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We propose a measurement theory for quantum fields based on measurements made with localized
nonrelativistic systems that couple covariantly to quantum fields (like the Unruh-DeWitt detector).
Concretely, we analyze the positive operator-valued measure induced on the field when an idealized
measurement is carried out on the detector after it coupled to the field. Using an information-theoretic
approach, we provide a relativistic analogue to the quantum-mechanical Lüders update rule to update the
field state following the measurement on the detector. We argue that this proposal has all the desirable
characteristics of a proper measurement theory. In particular it does not suffer from the “impossible
measurements” problem pointed out by Rafael Sorkin in the 1990s which shows that idealized
measurements cannot be used in quantum field theory.
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I. INTRODUCTION

In any physical theory, it is necessary to describe the
mechanism that allows us to gather information about the
physical systems we are modeling, that is, it is necessary to
describe measurements. In classical theories, the descrip-
tion of measurements is frequently not explicit, often
hidden under the assumption that we can neglect the effect
of measurements on the state of the system of interest.
However, in quantum mechanics, describing measurement
processes has been problematic and a subject of discussion
since its very inception (see e.g., Ref. [1]). Nevertheless,
from an operational point of view the problem can be
bypassed in the context of nonrelativistic quantum mechan-
ics by employing Lüders rule, also known as the projection
postulate [2]. This rule prescribes how to update the state of
the system after the measurement in a way consistent with
the measurement outcome, through projection-valued mea-
sures. This model of measurement is called projective
measurement or idealized measurement.
However, projective measurements are not suitable to

describe measurements in quantum field theory, since they
are not compatible with relativistic causality, and therefore
they are not consistent with the very foundational frame-
work of quantum field theory (QFT). Specifically, there are
no local projectors of finite rank in QFT [3–6]. Any finite

rank projector in QFT, such as a projector onto some single-
particle wave-packet state, is inherently nonlocal, and so
any attempt to generalize the projection postulate with
such a projector leads to spurious faster-than-light signaling
[7–11]. It should be clear from the beginning that when we
talk about the causality issues of the projection postulate,
we are indeed referring to superluminal causation, and not
the nonlocality that arises from entanglement, which can be
present even between nonrelativistic systems [12]. The
latter is perfectly compatible with causality as long as it
does not enable signaling; it just tells us that quantum
theories are nonlocal in nature, and correlations can be
present between quantum systems that are spacelike sep-
arated even in QFT [13,14].
The impossibility of naively generalizing the projection

postulate to QFT has been addressed mainly in three
different ways.
First, one could consider localized ideal measurements1

(in the form of infinite rank projectors) and try to modify
the projection postulate in a covariant way, as in Hellwig
and Kraus’s proposal [5,15,16]. This prescription however
suffers from the same faster-than-light signaling that Sorkin
pointed out in Ref. [7], as discussed in Ref. [10].
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1For a more thorough analysis where general completely
positive trace-preserving maps (not necessarily ideal measure-
ments) on quantum fields are characterized according to its causal
behaviour, see Ref. [11].
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Second, another way consists of formulating a meas-
urement theory completely within quantum field theory,
such as Fewster and Verch’s framework [17–19]. By giving
a covariant update rule, they obtained a measurement
scheme consistent with QFT and therefore completely safe
from any causality issues. In this framework, however,
being entirely within QFT, the localized measurement
probes are also quantum fields, and we are still left with
the problem of how to access the information of that second
ancillary field [20]. This is because low-energy measure-
ment apparatuses (like atoms, photodetectors, photomulti-
pliers, human retinas, etc.) are not well described by a free
field theory, and the treatment of bound states in QFT is still
very much an open problem [21].
Finally, the third option relies on coupling so-called

