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We revisit quantum field theory anomalies, emphasizing the interplay with diffeomorphisms and
supersymmetry. The Ward identities of the latter induce Noether currents of all continuous symmetries,
and we point out how these consistent currents are replaced by their covariant form through the
appearance of the Bardeen-Zumino currents, which play a central role in our study. For supersymmetry
Ward identities, two systematic methods for solving the Wess-Zumino consistency conditions are
discussed: anomaly inflow and anomaly descent. The simplest inflows are from supersymmetric Chern-
Simons actions in one dimension higher, which are used to supersymmetrize flavor anomalies in d = 4
and, for d =2 N = (p, q), flavor anomalies with p, ¢ < 3 and Lorentz-Weyl anomalies with p, g < 6.
Finally, we extend the Becchi-Rouet-Stora-Tyutin algebra and the subsequent descent, a necessity for the
diffeomorphism anomaly in retrospect. The same modification computes the supersymmetrized
anomalies and determines the above Chern-Simons actions when these exist.
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I. INTRODUCTION AND SUMMARY OF RESULTS

Perturbative anomalies [1-3] are well understood as a
failure of the path integral measure to respect the symmetry
in question [4]. Perhaps the most succinct way to compute
and phrase the anomaly is by gauging the would-be
symmetry and consider the symmetry transformation of
the effective action after integrating out the chiral fields
responsible for the anomaly. A most comprehensive com-
putation of this kind was given in Ref. [5]. Further subtleties,
such as the distinction between consistent and covariant
currents, diffeomorphisms, and Lorentz transformations,
were addressed by Ref. [6].

Through these developments, we are accustomed to
treating gravitational or diffeomorphism anomalies on an
equal footing with those associated with internal symmetries,
such as gauge or flavor symmetries. More often than not,
instead of the actual diffeomorphism anomaly we compute
what is better referred to as a Lorentz anomaly under an
SO(d) gauge rotation of the spin connection @,
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Although the equivalence of the gravitational and Lorentz
anomalies has been established a long time ago [6], their
precise relation is far from obvious, given that diffeomor-
phisms involve both SO(d) rotations and translations.

Diffeomorphisms act via the Lie derivative along a
vector field, say & They induce a Lorentz transformation,
parametrized by L in (1.1), via V&, but also involve a
translational shift of w. As we review in Sec. III, despite this
difference, the diffeomorphism anomaly is still computable
by a GL(d) anomaly descent on the Christoffel symbol T,
suitably elevated to a I1-form connection. This helps
establish the equivalence between these two anomalies,
which justifies the usual focus on the Lorentz anomaly,
especially when one is only interested in the question of
anomaly cancellation.

When it comes to the anomalous Ward identities with
nonvanishing anomalies, however, we must be more atten-
tive to such differences. After all, Lorentz rotations and
diffeomorphisms are two different operations. The diffeo-
morphism Ward identity involves not only the divergence of
the energy-momentum tensor, but also all other symmetry
currents, since the Lie derivative acts on currents universally,
which can be in turn converted to a transformation of the
associated (external) gauge fields via the path integral. Of
course, the converse is not true, since gauge/flavor rotations
do not affect the energy-momentum tensor.

Two distinct anomalous currents are often discussed:
consistent and covariant [6]. The former arise from a direct
variation of the effective action. The difference between the
currents is given by the Bardeen-Zumino (BZ) current, a
local quantity built out of the external gauge fields and
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determined entirely by the anomaly descent. In the liter-
ature, its use is mostly restricted to helping clarify the
relation between different computations of anomalies.
However, as we will see, it plays a central role in our
discussion.

Since the consistent current is the one that couples to the
gauge field, it is often considered as more physical, while its
covariant counterpart has played a relatively minor role. On
the other hand, it is not difficult to see that the diffeo-
morphism Ward identity is invariant under such gauge/flavor
symmetries, and so are the energy-momentum tensor and the
diffeomorphism anomaly. So, even though the consistent
currents of such internal symmetries appear naturally in the
path integral derivation of the diffeomorphism Ward identity,
they must somehow be replaced by their covariant counter-
parts to ensure the gauge/flavor invariance of the diffeo-
morphism Ward identity. The way the BZ terms that relate
the consistent and covariant gauge/flavor currents arise from
a rearrangement of the diffeomorphism Ward identity is the
main subject of Sec. IIL

Another important Ward identity which generally involves
other symmetry currents is that of supersymmetry. Since the
square of supersymmetry generates translations or diffeo-
morphisms, it is not surprising that the two suffer from some
common issues.' Supersymmetry acts on all gauge fields,
external or internal, and as a consequence the conservation of
the supercurrent, as in the diffeomorphism Ward identity,
involves all gauge/flavor currents present. In a supersym-
metric theory with anomalous internal symmetries, one
naturally elevates the accompanying gauge fields to vector
supermultiplets. As a result, the supersymmetry Ward
identity involves all operators in the corresponding current
supermultiplets. In Sec. IV we demonstrate that, as with
diffeomorphisms, the BZ current terms are generated and all
consistent currents in the supersymmetry Ward identity are
eventually replaced by their covariant counterparts.

However, there are two related important differences
between diffeomorphisms and supersymmetry in this
respect. First, the presence of gauge/flavor anomalies
does not violate the diffeomorphism or Lorentz invariance
of the effective action, nor does it generate unexpected
contributions to the diffeomorphism Ward identity. In this
case, the covariantization of the current occurs via
rearrangement of existing terms. As we discuss in
Sec. IV, this is not the case for supersymmetry in the
Wess-Zumino (WZ) gauge for the gauge multiplet. In this
gauge, which is sometimes unavoidable, any perturbative
anomaly necessarily leads to noninvariance of the effec-
tive action under rigid supersymmetry, an observation

'R symmetry share features with both gauge/flavor symmetries
and supersymmetry/diffeomorphisms. For rudimentary discus-
sions, it may be treated as one of the former but not so when we
get down to details of how it enters the Ward identities in
question. We will try to indicate such differences explicitly as it
becomes necessary in later parts of this paper.

dating back to the 1980s [7-19] and often referred to as a
“supersymmetry anomaly.” An analogous observation in
the presence of a gravitational anomaly in two dimensions
was first made in Refs. [20,21]. Locally supersymmetric
contributions to gauge/flavor and R-symmetry anomalies
were pointed out in Refs. [22,23] and computed explicitly
more recently in Refs. [24-32]. See also Refs. [33-35]
for a classification of supersymmetrized supergravity
anomalies.

The second difference between supersymmetry and
diffeomorphisms is that the former does not have an
independent solution to the WZ consistency conditions.
One might naively think that the supersymmetry Ward
identity must be thus simpler than that of diffeomor-
phisms, yet the situation is actually the opposite. In the
supersymmetry Ward identities, the leading “anomalous”
term due to any other types of anomalies, gauge/flavor, R
symmetry, and diffeomorphisms, is given by the BZ
current contributions that covariantize the consistent
currents thereof. Such a noncovariant term could have
been expected on general grounds, given that the super-
symmetry Ward identity should be invariant under these
other symmetries. However, this shift by the BZ current
alone does not solve all WZ consistency conditions, and
so on the right-hand side of the Ward identity one
encounters additional invariant pieces, involving the
superpartners of the gauge fields.

These two differences are also behind the fact that the
mechanism for the appearance of the BZ currents for
gauge/flavor (and R symmetries) in the supersymmetry
and diffeomorphism Ward identities is not exactly the
same. As we explain in detail in Secs. III and IV, the
covariantization of the currents in the latter arises because
the diffeomorphism Ward identity contains a linear
combination of the anomalous Ward identities for all
gauge/flavor symmetries (and R symmetries). In both
cases, nevertheless, the covariantization of the currents is
facilitated by the fundamental relation between the BZ
current and the corresponding anomaly.

A superspace description, when it exists, ensures that the
supersymmetry invariance of the effective action may be
restored by extending the multiplet of currents to a larger
one [19,29,31,32]. This, however, does not change the
actual content of the Ward identity; it merely gives different
names to the same local terms. Furthermore the WZ gauge
for the gauge fields is often a necessity, as for theories with
extended supersymmetries. The WZ gauge is often appro-
priate and sometimes an unavoidable framework for
computing (refined) physical observables in supersymmet-
ric theories using, e.g., supersymmetric localization. It was
in this context that the supersymmetrized form of the
gauge/flavor and, in particular, R-symmetry anomalies
were recently rediscovered [24] and their consequences
for supersymmetric partition functions explored [36]. We
will refer to these phenomena as “supersymmetrized
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anomaly” or “supersymmetric completion of anomaly” in
most of this paper.2

Supersymmetrization of various anomalies is a direct
consequence of the WZ consistency conditions in super-
symmetric theories and ought to fit naturally within
established methods for solving these, such as the descent
formalism [6,37-39] and, more physically, the anomaly
inflow [40].

Anomaly inflow provides a cancellation mechanism for
gauge/flavor, R symmetry, and gravitational anomalies via,
for example, the symmetry transformation of a Chern-
Simons action in one dimension higher. It is only natural
that a supersymmetric Chern-Simons action, if it exists,
cancels all components of the supersymmetrized anomalies.
In Sec. V we show that this is indeed the case and, turning
the argument around, we use anomaly inflow as a powerful
tool to compute supersymmetric anomalies in theories with
extended rigid or local supersymmetry.

Anomaly descent provides a more abstract approach to
the solution of the WZ consistency conditions. An inter-
esting question in this context is how the interplay between
internal and spacetime symmetries is reflected in the
descent procedure. The standard anomaly descent applies
to gauge/flavor symmetries, as well as local Lorentz and R
symmetry, but it becomes less obvious already for diffeo-
morphisms, given that these generate translations as well as
GL(d) rotations. Supersymmetry adds a further layer of
complication. Remarkably, as we show in Sec. VI, diffeo-
morphisms and supersymmetry can be accommodated by a
single generalization of the standard descent procedure.

In both anomaly inflow and descent, Chern-Simons
actions in one dimension higher have a prominent role. In
anomaly descent, they arise from the anomaly polynomial as
an intermediate step in the computation of the consistent
anomaly, while they provide the simplest anomaly inflow
mechanism, canceling the anomaly on a codimension-one
boundary or defect. In both cases, the BZ current emerges
from the Chern-Simons action via the so-called antideriva-
tive operation, providing the key ingredient for converting
the consistent currents in the diffeomorphism and super-
symmetry Ward identities to covariant ones.

The rest of the paper is organized as follows. We start with
a preliminary review of the effective action, anomalies, and
the standard anomaly descent in Sec. II, highlighting the role
of the BZ current. We also revisit the standard anomaly
descent procedure and the corresponding Becchi-Rouet-
Stora-Tyutin (BRST) algebra as a warm-up to our sub-
sequent analysis. In Sec. III we review the diffeomorphism
anomaly and contrast it with the Lorentz one. In particular,
we explain why the anomaly descent of the Christoffel
connection computes the former, while that of the spin
connection computes the Lorentz anomaly. However, a

*The latter should not be mistaken to imply that the anomalies
under consideration are part of an anomaly multiplet.

discussion of the BRST mechanism that underlies this
distinction is deferred to Sec. VI, where we present the
anomaly descent and the BRST algebra in a more general
context that allows us to accommodate supersymmetry
as well.

Section IV addresses some general features of the super-
symmetry Ward identity and, in particular, how the anoma-
lies associated with other symmetries give rise to new terms.
The BZ current appears precisely due to these terms, and
covariantizes the relevant consistent currents of gauge/flavor
symmetries. Unlike the diffeomorphism case, however, it
does not stop there. The WZ consistency conditions demand
further contributions with more gauginos that are gauge/
flavor invariant. An interesting question is what should
happen exactly to these induced anomalous terms if some
external inflow mechanism is introduced to cancel the gauge/
flavor anomaly to begin with. Generally, the natural expect-
ation that inflow must cancel all such terms is confirmed up
to the BZ term, showing that the supersymmetry trans-
formation of the effective action becomes gauge invariant
when combined with the bulk inflow term.

Section V takes up the remaining question of Sec. IV, on
the gauge/flavor invariant part of the induced anomalous
terms. We show that, in the case of a codimension-one
inflow from a supersymmetric Chern-Simons action, the
cancellation is complete and the combined action, i.e., the
effective action and the bulk supersymmetric Chern-Simons
action is invariant under supersymmetry transformations as
long as the underlying gauge/flavor anomaly is canceled.
This also means that one can compute the entire super-
symmetrized anomaly simply from the variation of a Chern-
Simons action in one dimension higher, with appropriate
supersymmetry, which naturally becomes a boundary term.
Such a codimension-one inflow is not the most general form
of inflow, but when it exists, it presents perhaps the most
efficient way to compute the supersymmetric completion.

Finally, we come back to the anomaly descent, or more
precisely the BRST algebra thereof, in Sec. VI, and extend
the standard BRST algebra to accommodate these phenom-
ena systemically. Although not widely recognized, this
modification is actually necessary to elevate the WZ
consistency conditions for diffeomorphisms to the BRST
algebra. A key observation is that the content of the BRST
gauge field does not need to match precisely the structure of
the BRST operator in order for a descent mechanism to
emerge and provide a solution of the WZ consistency
conditions. One can get a first glimpse of the necessity of
this from the diffeomorphism anomaly descent. The BRST
transformation involves both translations and rotations,
while the usual descent involves ghosts for the rotational
part, say the local Lorentz transformation, only.

This extension proves essential also in the context of
supersymmetry, and we use this formulation to determine
the general structure of supersymmetrized anomalies. Up to
the very first response of the anomaly to supersymmetry,
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which is expressed in terms of the BZ current and described
in detail in Sec. IV, the descent procedure is universal and
independent of spacetime dimension. The additional gauge/
flavor invariant terms are sensitive to the precise super-
symmetry multiplet and spacetime dimension and are left
implicit. We end Sec. VI by demonstrating that for certain
multiplets the generalized descent determines the super-
symmetric Chern-Simons action responsible for the inflow
mechanism in Sec. V. We have tried to keep the discussion
in Sec. VI general and minimal, but for completeness we
have collected some useful related notions that have
appeared in the past literature in the Appendix.

