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We consider the class of spinning particle theories, whose quantization corresponds to the continuous
helicity representation of the Poincare group. The classical trajectories of the particle are shown to lie on the
parabolic cylinder with a lightlike axis irrespectively to any specifics of the model. The space-time position
of the cylinder is determined by the values of momentum and total angular momentum. The value of
helicity determines the focal distance of parabolic cylinder. Assuming that all the world lines lying on one
and the same cylinder are connected by gauge transformations, we derive the geometrical equations of
motion for the particle. The timelike world paths are shown to be solutions to a single relation involving the
invariants of trajectory up to fourth order in derivatives. Geometrical equation of motion is non-Lagrangian,
but it admits equivalent variational principle in the extended set of dynamical variables. The lightlike paths
are also admissible on the cylinder, but they do not represent the classical trajectories of this spinning
particle. The classical trajectories of massless particle (with zero helicity) are shown to lie on hyperplanes,
whose space-time position depends on momentum and total angular momentum.
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I. INTRODUCTION

The spinning particles are studied since the work of
Frenkel [1]. For review of results before 1968, we cite the
book [2], later studies can be found in [3]. For the more
recent research, we refer to [4,5] and references therein.
The concept of spinning particle admits generalization in
low-dimensional space-times [6,7], and higher dimensions
[8–10]. For the constant curvature spaces, we cite [11]. It is
believed that the spinning particle models provide the
realistic quasiclassical description of the motion of real
elementary particles with spin and localized twisted wave
packets [12]. For the applications spinning particle concept
in high energy and accelerator physics, astrophysics we
mention [13–22].
The class of spinning particle models whose quantization

corresponds to the irreducible representation of the
Poincare group is of interest. The examples are given
above. The Kirillov-Konstant-Soureau method [23–25]
tells us that the quantization of the model leads to
irreducible representation if its classical limit is a dynami-
cal system on the co-orbit of corresponding group. In this

setting, the state of the irreducible particle is determined by
the values of momentum p and total angular momentum J,
being subjected to mass-shell and spin-shell conditions. All
the gauge invariant observables are the functions of p, J.
The action functional is given by the symplectic form on
the co-orbit.
The majority of irreducible spinning particle models

have one common feature: the generalized coordinates
include, besides the particle position, the position in
internal space. The configuration space of the model is
given by the fiber bundle R1;d−1 × S, with the internal
space S being typical fiber. The Lagrangian of the model is
a function of Lorentz invariant combinations of the gen-
eralized coordinates and their derivatives, typically up to
the first order. The structure of Lagrangian is selected from
the requirement of irreducibility of Poincare group repre-
sentation. The equations of motion follow from the least
action principle, and they inevitably involve internal
coordinates. In all these models, the relationship between
the representation and classical dynamics is hidden in the
structure of Lagrangian. The universal dynamical principle
selecting the trajectories of spinning particle has been
unknown for a long time.
In the current article, we consider the spinning particle

motion using the recently proposedworldsheet concept [26].
In this paper, it has been shown that the classical trajectories
of the irreducible spinning particle inevitably lie on the
cylindrical (hyper)surface in Minkowski space. The (hyper)
surface was termed the worldsheet of spinning particle. The
shape of the worldsheet is determined by the representation.
The worldsheet position in the space-time is determined by
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the values of the momentum and total angular momentum,
being subjected to the mass shell and spin shell conditions.
The dynamical equations for the particle classical trajecto-
ries follow from the fact that all theworld lines that lie on one
and the same worldsheet are connected by the gauge
transformations. The resulting equations of motion are
purely geometrical relations on the particle world line,
and they do not involve extra variables.
The geometry of worldsheets of massive spinning

particles has been described in the original paper [26].
The world surfaces has been shown to be toroidal cylinders
of dimension ½ðdþ 1Þ=2� with timelike axis (the square
brackets determine the integer part of enclosed number). In
d ¼ 3, 4, the world surfaces are circular cylinders with
timelike axis. The value of momentum determines the
direction of symmetry axis, and the value of total angular
momentum defines the position of cylinder in Minkowski
space. The spinning particle trajectories are general curves
on circular cylinders. The geometrical equations of motion
in d ¼ 3 have been derived in [26]. In d ¼ 4, the same
problem has been solved in [27]. An alternative derivation
of equations of motion for cylindrical curves has been given
in [28]. In all the cases, the differential equations involve
invariants of trajectory up to the fourth order in derivatives
in a very complicated combination, and they are known
only in implicit form. The geometrical equations of motion
are non-Lagrangian, but they admit equivalent variational
formulation with extra fields. This formulation represents
previously known model [6]. The worldsheet concept
admits inclusion of interactions with external electromag-
netic field [29]. At the interaction level, the spinning
particle paths still lie on a two-dimensional hypersurface,
but its shape depends on the configuration of external field.
In the articles [30–32], it has been noted that the helices

with a lightlike tangent vector and timelike symmetry axis
are admissible trajectories for massive particle. In the
framework of the worldsheet formalism, these curves
represent the cylindrical paths with a lightlike tangent
vector. The geometrical equations of motion for lightlike
helical paths in d ¼ 3, 4 derived in [26,27]. It has been
shown that the lightlike helices represent the special class
of cylindrical world lines with a reduced gauge symmetry.
In so doing, each helix forms the gauge equivalence class of
its own. This suggests that the helices can be considered as
the one-dimensional spinning particle worldsheets. The
construction [30–32] seems to be unique in space-time
dimension d ¼ 3, 4 and it applies only for massive
particles. We do not know geometrical models of massive
particles with lightlike trajectories in higher dimensions. As
for massless particles, their positions are known to lie on
the hyperplanes [33,34], but the general fact is not proven
up to date.
In the present article, we apply the worldsheet concept

for the study of dynamics of massless spinning particles
with continuous helicity in d ¼ 3 Minkowski space.

The worldsheets are parabolic cylinders with lightlike
symmetry axis. The focal distance of the parabolic cylinder
is determined by helicity. The worldsheet position is
determined by the values of momentum and total angular
momentum. The geometrical meaning of p and J is
explicitly identified. Assuming that all the particle trajec-
tories lying on one and the same cylinder are connected by
the gauge transformations, we derive the equations of
motion for the curves with timelike tangent vector on
the worldsheet. We show that the particle paths enjoy a
single differential equation involving invariants of trajec-
tory up to the forth order. The equation of motion is non-
Lagrangian, but it admits equivalent variational formulation
with extra dynamical variables, been previously known [6].
The lightlike trajectories are identified with the paths with
zero curvature. These paths do not correspond to the
trajectories of irreducible particle. The worldsheet of the
particle with zero mass and helicity are shown to be
hyperplanes. Hence, the trajectories of such particles are
proven to be planar curves.
The article is organized as follows. In Sec. II, we

describe the geometry of the worldsheet of massless
particle with continuous helicity in three-dimensional
Minkowski space. In Sec. III A, we derive the equations
with hight derivatives for general cylindrical path on the
worldsheet. Timelike (Sec. III B) and lightlike (Sec. III C)
trajectories are considered. In Sec. IV, we construct
Hamiltonian formulation for the model and discuss the
correspondence with the previously known model of such a
particle. In Sec. V, we discuss the dynamics of massless
particles. The conclusion in Sec. VI summarizes the results.