particle detectors—localized nonrelativistic quantum
systems—to quantum fields, such as the Unruh-DeWitt
(UDW) model [22,23]. Although pointlike detector models
are fully compatible with relativistic causality [24–27],
their singular nature leads, in certain contexts, to diver-
gences [28]. However, those divergences are not present for
detectors that are adiabatically switched on [29], or that are
spatially smeared [30,31]. In the latter case, even though
the unitary evolution is perfectly compatible with causality
and does not allow faster-than-light signaling with a second
detector [24,27], the use of a (nonpointlike) spatial smear-
ing along with the nonrelativistic approximation can indeed
enable some degree of faster-than-light signaling between
two detectors with the help of a third ancillary one in
between [27]. However, unlike in the case of projective
measurements, in the smeared setups that show any degree
of superluminal signaling, its impact is bounded by the
smearing length scale of the ancillary detector (which by
approximating it to be nonrelativistic we already neglected
in our frame of reference, to start with) and moreover does
not show up at leading orders in perturbation theory [27].
These results, together with the fact that detector models
can realistically represent the way fields are measured
experimentally [32–34], make this option especially
appealing for modeling measurements in QFT.
In the particle detector approach, however, not every step

of the process is already well understood. We still need to
describe the mechanism through which we go from a field
state and a detector that are originally decoupled and
uncorrelated, to a measurement outcome that an exper-
imentalist can put in a plot or write on a notepad. After the
experiment is performed and some classical information
has been obtained about the field, how does one take into
account this information for the description of future
experiments involving the field?
This question is particularly relevant for the field of

relativistic quantum information. Indeed, there are several
landmark protocols and experimental proposals in the
context of quantum information (e.g., the quantum Zeno
effect [35,36], the delayed choice quantum eraser

experiment [37–41], or the Wigner’s friend experiment
[42,43], among others) in which the ability to perform
measurements and using the information of the outcomes to
update the state is essential for their implementation. To be
able to formulate these scenarios in relativistic contexts, it is
necessary to have a well-understood measurement theory
that works in the context of quantum field theory and that
connects to experimentally measurable quantities.
In this paper we aim to formulate consistently a meas-

urement theory for QFT using detectors as measuring tools.
First, in Sec. II we present our working model. In Sec. III we
describe the measurement process (including field-detector
interaction and idealized measurement of the detector) and
obtain the field state update according to the measurement
outcome. In Sec. IV we analyze this update in order to
determine whether this kind of measurement abides by
relativistic causality. In Sec. V we present a context-
dependent update rule consistent with QFT. In Sec. VI we
explicitly formulate it in terms of n-point functions and in
Sec. VII we analyze the most general initial scenario.
Section IX is devoted to discussing how the framework
presented in this manuscript constitutes a valid measurement
theory for QFT. Finally we present our conclusions in Sec. X.

II. SETUP

In this work we consider a spatially smeared Unruh-
DeWitt model [22,23] for a detector coupled to a real scalar
field in a (1þ d)-dimensional flat spacetime. This is a
simplified model that is both covariant [25,26] and yet
captures the phenomenology of light-matter interaction
neglecting angular momentum exchange but without any
further common quantum optics approximations—such as
the rotating-wave or single (or few) mode approximation
[32–34,44]. For our purposes, let us consider that the detector
is inertial and at rest in the frame of coordinates ðt; xÞ so that
its proper time coincides with the coordinate time t. Then, in
the interaction picture, the interaction Hamiltonian is [31]

ĤIðtÞ ¼ λχðtÞμ̂ðtÞ
Z

ddxFðxÞϕ̂ðt; xÞ: ð1Þ

In this equation, the scalar field ϕ̂ can be expanded in terms of
plane-wave solutions in the quantization frame ðt; xÞ as

ϕ̂ðt;xÞ ¼
Z

ddkffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2πÞd2ωk

p
�
âke−iðωkt−k·xÞ þ â†ke

iðωkt−k·xÞ
�
;

ð2Þ

where â†k and âk are canonical creation and annihi-
lation operators satisfying the commutation relations
½âk; â†k0 � ¼ δðk − k0Þ. The internal degree of freedom
(monopole moment) of the detector, which we choose
to have two levels (ground jgi and excited jei) with an
energy gap Ω between them is given by
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μ̂ðtÞ ¼ jgiheje−iΩt þ jeihgjeiΩt: ð3Þ

λ is the coupling strength and χðtÞ is the switching
function controlling the time dependence of the coupling.
The interaction is on only for times in the support of χðtÞ.
For simplicity we assume this to be a finite interval
½ton; toff � [i.e., χðtÞ is compactly supported]. FðxÞ is the
spatial smearing function that models the localization of
the detector, and therefore the support of the product of χ
and F,