II. AN OVERVIEW OF ANOMALIES

While gauge anomalies and anomalies of global sym-
metries come with very different consequences, the clas-
sification and computation of anomalies does not really
distinguish between the two classes. Since these anomalies
arise from the path integral of chiral fields, be they fermions
or self-dual tensors, rather than of the gauge fields, we may
as well compute these anomalies on an equal footing by
considering the relevant gauge fields to be all external and
the symmetry to be global. Only at the end of computation,
do we worry about the cancellation of the anomaly if the
relevant symmetry is gauged. Much of what we review here
can be traced back to Ref. [6].

A. Effective action and anomalous Ward identities

For a general discussion, let us introduce the effective
action W(A) which is a result of path integrals of all
chiral fields coupled to the “gauge fields,” collectively
denoted as A,

WA = / [DW]e~S(¥:A) (2.1)

where the chiral fields responsible for the anomaly are
denoted collectively by W. Suppose that the action S(¥;
A = 0) is invariant under a global symmetry § acting on ¥.
This can be then formally elevated to a local symmetry of
S(¥;.A) with the gauge field A introduced, so that

S(¥+6¥; A+68A4) = S(V; A), (2.2)
or equivalently
S(W+6¥;4) —S(V; A)
=S(¥;A-6A)—-S(¥;A)
=-6A-TJ (2.3)
at the linear order, with the sign convention
oS
ﬁ =J. (2.4)

If the path integral measure is invariant under such trans-
formations as well, we have

/ [DP]eS(#:A) — / [D(W + 5W)] e S(F+o¥:d+sA)

_ /[D‘P]e‘s(‘*';“‘”‘s““), (25)

where, for the second equality, we used that ¥ is a dummy
variable for the integral. However, the anomaly arises
precisely because the path integral measure is not invariant,
so the very first step fails.

A gauge transformation &g, say, OpA=dd+---,
induces

ow

B0 W(A) = - 55 =

-® - (V,JH), (2.6)
whose anomalous value is supposed to be captured by the
so-called consistent anomaly,

- (V,J") = /WS)(@; A). (2.7)

where wfiw is a local functional obtained from anomaly

descent. Throughout this paper we denote these standard
anomalies by G(®;.A). We will give a brief review of the
relevant manipulations in the following subsection.

More generally, however, external gauge fields of one
symmetry might interfere with such a Ward identity for
some other symmetries. The simplest example of this is
diffeomorphisms d;; 6;W can be expressed generally as

SW SW
SW =58 —+ > 5.A - ST (2.8)

or ot

where the sum is over the other external gauge fields. I" is
the Christoffel connection; &:I" is qualitatively different
from ordinary gauge transformations since it involves
translational components as well. See Sec. IIT A.

In terms of the path integral we have

SV — / DY <§y VT ()
- 255,4’ : j’(‘P)) e~ S (2.9)

with the energy-momentum tensor 7,. What is the path
integral interpretation of this expression? Note that &, -
V,T"(¥) downstairs is constructed out of the dynamical
fields and acts on all things made up of W. Since all currents
are vectorial, the operator V,T# acts on J' of the A" - J
term as well, which means that £, - V, 7" (V) by itself will
not leave the effective action invariant, even in the absence
of an anomaly, but a counteracting rotation of .4 must
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accompany the transformation. The second term does
exactly this, so that —6:W is the quantity that is captured
by the conventional anomaly, leading to the Ward identity

Za‘é/v

Later we will also review the diffeomorphism anomaly
Glitreo (€3 A). As such, it is important to keep track of the
difference between the anomaly 6W and the divergence of
the would-be-conserved current (V, J#).

(v, 1)

Gdltfeo(f A) (210)

B. Anomaly descent and Bardeen-Zumino currents

The anomaly descent solves the following functional

equation for a local functional G(®; .A):
5¢|5¢2W - 5q>25q>1 W — 6[¢1,¢2]W, (21 1)

where d¢ is a gauge transformation of the relevant con-
nection 4. This comes with the sign choice

oA =dP + [A, D], o F = [F, @], (2.12)
and the convention that 6 does not act on the gauge
parameters, so that 6q 6¢,F = [[F, @], ®,]. One could
have various different conventions such as J acts on
parameters, which could be more natural depending pre-
cisely on the computation at hand.

In the BRST formulation [41], we replace ® by a
Grassmann odd gauge function v and recast the gauge
transformation into the anticommuting version s which
acts as

SA=—dv—-Av—vA,
sF=Fv—ovF,
sv = —v. (2.13)

We treat d and s on an equal footing, and the same with
A and v, and assign BRST odd grading on all of these.
One can recover, say, from s.A, the usual gauge
transformation 6.4 = d® + - - - if we write v = y® and
pull the Grassmann odd constant y all the way to the left.
The same happens with sF since F is a 2-form and
thus even.

The standard anomaly descent is based on these nilpotent
operators d, s, and d 4+ s, which obey

d?> =0, s? =0, (d+s)>=0. (2.14)

Recall that the nilpotency of d implies that the field
strength F =dA+ A% satisfies the Bianchi identity
dF + AF — FA=0. The two key observations were
the “Russian formula” of [39]

F=d+s) A+ A=F,  A=A+v, (215
and the generalized Bianchi identity
(d+s)F+AF-FA=0. (2.16)

The final ingredient is an anomaly polynomial P, ,
such that

0 =dP,.»(F). (2.17)

and the related Chern-Simons form w,, (A, F) that
satisfies Py o(F) = dwy, (A, F). Similarly, the same
polynomial in F, P, (F) is (d +s) closed.

One generates a solution to the WZ consistency con-
dition by considering an expansion in v of the right-hand
side of the identity

Pd+2(]:) = Pd+2(ﬁ)
= (d+S)Wd+](A+ U,f)
= Pyn(F) + 8w (A, F) +aw') (v; A, F)
+0(1?), (2.18)

where the numeral superscript keeps track of the power of v,

Wi (A+0v,F) = ngl)l_k(v;A, F).

k>0

(2.19)

As noted above, the translation back to the bosonic version
requires v = y® and moving the Grassmann odd piece y all
the way to the left in all expressions. For example,

K8oWai1 (A F) = sw)) (A F)myo
= —dwg) (x®; A, F)

= ydw (@; A, F). (2.20)

At order v the equality in (2.18) yields

S/WS)(U;A,H Z—/d(Wff_)l(v;A,}')) =0, (221)

which implies that the integral of w(dl)

solution to the consistency condition.

To see this it suffices to take v = y®; + y, P, with
Grassmann odd, y; # y». d¢ acts only on fields, while s is
designed to act on v as well, such that the kernel of s solves
the WZ consistency condition, modulo exact terms. This
brings us to the usual anomaly descent solving the consis-
tency condition,

gives the desired

—5eW = G(®; A) = / w (@; A, F), (2.22)
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with

SoWari (A F) = dw\) (@; A, F) (2.23)
via an entirely bosonic descent procedure.

A well-known ambiguity in this procedure occurs in the
very first step,

Pyo(F) = dwyy (A F), (2.24)

when a mixed term of type P,,(Fi) A Pyir_n,(F,) is
present in the anomaly polynomial. The right-hand side has
the ambiguity

o awy, (A F1) A Paioon(Fa) + BPoy(F1) A Wapi—on( Az, Fa) + (2.25)
with a + f = 0, so that
W (@A F) = o awly) (@1, A F)) A Pagan(Fo) + .
WDy A, F) = - 4 Py (F1) AW, (@05 Ay, Fr) + (2.26)

The ambiguity is a matter of a local counterterm in d
dimensions, so one can choose which in a more convenient
description. What must be noted here, for later purposes, is
that even with such mixed terms and this ambiguity thereof,
we have the invariance

5, / Wil (@3 A, F) =0 (2.27)

and vice versa, between a pair of symmetries that are
mutually commuting; A, does not appear explicitly in
wgn) ,(®1; A, F). Only F, enters and only inside an
appropriate trace.

Here we wish to explore a bit more how the anomaly
descent reacts to arbitrary shifts of A — A + a. It is useful
to introduce a nilpotent BRST even operator A ,, which acts
on any of the above functions of A, F, and v as

A, =dl,+1,d (2.28)
with the replacement d A — F — A? understood. The so-
called antiderivative [, acts as

,A=0, I, F =a, Lv=0. (2.29)
We must treat [, as a BRST-odd operator naturally, since a
is BRST odd just like .A. On the other hand, the antider-
ivative /, also obeys

l,s +sl, =0, (2.30)
for which we also need to remember that a, as a difference
between two connections A and A + a, is assumed to
transform covariantly, sa = —av — va.

The action of A, on the following two quantities is of
some interest:

[

A (W) (A F)) = d(l, [wd+1<A F))) + Lo(Paya(F)),
A (WY (03 A F)) = d(1,[wl (v A, F)))
+ L (=swWy (A ). (231)
Recall that, with
a-xz/za[wgﬁ,(,zt,f)}, (2.32)

X is the so-called Bardeen-Zumino current which can be
added to J to turn the latter consistent current into its
covariant version.

From this, we find

Aa/w(dl)(v;A,]-') :s/zamg;zl) (2.33)

with a vanishing boundary condition at asymptotic infinity
of the spacetime. Again, coming back to the original
bosonic form,

A, / Wil (@5 A, F) = 5 / LW (AF). (2.34)

The integrand on the right-hand side is proportional to an
inner product of a with the so-called BZ current X as

A, / W ®; A F) =bpla-X).  (2.35)

Recall that this BZ current shifts the consistent current J
additively into the covariant current J.,, = J + X [6].

065005-6



ANOMALIES AND SUPERSYMMETRY

PHYS. REV. D 105, 065005 (2022)

II1. DIFFEOMORPHISM ANOMALY AND
COVARIANT CURRENTS

Let us now be more specific and split the gauge trans-
formation into two classes; those associated with spacetime
transformations, such as diffeomorphisms and supersym-
metry, and the internal gauge/flavor symmetries. The nota-
tion we will adopt is

A=), ®=(.ed), T=(T.5J). (3.1)
where the external gravitino y and the supersymmetry
current S would be present if the theory is supersymmetric.
For general discussion of the diffeomorphism anomaly and
the Ward identity thereof, we will adopt the Christoffel
connection I', although, for supersymmetry Ward identities
in Sec. V, the spin connection @ is more natural and will be
used instead.

We are now quite used to the fact that the variation of the
effective action induces the consistent anomaly which
solves the WZ consistency condition. Despite some con-
fusions in the early literature, the relation between the
consistent and the covariant anomaly was understood
already in the 1980s [6]. The consistent current J trans-
forms noncovariantly, but using the BZ term &', which is
composed entirely of the external gauge field, a covariant
current can be found, namely J.,, = J + &. The diver-
gence of this combination is called the covariant anomaly.
In turn, the covariant anomaly proved to be much more
practical for computational purposes, eventually yielding
the well-known anomaly polynomials [5]. The physical
role of the covariant current has been much less prominent.
The purpose of this section is to show that the covariant
current must, in fact, appear in the Ward identity setting
generically.

The message is actually very simple. The action of
diffeomorphisms on the effective action should induce the
consistent current of the gauge/flavor symmetry as well,
since the former acts universally on all operators. On the
other hand, the diffeomorphism Ward identity itself must be
invariant under such internal symmetries. As we shall see,
the shift to J.,, = J + X occurs naturally. Another such
symmetry transformation that acts on all currents universally
is supersymmetry, which is the main subject of this paper.
This section will provide a simpler illustration for the latter,
more involved case, to which we will turn in Sec. IV.

A. Diffeomorphism anomaly

As a simple illustration, let us start with a theory with a
gauge symmetry 6y and consider how the diffeomorphism
Ward identity is affected by the anomalous gauge sector.
For this, let us start with

A= (T;A), © = (& 9),

J=(T;]). (32)

where the Christoffel connection can be conveniently
elevated to a connection 1-form [6],

() = —I7pdx* (3.3)
with the curvature 2-form
Ry = (dI'+ T A T)4% (3.4)
This translates to the usual Riemann curvature as
R = (Rp%) - (3.5)

The two are clearly the same componentwise once the
symmetry properties of the Riemann tensor are invoked.
Diffeomorphisms act on the Christoffel connection as
o' = E%F + dr(-0¢), (3.6)

where Eé is meant to be aware only of the 1-form index of
I'. Note how the transformation is split into two pieces and
how the second piece can be regarded as a GL(d) gauge
transformation with @, = —9,&" of r’

Another difference compared to gauge transformations is
how the commutator of 5 works. On any covariant tensor
V, we have

where, as with the previous gauge variations, we let 6 act on
field variables only and not on parameters. This leads to the
gravitational WZ consistency condition,

where one must note the unusual sign on the right-hand
side. Bardeen and Zumino addressed how to solve this in

their seminal paper [6] and found that the usual anomaly
descent procedure solves this constraint,

~8:W = Gigreo(E:T R F) = / W\ (—0&T.R;F). (3.10)

Tts counterpart for the spin connection @ is

8.0 = Llo + d, . (3.7)

where Eg is again aware only of the 1-form index of w. The SO
matrix & = —Vlaghl — 5"9’3” is known as the Kosman lift [42].
It has been established that the diffeomorphism anomaly is,
modulo a counterterm, equivalent to the purely rotational SO(d)
Lorentz anomaly [6,43]. This is why we can usually get away
with relying on and treating w as if it is one of the internal gauge
fields. However, the Ward identity in question is that of diffeo-
morphisms, for which I' proved to be more suitable.
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where we treat I' as a GL(d) connection and perform the
descent as if this GL(d) is an internal gauge symmetry.
This can be seen from

8¢ Gireo (& T, Ry F) :/(£§+5 o ) ( 0E T, R F),
(3.11)

where the hat and the prime on EA'g mean that it acts only on
fields and responds only to the differential form indices in T,
R, and F. In particular, it perceives the entire W,(;l) as a
differential d-form. The second variation is a purely rota-
tional GL(d) gauge rotation, so one can invoke a GL(d) WZ
consistency condition also obeyed by G0 (&; T, R; F),

3o / /(~0&T. R F) — 67519 / w\ (08T, R F)

- /ng([_ag, —0&);T, R; F). (3.12)

On the other hand, the first derivative operator EA’C can be
made to act, by integration by parts and with the induced
sign flip, on the GL(d) parameter —0¢ as if it is a (matrix-
valued) scalar function.