II. IRREDUCIBILITY CONDITIONS
AND WORLDSHEET

We consider the spinning particle that travels in 3d
Minkowski space. The particle position is denoted by xμ,
μ ¼ 0, 1, 2, the momentum is p and total angular
momentum is J. We assume that the quantization of the
model corresponds to the irreducible representation of the
Poincare group with a continuous helicity. Irreducibility
means that the momentum p and total angular momentum J
meet the mass-shell and spin-shell conditions,

ðp; pÞ ¼ 0; ðp; JÞ ¼ σ: ð1Þ

Here, the round brackets denote the scalar product with
respect to the Minkowski metric. We use a mostly positive
signature of the Minkowski metric ημν ¼ diagð−1; 1; 1Þ
throughout the paper. Constant parameter σ is helicity. The
case σ ¼ 0 corresponds to the massless particle. The values
of momentum p and total angular momentum J, being
subjected to condition (1), determine the state of spinning
particle. The space of all the classical spinning particle
states is associated with the co-orbit (1) of the Poincare
group.
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The vector of spin angular momentum M is determined
by the rule

M ¼ J − ½x; p�; ð2Þ

where the square brackets denote the cross product in 3d
space-time. We use the convention

½u; v� ¼ ϵμνρuμvνdxρ; ϵ012 ¼ 1; ð3Þ

where ϵμνρ is 3d levi-Civita symbol, and u, v are test
vectors. In accordance with our definition, the representa-
tion for double cross product of three test vectors u, v, w
reads

½u; ½v; w�� ¼ wðu; vÞ − vðu; wÞ: ð4Þ

We note that the last formula is sensitive to the particular
choice of the signature of the metric. The article [26] tells
us that the spin angular momentum vector M must be
normalized in every irreducible spinning particle theory,

ðM;MÞ ¼ ϱ: ð5Þ

The value of ϱ distinguishes representations with one and
the same value of helicity σ (1).
Conditions (1), (5) have consequences. Combining (5)

with the definition of the spin angular momentum (2), we
see that the set of particle positions in the state with
prescribed values of momentum p and total angular
momentum J forms a hypersurface in Minkowski space,

ðp; xÞ2 þ 2ðv; xÞ þ a ¼ 0: ð6Þ

Here, p is the particle momentum, and quantities v, a are
determined by the total angular momentum J by the
following rule:

v ¼ ½J; p�; a ¼ ðJ; JÞ − ϱ: ð7Þ

By definition (7), the momentum p is lightlike, and the
vector v is normalized and orthogonal to p,

ðv; pÞ ¼ ðp; pÞ ¼ 0; ðv; vÞ − σ2 ¼ 0: ð8Þ

The hypersurface, being defined by Eq. (6), is termed a
worldsheet of spinning particle. By construction, it includes
all the particle positions with the momentum p and total
angular momentum J.
The hypersurface, being defined by equation (6), is a

parabolic cylinder with lightlike axis (see Fig. 1). The
lightlike vector p determines the direction of symmetry
axis. The spacelike vector v determines the direction of
asymptotes of parabolas, being orthogonal sections of
cylinder. The focal distance of parabolic cylinder is

determined the helicity. It equals σ. The quantity a
determines the distance between the vertex of parabolic
cylinder and origin. The cylinder parameters determine the
total angular momentum J by the rule

J ¼ aþ ϱ

2σ
vþ σe: ð9Þ

The relation involves auxiliary lightlike vector e which is
orthogonal to v and has a normalized scalar product with p,

ðe; eÞ ¼ ðe; vÞ ¼ 0; ðe; pÞ ¼ 1: ð10Þ

Equation (6) has consequences. It shows that the
classical positions of the particle with continuous helicity
lie on a parabolic hypercylinder with lightlike axis in
Minkowski space. The position of hypersurface is deter-
mined by the momentum and total angular momentum.
Formula (7) expresses the values of cylinder parameters p,
v, a in terms of p and J. The relationship between the
quantities p, v, a, and p, J is a bijection. Formula (9)
determines the momentum and total angular momentum of
the particle in terms of cylinder parameters. This result
means that the co-orbit of the particle with continuous
helicity can be parametrized by the set of parabolic
cylinders with lightlike axis being the worldsheets. The
relationship between the worldsheets and co-orbit points is
purely geometrical. The worldsheet is the hypersurface
including the all the possible particle positions with given
values of p and J. The inverse is also true because the
space-time position of the worldsheet determines the state
of the particle.
Worldsheet concept determines a dynamical principle

that governs the particle motion. Equation (6) represents a
single restriction imposed onto the particle positions that

FIG. 1. Worldsheet of continuous helicity particle with
p ¼ ð1; 0; 1Þ, J ¼ ð0; 0; 1Þ, ϱ ¼ 1. The step along the axes
equals 1.
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follows from the irreducibility condition of the Poincare
group representation. This means that all the points of the
worldsheet represent the possible particle positions, while
the world paths must be general curves on the worldsheet.
Assuming that all the curves that lie on one and the same
worldsheet are connected by the gauge transformation, we
associate the classical paths of continuous helicity particle
with general cylindrical lines on parabolic cylinders with a
timelike axis. This reduces the task of description of
particle path by differential equations to the problem of
classification of cylindrical curves. We elaborate on this
problem in the next section.