D ≔ suppfχðtÞ · FðxÞg; ð4Þ

is what we will call the interaction region or, slightly
abusing nomenclature, detector. Its causal future/past
J �ðDÞ is the union of the future/past light cones of all its
points and their interiors. In Minkowski spacetime2 M,

J �ðDÞ≔ fy∈M∶∃x∈D;x ·y≤ 0;�ðy0−x0Þ≥ 0g: ð5Þ

The causal support of D is the union of both its causal
past and its causal future,

J ðDÞ ≔ J þðDÞ ∪ J −ðDÞ: ð6Þ

III. THE UPDATED STATE OF THE FIELD

In this section we will compute the update on the field
state after an observable of the detector is measured by an
experimenter through an idealized measurement. In other
words, we will compute the positive operator-valued
measure (POVM) that is applied to update the field state
if the detector is updated by a projective measurement.
Although we will consider the most general case, a
physical example of this kind of situation could be an
experiment in the lab where we check whether the
detector clicks (gets excited) or not (stays in the ground
state) after interacting with an excited state of the
electromagnetic field.
It is reasonable to consider that the detector and the field

are initially uncorrelated. That is, in the absence of third
parties,3 the state of the system before the interaction is
ρ̂ ¼ ρ̂d ⊗ ρ̂ϕ. At time t ¼ T, the experimenter performs a
rank-one projective measurement P ¼ jsihsj of an arbitrary
observable of the detector. One can think of the idealized
measurement as performing a measurement of an observ-
able of the detector, and of jsihsj as being the eigenpro-
jector associated to the obtained measurement outcome.
For simplicity we assume that the measurement takes place

after the interaction between the field and the detector has
been switched off, that is, T ≥ toff . Then, after the projec-
tive measurement, the updated state of the joint system
is [45]

ρ̂P ¼ ðP ⊗ 1ÞÛ ρ̂ Û†ðP ⊗ 1Þ
tr½ðP ⊗ 1ÞÛ ρ̂ Û†� ; ð7Þ

where the unitary evolution operator Û is given by

Û ¼ T exp

�
−i

Z
∞

−∞
dt0 ĤIðt0Þ

�
: ð8Þ

The assumption that χðtÞ ¼ 0 for all t ≥ toff allows us to
safely extend the integration range to infinity. From now
on, we will use the integral sign without specifying limits
whenever the integral is carried out in the whole domain of
the integrand. We thus have, for the updated state of the
field,

ρ̂Pϕ ¼ trdðρ̂PÞ ∝ trd½ðP ⊗ 1ÞÛ ρ̂ Û†ðP ⊗ 1Þ�; ð9Þ

where trdð·Þ stands for the partial trace over the Hilbert
space of the detector. We note that the matrix elements of
ρ̂Pϕ satisfy that

hφ1jρ̂Pϕjφ2i ∝ hs;φ1jÛ ρ̂ Û†js;φ2i: ð10Þ

where js;φii≡ jsi ⊗ jφii and jφii is a vector in the field
Hilbert space. From now on, we will use the following
notation: if Ô is an operator acting on the detector-field
Hilbert space and jψ1i; jψ2i ∈ Hd are detector states, then
we will understand hψ1jÔjψ2i to be the field operator that
satisfies

hφ1jhψ1jÔjψ2ijφ2i ¼ hψ1;φ1jÔjψ2;φ2i ð11Þ

for any field states jφ1i; jφ2i ∈ Hϕ. Finally, let us assume
that the initial state of the detector is pure,4 ρ̂d ¼ jψihψ j.
Thus, using the convention in Eq. (11),

hs;φ1jÛ ρ̂ Û†js;φ2i ¼ hsjÛjψiρ̂ϕhψ jÛ†jsi: ð12Þ

We can therefore write the updated state of the field for the
projection over the state jsi of the detector as

ρ̂s;ψϕ ¼ M̂s;ψ ρ̂ϕM̂
†
s;ψ

trϕðρ̂ϕÊs;ψÞ
; ð13Þ

where2The metric in a coordinate system associated with inertial
observers is ημν ¼ diagð−1; 1;…; 1Þ, fx0;…; xdg are the coor-
dinates of the event x, and x · y ≔ ημνxμyν.