Combining the two, we find

5ngiffeo(§; IR F) - 5§Gdiffe0 (TR F)

= /W&l)(a(é"aﬂé—f”fiﬂé);F,R;F), (3.13)
from which

6CGdiffeo(§; F» R; F) - 5§Gdiffe0(€; F, R; F)

= Gifreo(—[C. EJ; T Ry F) (3.14)

follows immediately, so that —5;W = Gigreo(§: T, R F)
solves (3.9) with the obvious matrix multiplication rule.
Note that in the above GL(d) anomaly descent, G g,
depends on F but not on A, and only via symmetric traces
of F, which implies that

619Gdiffeo(—8§; F,R,F) =0. (315)
In Sec. VI, we will see how this diffeomorphism anomaly
can be naturally embedded into a BRST algebra, but with a
twist, which will lead us to a modification that is needed for
the anomaly descent in the presence of supersymmetry
as well.

B. Covariant currents in the diffeomorphism
Ward identity

What about diffeomorphisms acting on the gauge
anomaly? The entire anomaly is a local d-form integral
which is linear in 9 and polynomial in A, F, and R, all of

which are tensors with respect to general coordinate
transformations. Given that J; acts on A, F, and R as
L, but does not act on J, we may integrate by parts to
obtain

6§/w51])(19;A,F;R) :/wg‘>(—£§8;A,F;R)

~G(L:9;A, F;R). (3.16)

As such, the anomaly descents that we have accumulated so
far obey

89Gifreo (—O&: T, Ry F) — 6:G(9; A, F; R)
= G(L:9A, F;R) (3.17)
and thus solve a consistency condition
690:W — 6:69W = 6, 9W. (3.18)

This last expression can be seen to be the correct WZ
consistency condition as

(395 = 536:)W = (59(E 04 +A(E.,4)) ~5:(da8)) -
= (L) + £((4.8) - [£:A.8) ‘f;f
b A ‘ZW 5eaW, (3.19)

if we keep in mind that &’s do not act on parameters.
Here, we wish to address the transformation property

~5:W =&, (V,T™)

)= 8:A-(

under dy3. We have seen earlier that the mixed WZ
consistency condition

(3.20)

constrains 5:W, and furthermore, given the specific form of
the gauge anomaly descent,

55(8:W) = 0,8:(84W) + 6,,W =0 (3.22)

have to hold separately. We have seen the former above,
while the latter can be seen more explicitly as follows.
Since J; is supposed to act only on field variables and not
on the transformation parameters, such as J, we have
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55(58W)+5£§,9W:—55/wy)(&;A;F;R)
—/w“)(c 9;A;F:R)
d § a4y Ly
——/LZ wy (9:A;FR)
- EWd s LAy, L7y
=- / de,w)) +eaw) =0, (3.23)

where for the last equality we have used dwfil) =0 as well,
which appears to contradict the formal procedure we used for
the descent, but does hold once we come back to physical
quantities and coordinates relevant to a d-dimensional
spacetime; one simply cannot have a nonzero (d + 1)-form,
ie., dw,’, in a d-dimensional spacetime.4

How does this reconcile with the appearance of the
consistent gauge current in the Ward identity from §:W, as
opposed to the covariant one, in Eq. (3.20)? This is
relatively easy to see for a single Abelian A. Note that
L acts on A as a vector

LA =d(EA) +£,dA, (3.24)

so, with F = dA,
—0:W=¢,-(V,T") = (E.F) - (J) +(£,4) - (V, J¥). (3.25)

On the other hand, the last piece is nothing but a pure gauge
anomaly with 9 = —(£,A), so it is a local functional
involving &, A, and F. This last formula actually holds
for non-Abelian A as well, via F = dA + AZ.

After some tedious algebra, using the explicit form of
the gauge anomaly, one realizes that this last term can be
rewritten via the BZ current X and the curvature F' such
that [24,44]

_5§W = él/ : <vﬂTﬂb> - (‘SJF) : <J +X>

=&, - (V,T") = (EF) - (Jeov)- (3.26)
As such, the diffeomorphism Ward identity is manifestly
gauge invariant under &y

£ (V, T9) = (E,F) - (Joos) = / Wi (COBT.R;F). (3.27)

The right-hand side is invariant under §y thanks to the general
fact in (2.27), so the above covariantization of the gauge
current is inevitable. Although the necessary conversion was
performed explicitly for Abelian A, §y(5:W) = 0 means that
the same conversion of the anomaly term to the (¢,F) - X

“This obvious observation will also be quite useful when we
introduce a generalized anomaly descent procedure for diffeo-
morphisms and supersymmetry in Sec. VI.

occurs for non-Abelian A’s as well. The latter fact will appear
again crucially when we discuss the supersymmetrized
anomaly descent in Sec. VL.

IV. SUPERSYMMETRY AND BARDEEN-ZUMINO
CURRENTS

Let us now turn to the supersymmetry Ward identity and
discuss the local fermionic terms induced by anomalies in
other symmetries, which are therefore controlled by the same
anomaly coefficient. Such terms induced by the gauge/flavor
anomaly have been discussed long ago in [7-16,18,19],
while analogous terms induced by the gravitational anomaly
in two dimensions were first identified in [20,21], and locally
supersymmetric contributions to gauge/favor or R-symmetry
anomalies were discussed more recently in [24-32].

It was understood early on that, if a superspace descrip-
tion of the external gauge multiplet exists, such local
fermionic terms can be understood as a consequence of
the WZ gauge. In particular, if one keeps all auxiliary fields
and maintains gauge symmetry at a fully supersymmetric
level, one could move these terms to the left-hand side of
the Ward identity. However, there are several contexts
where a superspace or fully off-shell multiplet does not
exist, and therefore we do not assume its existence in the
present analysis.

As we will see, the local fermionic terms in the super-
symmetry Ward identity induced by anomalies of other
symmetries can be separated into two distinct types: gauge-
invariant ones and noninvariant ones [8]. In the analogous
case of the diffeomorphism Ward identity, the latter was a
simple consequence of the supersymmetry transformation of
the external gauge fields and is completely determined by the
BZ current. In the supersymmetry Ward identity, this non-
invariant piece is again expressed via the BZ current but the
way it emerges in the WZ gauge is rather different; it appears
as an additional inhomogeneous contribution to the Ward
identity, as demanded by the consistency condition that
involves both gauge/flavor transformations and supersym-
metry transformation.

The other gauge-invariant pieces, an analog of which does
not exist in the diffeomorphism Ward identity, depends more
sensitively on the supersymmetry algebra. What remains
true, however, is that these are connected to the above
noninvariant contribution again via the consistency condi-
tion. In this section, we discuss the general shape of these
local fermion terms, with emphasis on the noninvariant BZ
current contributions, and how exactly the same structure
appears from the inflow mechanism, regardless of the precise
details of the latter.

Since the noninvariant term involving the BZ current is
entirely determined by the gauge/flavor anomaly, to begin
with, one expects that this induced BZ term and the
subsequent invariant pieces would be also canceled even-
tually if an anomaly inflow [40] cancels the gauge/flavor
anomaly in question. In principle, therefore, the anomaly
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inflow may be viewed as a tool for determining all such
fermionic terms, noninvariant and invariant, if the super-
symmetry completion of the bulk action responsible for the
inflow is known.

In general the latter is a tall order, however, given how the
bulk action is typically of higher derivatives. This is true of
the simplest inflow mechanism we use in this section for
illustration which is itself somewhat limited, modeled after
the simplest of the M5 brane inflow [45,46]. More generally,
even more elaborate inflow mechanisms [47-51] are often
unavoidable. Supersymmetry completion of such general
topological terms in string theories or in M theory are
hardly known.

On the other hand, if the inflow originates from a Chern-
Simons action in one dimension higher, the chances are
better. In Sec. V, we will delve into several explicit examples
of supersymmetric anomaly inflow of this kind and use them
to determine the local fermionic terms in the supersymmetry
Ward identity induced by anomalies in other symmetries.
The Chern-Simons form W((z +)1 determines the contribution of
the gauge/flavor anomaly to the supersymmetry Ward
identity and plays an important role in both supersymmetric
anomaly inflow and anomaly descent. A generalized
anomaly descent mechanism that accommodates supersym-
metry will be discussed in Sec. VI.

A. Supersymmetry Ward identity revisited

The external vector multiplet is specified by

A = (y; A), D = (e;9), J=(8J) (4.1)
with the gaugino superpartner 4 of A,
oW oW
=5A — — 4.2
6. W =6, A + O 5 (4.2)

As in the case of diffeomorphisms above, we wish to
explore what consequences follow from the WZ consis-
tency condition,

89(6.W) = 68.(84W) = 0. (4.3)
The second term on the left is
—5,(8,W) = &, / w(9;A, F). (4.4)

Recalling the algebra that leads to the BZ current X,

A(SE.A/WEII)(g;A’F) :519/15€A(W51?21(A’F))7 (4-5)

where [5 4 is the antiderivative we reviewed earlier, we
realize that

—8.(69W) = 64(5.A - X), (4.6)
again with the BZ current X of the gauge symmetry. This
means that, even in the absence of true anomaly term
G(e;w; A, 1), 6.W cannot vanish, but rather must obey

-6 W=6A-X+--- (4.7)
with the ellipsis denoting terms that are invariant under
0y and are determined by the consistency condition
following from two successive supersymmetry transfor-
mations, namely

(6:80 =86 )W =(8:+8,)W, & ~eyhe, A~EA. (4.8)

Shortly we will offer an alternate method for this super-
symmetry completion via anomaly inflow, so here we
mostly focus on the term involving the BZ current.

An interesting fact is that we can rewrite this Ward
identity as [24]

e- (V8 =6A-((J) +X)—---=0, (4.9)
where we have moved the BZ current and its supersymmetry
completion, meaning additional gauge-invariant terms
whose presence is demanded by the WZ consistency
condition and the very first BZ piece, to the left-hand side.
Once this shift of J to J.,, = J + X is done, each compo-
nent of this Ward identity is individually ¢ invariant. Again
we see that J,, appears naturally but the way this happens
here is a little different from the diffeomorphisms case,
where it happened via a rearrangement of the consistent
current term.

Here, the main message is that this shift is something to
be expected once we realize that in the Ward identities of
spacetime symmetries the gauge/flavor current appears
always in its covariant form. This also means that the shift
is immediate and explicitly known once the gauge anomaly
is known, without having to compute an entirely new set of
diagrams; the shift by the BZ current X is determined
entirely by the §y anomaly.

The local fermionic terms, §,A - X + - - -, in the super-
symmetry Ward identity should be distinguished from what
one might consider an inherent anomaly of supersymmetry.
Nevertheless, this shift of the Ward identity is not devoid of
physical consequences and must be kept track of carefully;
for example, it has known consequences in various super-
symmetric partition function computations that rely on
curved spacetime background and various external fluxes.

In superspace, or in terms of a fully off-shell external
vector multiplet, if such a description exists, the covariant
current and its accompanying supersymmetry partners
would have appeared naturally on the left-hand side, on
par with the diffeomorphism example of the previous
section. This would allow one to say that the effective
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action is invariant under supersymmetry transformations [8].
However, one should be mindful that such a fully off-shell
extension is not always available. Even if one is available, as
would be the case with a smaller supersymmetry content, it is
not clear what one would gain in practice by avoiding the
WZ gauge choice. We might as well concentrate on the
nature of these anomalous contributions to the Ward identity;
they would not disappear even in the superspace version, but
merely be attributed differently, and, as has been seen
recently [24,36], can produce a tangible difference in some
localization computations.

B. Symmetry restoration via gauge/flavor
anomaly inflow

The simplest form of anomaly inflow can be found from
a topological coupling of the type

Sintow = (=1)7 / Hyo A (A)  (4.10)
D

in an ambient spacetime X, with p=D—-d-2. A

d-dimensional world volume enters the picture as a

magnetic defect to the spacetime gauge field strength

H, =dA, + - such that
dHP+1:5Md (4]1)

and supports an anomalous field content. Suppose that we

have an effective action W(A) on M, whose anomaly

o . (0)
polynomial is P, = dw,/, (A).
A gauge variation of S, leads to

(-1

Xp

Hyr 1 dawl(A) = [ wl@d). @12
d

so that the combined effective action

W('A) = W('A) + Sinﬂow (413)
is gauge invariant, 64V = 0. While one must consider
more involved versions of this to cover all known types of
anomaly inflow, the essence of the inflow mechanism is
well represented by the example above.

Here, let us ask a slightly different question, namely
whether 6,0V is gauge invariant. Recall that the WZ
consistency condition demands that we have

- W=6A-X+---, (4.14)
where the BZ current X can be traced back to the gauge
anomaly 6yW # 0. If the latter is canceled by the anomaly
inflow from S;,q0w- it is only natural to expect that §.A - X
on the right-hand side of the supersymmetry variation is
also canceled as well, so that the quantity 5.V is gauge
invariant.