III. WORLD PATHS ON WORLDSHEETS

A. Problem setting

In the present section, we consider the problem of
classification of curves on parabolic cylinders with lightlike
axis in Minkowski space. We address three questions: (i) to
derive a (system of) differential equations describing the
curves on the parabolic cylinder, (ii) to express the
parameters of the worldsheet (and, hence, the particle state)
in terms of derivatives of world path, and (iii) to identify the
gauge symmetries of the model. The problem represents
the particular case of more general task of description
of the class of curves lying on the set of surfaces. The
solution to questions (i), (ii) is well known in the differ-
ential geometry of the curves. We cite the textbook [35] for
details. The solution to question (iii) is given in [26] for
the first time, even though the problem is quite simple in
itself.
The description of curves on circular hypercylinder in 3d

Euclidean space has been first studied in [36]. The problem
has been recently reconsidered in [37,38]. It has been
shown that the cylindrical curves are described by a single
scalar equation of fourth order. In 3d Minkowski space,
the cylindrical curves has been studied in [26]. In 4d
Minkowski space, the curves on 2d circular cylinders are
classified in [27]. The mentioned above articles use differ-
ent approaches. In the work [37], the concept of constant
separation curves is used. The article [38] assumes that the
cylinder is determined by algebraic equation. The last
approach is best suited for classification of spinning
particle trajectories because the worldsheet is determined
by the algebraic equation (6).
In our classification of paths on parabolic cylinders we

mostly follow article [37], some additional comments are
given in [26]. As the complete solution to the problem
involves many technical details, we first explain the general
method. The computation details are given in the next
subsections. The worldsheet of continuous helicity spin-
ning particle is determined by Eq. (6). The curve xðτÞ lies
on the cylinder (6) if the equation of hypersurface is
satisfied for all the values of the parameter τ. This implies
infinite set of differential consequences,

dk

dτk
ððp; xÞ2 þ 2ðv; xÞ þ ajx¼xðτÞÞ ¼ 0: ð11Þ

These relations represent an overcomplete system of
equations that connects the derivatives of trajectory and
cylinder parameters. The relevant information is included
into the differential consequences of orders k ¼ 0;…; 4. It
includes five equations for four independent components of
p, v, a subjected to (8). Solving these equations with
respect to p, v, a, we express the parameters of cylinder in
terms of parameters of trajectory. This solves the problem
(ii). The consistency condition for the system (11) is a
differential equation, being satisfied by the cylindrical
paths. This equation represents a solution to the problem
(i). By construction, it involves the derivatives of world
path up to fourth order. The higher-order differential
consequences (11) must follow from the lower order ones,
so they are not independent. The gauge symmetries of the
model are generated by the shifts along the cylindrical
surface. So, the gauge generators are associated with the
basis vectors in the tangent space to the cylinder. This
solves the problem (iii).
The described above procedure has several subtleties.

First, the world lines representing the classical trajectories
of spinning particles must be causal. The causality con-
dition _x0 > 0 is imposed to prevent existence of closed
world loops, which are considered unphysical. Throughout
the article only causal curves are considered. Second, the
tangent vector to the Minkowski space curve can be
timelike, lightlike, or spacelike. Our analysis shows that
the cylindrical curves of different type are not connected by
the gauge transformations. So, the classification problems
for spacelike, timelike, and lightlike cylindrical curves
represent different tasks. In the present work, we consider
the timelike and lightlike paths because they automatically
meet causality condition. The spacelike curves can be
included in general scheme in a similar way, but the
causality may be an issue.
Finally, the cylinders can intersect. The intersection line

belongs to several cylinders in the set (6), so equations (11)
do not have a unique solution with respect to the parameters
p, v, a. These paths must be excluded because they do not
determine a particle state in an unambiguous way. In the
case of parabolic cylinders set, the intersection is a line with
lightlike tangent vector or noncasual curve. The line
appears if the cylinders with one and the same direction
of axis are intersect. One line belongs to the infinite number
of worldsheets with one and the same direction of sym-
metry axis. The noncasual curve appears if two cylinders
with different directions of symmetry axis intersect. All the
mentioned paths are excluded.
In the paper [26], the curves that lie one a unique

representative in the class of worldsheets was termed
typical. The curves that belong to multiple worldsheets
were termed atypical. The classification of timelike and
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lightlike lines on parabolic cylinders presented in
Secs. III A and III B considers only typical curves. The
atypical curves (including lightlike straight lines) are
systematically ignored below.
We use Frenet-Serret moving frame adapted for describ-

ing timelike (Sec. III B) and lightlike (Sec. III C) curves
[39] to perform our calculations.

B. Timelike world lines on the parabolic cylinder

Now we can proceed with explicit derivation of the
equations of cylindrical path. The differential consequences
of (6) up to fourth order have the form

ð_x; nÞ ¼ 0;

ðẍ; nÞ þ ð_x; pÞ2 ¼ 0;

ðx…; nÞ þ 3ð_x; pÞðẍ; pÞ ¼ 0;

ðx::::; nÞ þ 4ð_x; pÞðx…; pÞ þ 3ðẍ; pÞ2 ¼ 0: ð12Þ

Here, we use a notation,

n ¼ ðx; pÞpþ v: ð13Þ

The new vector n subjects to the conditions

ðp; nÞ ¼ 0; ðn; nÞ ¼ σ2: ð14Þ

As we can see from the first equation, vector n defines the
normal to tangent space to the worldsheet at the point with
coordinate x. As far as n is spacelike, the tangent space has
the Lorentz signature in each point of the cylinder.
Let us turn to the description of cylindrical curves.

Assume that xðτÞ is a timelike world line parametrized by
the natural parameter. The velocity vector is normalized,

ð_x; _xÞ ¼ −1: ð15Þ

Throughout the section, the dot denotes the derivative by
the natural parameter τ. The Frenet-Serret moving frame,
being associated with the timelike curve xðτÞ, reads

e0 ¼ _x; e1 ¼
ẍffiffiffiffiffiffiffiffiffiffiffiðẍ; ẍÞp ; e2 ¼

½_x; ẍ�ffiffiffiffiffiffiffiffiffiffiffiðẍ; ẍÞp : ð16Þ

The basis vectors ea, a ¼ 0, 1, 2 of the Frenet-Serret frame
are normalized and orthogonal to each other,

−ðe0; e0Þ ¼ ðe1; e1Þ ¼ ðe2; e2Þ ¼ 1;

ðe0; e1Þ ¼ ðe0; e2Þ ¼ ðe1; e2Þ ¼ 0: ð17Þ

The vector e0 is timelike, and the vectors ea, a ¼ 1, 2 are
spacelike. Condition (15) and basis (16) are well defined
for each timelike curve, which is not a straight line. This
does not restrict generality because no rectilinear paths with

timelike tangent vector lie on the parabolic cylinder with
the lightlike axis.
The Frenet-Serret formulas for the timelike curve xðτÞ

read

_e0 ¼ ϰ1e1; _e1 ¼ ϰ1e0 þ ϰ2e2; _e2 ¼ −ϰ2e1: ð18Þ

The curvature ϰ1 and torsion ϰ2 of the curve are determined
by the rule

ϰ1 ¼
ffiffiffiffiffiffiffiffiffiffiffi
ðẍ; ẍÞ

p
; ϰ2 ¼

ð_x; ẍ; x…Þffiffiffiffiffiffiffiffiffiffiffiðẍ; ẍÞp : ð19Þ

By construction, the curvature ϰ1 is a positive number, and
the torsion ϰ2 is a real quantity. With account for conditions
(18), the time derivatives of particle position can be
expressed as the linear combinations of the Frenet-Serret
basis vectors (16) with the coefficients depending on the
curvature and torsion of path and their derivatives,