3We will generalize to cases where the field is entangled with
third parties in Sec. VII.

4This simplification can be easily dropped, and the result
straightforwardly generalized, in the same way that happens with
POVMs in nonrelativistic quantum mechanics [45].
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M̂s;ψ ¼ hsjÛjψi ð14Þ

is an operator acting on the field Hilbert space, and the
POVM elements [45] are

Ês;ψ ¼ M̂†
s;ψM̂s;ψ : ð15Þ

For our system, we can get a tractable expression for the
M̂s;ψ operators proceeding perturbatively in λ. First, the
unitary Û in Eq. (8) can be written as

Û ¼ 1þ
X∞
n¼1

λnÛðnÞ: ð16Þ

For the first two orders, substituting Eq. (1), we have

Ûð1Þ ¼ −i
Z

dt ddx χðtÞFðxÞμ̂ðtÞϕ̂ðt; xÞ ð17Þ

and

Ûð2Þ ¼ −
Z

dt dt0 ddx ddx0 θðt − t0ÞχðtÞχðt0Þ

× FðxÞFðx0Þμ̂ðtÞμ̂ðt0Þϕ̂ðt; xÞϕ̂ðt0; x0Þ: ð18Þ

As a result, we can apply the same expansion to M̂s;ψ ,

M̂s;ψ ¼ M̂ð0Þ
s;ψ þ λM̂ð1Þ

s;ψ þ λ2M̂ð2Þ
s;ψ þ � � � ; ð19Þ

where we are denoting M̂ðnÞ
s;ψ ¼ hsjÛðnÞjψi. In particular,

M̂ð0Þ
s;ψ ¼ hsjψi1ϕ; ð20Þ

M̂ð1Þ
s;ψ ¼ −i

Z
dt ddx χðtÞFðxÞhsjμ̂ðtÞjψiϕ̂ðt; xÞ; ð21Þ

M̂ð2Þ
s;ψ ¼ −

Z
dt dt0 ddx ddx0 θðt − t0ÞχðtÞχðt0Þ

× FðxÞFðx0Þhsjμ̂ðtÞμ̂ðt0Þjψiϕ̂ðt; xÞϕ̂ðt0; x0Þ: ð22Þ

IV. CAUSAL BEHAVIOR

Once the form of the POVM that updates the state of the
field (13) has been obtained, we want to analyze whether
this update respects relativistic causality. In this section we
will study whether the measurement defined in the previous
section influences the field state outside of the causal future
of the measurement.
Concretely, in order to understand the causal behavior of

the update of the field state that arises from performing a
projective measurement on the detector, we need to compare
the updated state of the field ρ̂uϕ (post-measurement) and the
initial state of the field ρ̂ϕ (pre-measurement) and see that

there is no influenceon the field state outside the causal future
of the interaction region. Since the state of the field is fully
characterized by its n-point functions, the analysis can be
reduced to studying how the n-point functions change after
the measurement process [consisting of (i) interaction with
the detector, and—after switching off the interaction—
(ii) idealizedmeasurement of the detector and corresponding
POVM update on the field] in the region that is spacelike
separated from the detector.
Regarding the updated field state ρ̂uϕ, note that the update

given by Eqs. (13) and (14) corresponds to a selective
measurement [2,5]: the measurement is performed and its
outcome is checked, updating the state of the field
accordingly. However, if an observer is spacelike separated
from the detector, then they might know that the measure-
ment was prearranged to be performed, but they cannot
know the outcome of such a measurement since informa-
tion cannot be transmitted to them. Thus, from that
observer’s perspective, the update of the state has to be
the one associated with a nonselective measurement [2,5]:
the state of the field is updated taking into account that the
measurement has been carried out, but without knowing its
outcome. This measurement model respects causality if the
spacelike separated observer cannot tell with local oper-
ations whether the measurement was carried out or not, i.e.,
if the nonselective update does not impact the outcome of
local operations performed outside the causal support of the
measurement.
A nonselective measurement has to be understood as

having made the projective measurement on the detector
when the outcome is not made concrete. Therefore, to
update the state we apply a convex mixture of all the
projectors over all the possible proper subspaces associated
with every potential outcome of the measurement,
weighted by its associated probabilities given by Born’s
rule (see again Refs. [2,5]).
Since we are considering a two-level Unruh-DeWitt

detector, the most general nonselective projective meas-
urement can be described by two complementary rank-one
projections, jsihsj and js̄ihs̄j, such that