The relevant quantity to compute is®

((—1)P [(D Hpp AAMWSL(A)). (4.15)

Using the descent mechanism we have learned in the
previous sections, this becomes

(1) / Hyoy A (dly 0+ 1 ad) (W2 (A))

— (=1 / Hooo A (ABAAX] 4y aPasa(F)). (4.16)

The first term, when integrated by parts, reduces to

0.A - X. (4.17)
Combining the two contributions, we find
5€W - (SSW + éeSinﬂow - O + Tty (418)

where the ellipsis denotes all terms we have neglected so
far, namely the gauge-invariant part of 6.W and the second
piece of (4.16), which does not naturally reduce to the
world volume. Therefore, we learn that, modulo the bulk
piece in 6,.Si,n0w. the gauge invariance of §WV is restored
through the gauge anomaly inflow, such that

S9(6. W) =0 (4.19)
on the world volume.

So, what about the bulk pieces in the variation of S, ?
Once we embed these discussions to supersymmetric the-
ories in the bulk, we should expect any leftover bulk terms,
such as the second piece in (4.16) to be canceled by the
transformation of the superpartners. As such, in order to
complete the study, we need to start from the fully super-
symmetrized form of 6,W and Sj,n,w. For minimal rigid
supersymmetry the former is known from, e.g., [§—10] for up
to d = 6, off shell and in the WZ gauge, while the latter
could prove more involved. After all, such topological terms,
Sinflow» iNvVolve generically higher derivative terms and were
often discovered only via the anomaly cancellation of the
entire string theory or M theory.

On the other hand, there are simpler subclasses where
this kind of question can be asked. One is when the inflow
is achieved by a Green-Schwarz mechanism with D = d
and another is where

We think of the world volume spinors as a chiral projection of
spacetime spinors on Xp. Some specific examples of such
embedding are discussed in Sec. V.
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Sinftow = / wiA)+ - (4.20)
Xav1

on a bulk X,,; whose boundary is the world volume M ;. In
fact, the entire class of anti—de Sitter (AdS),,, theories
coupled to boundary conformal field theory belong to such
a class. With the proper supersymmetry instituted in these
Sinflow» One could ask what happens to the supersymmetry
variation of the combined action 6. V.

We will see in the next section, example by example, that
once all these terms are delineated, we find that not only
gauge invariance is restored

So(8. W) =0 (4.21)

with W = W + Siinows but the combined action is fully
supersymmetric,
oW =0. (4.22)

Thus, let us call this mechanism of anomaly cancellation a
“supersymmetric anomaly inflow.”

V. SUPERSYMMETRIC ANOMALY INFLOW

In the previous section we considered supersymmetric
theories with an anomaly

—5gW = /w;”(@;A,f), (5.1)

for which the supersymmetry Ward identity acquires
unexpected terms on the right-hand side,

oW = / 1 W (A F) + (52)

with the usual anomal%r] descent relating the two right-hand
sides as & 9W 441 = dw, . Although we have discussed this
explicitly for gauge/ﬂavor symmetry here, a similar struc-
ture arises for R-symmetry and diffeomorphism anomalies,
which we will revisit in later sections.

On the other hand, given a canceling anomaly inflow
term Sipow, W€ saw that the combined effective action
W =W + S;inow Satisfies

oW =0, 6o (8. V) = 0. (5.3)
Given that the two right-hand sides of 6W above originate
from a common gauge anomaly, it is quite natural to
expect that

sV =0, (5.4)

as long as the inflow action is properly supersymmetrized.
In this section, we demonstrate this mechanism for several
examples where a supersymmetric Si,q,w 1S available.

Note that this means that there are alternate ways to
compute the right-hand side of (5.2), without having to
solve directly the WZ consistency conditions. In a sense,
such an alternate computation via S;,n,, can be regarded
as a supersymmetrized anomaly descent especially when
Sinflow = Scs- This is not to say that one can always achieve
the same kind of universal procedure as in the usual
anomaly inflow, since the crucial supersymmetrization of
Scg 1s often cumbersome. One complication is that, with a
physical inflow mechanism, given the typically higher
dimensional nature of Sj,qow, both supersymmetry and
the field content thereof tends to be enlarged, beyond
what is strictly necessary for W. In the next section we
explore a more streamlined and mathematically compact
version of the supersymmetric anomaly descent, inspired
by these inflow phenomena. As we show at the end of that
section, however, the two approaches coincide for certain
multiplets, with the descent procedure determining the
supersymmetric Chern-Simons form implementing the
codimension-one inflow.

In the concrete examples of supersymmetric anomaly
inflow that we present in the remaining of this section, we
wish to emphasize the utility of such a mechanism as an
efficient way to determine the form of supersymmetrized
anomalies. To this end, we flip the sign of the Chern-
Simons terms relative to the discussion above, Siyfow =
—Scs, in the following such that

5€W - 5€SCS' (55)

A. Gauge/flavor anomaly inflow

The first example of a supersymmetric anomaly inflow
we consider is in the context of flavor anomalies in d
dimensions. The anomaly inflow mechanism we focus on
relies on the existence of a suitable supersymmetric Chern-
Simons action in d + 1 dimensions. Higher codimension
inflow may also be possible in certain cases, such as on the
world volume of D-branes, but we will not consider this
mechanism here.

A supersymmetric Chern-Simons action for a given gauge
multiplet in d + 1 dimensions determines the supersymmet-
ric flavor anomaly in d dimensions for any theory that can
consistently couple to the background gauge multiplet
obtained from that in d + 1 dimensions by dimensional
reduction. The flavor anomalies for all multiplets with less
supersymmetry can be obtained by consistently truncating
the resulting d-dimensional multiplet.

However, given a theory with A -extended supersym-
metry in d dimensions, there may not exist a corresponding
Chern-Simons action with the same amount of supersym-
metry in d + 1 dimensions. In such cases, the d-dimensional
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gauge multiplet must first be embedded in one with a larger
amount of supersymmetry, for which a supersymmetric
Chern-Simons action does exist. This situation arises, for
example, for theories with (p,g) supersymmetry in two
dimensions when p # ¢. In order to cancel the anomaly
through anomaly inflow in such cases, the (p, ¢) multiplet
must be embedded in the closest nonchiral one, namely
the flavor multiplet with (p’, p’) supersymmetry, where
p' = max(p, q). As long as p’ < 3, there exists an N = p’
supersymmetric Chern-Simons action that provides an
anomaly inflow mechanism for the (p’, p’) anomaly in
two dimensions. The original (p, ¢) anomaly is obtained by
multiplet truncation.

1. 3D to 2D anomaly inflow

The simplest examples of supersymmetric anomaly
inflow arise for d = 2, since the relevant Chern-Simons
actions in three dimensions are typically known. The most
general 3D Chern-Simons action without matter multiplets
involves the N = 3 vector multiplet [52,53], which con-
sists of a gauge field A, three Majorana gauginos A T=1,
2, 3, three real scalars ¢/, and real auxiliary scalars D', as

|

5Q(€)01 = SIJKEJ/‘LK - EJ)(,

Sole)A, =&y, A,

well as a Majorana fermion y. All fields are in the adjoint
representation of the gauge group.6 As we now show, the
N = 3 supersymmetric Chern-Simons action provides a
supersymmetric inflow mechanism for the flavor anomaly
of the /' = (3, 3) vector multiplet in two dimensions and
hence for any A = (p, ¢) vector multiplet with p, ¢ < 3.

We should clarify at this point that the flavor anomalies
for nonchiral theories, such as N' = (3, 3) theories in 2D or
N =2 ones in 4D that we consider below, are somewhat
formal and discussed only as nontrivial solutions of the WZ
consistency conditions. Their coefficients vanish in all
Lagrangian theories, as well as in non-Lagrangian theories
obtained through renormalization group flows from
Lagrangian ones, due to ‘t Hooft anomaly matching.
More relevant to the present discussion, however, is the
fact that such anomalies for nonchiral multiplets appear as
an intermediate step for the computation of supersymme-
trized flavor anomalies in chiral theories via anomaly
inflow.

The supersymmetry transformations of the ' = 3 vector
multiplet are parametrized by three real Majorana spinors €/
and are given by

1 .
So(€)dg = 5 (r"e")oFpu + €l jxee D + €y (r'€’) Do — ilo’. 0/]ez,

2

i
5Q(€))(a = —(:'iDI + (yﬂel)apﬂgl - ESIJK[0J7 gK}gé,

So(e)D! = & jy &y DK + &y Dy — i[e’ 2. 6] + il + & X o)) — ie! jx[€x. K],

where we follow the spinor conventions of [54] and we
have suppressed the gauge group indices. The gauge-
covariant derivative and field strength are respectively

D, =0, —iA,.], (5.7)

Fo = 0,4,

uw A, —0,A, —i[A, A, (5.8)
Moreover, the indices I, J, K are raised and lowered with
the Kronecker delta &'/, §,;,. Notice that "X = ¢,
denotes the Levi-Civita symbol in R3 spanned by
the 7, J, K indices, while & is the Levi-Civita symbol
in R'2,

The =2 and N =1 vector multiplets can be
obtained from the AN =3 one by setting specific

°In this section we use Hermitian generators for the gauge
group, while we find it convenient to formulate the anomaly
descent in terms of anti-Hermitian generators. The two choices
are related as 155 = ity .

(5.6)

components to zero. The resulting nonzero components
for these multiplets are

SUSY parameters Nonzero components

2 el, €2 Ay, 03, D3, 4y, 4y
1 €I A/u }']

N
N

It is straightforward to check that these are consistent
truncations of the off-shell supersymmetry (SUSY) trans-
formations (5.6).

Using the 3D identities

5fK8L]PQ + 5I[P€Q]KL = 0,

Sleer)"C + 8hen + 5[%(8””’ =0, (5.9)
one can show that, together with rigid translations 6, (&) =
&0, and gauge transformations, which act on the vector
multiplet fields as §5(9)A, = D,9, and 65(9) = i[9, ] for
all other fields, the transformations (5.6) close off shell and
obey the algebra
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So(er). Sg(e2)] = 6p(&) +86(9).  (5.10)
with the composite translation and gauge parameters given
respectively by
é’u = 2@57/”6'1], 9= —fﬂA” - 281][((556‘1/)61(. (511)
Notice that & is constant (as required) while J is not, due to
the explicit field dependence.

The N = 3 supersymmetric Chern-Simons Lagrangian
is [53]

k 21 -
ﬁCS = Etr <K8I4V/) <A”8DA/) - ?AﬂAl/A/)> - /II/I[

+)?){—201D1+%81]K61[0J,6K]>, (512)

where k is the Chern-Simons level, while xk = 41 para-
metrizes a choice in the 3D Clifford algebra through the
identity

v

y = —ketly,, k= =+l. (5.13)

A generic variation of the Chern-Simons Lagrangian
(5.12) takes the form

k —
SLes = (ke (9, (A,0A,) +6A,F, ) =261,

+2)?5)(—2615D]—601(2D]—iSIJK[UJ,GK])). (514)
|

SQ(G)GI = 81‘][(@]/1[( — él)(,
5Q (6) 0= él}/ﬂﬂl,
So(e)p = ke'y, A,

1, .. . .
5Q(€>/1(11 =5 (yﬂyel)aFﬁlf + K<y”}/*€1>(1Dﬂ¢ + €IJK€£DK + EIJK(7”€J>{1D 0K

2

- iKE’IJK(]/*GJ)a[(ﬁ, O-K] - Z[G

Specializing this variation to gauge and N/ = 3 supersym-
metry transformations, we find that in both cases (5.12) is
invariant up to a total derivative term, namely

5G('9)’CCS = %K&‘”’“paﬂtr({)@DAp),

k
(SQ <€)£CS = Eaﬂtr(KEMyp5Q<€)ADAP

- 261(8111(@]}’”/11( + é[}’”}()) (515)

The boundary term resulting from a gauge transformation
matches the usual non-Abelian anomaly, i.e., the bosonic
part of the 2D flavor anomaly. As we now discuss, the
boundary term arising from supersymmetry transforma-
tions corresponds to its (3,3) supersymmetric completion,
i.e., the (3,3) supersymmetry completion of the anomaly in
the WZ gauge, which follows from the WZ consistency
conditions.

Upon dimensional reduction to two dimensions, the 3D
N =3 vector multiplet reduces to the 2D A = (3,3)
vector multiplet (see, e.g., [55] for the Abelian case). This
has the same field content as the 3D AN =3 vector
multiplet, except that the 3D gauge field gives rise to an
extra scalar: A, = (A;, ¢), where f = 0, 1. The supersym-
metry transformations of the 2D N = (3, 3) vector multi-
plet follow from the 3D A = 3 transformations in (5.6),
namely

7"

,O'J]Sé,

i

5Q(€))(a = —elD; + (7’261)(17),201 - iK(7*€I)a[¢’ o] — EelJK[GJ’UK]eé,

So(e)D! = &l jx &y DK — ixe! ;g &y [p. AK] + ey Dy — ixe'y. [ . 1]

—i[e'a;, o]+ i[e'd + & 6] — i€l jx[e'y, oK],

where y, =«ky?> =ky, is the chirality matrix in two
dimensions (also denoted by y3; see [54]). These satisfy
the algebra (5.10) with 2D parameters

5/2 — 26‘5}/’2611, 19 = —éﬁAﬁ — 2K€£J/3€11¢ _281.]1( (éée'{)ﬁK

(5.17)

(5.16)

[

When expressed in terms of the 2D vector multiplet, the
symmetry variations (5.15) of the A/ = 3 Chern-Simons
action provide—by construction—a solution of the WZ
consistency conditions for the 2D (3,3) symmetry algebra.
We therefore conclude that the (3,3) flavor anomaly in two
dimensions takes the form
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S(9W = fgﬁﬁ / Pxtr(90,4,),
v/

k s
5Q(€)W = 4—/ d2x tr(é'yng(e)AﬁA/;
T

— 20’ (k€7 A% + &17.0)). (5.18)
where 8’('2”) = Keif)”. This generalizes known results for 2D
gauge anomalies for theories with less supersymmetry
[10,12,14]. The (p,q) flavor anomaly for any p, ¢ <3
can be obtained from the (3, 3) anomaly in (5.18) by a
suitable truncation of the vector multiplet.