_x ¼ e0; ẍ ¼ ϰ1e1;

x
… ¼ ϰ1

2e0 þ _ϰ1e1 þ ϰ1ϰ2e2;

x
:::: ¼ 3_ϰ1ϰ1e0 þ ðϰ̈1 þ ϰ1

3 − ϰ1ϰ2
2Þe1

þ ð2_ϰ1ϰ2 þ ϰ2 _ϰ2Þe2: ð20Þ

The representation for x
…

involves the derivative of curva-
ture _ϰ1. The representation for x

::::
involves the second

derivative of curvature ϰ̈1, and first derivative of torsion _ϰ2.
The unknown vectors p, n are determined by the

conditions (12) and (14). We seek the solution to (14) in
the following form:

p ¼ γ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
signðσÞσϰ1

p
ðe0 − βe1 þ αe2Þ;

n ¼ signðσÞσðαe1 þ βe2Þ; ð21Þ

where α, β, γ are new dimensionless unknowns. The
quantities α, β are subjected to the condition

α2 þ β2 ¼ 1: ð22Þ

The quantity γ is positive because p0 > 0. On substituting
representation (21) into (12), we arrive at the following
system of algebraic equations for α, β, and γ:

αþ γ2 ¼ 0;

α2 þ β2 − 1 ¼ 0;

Bαþ Cβ þ 3γ2β ¼ 0;

EαþDβ þ 4γ2ðBβ − CαÞ þ γ2ð7 − 3α2Þ ¼ 0: ð23Þ

Here, the following notation is used:
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B ¼ ϰ1
−2 _ϰ1; C ¼ ϰ1

−1ϰ2;

D ¼ ϰ1
−3ð2 _ϰ1ϰ2 þ ϰ1 _ϰ2Þ;

E ¼ ϰ1
−3ðϰ̈1 þ ϰ31 − ϰ1ϰ

2
2Þ: ð24Þ

Conditions (23), (24) determine unknowns α, β, γ of
decomposition (21) in terms of derivatives of trajectory.
The system (23) is overcomplete because three unknowns
are subjected to four equations.
The quantities α, β are easily expressed from the first and

second equations of the system (23),

γ ¼ ffiffiffiffiffiffi
−α

p
; β ¼ Bα

3α − C
: ð25Þ

Substituting this solution into the third and fourth relations
(23), we get two polynomial constraints for a remaining
unknown α,

P1ðαÞ ¼ 9α3 þ 9Cα2 − ð4B2 þ 4C2 − 3Eþ 21Þα
þ BD − ECþ 7C ¼ 0: ð26Þ

P2ðαÞ ¼ 9α4 − 6Cα3 þ ðB2 þ C2 − 9Þα2
þ 6Cα − C2 ¼ 0: ð27Þ

Relation (27) determines the unknown α in terms of
derivatives of trajectory up to third order. The explicit
representation for α can be found by application of standard
solution to cubic equation (26), for example Cardano
formula. The only negative root is relevant because of
condition (25). We do not provide this solution because the
system (26), (27) admits a simpler representation without
radicals. We give it in the next paragraph. Relation (26) is
another restriction for unknown α. Since both the con-
ditions (26), (27) are consequences of cylinder equation (6),

they has to be satisfied simultaneously. So, α is a common
root of polynomials P1ðαÞ and P2ðαÞ. Two different
polynomials have a common root if and only if their
resultant with respect to the variable α vanishes,

ResαðP1ðαÞ; P2ðαÞÞ ¼ 0: ð28Þ

This is consistency condition for the system (26), (27). By
construction, the resultant is a polynomial in the coeffi-
cients of polynomials (26), (27), being functions of
curvature and torsion of world line, and their derivatives.
This resultant is a differential equation, being satisfied by
the cylindrical curves. It involves derivatives of the path up
to fourth order.
Let us now find explicit solution for α and representation

for resultant (28). Introduce special notation for combina-
tions of derivatives of curvature and torsion,

F ¼ −ð4B2 þ 4C2 − 3Eþ 21Þ=9;
G ¼ ðBD − ECþ 7CÞ=9;
H ¼ B2 þ C2 − 9: ð29Þ

Here, F, G, H can be considered as alternative combina-
tions absorbing invariants of trajectory and their deriva-
tives. In terms of quantities F, G,H Eqs. (26), (27) take the
most simple form:

P1ðαÞ ¼ α3 þ Cα2 þ FαþG ¼ 0; ð30Þ

P2ðαÞ ¼ 9α4 − 6Cα3 þHα2 þ 6Cα − C2 ¼ 0: ð31Þ

The consistency condition in terms of resultant of poly-
nomials (30), (30) reads

resαðP1ðαÞ;P2ðαÞÞ ¼ 81F2G2H− 18FG2H2 − 15C4F2Hþ 18C2F3H−C2F2H2þ 486CFG3

− 324CG3Hþ 270C5FG− 162C3F2Gþ 1458C2FG2þ 18C3GHþ 189C2G2Hþ 4C4FH

− 1134C3FGþ 15C2G2H2þ 2C3GH2þ 30C5GH− 486CF3GþG2H3− 120C3FGHþ 90C2FG2H

− 6CFGH2þ 108CF2GH− 216C3Gþ 972C2G2− 36C4Fþ 504C5Gþ 540C4G2− 216C4F2

þ 36C6Fþ 540C3G3− 81C2F4 − 90C4F3− 1458CG3þC6H− 7C6þ 729G4þ 15C8 ¼ 0: ð32Þ

The common root of (30), (31) can be determined by the
Euclid algorithm. Assuming that this root is simple (i.e., the
curve lies on a single cylinder), we obtain