1d − jsihsj ¼ js̄ihs̄j; ð23Þ

where jsi and js̄i are two orthonormal vectors in the
detector’s Hilbert space, Hd. The state of the field updated
by a nonselective measurement can then be written as the
mixture of the updates for each projection ρ̂s;ψϕ and ρ̂s̄;ψϕ
given by Eq. (13), weighted by their respective probabil-
ities, hÊs;ψ iρ̂ϕ and hÊs̄;ψ iρ̂ϕ ,

ρ̂uϕ ¼ hÊs;ψ iρ̂ϕ ρ̂s;ψϕ þ hÊs̄;ψiρ̂ϕ ρ̂s̄;ψϕ
¼ M̂s;ψ ρ̂ϕM̂

†
s;ψ þ M̂s̄;ψ ρ̂ϕM̂

†
s̄;ψ : ð24Þ
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By Eq. (14), recalling the notation described in Eq. (11),
from Eq. (24),

ρ̂NSϕ ¼ hsjÛjψiρ̂ϕhψ jÛ†jsi þ hs̄jÛjψiρ̂ϕhψ jÛ†js̄i
¼ trd½Ûðjψihψ j ⊗ ρ̂ϕÞÛ†�; ð25Þ

where we have used Eq. (23) to reduce the sum to a trace
over the detector Hilbert space.
Let Â be a field observable. Then we get that its

expectation value for the nonselective update of the field
state is

hÂiρ̂NSϕ ¼ trϕ½trd½Ûðjψihψ j ⊗ ρ̂ϕÞÛ†�Â�
¼ tr½Ûðjψihψ j ⊗ ρ̂ϕÞÛ†Â�
¼ tr½ðjψihψ j ⊗ ρ̂ϕÞÛ†Â Û�; ð26Þ

where hÔiρ̂ ¼ trðρ̂ ÔÞ as usual. We have used the cyclic
property of the trace and we have denoted the detector-field
operator 1d ⊗ Â simply as Â, omitting the identity of the
detector. Now, taking into account the form of the UDW
interaction Hamiltonian (1) and the unitary evolution
operator (8), if Â is a field observable supported outside
the causal support of the interaction region, then micro-
causality ensures that

½Â; ϕ̂ðt; xÞ� ¼ 0 ð27Þ

for every ðt; xÞ ∈ D, and therefore

½Â; Û� ¼ 0: ð28Þ

This means that Eq. (26) yields

hÂiρ̂NSϕ ¼ trϕðρ̂NSϕ ÂÞ ¼ tr½ðjψihψ j ⊗ ρ̂ϕÞÛ†Â Û�
¼ tr½ðjψihψ j ⊗ ρ̂ϕÞÛ†Û Â� ¼ trϕðρ̂ϕÂÞ
¼ hÂiρ̂ϕ : ð29Þ

We conclude that the nonselective POVM does not
affect the expectation value of any local observable
outside the causal influence region of the detector.
Of particular importance is the case when we take
Â ¼ ϕ̂ðt1; x1Þ � � � ϕ̂ðtn; xnÞ, with all ðt1; x1Þ;…; ðtn; xnÞ out-
side the causal support of the interaction region, i.e., space-
like separated from the interaction region. Then Eq. (29)
allows us to conclude that the corresponding n-point func-
tions do not change under the nonselective update.
The effect of the rank-one projective measurement

performed on the detector is thus restricted to the causal
future of the interaction region between the detector and the
field. In particular, it is bounded in every spacelike hyper-
surface of the Minkowski spacetime. This feature contrasts