2. 5D to 4D anomaly inflow

N <2 flavor symmetry in four dimensions presents
another example of supersymmetric anomaly inflow. The
N =1 off-shell gauge multiplet in five dimensions
[54,56-59]’ comprises a gauge field A,, a symplectic
Majorana spinor A that transforms as a doublet of the
SU(2) R-symmetry group, a real scalar ¢, and an auxiliary
real symmetric tensor Y/ = YJi_ all in the adjoint repre-
sentation of the gauge group. Following again the con-
ventions of [54], the supersymmetry transformations are

1_. i_.
So(e)As = Ee’yﬂﬂ?, bp(e)o = Ee’ﬂ?,

3 1. '
So(e)Y!V = —J&! (DA + if 0" 2)),

. 1 o .
Sole)ii* =~y Fiyel - L Dotel — Yiide;,  (5.19)

2
|

where the covariant derivative and field strength of the
gauge field are given by

D,¢* = (D,)* = 0,¢" —I—f,,C“AZgbC, ¢* = any field,

(5.20)

F4, = 0,Af — 0,A% + [ "AbAL. (5.21)
Together with rigid translations, 6, (&) = &0, and gauge
transformations that act as 65(89)A;, = (D,9)* = 9,9 +
Frc"AL9¢ and 56(9)p* = [, 9”9 on all other compo-
nents of the multiplet, the supersymmetry transformations
(5.19) satisfy the algebra

1
— pall
¢ = &r'en

[6o(e1), 0p(€2)] = 8p(&) + 66(9), 3

99 = —puAY — %égelioa. (5.22)

An important subtlety in five dimensions is that there
exists no pure Chern-Simons action for the vector multiplet.
N =2 supersymmetric Lagrangians are specified by a
prepotential F (o), which couples the Chern-Simons and
Yang-Mills parts of the action. Although a pure Yang-Mills
Lagrangian is obtained from a quadratic prepotential, a
supersymmetric Chern-Simons Lagrangian requires a cubic
prepotential and necessarily contains a Yang-Mills part. In
particular, the supersymmetric Chern-Simons Lagrangian
takes the form

1 1, 1 y
Lcs = <— 1 Fé, Fbw — Ewmib - EDﬂG“D”Gb + Y5, Y””> Fab

K 1 1
+ (ﬂ A (FSPF; + facPALA (— ARV fgCA£A2> )

I-. . i‘m ; I ca, b7i
_gﬂl“y”yFZyﬂ:’ _il lthzC"j +Zfde 00’2 dﬁf)‘ytabcv

where again k = £1 parametrizes a choice in the repre-
sentation of the Clifford algebra in five dimensions through
the relation y#*7°% = —ixet’°*. Moreover, F ., F b de-
note respectively the second and third derivatives of the
prepotential 7, which we take to be

"To avoid cluttering the notation we use y,v,p, ... to denote
both 4D and 5D spacetime indices, since the distinction should be
clear from the context.

2

(5.23)

k
F(o) = Mdubca"obac, (5.24)
where d,;,. = tr(¢,{t,,1.}) is the completely symmetric
rank-3 invariant tensor on the Lie algebra of the gauge
group and k is the gauge/flavor anomaly coefficient that
depends on the microscopic theory.

The prepotential (5.24) is chosen such that the gauge
transformation of the Chern-Simons action (5.23) coincides
with the bosonic part of the consistent gauge/flavor
anomaly in four dimensions upon the identification

e’(‘:f“ = Kg?g‘;’ ?? namely
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k a.ppe N = 2 symmetry algebra in four dimensions and therefore
06(9)Les = 4872 d'xd gy 9°e"” Ou determine the N = 2 supersymmetric flavor/anomaly.
1 A lengthy computation using several identities for 5D
X (A,l,’apAf, + 1 f defjA;‘Ag) . (5.25)  symplectic Majorana spinors (see Appendix A of [57]) and
the Lie algebra relation

The supersymmetry transformation of the Chern-Simons

Lagrangian (5.23) is also a total derivative, which we deavfea” =0 (5.26)
determine next. By construction, the two symmetry trans-

formations of the 5D supersymmetric Chern-Simons action  determines that the supersymmetry variation of (5.23) takes
provide a solution of the WZ consistency conditions for the  the form

|

1 _. . 1 .
Gol€)es = 0, | (=3 @) P = (@)Dral = S (i

1 _. .
- g (5’7””/1?)1?30 - i (él}'m%?),Duab) fab

K 3 1-.
e et <5Q (e)A7 <2A230A5 + Zf d"AGAGAL + gﬂ'%azﬂf)
1 patl a\(7Jj c
+ ﬁ (€ 714)’1;' )(’bearﬂj)> fabc] . (5.27)

|
Once expressed in terms of the 4D A = 2 multiplet fields ~ components A of the 5D gauge field combine with the
arising from the dimensional reduction of the SD N = 1 scalars ¢ into a complex scalar: X¢ = % (A —ic?).
vector multiplet, this variation coincides with the super-  Moreover, the 5D symplectic Majorana gaugino reduces
symmetric completion of the A" = 2 gauge/flavor anomaly  to an SU(2) doublet of either chiral or Majorana gauginos
in four dimensions. in four dimensions. Following [54], we decompose the 5D
The 4D N = 2 vector multiplet possesses the same field ~ gaugino and supersymmetry parameter in terms of chiral
content as the corresponding 5D multiplet, except that the  spinors in four dimensions as (see Appendix 20.B in [54])
|

a __ ja a Ja __ 7ja 2a a _ a ia
/11- = _/1(4)817 +/1(4)i’ /11- = 1(4){3]'1' + /1<4) /1(4)1- = PLA'(4)1" j. =

€, = €f4)€]’i + €(4)i’ € = 6{4)8]'1' - 6(4)1', €(4)i == PR€(4)i7 €(4) == PL€E4>, (528)

i’

where P, =1 (1 - K']/*) and Pp = 5 (1 4 «y,) are the 4D chirality projectors and y, = —ky*. In particular, ei 4)» €4y and /ll(ﬁ),
/1(“4)1. are charge conjugate pairs so that 624) + €@4); and /122) + ’1((14):' are Majorana.

Inserting this decomposition in (5.19) and dropping the subscript (4) leads to the 4D N =2 supersymmetry
transformations

1._.
5Q(€)X“ = Eélﬂ?,

| . . 4
Sp(€)A¢ = DX%; + Zyﬂ”Fﬁ,,sijef + Y€l + XX f el

1 . o
5Q(€)AZ = Egljéiyﬂﬂ? + Eé‘ijé’y”ﬂ]a,
N U R o
Sp(e)Yie = Eé“?ﬂ”” + £ XPelikg a4 58("‘81)161(2/1,“ — fr o XPElas e, (5.29)

where now u, v = 0, 1, 2, 3. Together with gauge transformations and translations, these satisfy the same algebra as in five
dimensions, but with composite parameters
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1_.
&= Eé’zy"eli +Hec., = —8AL + X eVeye  + X, €z€1 (5.30)

We can now evaluate the symmetry transformations (5.25) and (5.27) of the 5D Chern-Simons Lagrangian in terms of the
4D N = 2 vector multiplet components in order to obtain the N = 2 supersymmetric gauge/flavor anomaly in four
dimensions,

k 1
(MW T d* xd 96770, (Af,’@,,Aﬁ; + Zﬂ,fA,’jAgAf}) ,
k - oo . -
So(e)W = s d*xd . {i(XC - X°) (gij(é’y”ﬂ/“)DyXb + &V (é,-y”/lj?)D,,X”
JT
=i = qia Ye =jja = 1ja\yi 1 cqa o qia
- (el/l? - 61%1 )fdebXdX + (ej/li + 61%] )Yl/) - Z( y[) j’ + € },/J A ) /)o’>
1 vpot | § Al 2Aba AS 3 bAcAdAe 1 Zib ¢ ﬂb /11'0
+§8 Q(e) v pYo T+Zfd€ pilo r+§ Vpor +8 17/)01
1 _.
+ 3_2 (él}/w)l —€; ]/y/;l )(‘c"kl/{kbyﬁfilc + 8kl/1hY{f1)“L)>:| (531)

This generalizes well-known results for the NV = 1 gauge/flavor anomaly, which we can easily recover from (5.31) through
a truncation of the A/ = 2 multiplet.

The 4D N = 1 vector multiplet with a Majorana gaugino and the corresponding supersymmetry transformations can be
obtained from the N' = 2 multiplet by setting

e =¢€"'=0, M=2r=0, X“=0, yMe=y? =0,
e=e, + €, 4= 08+ A4, D% = —2jxY'?a, (5.32)

Inserting these in (5.29) results in the ' = 1 supersymmetry transformations

1 1 i i
So(€)Ay = —Eey#l“, Sp(e)A* = <4_1 yFL, + Ey*D”> €, 5p(e)D* = Eey*y”Dﬂ/l“, (5.33)

which satisfy the algebra (the subscripts 1 and 2 here should not to be confused with the SU(2) indices of the N = 2
multiplet)

[60(€1).00(€2)] = 6p <1 ezy”q) + 66 <—;€2y"€1A”> . (5.34)

Evaluating the transformations (5.31) on the truncated multiplet (5.32) results in the ' = 1 supersymmetric gauge/flavor
anomaly in four dimensions [8—10]

[
= g | dhxda9e 70 <A58,,A° +3 fde‘A,’jA,‘fAf,>,

3 1-
T d4xdabce"””"5Q(e)A,‘j <2A£’8pAf, + ZfdebA,ngAf; + g/lbym,/lc) . (5.35)

B. Current multiplet anomaly inflow

We now turn to anomaly inflow for local supersymmetry, which forms an algebra with diffeomorphisms, local Lorentz
transformations, and R symmetry. The gauge fields corresponding to these local symmetries comprise an off-shell
supergravity multiplet, which couples minimally to the current multiplet containing the stress tensor, supercurrent, and R
current.
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TABLE 1. The field content of the off-shell A/ = 6 conformal
supergravity field content. All SO(6) indices I,J,K = 1,...,6
are totally antisymmetrized. Notice that all components are
neutral under the U(1) factor of the R-symmetry group.

Field e, vl BY B, K ) EV pV

Weyl weight 1 % 0 0 —% —% -1 =2

SU(4) representation 1 6 15 1 20 15 15
0 0

6
U(1) charge 0o 0 o0 o0 0 0

For a fixed amount of supersymmetry in a given space-
time dimension there exist different off-shell supergravity
multiplets that differ in auxiliary field content and the
symmetries they gauge. The gravity multiplet with the
minimal auxiliary field content is off-shell conformal super-
gravity that gauges the entire superconformal group and
includes Weyl and S-supersymmetry transformations. Any
other off-shell supergravity multiplet with the same amount
of supersymmetry can be obtained by coupling specific
matter multiplets to conformal supergravity and imposing
suitable gauge-fixing conditions. This results in a larger field
content relative to conformal supergravity, but less sym-
metries due to the partial gauge-fixing conditions. For
example, old minimal [60-62], new minimal [63-66], and
16 + 16 [67—69] supergravities in four dimensions can all be
obtained in this way from N = 1 conformal supergravity
[70-73]. These couple respectively to the Ferrara-Zumino,
R-, and S-current multiplets [74], while conformal super-
gravity couples to the conformal current multiplet.

Gravitational and Lorentz anomalies exist in d = 4k + 2
dimensions and can be obtained from a Chern-Simons action
in d = 4k + 3 dimensions [5,6]. Like flavor anomalies,
gravitational and Lorentz anomalies result in an associated
Q-supersymmetrized anomaly, which contributes a local
term to the divergence of the supercurrent [10,20,21]. For
the minimal A/ = (1, 0) supergravity in two dimensions, the
supersymmetric completion of the gravitational anomaly has
also been shown to follow from a supersymmetric gravita-
tional Chern-Simons action in three dimensions [20].
Another local contribution to the divergence of the super-
current arises in all even dimensions in the presence of an
R-symmetry anomaly [24,26-28,30,31]. The R-symmetry
anomaly can be obtained from a Chern-Simons action in
d + 1 dimensions too, and one expects that its supersym-
metric completion should follow similarly from a super-
symmetric Chern-Simons action.

In this subsection we discuss the gravitational/Lorentz
anomaly of the (p,g) conformal current multiplet in two
dimensions and, in particular, all mixed anomalies it gen-
erates. As we will see, there are two effects that control the
structure of these anomalies. First, local supersymmetry
requires that the gravitational/Lorentz and R-symmetry
anomalies be considered in tandem, since the underlying
algebra mixes the corresponding symmetries. Second, both

TABLEIL Consistent truncations of the N” = 6 Weyl multiplet.
Nonzero components
N =5 e, wh, BI, JIK 26 El6 Do
no o u o ’ s s

N =4 eﬂa’ l//}I“ BPItJ’ }'IJK’ E56, D56
N=3 e, yl, B, 212

— a 1 12
N =2 s Wy B,
N=1 e s Wy

the gravitational/Lorentz and R-symmetry anomalies pro-
duce mixed anomalies for all other symmetries of the
multiplet. Our goal here is to obtain all these anomalies
through an inflow mechanism from an off-shell supergravity
Chern-Simons action in three dimensions [75-83].

As a side comment, we note that all anomalies of the
(p, q) conformal current multiplet in two dimensions may
alternatively be obtained holographically from the Chern-
Simons action of the (on-shell) (p, ¢) AdS; supergravity of
Achucarro and Townsend [84,85], which gauges the super-
group OSp(p|2;R) x 0OSp(¢q|2;R).® Such a holographic
calculation would reproduce not only the gravitational/
Lorentz anomaly and the resulting mixed anomalies
[87,88], but also the Weyl anomaly [89] and its super-
symmetric completion [24,25]. However, here we are
interested specifically in obtaining the current multiplet
anomalies through anomaly inflow, and so we focus on the
gravitational/Lorentz anomaly.