α ¼ −
U
V
; ð33Þ

where

U ¼ 225FC2 − 6CGH þ 15C2FH − 216GFG

− 90C3Gþ 90C2F2 − 75C4 − 5C2H þ 81G2

− 108CGþ 36C2 þ 81F3 þ FH2 − 18F2H; ð34Þ
V ¼ C3H þ GH2 − 18FGH þ 81F2G

− 135CG2 − 6C3 þ 15C2GH þ 15C5

− 24C3F þ 90FC2Gþ 99C2G: ð35Þ
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Relation (32) determines the equation of motion for
cylindrical curves. Formulas (33), (34), (35) determine a
solution to Eqs. (26), (27) with respect to unknown α.
In terms of auxiliary quantity α (33) the solution for the

momentum p and vector n reads

p¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−signðσÞσϰ1α

p �
_x−

Bα
ϰ1ð3α−CÞ ẍþ

α

ϰ1
½_x; ẍ�

�
; ð36Þ

n ¼ σ

ϰ1

�
αẍþ Bα

3α − C
½_x; ẍ�

�
: ð37Þ

Relations (13), (6) determine the cylinder parameters v, a,

v ¼ σα

�
ððx; _xÞϰ1 þ ðx; _x; ẍÞϰ1α − ðx; ẍÞBαÞ_x

þ 1

ϰ1

�
1 −

Bα
C − 3α

ððx; _xÞϰ1 þ ðx; _x; ẍÞαÞ

−
ðx; ẍÞB2α2

C − 3α

�
ẍ −

1

ϰ1

�
ðx; _xÞϰ1αþ ðx; _x; ẍÞα2

þ B
C − 3α

ð1 − ðx; ẍÞα2Þ
�
½_x; ẍ�

�
; ð38Þ

a ¼ σα

ϰ1

��
ðx; _xÞϰ1 þ ðx; _x; ẍÞαþ ðx; ẍÞBα

C − 3α

�
2

þ ðx; _x; ẍÞB
C − 3α

− 2ðx; ẍÞ
�
: ð39Þ

The solution for the total angular momentum J (9) reads

J¼
� ðx;pÞ2ϰ1α−σ

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−signðσÞσϰ1α

p þaþϱ

2

ffiffiffiffiffiffiffiffiffiffiffi
−
αϰ1
σ

r �
_x

þ α

ϰ1

��
ðx;pÞþ B

C−3α

ðx;pÞ2ϰ1αþσ

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−signðσÞσϰ1α

p
�

þ B
ðC−3αÞ

aþϱ

2

ffiffiffiffiffiffiffiffiffiffiffi
−
αϰ1
σ

r �
ẍ

þ α

ϰ1

�� ðx;pÞ2ϰ1αþσ

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−signðσÞσϰ1α

p −
Bðx;pÞ
C−3α

�
þ

ffiffiffiffiffiffiffiffiffiffiffi
−
αϰ1
σ

r �
½_x; ẍ�:

ð40Þ

The solution uses auxiliary vector e (10) with p and v
being given by (36), (38), respectively. Relations (36), (40)
determine the particle momentum p and particle total
angular momentum J (hence, the cylinder parameters
v, a) in terms of derivatives of classical trajectory. The
description of the particle state is purely geometrical
because no internal variables are involved in (36), (40).
Equation (32) has two obvious gauge symmetries:

reparametrization and translations along the cylinder axis,

δξx ¼ _xξ; δηx ¼ pη: ð41Þ

In the last case, the vector p is considered as the function of
derivatives of trajectory (36). The gauge transformations
are independent for general timelike lines because the
vectors _x, p are nonzero and noncollinear. The vector p is
nonzero for spinning particle with nonzero helicity [see
conditions (1)]. The velocity vector _x ≠ 0 is nonzero
because the spinning particle is timelike and casual. The
vectors _x and p are not collinear because p is lightlike and _x
is timelike. The tangent space to the cylinder (6) is two-
dimensional, so the gauge symmetry is sufficient to connect
each pair of timelike curves that lie on one and the same
worldsheet. This result confirms the relationship between
the general timelike cylindrical curves and spinning particle
trajectories. For p ¼ ð1; 0; 1Þ, J ¼ ð0; 0; 1Þ, ϱ ¼ 1, the
particular example of timelike paths is given by the curves

x0 ¼ t3 þ ðθ þ 1Þt; x1 ¼ −0.5t2;

x2 ¼ t3 þ θt; ð42Þ

where θ > −0.5 and t is an arbitrary (not natural) parameter
on the curve. The trajectory (42) for θ ¼ 1 is shown in
the Fig. 2.
Now, we can summarize the results of the subsection. We

have associated the timelike spinning particle trajectories
as curves on parabolic cylinders. We have shown that
these curves are solutions to the fourth-order differential
equation (32). Equations (36), (40) determine the particle
momentum and total angular momentum in terms of
derivatives of trajectory. The representation for p, J does
not involve internal variables, so the particle state descrip-
tion is purely geometrical. Equations (41) determine the
gauge transformations for spinning particle trajectories. In
Sec. IV we show that the geometrical equation of motion

FIG. 2. Timelike curve (42) for θ ¼ 1 on parabolic cylinder
with lightlike axis. The step along the axes equals 1.
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follow from the previously known model. This ensures that
this model describes spinning particle with continuous
helicity at the quantum level.

C. Isotropic paths on the worldsheet

Let xðτÞ be an lightlike curve, so the length of the tangent
vector is equal to zero,

ð_x; _xÞ ¼ 0: ð43Þ

The natural parameter on the curve (so-called pseudo-arc
length) is determined by the condition

ðẍ; ẍÞ ¼ 1: ð44Þ

The natural parameter τ is well defined on an arbitrary
isotropic curve which is not a straight line. This does not
restrict generality because all the rectilinear paths on the
parabolic cylinder with lightlike axis are cylinder elements,
being atypical curves. The atypical curves are excluded
from our consideration.
The Frenet-Serret moving frame, being associated with

the isotropic curve xðτÞ, reads

e0 ¼ _x; e1 ¼ ẍ; e2 ¼ −x
… −

1

2
ðx…; x…Þ_x: ð45Þ

The basis ea, a ¼ 0, 1, 2 includes two lightlike vectors e0
and e2 with normalized scalar product, and normalized
timelike vector e1,

ðe0; e2Þ ¼ ðe1; e1Þ ¼ 1;

ðe0; e0Þ ¼ ðe2; e2Þ ¼ ðe0; e1Þ ¼ ðe1; e2Þ ¼ 0: ð46Þ

The basis (45) is well-defined for each lightlike curve,
which is not a straight line.
The Frenet-Serret formulas for the lightlike curve xðτÞ

read

_e0 ¼ e1; _e1 ¼ ϰe0 − e2; _e2 ¼ −ϰe1: ð47Þ

The lightlike curve is characterized by a single invariant ϰ,
which includes third derivatives of the path

