, and scaling the gaugino and the
supersymmetry parameter as

λa → iλa; ϵ →
i
2
ϵ; ð6:57Þ

in order to match the conventions of the present section, the
(canonically normalized) N ¼ 1 supersymmetric Chern-
Simons form is given by

ΩCS ¼ tr
�
AdAþ 2

3
A3 − λ̄λ � 1

�
; ð6:58Þ

where we have fixed the choice of convention (5.13) by
setting κ ¼ −1.
The N ¼ 1 supersymmetry transformations become

δQðϵÞAμ ¼ −
1

2
ϵ̄γμλ;

δQðϵÞλμ ¼
1

4
ðγρσϵÞμFρσ; ð6:59Þ

while the complete form of the corresponding BRST
transformations is

sAμ ¼ Dμv; cAμ ¼ −
1

2
ᾱγμλ

a þ aν∂νAμ;

sλ ¼ fλ; vg; cλ ¼ 1

4
γμνFa

μναþ aν∂νλ;

sv ¼ −v2; cv ¼ 1

4
ᾱγμαAμ þ aν∂νv;

sα ¼ 0; caμ ¼ −
1

4
ᾱγμα: ð6:60Þ

From the definition of the generalized descent variables
XðkÞ
dþ2−k in (6.11) it follows that

Xð1Þ
dþ1 ¼

dþ 2

2
Pdþ2ðcA;Fd

2Þ: ð6:61Þ

In particular, for d ¼ 2 we have

Xð1Þ
3 ¼ 2trðcAFÞ

¼ 2tr

��
−
1

2
ᾱγλþ diaAþ iadA

�
F

�

¼ 2tr

�
−
1

2
ᾱγλF þ dðiaAÞF þ iaðF − A2ÞF

�

¼ trð−ᾱγλF þ 2dAðiaAÞF þ iaF2Þ
¼ trð−ᾱγλFÞ þ dtrð2iaAFÞ; ð6:62Þ

where in the last line we have used the fact that F2 ¼ 0 in
three dimensions.
Moreover, using the BRST transformation of λwe obtain

c trðλ̄λÞ ¼ 1

2
εμνρtrðᾱγρλFμνÞ þ ∂μtrðaμλ̄λÞ; ð6:63Þ

or in form notation

c trðλ̄λ � 1Þ ¼ −trðᾱγλFÞ − dtrð�aλ̄λÞ: ð6:64Þ

We therefore conclude that Xð1Þ
3 can be expressed in normal

form as

Xð1Þ
3 ¼ ðsþ cÞtrðλ̄λ � 1Þ þ d trð2iaAF − �aλ̄λÞ; ð6:65Þ

from which we read off

Yð0Þ
3 ¼ trðλ̄λ � 1Þ; Zð1Þ

2 ¼ trð2iaAF − �aλ̄λÞ: ð6:66Þ

Hence, the supersymmetric Chern-Simons form (6.58) is
given by

ΩCS ¼ Wð0Þ
3 − Yð0Þ

3 ; ð6:67Þ

in agreement with the general argument provided above.
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APPENDIX: ADDITIONAL NOTIONS

In Sec. VI we have tried to simplify the discussion and
avoid introducing new notions and definitions. However, as
mentioned, our generalized descent procedure is inspired
by earlier work on supersymmetric descent [14–18].
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We collect here some definitions and ideas that have
appeared in some form in the earlier literature and have
been kept implicit in our presentation.
Without splitting the c part of the BRST operator

dþ sþ c into parts and reserving s for the gauge trans-
formations only, we can still recover the general pair of the
descent towers for X and W outlined in Sec. VI,

ðsþ cÞXðkÞ
dþ2−k þ dXðkþ1Þ

dþ1−k ¼ 0;

Xðkþ1Þ
dþ1−k ¼ ðsþ cÞWðkÞ

dþ1−k þ dWðkþ1Þ
d−k ; ðA1Þ

which can be subject to further (nonuniversal)
refinements.

1. Filtration

The descent relations we have discussed so far hold for
any c, as long as ðdþ sþ cÞ2 ¼ 0. However, this structure
is enriched when c possesses certain additional properties.
One such case is when sþ c is itself nilpotent, i.e.,

s2 ¼ 0; ðsþ cÞ2 ¼ 0; ðA2Þ

where generically c2 ≠ 0, and both s and c anticommute
with the exterior derivative d. This structure is formally
known as a filtration of the BRST cohomology [95,96] and
it is practically very useful for computing the cohomology
of sþ c, given that of the simpler BRST operator s. For
example, as we discuss in Sec. III (see also [43] and
references therein), the gravitational anomaly descent can
be formulated in terms of the simpler descent for a GLðdÞ
gauge symmetry. More generally, the structure (A2)
ensures that the cohomology of sþ c is a subspace of
the cohomology of s (see Proposition 5.6 in [96]). The
same holds for the cohomologies modulo d.