1. 3D to 2D anomaly inflow

The maximal off-shell conformal supergravity (Weyl)
multiplet is the N' = 8 multiplet [77,78], but a Chern-
Simons action is known only for up to N' = 6 [82,83]. The
R-symmetry group of these multiplets is SO(N') with the
exception of the A =6 multiplet, in which case it is
enhanced to SO(6) x U(1) = U(4). Upon dimensional
reduction to two dimensions, the 3D gravity multiplets
reduce to (N, N) off-shell conformal supergravity in
two dimensions, which gauges the OSp(N|2;R) x
OSp(N|2;R) conformal group. A peculiarity of 2D
supergravity is that a single SO(N') gauge field gauges
both left and right copies of the SO(N), x SON)gx R
symmetry [90].

We follow the component formulation of [82] and focus on
the N' = 6 Weyl multiplet since it is the maximal one for
which a Chern-Simons action is known. All multiplets with
less supersymmetry can be obtained by suitable truncations,
as shown in Table II. The field content of the off-shell A" = 6
Weyl multiplet consists of the dreibein e,“, six Majorana
gravitinos yy, I=1,...,6, and the SO(6)x U(1)
gauge fields, respectively B)/ and B,, as well as two sets
of auxiliary Majorana spinors /X and 1/, and two sets
of auxiliary scalars EY and D". The SO(6) indices

¥See [86] for an early special case of such a derivation.
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I,J,K =1, ...,61n all fields are totally antisymmetrized. The Weyl weight and R-symmetry representation of all components
are given in Table L

The local symmetries of the ' = 6 Weyl multiplet comprise diffeomorphisms, parametrized by the infinitesimal vector
field &(x), local Lorentz transformations, 1°(x) = —2%4(x), Weyl rescalings, ¢(x), SO(6) x U(1) R-symmetry trans-
formations parametrized by 6"/ (x) = —6'!(x) and 6(x), as well as Q- and S-supersymmetry transformations, parametrized
respectively by the local Grassmann-valued Majorana parameters €’ (x) and #/(x). The infinitesimal transformations of all
fields under the bosonic symmetries take the form

_ b
pe,t = &0, + 0,8, — e, + oe,”

1 1

Sswiu = E 0wy + 0,80 = dar "Wy + 5 09, = 0"y,
533” fva BIJ +8 5”3” + a 91] +BIK9KJ +BJK91K

0B, = &0,B,+ 0,&'B, + 0,0,
5 iIJK éya lIJK iiabyub/llll( _ %GA.HK _ GILALJK _ gleILK _ QKLAIJL’

1 3

53/1[ — 5”8,,/1, _ Zﬂabyabﬂl _ 56/11 _ QILXLJK’
§BE1J — éva EIJ _ UEU _ QIKEKJ _ QJKEIK’
(SBDH 51/ DIJ _ 20DU _ QIKDKJ _ QJKDIK’ (536)

where we have used the shorthand notation 6z = 6, (&) + 6, (4) + Sy (o) + 5 (6).
Under Q supersymmetry the components of the Weyl multiplet transform as

1_
Sple)e,* = Ze’y“l//f,, 5Q(€)1//,[4 =D,

IJKLMN = LEMN

1
Sp(e)BY = —elly! 4 Ky JK 4~ ¢ ek
Q( ) Wﬂ+ 2\/’ 7; 4\/5 l//

1 _ 1
5Q(€)B” :ﬁel}’”ﬂl 2\/.

3 A 1 1 A 3
S(eIK — _ well /K] 4 2 (IUKLMN (L DMN | 2 (JUKLMN LTy EMN _ L ElJ EKL],
ole) 4\/57/ G’ + 5€ € +48 r'e"D, 26

¢ WZEIJ

1 A 1 A 1
Sl = — welG, + el DY — ~yrel D, EY + l/KLMN oJ EKL EMN
o == BT 2 PE e A

1 1

5o(€) EV — —gli))) _ _ (lUKLMNGK )LMN
2 24
1 1

So(€)DV = S + 5 elKLUNGK JLN, (5.37)

—_—

55(’1)6;4“ = 0’ 55(’1)‘”{! = 7/;;’71’ 55(’7)8{4] = _’_7[11//;]4]’

\S]

1
5S(7/])B/A — 0’ 5S(”))“”K — _ 7£IJKLMN’,ILEMN’ 55(;7)/1 7’]JE”

2
1_ 1 _
Ss(n)E” =0, Ss(n)DV = — ZTIU’M -8 gl KLMN K HLMN (5.38)

Following [82], we have introduced the abbreviations
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1
Wit = 4 7 Wpe Wi = Dy,
MK = %yﬂﬁ” K 4 1 gl /KLMN L pMN _ 3 mnpoi JKIMN EPO iz MEIK],
1
,%r — E},ﬂpﬂly _ V”I/I,J,+EIJ + 2\/§AIJKEJK7
AL] I [ Jj _ L —K. lJK _ L kimn-k L MN
G/w = G;w + 21//[/4’// 1+ \/il//[/ﬂ/lz]/1 4\/28 Wﬂ Yy E
A 1 1
G/w = G;w 7‘!’{” /11 + %WﬂWJE”
o 1 1 1
D,EV = D,EV — 5 U - 5 gl/KLMN G K )LMN
@” AUK — D jIK 4 2 3 ypaWL GJK] 1 = (JKLMN L MN _ 1 E.IJKLMN},pw’l;fDAp EMN 4 =yl ElJ KL
442 2 4
A 1 A 1 1
D ﬂl =D /11 + PO IG DIJ + " J'D EI.I é.IJKLMN JEKLEMN’ 5.39
, WA BT 27V /5 W (5.39)
I
where G/ and G,, denote the field strengths of the 4 5 5 3
R—SYmme’gy gauge ”fyields Ryspo + Rowo + Rupuo = 2 (Yuspo + Lo + Topo).
A 3
Ryyj=--" ., 5.45
Gl = 9,BY —9,BY + BIXBK/ — BIKBK/, e 54)
G, =090,B,-0,B,, (5.40)
where
and the covariant derivative D, includes the R-symmetry
transformation of the fields, e.g., TH,,. = ‘/_’fpyﬂ'/’;la o (5.46)

1

D¢’ = (8,, +2

w,m,,y“b> el +BlJe!. (5.41)
The quantity @,,,(e,y) is the torsionful spin connection

— Wyl
(5.42)

R 1 _ _
Dyap (€. ¥) = @uap(€) + ¢ (Wly i, + whrawh,

with @,,,(e) denoting the torsion-free connection. In
particular,

1
Dyeua Dv ;4 - Zl//yy l//u (543)
Moreover, the Riemann curvature of @, (e, y)
R,%, =2(0,,0,°, + &),° @,°,) (5.44)

satisfies the Bianchi identities

The key reason for introducing the torsionful spin con-
nection is that it transforms nicely under both Q and S
supersymmetry, namely

R 1_
80(€)Duap = = 7 & (YuWap + YaWyp = V5¥ha)

. l_
55(’7)60;41117 = —Zﬂl(ifabll/ﬁ + eﬂaWi - eﬂbl//tlz)' (547)

The local transformations of the ' = 6 Weyl multiplet
close off shell. In particular, the commutators between the
fermionic transformations satisfy [78]

[60(€1),80(€2)] =8p (&) +6L.(4) +r(0) + 0 (') +65(n'),
[60(€),65(n)] = 6w (0) +6, (V) +6x (') +5(n"),
[65(11),65(12)] =0,

(5.48)

where the composite transformation parameters on the
right-hand side are given by
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1_ N
fﬂ = Zé‘éyﬂé‘{, lab = _{:ﬂwﬂah’
1
91] — _ yBlJ + SIJKLMNEJ(G,LEMN’
5 " 4\/§ 2*1
1
0= —EB — éKGLEKL, €/I:_;4 [,
¢'B,, 222 &'y
/171 UL, PO 1 1—[1 J] Poy,J 1 =K LAIKL 1-(IMJ)2/)6 g
n _257/ yﬂWpﬂ_EGZGIY l//pa_z\/z€2€l _EGZ},GI ( 4 }/;4+7//47 )l//pav
1_ 1_ 1_
o= _Zelnl7 j’izb — Zelyabnl’ 9/1] — —56[17’]1],
1 _
0 =0, " =gre i) (5.49)

A supersymmetric Chern-Simons action for the A= 6 Weyl multiplet was found in [82,83]. In the component
formulation of [82] it takes the form

k1 T o
Lesg = in {5 e (wﬂababwpba + §wuaha’vbcwpca> + Zel//,,,,y/’ Vo

2
— e (B,’/ 9,B) + gB{/ BJXBX ') —2¢"B,0,B,

+ 1 eIVK QUK _ 207031 _ 8eDIVEN 1 1 ee!l /KLMN plJ pKL EMN

3
+ é cel TKLMN Z”K}’”Wﬁ EMN 4 2 e/_l’y”y/,’, El
1

+ e‘/_//ItV””l//f (EIKEJK _ Z5IJEKLE1<L)] ’ (5_50)
where e = det(e,”) and we have chosen the convention x = 1 in (5.13). All off-shell Chern-Simons actions for Weyl
multiplets with less supersymmetry found earlier [75,76,79-81] can be obtained by consistently truncating the ' = 6
multiplet as indicated in Table II.

The Chern-Simons Lagrangian (5.50) is invariant under diffeomorphisms tangent to the boundary, but all other

symmetries, namely Weyl, Lorentz, R symmetry, and Q and S supersymmetry, result in a nonvanishing total derivative term.
In particular, we find

k 1 R ko . .
Sw(o)Lesg = Ef’way <§5W(g)wuabwpba> = Ef’” paﬂ(a)up 0,0),

0. (A)Lesg = %é’”way (iabapéﬁpha),

Or(0)Lcsg = %8”””8” (6"9,B) —200,B,).

So(€)Lesg = %e’””paﬂ (% 6Q(€)a3,,"b03pba + 8o(€)BYBY — 25, (e)B,,B,,)
i % 9, <_ é el IKLMNGN )KL E1 {9 ol i 31 E1J

+ 26@1}’/”1//£ (EIKEJK _ %61JEKLEKL> ) ,

k L ]
Os(n)Les = i Hro, <§ Ss(md,*yd,", + 85(n)BY B + WIW£/;>- (5.51)
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Upon dimensional reduction to two dimensions these
boundary terms produce the Lorentz anomaly of the 2D
N = (6,6) multiplet and all associated mixed anomalies,
demonstrating that they are obtainable through an inflow
mechanism. The corresponding anomalies for any
N = (p, p) multiplet with p <6 can be obtained by a
suitable truncation of the 3D N = 6 multiplet as indicated
in Table II. For chiral multiplets with A" = (p,q), ¢ < p,
one must first dimensionally reduce the boundary terms
obtained from the A" = p Chern-Simons action to two
dimensions to obtain the anomalies for the N = (p, p)
multiplet, and then further truncate the 2D multiplet
o N = (p.q).

We should stress that the Weyl anomaly in (5.51) is not the
usual 2D Weyl anomaly, but rather a supersymmetric version
of the mixed Lorentz-Weyl anomaly [91]. Moreover, once
truncated to N = 1 supersymmetry, (5.51) reproduces the
result of [20] for minimal Poincaré supergravity. To see this,
one must first truncate the N' = 6 conformal supergravity
multiplet to the AV = 1 one as indicated in Table II, and then
construct the corresponding A/ = 1 Poincaré supergravity
by coupling a compensating chiral multiplet. This is
directly analogous to the construction of old minimal
supergravity in four dimensions from A = 1 conformal
supergravity (see [31] for a recent review of this construc-
tion). The supersymmetry transformation of the Poincaré
multiplet is a field-dependent linear combination of the Q-

and S-supersymmetry transformations of conformal super-

gravity, namely 5l;oincaré(€) =8¢ (€)+05(n=>Se)

auxiliary real scalar field, a component of the compensating
chiral multiplet. As a result, the supersymmetric completion
of the Lorentz anomaly for minimal Poincaré supergravity is
the sum of the Q and S anomalies in (5.51), with all
R-symmetry gauge fields and (conformal supergravity)
auxiliary fields set to zero.

, wWhere S is an

VI. ANOMALY DESCENT WITH
MISMATCHING GHOST

We have seen earlier that, for diffeomorphisms, the
standard anomaly descent mechanism does not quite reflect
the relevant WZ consistency condition: the latter should
hold for full diffeomorphisms, while the usual descent
procedure relies only on the GL(d) rotational part of
diffeomorphisms. Even though the resulting GL(d)
anomaly descent yields the correct diffeomorphism
anomaly [6], it is not entirely transparent how this can
be packaged into the BRST algebra. For the case of the
supersymmetry Ward identity and anomalous terms
thereof, we find another deviation from the standard
anomaly descent, simply because there seems to be no
place for the supersymmetry parameters in the usual BRST
algebra for anomaly descent.

The two share a common need for generalizing the
anomaly descent procedure. We should comment here that

such a generalization of the BRST algebra and the descent
procedure thereof has been studied in the context of
supersymmetrized anomaly in the past. The most notable
work is Refs. [14,15] which inspired the bulk of what we do
here. Another such attempt was given later in Refs. [17,18],
although their choice of the BRST operator and of the ghost
differ from ours. We should clarify that we focus on rigid
supersymmetry and gauge/flavor anomalies here. See
Refs. [92,93], e.g., for recent related discussions in the
supergravity context.

Recall that the usual anomaly descent arises from a
BRST algebra where we replace

d—d+s, A= A=A+, (6.1)
with s2 =0 = (d +s)?, so that
F=F=(d+s)A+ A% (6.2)
Together they lead to
Pyo(F) = Pd+2(ﬁ) = (d+s)wd+l(~'zl’ ﬁ)
= (d+s)wap (A F) (6.3)

for any given anomaly polynomial P, ,. As discussed in
Sec. II, the rightmost expression is now expanded in the
ghost number and equated to the leftmost expression with
no ghost dependence, resulting in the standard descent
formulas.