ϰ ¼ −
1

2
ðx…; x…Þ: ð48Þ

The quantity ϰ can be interpreted as some special analog of
curvature, even though its geometrical meaning is slightly
different. As we will see below, the condition ϰ ¼ 0 selects
the lightlike curves on the parabolic cylinder. The repre-
sentation of derivatives of trajectory in terms of curvature ϰ
reads

_x ¼ e0; ẍ ¼ e1;

x
… ¼ ϰe0 − e2; x

:::: ¼ _ϰe0 þ 2ϰe1: ð49Þ

As usual, this representation involves invariants of trajec-
tory up to fourth order ϰ, _ϰ.
We seek for unknown vectors p, n, being determined by

the conditions (12), (14) in the following form:

p ¼ γ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
signðσÞσ

p �
1

2
β2e0 þ βe1 − e2

�
;

n ¼ �σðβe0 þ e1Þ þ αp; ð50Þ

where α, β, γ are new unknowns. The quantity α has the
dimension of angular momentum. The quantity β has the
dimension of inverse square root of length. The quantity γ
is dimensionless. Moreover, we assume γ > 0 in order to
meet the condition p0 > 0. The sign of � determines
relative orientation of vector p with respect to the Frenet-
Serret frame (45).
On substituting representation (50) into (12), we arrive at

the following system of algebraic equations for α, β, and γ:

αγ ¼ 0;

�1þ γ2 þ αβγffiffiffi
σ

p ¼ 0;

β

�
�1 − 3γ2 −

αβγ

2
ffiffiffi
σ

p
�
þ ϰ

αγffiffiffi
σ

p ¼ 0;

2ϰ

�
�1þ 2γ2 þ αβγffiffiffi

σ
p

�
þ 5γ2β2 − _ϰ

αγffiffiffi
σ

p ¼ 0: ð51Þ

The solution to these equations eventually reads

α ¼ β ¼ 0; γ ¼ 1: ð52Þ

For the vectors p and n, we find

p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
signðσÞσ

p
x
…
; n ¼ −σẍ: ð53Þ

The cylinder parameters v, a read

v ¼ −σðẍþ ðx; x…Þx…Þ;
a ¼ σð2ðx; ẍÞ þ ðx; x…Þ2Þ: ð54Þ

The representation for the total angular momentum J reads

J ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
signðσÞσ

p �
_xþ ðx; x…Þẍ

−
�
ðx; ẍÞ þ ϱ

2σ

�
x
…
�
: ð55Þ

The solution uses explicit representation for the auxiliary
vector e (10)
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e ¼ −
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

signðσÞσp
�
_xþ ðx; x…Þẍþ ðx; x…Þ2

2
x
…
�
: ð56Þ

The system (51) has a consistency condition,

ϰ ¼ 0: ð57Þ

From the differential geometry of the curves, this equation
means that the lightlike path on the parabolic cylinder
have zero curvature. This fact means that the lightlike paths
on the parabolic cylinder with lightlike axis (6) are indeed
the curves with zero curvature. The complete set of
equations for the cylindrical paths includes zero curvature
condition (57) and the lightlike condition for the particle
velocity (43),

ðx…; x…Þ ¼ 0; ð_x; _xÞ ¼ 0: ð58Þ

The first equations in this system has the third order in
derivatives, and the second one has the first order.
Equation (58) has a single gauge symmetry, being a
reparametrization,

δξx ¼ _xξ; ð59Þ

where ξ ¼ ξðτÞ is an arbitrary function of proper time.
The identification between the lightlike curves on para-

bolic cylinders and the trajectories of spinning particles
suggests that the all the parameters of trajectory are
determined by the momentum and total angular momen-
tum. As we will see, this is not true. The general solution to
Eq. (58) reads

xðτÞ ¼ 1

6
aτ3 þ 1

2
bτ2 þ cτ þ d: ð60Þ

The quantity τ is a natural parameter on the lightlike curve.
The Cauchy data are constant vectors a, b, c, d that are
subject to conditions

−ða; cÞ ¼ ðb; bÞ ¼ 1;

ða; aÞ ¼ ðc; cÞ ¼ ða; bÞ ¼ ðb; cÞ ¼ 0: ð61Þ

We also assume that ðd; aÞ ¼ 0. If this is not true, then we
make a reparametrization τ ↦ τ þ γ with appropriate γ.
The curve (60) lies on the worldsheet (6) if

a ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
signðσÞσp p; b ¼ 1

σ
½p; J�;

c ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
signðσÞσ

p
e; ðd; bÞ ¼ 1

2σ
ððJ; JÞ − ϱÞ: ð62Þ

The particle state determines the parameters of trajectory if
these equations can be solved with respect to a, b, c, d. This
is not possible because the solution for d has ambiguity,

d ¼ 1

2σ2
ððJ; JÞ − ϱÞ½p; J� þ λ

p0
p: ð63Þ

Here, λ ∈ R, and p0 is the time component of momentum
p. The quantity λ controls parallel shifts of path along the
symmetry axis of cylinder. It is an additional data, being
independent of p and J. Thus the position of general
lightlike cylindrical curve is determined by five parameters.
The theory (58) cannot be a dynamical system on the
continuous helicity co-orbit (1), which has two physical
degrees of freedom (four physical polarizations).
Figure 3 shows two particular lightlike curves lying on

the parabolic cylinder with p ¼ ð1; 0; 1Þ, J ¼ ð0; 0; 1Þ,
ϱ ¼ 1. The curve passing through the origin corresponds
to λ ¼ 0. The second curve corresponds to λ ¼ 2. These
curves are not connected by a gauge transformation.
The results of the subsection demonstrate that the

lightlike world lines are not admissible classical trajectories
of relativistic spinning particle with continuous helicity. In
particular, no geometrical model of continuous helicity
spinning particle can be constructed with lightlike trajec-
tories. The problem of lightlike curves has no analog in
massive case, where the geometrical models of relativistic
particles with lightlike lines are known for a long time
[30–32]. Our no-go result for continuous helicity particle
suggests that the presence of lightlike trajectories is a
feature of massive models.