2. Grading refinement

It is often useful to further decompose the coefficients
XðkÞ
dþ2−k and WðkÞ

dþ1−k in (A1), for example, according to
different types of ghosts. In particular, we may distinguish
between s and c ghosts by writing

WðkÞ
dþ1−k ¼

Xk
l¼0

Wðl;k−lÞ
dþ1−k; XðkÞ

dþ2−k ¼
Xk
l¼0

Xðl;k−lÞ
dþ2−k; ðA3Þ

where the first superscript corresponds to s ghosts and the
second to c ghosts. However, such a decomposition is not
always possible. This is the case, e.g., when s and c possess
the nilpotency properties (A2), which imply that

scþ csþ c2 ¼ 0: ðA4Þ

It follows that, in this case, unless the stronger conditions

scþ cs ¼ 0; c2 ¼ 0; ðA5Þ

hold, the s and c ghost numbers are not separately
conserved.
When a grading refinement of the form (A3) is possible,

each descent relation in (A1) splits accordingly into a set of
equations with definite ðp; qÞ ghost number. For example,
for k ¼ 1 the first equation in (A1) splits into the three
relations

dXð2;0Þ
d þ sXð1;0Þ

dþ1 ¼ 0; dXð1;1Þ
d þ cXð1;0Þ

dþ1 ¼ 0;

dXð0;2Þ
d ¼ 0; ðA6Þ

since Xð0;1Þ
dþ1 ¼ 0. Similarly, the second equation in (A1) for

k ¼ 1 splits into the relations

sWð1;0Þ
d þ dWð2;0Þ

d−1 ¼ 0;

sWð0;1Þ
d þ cWð1;0Þ

d þ dWð1;1Þ
d−1 ¼ −Xð1;1Þ

d ;

cWð0;1Þ
d þ dWð0;2Þ

d−1 ¼ −Xð0;2Þ
d : ðA7Þ

As we discuss next, a grading refinement of the form

(A3) is particularly useful when the coefficients XðkÞ
dþ2−k

satisfy two additional properties, namely “normality” and
“orthogonality,” which we now define.

3. Normality

Following [14], we say that XðkÞ
dþ2−k is “normal” if it takes

the form

XðkÞ
dþ2−k ¼ ðsþ cÞYðk−1Þ

dþ2−k þ dZðkÞ
dþ1−k; ðA8Þ

for some Yðk−1Þ
dþ2−k and ZðkÞ

dþ1−k. Since the coefficients X
ðkÞ
dþ2−k

satisfy the descent relations (A1), this may seem like a
tautology at first sight. However, the statement is not trivial

in that one demands that Yðk−1Þ
dþ2−k and ZðkÞ

dþ1−k have different

ghost content than respectively Wðk−1Þ
dþ2−k and WðkÞ

dþ1−k. This
distinction becomes manifest when a grading refinement of
the form (A3) is possible.
It is useful to notice that if the normality condition (A8)

holds for XðkÞ
dþ2−k, then it also holds for all XðlÞ

dþ2−l with
l > k. This can be proven by induction, showing first that it
holds for l ¼ kþ 1. From (A1) follows that

0 ¼ dXðkþ1Þ
dþ1−k þ ðsþ cÞXðkÞ

dþ2−k

¼ dðXðkþ1Þ
dþ1−k − ðsþ cÞZðkÞ

dþ1−kÞ; ðA9Þ
and so

Xðkþ1Þ
dþ1−k ¼ ðsþ cÞYðkÞ

dþ1−k þ dZðkþ1Þ
d−k ; ðA10Þ

with YðkÞ
dþ1−k ¼ ZðkÞ

dþ1−k. Hence, X
ðkþ1Þ
dþ1−k is also normal. This

completes the proof.
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4. Orthogonality

We have seen that the Russian formula (2.15) ensures

that the coefficient Xð1Þ
dþ1 contains only ghosts associated

with the operator c. If this property extends to all higher

order coefficients, we say that Xðkþ1Þ
dþ1−k are “orthogonal.”

Clearly, a prerequisite for this property is that a grading
refinement of the form (A3) exists. The orthogonality
condition can be stated as

Xðl;k−lÞ
dþ2−k ¼ 0; ∀ l ≠ 0; ðA11Þ

or equivalently

XðkÞ
dþ2−k ¼ Xð0;kÞ

dþ2−k: ðA12Þ

From the definition (6.11) of the coefficients XðkÞ
dþ2−k follows

that this property is guaranteed provided the difference Ĝ − F
between the field strengths does not depend on the gauge
ghost v. This condition can be used as a possible criterion for
the choice of the shift u in the generalized field strength (6.5).

Notice that if the coefficientsXðkÞ
dþ2−k are also normal, then the

definition (A8) requires that

Yðk−1Þ
dþ2−k ¼ Yð0;k−1Þ

dþ2−k ; sYðk−1Þ
dþ2−k ¼ 0; ZðkÞ

dþ1−k ¼ Zð0;kÞ
dþ1−k:

ðA13Þ

In the main part of the paper we have opted for the choice
u ¼ 0 in order to ensure the uniform description of diffeo-
morphisms and supersymmetry.
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