The generalized descent structure we are interested in
arises when, in addition to s, there exists an additional
BRST odd operator ¢ such that

(d+s+¢)?=0, (6.4)
as well. Of course, s was meant to represent multiple types
of gauge transformation so the point of this additional
operator c is that the action of ¢ on the connections and the
ghosts is not standard, i.e., as in sv = —2. In our actual
examples below, ¢ corresponds either to diffeomorphisms
or to rigid supersymmetry. Note that we do not necessarily
demand that ¢ = 0 or (s + ¢)? = 0 holds either, although
they do hold when ¢ represents diffeomorphisms.

In order to generalize the BRST algebra in the presence
of ¢, we also add a new ghost u and extend the BRST gauge
field further to A + u. However, the relation between the u
ghost and the operator ¢ would be rather different from that
between v and s. We need an additional ghost to define ¢
but these do not necessarily appear as u. In fact, for our two
classes of examples in this section, we will take u = 0,
while ¢ and the ghost parameters thereof remain nontrivial.
Defining the BRST field strength

A

C=d+s+c)(A+u)+(A+u? (65
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where A = A + v as before, this field strength satisfies the
generalized Bianchi identity
d+s+e)G+(A+u)G-GA+u)=0, (6.6)
by virtue of the nilpotency of d + s + ¢. We must empha-
size that we no longer have G equal to F, in view of how the
u ghost, or the absence thereof in examples below,

mismatches the BRST operator d + s + ¢.
It follows that

(d+s+¢)Pya(9) =0, (6.7)
and hence, locally
Pun(G) = (d+s+)wy (A+u.G).  (638)

Subtracting either of the two relations in (6.3) leads to the
identity

(d +s + C)Wd_,_l(.'zt + u, Q) - dwd+1("4’ f)

= Py2(9) = Paya(F). (6.9)

The right-hand side does not vanish, since Q #F in
general. Instead, we find that

G=(d+s+e)(A+u)+ (A+u)?
=F+du+(s+¢)(A+u)+ Au+ud+ u?
=F+cA+su+{vul+cv+cu+du+u (6.10)

The difference G — F depends on the operator ¢ and the
choice of u. Conversely, # may be fixed by requiring the
difference Q — F to be of a specific form.

Given that G — F is nonzero in general, we proceed by
defining

Py2(G) = Pypn(F) = ZXEIQZ—k’

k>1

(6.11)

where the integer k again indicates the (generalized) ghost
number. The nonzero X’s can be viewed as obstructions to
the standard anomaly descent procedure.

As we shall see, in relevant examples, these X’s can be
themselves reconstructed by the action of (s + ¢) and d on
more elemental quantities, to be denoted as Y’s and Z’s
respectively, provided that we remember that we want a
local functional on d-dimensional spacetime. This way, we
once again obtain a generalized anomaly annihilated by

°As mentioned earlier, we shall take u = 0 below, as it allows a
single modification of the descent procedure to cover both
diffeomorphisms and supersymmetry. Another natural choice
for u is discussed in the Appendix.

(s + ¢). The resulting anomaly would receive contributions
from both the left- and right-hand sides of (6.9).

A simplest example of this, it turns out, is the familiar
diffeomorphism anomaly. Although we are accustomed to
computing the diffeomorphism anomaly via GL(d)
descent, we have reviewed in Sec. III how the result
actually obeys the consistency condition of full diffeo-
morphisms. Next, we will illustrate the above generalized
anomaly descent for this example and move on to
supersymmetry later. In fact, our generalized descent
procedure is inspired by an early attempt of constructing
a supersymmetric descent procedure [14-16].

A. Diffeomorphism anomaly revisited

Let us start by considering how the diffeomorphism WZ
consistency condition can be elevated to a BRST form. For
this we elevate £; to an operator ¢, with the unit ghost
number, such that

0=d*=(d+s,)?=(d+s,+¢c)? (6.12)
with s , for now, restricted to the internal gauge trans-
formation. The entire diffeomorphisms are carried by c.

Given how L; = E’g + 5%5(‘1) in general, more care is
needed to define the action of ¢ on the Christoffel
connections and the accompanying ghost. On the connec-
tions

cA=LA=LIA, c['=L.I'+dr(-0x) (6.13)
while the action of ¢ on the ghosts is
cv, = Ly, ext = x¥0,xH, s;x=0 (6.14)

where v, is the gauge part of the ghost. It follows that

c(=0x) = —(-0x)* + L, (-0x) (6.15)
where again £’ treats (—0x) as if the latter is a matrix-
valued function. One can see that ¢ in part plays the role of
s on the diffeomorphism sector but incorporates a full
diffeomorphism rather than GL(d) only.

With this, ¢? = 0 by itself. For instance,

v = ¢(x70,v) = (X0, x*)0,v — (X0, (x+0,v))

= —xx"0,0,v =0 (6.16)
due to the Grassmannian properties of x#. On tensors (as
well as on the Christoffel connection), it suffices to
consider x = y{ + /& with a pair of Grassmannian coef-
ficients y and y’, and a pair of arbitrary vectors ¢ and &,
whereby ¢(x*) = yx'[£, & holds so that
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ceV =Lex)V =L C+)(’-‘§<£)(§+)(’5V)

=X (LiggV = [Le LelV) = (6.17)
With s, being restricted solely to gauge transformations and
c representmg dlffeomorphlsms s, and ¢ anticommute.
Together with ¢? = 0, this suffices to verify the nilpotency
of the BRST operator (6.12) d +s, + c.

On the other hand, different from v, the x ghost
cannot be naturally added to A, since it is really a vector,
hence a directional derivative. Instead we can define
v = v, + (—0x) which includes all gauge rotations plus
the GL(d) rotation generated by diffeomorphisms.
Concurrently it is natural to split

€ =SgL@) t+ ¢/ (6.18)

so that ¢’ retains the purely translational part, £}. Its
rotational part can be treated on an equal footing with s,
leading to the redefinition of the BRST operator

d+s,+c=d+s+¢ (6.19)
with s = s, + 55, (4. One may now take v = v, + (—0x)
and since there is no other ghost that can be added

naturally, # = 0. With such a mismatching ghost, we
construct the BRST field strength

F+cdA=F+c(A+v)
(6.20)

G=(d+s+c)A+ A=

which nevertheless obeys the same Bianchi identity as
above

d+s+¢)G+AG-GA=c[F]
—c/[(d+5)(A) + (A)?] = 0.

We have invoked here (¢/)? + {d +s, ¢/} = 0 that follows
from (6.12).

An immediate consequence of the Bianchi identity is that
an invariant polynomial P, ,(G) satisfies

(6.21)

(d+s+¢)Pyia(G) =0,

Pur(G) = (d+s+c)wy (A.Q).  (6.22)

The two sides of the second equation can be expanded
respectively as

)+ Y X, (xo0 AF),

k>1

Wit (A.Q) =wai (A F)+ Y WY (x.0, A F) (6.23)

k>1

Pyn(G)=Pyia(F

where k keeps track of the net number of ghosts. A pair of
descent towers now follows:

(k+1)
(s +¢)X £z+2 T dXd+1 =0,

k+1 k+1
XE = (s + W+ awl Y (6.24)
Wlth XEJ—&Z = Pd+2(f) and Wd-'Zl

Given (s, +¢)* =
that

k k k-1
(s +¢) /XEJJZZ—k =0- /X£1+)2—k =(s+¢) / Y£1+2—>k
(6.25)

Waii (A F).
0, the first equation in (6.24) implies

for some Y’s that are not d exact. Taking kK = 1 in (6.24) we
obtain

0= (s +c) / Wy (6.26)
M,

a solution to the WZ consistency conditions, which now
due to s + ¢’ =s,+ ¢ are extended to include general
diffeomorphisms 6.

This may appear to be a tautology, since Y() = W) is
seemingly also acceptable, leading to a trivial solution
to the BRST version of the WZ consistency conditions.
However, the point is that a different nontrivial solution for
Y can be found from

(k+1) 5
Zxd-:rl k— Pd+2(g)

k>0

= Pya(F)

! !
=(d+s+ d)Z(Wz(iil—l - Wt(iil—l

10
+ C’waﬁl_l. (6.27)
>0
In particular, the action of ¢’ on the d-form WE;) is nothing

but L, given that all GL(d) indices are summed over.
Using the identity £} (---) = x_d(---) —d(x,---) we find

X7 = (s + )Wy —wi) +dwd - w2 —x w))

+ x,dw! (6.28)

which gives a different, nontrivial solution for YEZI).

We may recall once again that dw((il) actually vanishes
identically once we restrict to the physical d dimension and
coordinates thereof, and the equation (6.28) yields

0:(s+c’)/ (Wf,“—yg”):(wc/)/ W) (34, F)
Mtl Md
(6.29)

or more concretely
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0=(s,+c) (/WEII)(—(?X;F,R;F)+/wgl)(vy;A,F;R)>,
(6.30)

bringing us to the known solution, but via a simpler BRST
route with diffeomorphisms now honestly incorporated.

B. Anomaly descent with supersymmetry

Now we can apply the same procedure to include
supersymmetry in the presence of gauge/flavor anomalies.
For this, we use the same s = Sy V=1, and add

c=q+a (6.31)
where a acts universally as a translation by a constant
vector-valued ghost a*,

a--) = ad,(--) = Ly(---) (6.32)
while q is the BRST version of the rigid supersymmetry.
Let us now use these in the generalized anomaly descent.

Unlike with the diffeomorphism case above, however,
the descent process remains universal only down to the first
term in the supersymmetry completion of the anomaly,
which as we have seen earlier can be expressed in terms of
the BZ current. The rest, which is manifestly gauge
invariant, depends very much on the spacetime dimension
and amount of supersymmetry. We will therefore concen-
trate on outlining the general procedure only up to this
universal supersymmetry completion. This way we can
distill the previous attempts of constructing a supersym-
metric descent formalism. The full form of the supersym-
metry completion of the gauge/flavor anomaly in different
cases can be found in Sec. V or in the literature. See, for
example, Refs. [8—10,14-16].

Let us consider an arbitrary even dimension d and the
minimal supersymmetry thereof. For off-shell multiplets, the
smallest possible field content arises for d = 6 ' = (1,0),
while for one-shell multiplets, one can go up to d = 10,
N =1. As such the fermions would obey a Majorana
condition of some kind. The action of q involves the c-
number-valued Majorana spinor ghost a and takes the form

l_
qA” = —Ea}/ﬂl,
1
ql = é_lyWFZ” I
quv = Zay”aAM,
qa =0,
1_
qat = —Zay"a (6.33)

where the ellipsis denotes transformations involving aux-
iliary fields for off-shell transformations, e.g., as in (5.29).
Let us also note that the translation operator a acting on a
and on « vanishes as these ghosts are taken to be constant.'

Choosing u = 0, the generalized descent for ¢ works
precisely the same way as already outlined. In particular,
for rigid supersymmetry

2 1 1 2 2 1
X7 = s+ o)Wy —w) +aWi - wid) + ew)

(6.34)
where in the last term WE;) depends neither on ¢ ghost nor
on the superpartner. The ¢ operation on it can be decom-
posed into three parts: one is the SUSY transformation q
acting on A and F, the other is also q acting on », and
finally the action of a as a gradient on v, A, and F. In
particular the last a acting on the differential d-form
produces total derivative terms, which will eventually
vanish upon M, integration.

The first part can be written, using the same antider-
ivative [, as

5qA - _dlqA + lqu. (635)

The sign flip [cf. Eq. (2.28)] is due to the fact that /44 not
only carries a single ghost number but also reduces the rank
of the differential form and hence is BRST even. Modulo
terms that drop out upon M, integration,

cwg) = —lqA((swgﬁl (A,F)) +w£ll)(qv;A,F) 4+
= (54 ¢)(—lgaWy) (A, F))

+ cllgawy (A F) + Wy (quiA.F) +--- (636)
since wfll) is linear in v». Thus, we arrive at
2 1 1 0
X2 = (s )W) —w) — 1w
+a(lgaWi) (A F) + Wy (qusA, F) 4o (6.37)

where we again used the fact that a produces a total
derivative term at most. Note that the last term in the first
line is

/quwg‘El — qA-X(A,F) (6.38)

1OElevating these to position-dependent quantities must entail
couplings to external supergravity and is needed if we wish to
extend this to the cases with a diffeomorphism anomaly. We
believe that the same supersymmetric descent mechanism can be
extended to that case as well.
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where X is the BZ current. This is exactly the A-linear term
that we would have found by imposing the mixed SUSY-
gauge WZ consistency condition as in Refs. [8—10].

The question is then, does the second line produce a term
which has the form (s + ¢) acting on something else? A
useful middle step is to separate out those terms with no
gaugino attached by rewriting

(gA) - qX(A. F) + ((aqA) - X(A, F) +w} ) (qu; A, F)).
(6.39)

Now, we know from the above that

1
5/4 = — ayﬂa

i (6.40)

qv =¢ A,

while

1 o
qqu = q<_§a7/p)“> = Ea[}/pv 7 ]aF;u/ = _(fJF)/)

(6.41)

— . 11
where we use ay,,a =0 for c-valued Majorana a.

Combining the two, we find

((qqA) - X(A. F) + w) (qu: A, F))

=—(EF)-X—=(£A)-(V-1)=0 (6.42)

for exactly the same reason how the covariant gauge
current, rather than the consistent current, had to enter in
the diffeomorphism Ward identity as in Sec. IL.

As such, we are left with a single term that can further

contribute to Y1) Its form from Sec. III suggests that the
|

1
qA-X:(d/Z)(d/2+1)/ dt/ Pyoy(A 1GA.F, F,, ... F))
0 M,

answer must be gauge invariant so we hope to find AY (1)

mnv
such that

(@A) -ax(a.F) = [(s+ar) = [aary) (643

where again, a acting on AY ()

i turns into a total derivative.
This, together with (6.42), would precisely elevate the
solutions of [8-10] to the SUSY-SUSY WZ consistency
condition to the BRST level in our generalized descent
context.