IV. HAMILTON’S FORMALISM

In the articles [6], the equations of motion of irreducible
spinning particles has been derived from the action func-
tional involving extra variables, being internal space
coordinates. In the context of current research the model
[6] is relevant. The paper considers the massive particle, but
the action functional admits a smooth continuous helicity

FIG. 3. Lightlike curves on parabolic cylinder with lightlike
axis. The step along the axes equals 1.
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limit m → 0, ms → σ. In this section, we demonstrate that
the equations of motion for cylindrical curves follow form
the least action principle of the work [6]. For reasons of
simplicity, we consider the case of spacelike or lightlike
spin vector. The accessory parameter ϱ is determined by
the rule

ðM;MÞ ¼ α2; ð64Þ

which corresponds to the identification ϱ ¼ α2. The case of
lightlike spin vector can be considered in the similar way.
We leave the details to the reader.
The equation of the worldsheet can be equivalently

rewritten in the following vector form:

x ¼ ðx; eÞpþ ðx; pÞe − ðx; pÞ2 þ a
2σ2

v: ð65Þ

The vector equation has the same valuable information
about the particle position as a scalar relation because it has
only one independent component. The scalar multiplication
of left- and right-hand sides of Eq. (65) on p, e leads to
identity. The only nontrivial consequence of relation
appears after multiplication of both sides of the equation
by v, and it gives the (6). Relation (65) can be considered as
the solution to the worldsheet equation in the parametric
form. In this setting, the functions ðx; pÞ, ðx; eÞ serve as
local coordinates on the cylinder. Once the spinning
particle travels the path on the worldsheet, the quantities
ðx; pÞ, ðx; eÞ are arbitrary functions of proper time, being
restricted by the causality condition. In what follows, we
assume that the causal trajectories are considered.
Relation (65) determines the dynamics of spinning

particle. Differentiating by the proper time, we obtain

_x ¼ ð_x; eÞpþ ð_x; pÞ
�
e −

ðx; pÞ
σ2

v

�
; ð66Þ

where ð_x; pÞ, ð_x; eÞ are arbitrary functions. The
quantities ð_x; pÞ, ð_x; eÞ have sense of velocities of gener-
alized coordinates ðx; eÞ, ðx; pÞ on the worldsheet.
Equation (66) should be complimented by the conservation
law for momentum and total angular momentum,

_p ¼ _v ¼ _e ¼ 0; ð67Þ

and the constraints for the vectors p, v, e,

ðp; pÞ ¼ ðe; eÞ ¼ ðe; vÞ ¼ 0;

ðe; pÞ − 1 ¼ 0; ðv; vÞ − σ2 ¼ 0: ð68Þ

The system (66), (67), (68) determine the class of cylin-
drical curves by obvious reasons. Equations (67), (68) tell
us that the vectors p, v, e are integrals of motion subjected
to constraints (68). After that the integration of differential

Eq. (66) gives (65). The quantity a appears as the constant
of integration. In so doing, the spinning particle travels
along the cylindrical path if and only if equations are
satisfied (66), (67), (68).
The system (66), (67), (68) does not follow from the least

action principle of dynamical variables x, p, v, e, ð_x; pÞ,
ð_x; eÞ because 14 quantities are subjected to 18 evolu-
tionary equations and constraints. To construct the varia-
tional principle, we solve constraints (68) using the
lightlike vector ξ with normalized 0 component,

ξ ¼ ð1; sinφ; cosφÞ: ð69Þ

The new dynamical variable φ can be considered as angular
variable in the internal space, being a circle. This corre-
sponds to the configuration space of spinning particle
R1;2 × S1. By definition, we put

v ¼ σ
½ξ; p�
ðξ; pÞ − ðαþ ðx; pÞÞp;

e ¼ ξ

ðξ; pÞ þ
ðx; pÞ þ α

σðξ; pÞ ½ξ; p� − ððx; pÞ þ αÞ2
2σ2

p; ð70Þ

where p is the momentum, being lightlike vector. Relation
(70), (70) automatically meets all the constraints (68)
involving v and e. The only reaming constraint is the mass
shell condition for the particle momentum

ðp; pÞ ¼ 0: ð71Þ

In terms of dynamical variables x, p, ξ Eqs. (66), (67),
(68) take the following form:

_x ¼
�
ð_x; eÞ þ ðx; pÞ2 − α2

2σ2
ð_x; pÞ

�
p

þ ð_x; pÞ
�

ξ

ðξ; pÞ þ
α

σ

½ξ; p�
ðξ; pÞ

�
; ð72Þ

d
dτ

�
σ
½ξ; p�
ðξ; pÞ − ðαþ ðx; pÞÞp

�
¼ 0; ð73Þ

_p ¼ 0; ðp; pÞ ¼ 0: ð74Þ

We dot not write out the consequences of the condition
_e ¼ 0 because the quantity is completely determined by p
and v. Relations (72), (73), (74) have clear physical sense.
Equation (72) determines the evolution of the particle
position. Equation (74) tells us that the vector p conserves,
and it is lightlike. Equation (73) expresses a single
independent relation because the vector v has a single
independent component. It has a consequence

ð_x; pÞ ¼ σ _φ

ðξ; pÞ : ð75Þ
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On substituting this expression for ð_x; pÞ into (72), we
obtain the system of two vector equations (72), (74) for the
dynamical variables x, p, φ.
Relations (72), (74), (75) follow from the least action

principle for the functional

S ¼
Z �

ðp; _xÞ þ σ

ðξ; pÞ _φ

þ α
ð∂φξ; pÞ
ðξ; pÞ _φ −

λ

2
ðp; pÞ

�
dτ: ð76Þ

The dynamical variables are the particle position x,
momentum p, angular variable φ, and Lagrange multiplier
λ. Relations (72), (74), (75) appear as the variational
derivatives with respect to the dynamical variables x, p,
λ. Taking the Lagrange derivative with respect to p, we
obtain Eqs. (72), (75),

_x ¼
�
ð_x; eÞ þ ðx; pÞ2 − α2

2σ2
σ _φ

ðξ; pÞ
�
p

þ σ _φ

ðξ; pÞ
�

ξ

ðξ; pÞ þ
α

σ

½ξ; p�
ðξ; pÞ

�
: ð77Þ

Taking the Lagrange derivative with respect to x and λ, we
get (74). The variation of action (76) with respect to φ does
not lead to a new independent dynamical equation because
of gauge identity

ðξ; pÞ δS
δφ

þ σ _φ

ðξ; pÞ
δS
δx

¼ 0: ð78Þ

This proves the variational principle for the cylindrical
curves.
It remains to verify that the quantization of the classical

model (76) corresponds to the irreducible representation
with helicity σ and accessory parameter α2. The fact is
nontrivial because the particles of continuous helicity
follow one and the same paths irrespectively to the value
of the representation parameters. The total angular momen-
tum vector reads

J ¼ ½x; p� þ
�

σ

ðξ; pÞ þ
αð∂φξ; pÞ
ðξ; pÞ

�
ξ − α∂φξ: ð79Þ

One can see that the vector J meets spin shell condition

ðp; JÞ≡ σ: ð80Þ

The spin angular momentum reads

M ¼
�

σ

ðξ; pÞ þ
αð∂φξ; pÞ
ðξ; pÞ

�
ξ − α∂φξ: ð81Þ

It is easy to see that condition (64) is true. This result
ensures that the geometrical equations of motion for
cylindrical lines admit equivalent variational formulation
with the auxiliary variables. In its own turn, the variational
model can be quantized in a way that corresponds to the
continuous helicity representation of the Poincare group.