For this to work, one necessary condition is that the left-
hand side is itself invariant under gauge transformations. In
fact, we claim that this pattern of qA - qX being gauge
invariant is universal, even though the BZ current X is not
gauge covariant. One can see this formally via the very
definition of the BZ current,

ow

X =Jeoy a

—J=Jeov — (6.44)

whereby

2

5
qA - qX =qA-qJ, — (qA)(qA) - (6.45)

SASA”

The first piece is manifestly invariant with qA being
covariant, while the second, potentially noninvariant piece
vanishes since, componentwise, qA, is BRST odd while,
A, is BRST even.

Given the anomaly polynomial P, ,(F), a sum of
products of symmetrized traces of its d/2 + 1 arguments
as usual, what would be the explicit expression for
qA - qX? We start from the usual transgression formula

for Wfﬁzl and arrive at

(6.46)

with A, = tA and F, = dA, + A? = tF + (£ — t)A”. The integrand of qA - X becomes

Pd+2(qA, th, Ft’ .

1
:zatpd+2(th,th,Ft,Ft, ...,Ft) + -

’Ft) + (d/z - 1)Pd+2(A’ th’th(th)’Fh ""Ft)

(6.47)

""The transformation of A into the auxiliary field can potentially spoil this; however, one can see that the Majorana nature of « is such
that this piece vanishes identically, for the same reason that ay,,, a = 0.
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which gives, dropping the d-exact term in the ellipsis,

(d/2)(d/2 +1)

A-qX =
qa-q 3

/Pd+2(qA,qA,F,F,...,F)

d

(6.48)

with d/2 — 1 F’s inside.
In short, we have shown that the supersymmetry com-
pletion of the anomaly has the universal decomposition

[ o

that is, the standard anomaly, the BZ current contracted
against qA, and the last, invariant part of the supersym-
metry completion that solves

a [ axf) = @225

+ lqAWd(ﬁl - AY( ))

mnv

(6.49)

/ Pd+2(qA,qA,F,F,...,F)
My
(6.50)

where Pd 12 is the anomaly polynomial responsible for
W, s via the standard anomaly descent.

As we warned earlier, the precise solution for AYl(mz
strongly depends on spacetime dimensions, number of
supersymmetries, and on shell vs off shell. For d < 4, we
have already given several answers via Chern-Simons
anomaly inflow. For examples in higher dimensions, such
asd=10and N =1ord=6and N = (1,0), we refer
the readers to Refs. [14-16], which in fact inspired the
general descent procedure we gave in the section.

Even though we started with minimal supersymmetry in
even d, the actual spacetime dimension is flexible. In other
words, the same descent mechanism works as long as the
theory comes from dimensional reduction and truncation of
some higher d’ > d theory with minimal supersymmetry;
we only need to make sure that the y matrices above are
those of the original &'-dimensional Majorana spinor. For
example, one can make use of the d =6 N = (1,0)
example for d =4 N =2, although in this latter case,
the chirality is lost and gauge/flavor anomaly would be
absent. A more interesting example would come about by a
further truncation of supersymmetry as we reduce d’ — d.
In fact the same sort of idea was employed in the previous
section where, for example, we start with anomaly inflow
from a single d = 3 A/ = 3 Chern-Simons to generate the
anomaly of d =2 N = (p, q) for various p, g < 3.

Finally, we should mention again that the supersym-
metry completion of anomalies has been the subject of past
studies, and much of what we outlined in this section has
already appeared in bits and pieces. For instance, an
equivalent form of (6.48) has appeared as early as in
Refs. [8,10], albeit as an on-shell statement and without a
BRST formulation. The present discussion combines and

organizes these earlier works in a single coherent frame-
work, where the central role is played by the Bianchi
identity (6.6) and the generalized Russian formula (6.10).

C. Supersymmetric anomaly inflow
from anomaly descent

A direct connection between the supersymmetric
anomaly inflow mechanism discussed in Sec. V and the
generalized anomaly descent exists if and only if X; ll
satisfies the normality condition (AS), i.e.,

x\), = (s +o)r? 4 azl), (6.51)

for some nontrivial ¥ p +1 W, +)1 IfX, ) 1 can be expressed
in this form, then the second descent equation in (Al)

determines that

0 0 [ 1
s+ )W -yl =dz) -wy). (652)
which allows us to identify WSEI - YS)+)1 with a super-

symmetric Chern-Simons form and Z(l) Wfiw with the
nontrivial solution of the WZ con51stency conditions.

In order to verify that Z() WE,” coincides [up to
(s + ¢)-exact terms, i.e., local counterterms] with the
solution of the WZ conditions obtained earlier in this
section, we observe that the first descent equation in (A1)
implies that

d((s + )z = xP) =0, (6.53)

and hence,

X =(s+¢)z) +az?,. (6.54)

We recognize this as the normality condition on Xff) we
saw above. In particular, we identify

(6.55)

up to (s + ¢)-exact terms. This confirms that the nontrivial
solution of the WZ consistency conditions can be obtained
from the Chern-Simons form WEZ +)1 Y ((1 le and takes the
form

anomaly = ( ) W{(j) = Y( ) WE,I)

+ (s + ¢)-exact terms. (6.56)

To illustrate this connection between supersymmetric
anomaly inflow and generalized descent, let us consider a
simple example from Sec. V. From the supersymmetric
anomaly inflow analysis in Sec. V we expect that X£11+)1 can
be expressed in normal form for all multiplets in d
dimensions that can be obtained by dimensional reduction
from d+ 1 dimensions, without any further truncation.
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The 4D N = 1 flavor anomaly is therefore not a suitable
example, since it must first be embedded in the N =2
flavor multiplet in order to be obtainable from a 5D
supersymmetric Chern-Simons action. The simplest exam-
ple where X£11+)1 can be expressed in normal form is the
N = (1,1) flavor anomaly in 2D and the corresponding
N =1 supersymmetric Chern-Simons action in three
dimensions.

The N = 1 vector multiplet in three dimensions can be
obtained by consistent truncation of the A/ = 3 multiplet,
as we discussed in Sec. V. Changing to anti-Hermitian
generators, ff; — ifly, and scaling the gaugino and the
supersymmetry parameter as

i
e—>§€,

24 > ija, (6.57)

in order to match the conventions of the present section, the
(canonically normalized) N' = 1 supersymmetric Chern-
Simons form is given by

2 _
Qs = tr (AdA +34° = Tix 11), (6.58)

where we have fixed the choice of convention (5.13) by
setting k = —1.
The N = 1 supersymmetry transformations become

1
(sQ(S)A# = —567/}4/1,

1
So(€)d, = 2 (r77€) ,F po» (6.59)

while the complete form of the corresponding BRST
transformations is

1
sA, = D,v, cA, = —55%,/1“ +a“0,A,,

1
sA={4,v}, cl= Z}/’”’F;l,a + a"o,A,
1
sV = —1°, cv = Zc'zy”aA” +a*o,v,
1
sa =0, cat = —Z&y"a. (6.60)

From the definition of the generalized descent variables
X\, in (6.11) it follows that

1 d—+?2 d
X)) === Pya(cA FY),

5 (6.61)

In particular, for d = 2 we have

x\") = 2tr(cAF)
1

= 2tr(<—§&y/1 +di A+ iadA> F>

1
= 2tr<— ~ayAF + d(i,A)F + i,(F — A2)F>

[\

= tr(—ayAF + 2d,(i,A)F + i,F?)

= tr(—ayAF) + dtr(2i,AF), (6.62)
where in the last line we have used the fact that F2 = 0 in
three dimensions.

Moreover, using the BRST transformation of 4 we obtain

- 1 _
ctr(Al) = ze"””tr(c'typ/lFﬂ,,) + 0, tr(a"A4), (6.63)
or in form notation
ctr(A4 * 1) = —tr(ayAF) — dtr(xald).  (6.64)

We therefore conclude that X g”

form as

can be expressed in normal

X = (s + ¢)tr(Ad % 1) + dtr(2i,AF — xaii), (6.65)
from which we read off

YW =tu@ix1), 2\ =t(2,AF —xald). (6.66)
Hence, the supersymmetric Chern-Simons form (6.58) is
given by

Qcs = W — v, (6.67)

in agreement with the general argument provided above.
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APPENDIX: ADDITIONAL NOTIONS

In Sec. VI we have tried to simplify the discussion and
avoid introducing new notions and definitions. However, as
mentioned, our generalized descent procedure is inspired
by earlier work on supersymmetric descent [14-18].

065005-28



ANOMALIES AND SUPERSYMMETRY

PHYS. REV. D 105, 065005 (2022)

We collect here some definitions and ideas that have
appeared in some form in the earlier literature and have
been kept implicit in our presentation.

Without splitting the ¢ part of the BRST operator
d + s + ¢ into parts and reserving s for the gauge trans-
formations only, we can still recover the general pair of the
descent towers for X and W outlined in Sec. VI,

k k+1
(s + C)szlz k1 dXEiJrl )k =0,
k+1 k+1
XEi:l—)k =(s+ )Wiz+>1 k +dWEzJ;< g (A1)
which can be subject to further (nonuniversal)
refinements.

1. Filtration

The descent relations we have discussed so far hold for
any ¢, as long as (d + s + ¢)?> = 0. However, this structure
is enriched when ¢ possesses certain additional properties.
One such case is when s + c is itself nilpotent, i.e.,

s? =0, (s +¢)?=0, (A2)
where generically ¢ # 0, and both s and ¢ anticommute
with the exterior derivative d. This structure is formally
known as a filtration of the BRST cohomology [95,96] and
it is practically very useful for computing the cohomology
of s + ¢, given that of the simpler BRST operator s. For
example, as we discuss in Sec. IIl (see also [43] and
references therein), the gravitational anomaly descent can
be formulated in terms of the simpler descent for a GL(d)
gauge symmetry. More generally, the structure (A2)
ensures that the cohomology of s + ¢ is a subspace of
the cohomology of s (see Proposition 5.6 in [96]). The
same holds for the cohomologies modulo d.

2. Grading refinement

It is often useful to further decompose the coefficients
Xgﬁz_k nd W(d le ¢ in (Al), for example, according to
different types of ghosts. In particular, we may distinguish

between s and ¢ ghosts by writing

(Lk=1) (Lk=1)
d+l k_§ :Wd+1 k> d+2 k= § :Xd+2 k» )

where the first superscript corresponds to s ghosts and the
second to ¢ ghosts. However, such a decomposition is not
always possible. This is the case, e.g., when s and ¢ possess
the nilpotency properties (A2), which imply that

sc+es+c¢2=0. (A4)

It follows that, in this case, unless the stronger conditions

sc+c¢s =0, ¢’ =0, (A5)
hold, the s and ¢ ghost numbers are not separately
conserved.

When a grading refinement of the form (A3) is possible,
each descent relation in (A1) splits accordingly into a set of
equations with definite (p, ¢) ghost number. For example,
for k =1 the first equation in (A1) splits into the three
relations

dx70 ¢ Xﬁ}ﬁ’ =0, "V rex) =0,

dX =0,
since X Ez N 1) = 0. Similarly, the second equation in (A1) for
k =1 splits into the relations

(A6)

sW +dW 1—0

swiPV 4 ew( 0 +awlh) = —x{Y,

WP pawD — _x02 (A7)

As we discuss next, a grading refinement of the form
(A3) is particularly useful when the coefficients Xfiliz—k
satisfy two additional properties, namely “normality” and

“orthogonality,” which we now define.

3. Normality

Following [14], we say that Xgﬁz_ i 1s “normal” if it takes

the form

k k=1)
XEH)Z—k =(s+c¢) 1(1+2 ot dZd+1 e

for some Y 511:21_)]( and ngzl_ «- Since the coefficients X 51]22_ X
satisfy the descent relations (Al), this may seem like a

tautology at first sight. However, the statement is not trivial

in that one demands that Y, ;’:212  and Zfikll_ « have different

(A8)

ghost content than respectively Wg:;_)k and ngl_k. This
distinction becomes manifest when a grading refinement of
the form (A3) is possible.

It is useful to notice that if the normality condition (A8)
holds for XEI +)2 w then it also holds for all Xizlz ; with
[ > k. This can be proven by induction, showing first that it
holds for [ = k + 1. From (A1) follows that

k+1
Ozdxil+l>k+(s+ ¢)X 51422 k
(k+1)

=dxl -+ ozglL). (A9
and so
k+1 k+1
X((A!:l )k =(s+ C)Y51+>1 1 dZEl_; g (A10)
with YEi]j,)-l—k = Zﬁill_k. Hence, X£l+1—>k is also normal. This

completes the proof.
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4. Orthogonality
We have seen that the Russian formula (2.15) ensures

that the coefficient XEllle contains only ghosts associated

with the operator c. If this property extends to all higher

order coefficients, we say that ngll_)k are “orthogonal.”

Clearly, a prerequisite for this property is that a grading
refinement of the form (A3) exists. The orthogonality
condition can be stated as

(Lk=1)

Xy =0, V I#0, (A11)
or equivalently
k 0.k
XEH)-2—k = X51+2)—k' (A12)

From the definition (6.11) of the coefficients XEQQ_ « follows

that this property is guaranteed provided the difference G-F
between the field strengths does not depend on the gauge
ghost . This condition can be used as a possible criterion for
the choice of the shift « in the generalized field strength (6.5).
Notice that if the coefficients X 322_ « are also normal, then the
definition (AS8) requires that

(k=1) 1, (0,k=1) (k=1) (k) _ 5(0.k)
Yd+2—k - Yd+2—k ’ SYd+2—k =0, Zd+l—k - Zd+l—k'

(A13)
In the main part of the paper we have opted for the choice

u = 0 in order to ensure the uniform description of diffeo-
morphisms and supersymmetry.
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