V. MASSLESS PARTICLE

The massless co-orbit is determined by the relations (1)
with σ ¼ 0. The momentum p and total angular momentum
J of massless particle are subjected to following mass-shell
and spin-shell conditions,

ðp; pÞ ¼ 0; ðp; JÞ ¼ 0: ð82Þ

These relations are inconsistent for timelike J, so we
assume that the norm of J is nonnegative throughout the
section. The spin vector M is determined by the rule (2).
Similarly to J, the vector M is lightlike or spacelike.
The accessory parameter ϱ ¼ α2 is determined by the
relation

ðM;MÞ ¼ α2: ð83Þ

Now, we can discuss the structure of spinning particle
worldsheet. Equation (82) has a consequence,

½J; p� ¼ ðJ; JÞ12p: ð84Þ

It means that the quantity v (7) and momentum p are
collinear, while the norm of J determines the aspect ratio.
With account of (84), the equation of the worldsheet of
spinning particle eventually reads

ðJ − ½x;p�Þ2 − α2

¼ ððx;pÞ þ ðJ; JÞ12 þ αÞððx;pÞ þ ðJ; JÞ12 − αÞ ¼ 0: ð85Þ

The formula determines the pair of parallel hyperplanes
with the normal p. The quantity α controls the distance
between hyperplanes. The worldsheet is path connected if
α ¼ 0. In the latter case, we have a single hyperplane,

ðx; pÞ þ ðJ; JÞ12 ¼ 0: ð86Þ

Here, the vector p serves as the normal, while the norm of J
determines the distance between the hyperplane (86) and
origin.
Equations (85) and (86) tell us that the positions of

massless spinning particle are localized on the hyperplanes,
whose position in Minkowski space is defined by the values
of momentum and total angular momentum. This fact has
been observed previously in chiral fermion model [33,34]
earlier. Our result shows that the planar motion has no
alternative for the massless particle irrespectively to any
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specifics of the model. In particular, the torsion of the
spinning particle path must be zero in all the instances,

ð_x; ẍ; x…Þ ¼ 0: ð87Þ

Unfortunately, this equation contains only partial informa-
tion about the model dynamics. The number of independent
parameters labeling the particular hypersurface in the set
(85), (86) is less than the co-orbit dimension. In the case
of two hyperplanes (85), the position of the worldsheet is
determined by three parameters: the lightlike vector p, and
the norm of total angular momentum ðJ; JÞ12. In the case of a
single hyperplane (86), only the ratio p=ðJ; JÞ12 is relevant.
It involves only two initial data in independent way. The
dimension of co-orbit (82) equals four in all the instances.
The extra dynamical degrees of freedom have no geomet-
rical description in terms of worldsheet formalism, and they
require introduction of internal variables. This result means
that worldsheet concept cannot be used for construction of
geometric model of massless spinning particle. On the
other hand, the spinning particles must be planar curves in
every irreducible spinning particle theory. As it has been
mentioned above, this condition is satisfied for previously
known models.

VI. CONCLUSION

In the current article, the recently proposed idea of
characterizing the classical spinning particle dynamics by
the worldsheet, rather than the world line [26], has been
applied to the problem of description of dynamics of
irreducible spinning particle with continuous helicity. It
has been shown that the admissible classical positions of
the particle lie on parabolic hypercylinder in Minkowski
space irrespectively to any specifics of the model. The
position of the hypercylinder is determined by the values of
momentum and total angular momentum. The focal dis-
tance is determined by helicity. The classical trajectories of
the spinning particle are given by causal cylindrical lines.
Assuming that all the trajectories belonging to the same
cylinder are connected by gauge transformation, we have
derived an ordinary differential equation describing the
general cylindrical lines with timelike tangent vector. These
equations of motion are purely geometrical, and they
involve invariants of the classical path including the
derivatives up to the fourth order. The momentum and
total angular momentum are expressed as the functions of
trajectory. To our best knowledge, geometrical equations of
motion, not involving any extra variables, have been
previously unknown for the continuous helicity particle.
We have paid the particular attention to the class of

lightlike cylindrical lines. It has been shown that the
cylindrical lightlike trajectory either a straight line (repre-
senting the cylinder element) or the curve with zero

(lightlike) curvature. Unlike the massive case, no lightlike
curves can serve as physically acceptable trajectories of
spinning particles. The lines lie on infinite number of
parabolic cylinders with one and the same direction of axis.
These trajectories do not determine the state of the particle
in unambiguous way. As for zero curvature paths, their
position in space-time involves besides the momentum and
total angular momentum an extra initial data. Having an
extra degree of freedom, the theory of lightlike cylindrical
curves cannot be considered as the a dynamical system on
the continuous helicity co-orbit. As the spinning particles
are dynamical systems on the co-orbit, this theory cannot
describe the motion of spinning particle.
We have proven that the geometric equations ofmotion for

cylindrical curves can be derived from the least action
principle. This is important from several viewpoints. First,
the concept of irreducible spinning particle suggests that the
model can be quantized, while its quantization corresponds
to the irreducible representation of the Poincare group. The
variational principle provides the way to constructing the
quantum theory. Second, the variational principle shows
that our results are consistent with the previous studies. We
explicitly demonstrate that the differential equations for
cylindrical curves follow from the action functional of the
work [6], and vice versa. The quantization of this model do
correspond to the continuous helicity representation. In all
the cases, the variational principle involves extra variables
having sense of coordinates in internal space.
The studies of the spinning particle worldsheet concept

can be continued in several directions. One of the interest-
ing issues is the geometry trajectories of spinning particle in
the external electromagnetic and gravitational field. The
article [29] tells us that the worldsheet of massive particle in
electromagnetic field is a cylindrical hypersurface, whose
radius is fixed by the representation. The worldsheets of
continuous helicity may have much more interesting
geometry because the sections of parabolic cylinder are
not compact. The couplings between the particle traveling a
cylindrical path and external field are expected to be
nonlocal, while the nonlocality is controlled by the helicity.
Expanding these equations in helicity, we will obtain
approximate equations describing cylindrical trajectories
of continuous helicity spinning particles. The leading
orders of these equations will serve as the analogs of
Frenkel [1] and Mathisson-Papapetrou [40,41] models.
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