with the effect (studied by Sorkin in Ref. [7]) of a finite-
rank projective measurement performed on the field, which
affects the whole future half of the spacetime determined by
the spacelike hypersurface in which the measurement is
considered to be performed [7]. Therefore, if we are in the
regimes where causality is respected by the coupling
between detector and field (e.g., pointlike detectors in
any scenario or spatially smeared detectors in the scales
identified in Ref. [27]), the projective measurement per-
formed on the detector is safe from any causality issues5 of
the kind exposed in “Impossible measurements on quantum
fields”[7]. The existence of physically motivated regimes
that set the limits of validity of the particle detector model
distinguishes this approach from the performance of
infinite-rank projective measurements on the field, where
faster-than-light signaling is allowed in general [10].
Moreover, Eq. (26) also shows that, for the nonselective
update, expectation values of arbitrary observables only
depend on the joint state of the field and the detector after
the interaction, and not on the measurement performed on
the detector. Indeed, the nonselective measurement elim-
inates the entanglement that the detector and the field
acquired through the interaction, but it does not change the
partial state of the field, as Eq. (25) explicitly shows. This is
of course a physically reasonable feature of the update: we
have specified that the measurement is performed after the
interaction is switched off, but it could be some arbitrary
amount of time after this. The physical change of the field
state due to the measurement is due only to the physical
coupling between the detector and the field, and not to the
fact that we decide to do a projective measurement on the
detector after this interaction. This is because the projective
measurement acts only on the detector once the interaction
has been switched off, and it does not provide additional
information since being nonselective the outcome is not
known. This important interpretational point will be revis-
ited when we consider the update rule for selective
measurements, where the state of the field has to be
updated consistently with the concrete outcome of the
measurement.

V. THE UPDATE RULE

In the previous section we have shown that the process of
measuring a quantum field through locally coupling an
Unruh-DeWitt detector and then carrying out an idealized
measurement on the detector—which corresponds to

5For the sake of brevity, from now on we will not restate the
conditions under which particle detector models behave causally
and will just state that the particle detector models are causal. The
facts that should be acknowledged throughout this manuscript are
that a pointlike detector is fully causal, that its quantum dynamics
is nonsingular (when switched on carefully) and that the causality
violations (if any) of the model come through (well-controlled)
smearing scales. For a more careful recapitulation of these
conditions, see Sec. I.
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a field state update with the appropriate (nonselective)
POVM—does not introduce causality violations. We are
now in a position to build an update rule for the field when
we assume that the experimenter knows the concrete
outcome of the idealized measurement carried out on
the detector, which is akin to considering what is the field
state update induced by a selective measurement on
the detector after the detector finished interacting with
the field.

A. Issues of a noncontextual update

Prescribing an update rule for selective measurements in
a way that is compatible with the relativistic nature of QFT
requires more care than in regular quantum mechanics. An
update rule for selective measurements based on particle
detectors should:
(1) Include the knowledge of the measurement outcome

in the description of the field and implement the
compatibility between measurements that are se-
quentially applied to the field, in the spirit of Lüders
rule [2].

(2) Be compatible with relativity.
To guarantee that condition (1) is fulfilled, it is necessary
to use the update of the state of the field given by
Eq. (13). However, in Appendix A we show that this
update cannot be applied outside the causal future of the
detector in a way consistent with relativity. Hence, we see
that any noncontextual update (i.e., an update where one
gives the density operator a global nature and its change
affects all observers regardless of whether they are in
causal contact with the detector or not) cannot satisfy
conditions (1) and (2) simultaneously. To bypass this
difficulty, a first attempt that one could try is to prescribe
that the selective update given by Eq. (13) should only be
used in the causal future of the measurement. This
prescription, however, is ill-defined since the density
operator does not naturally depend on points of the
spacetime manifold. In particular, this kind of prescription
does not provide a way to calculate arbitrary n-point
functions, since by naively looking at the formula
wnðx; x0; � � �Þ ¼ trϕðσ̂ϕϕ̂ðxÞϕ̂ðx0Þ � � �Þ—where σ̂ϕ is an
arbitrary field state—it is not clear what density matrix
σ̂ϕ we should use when considering points x; x0 in regions
of spacetime with different updates.
We conclude that a noncontextual update that includes

the information obtained from a selective measurement
performed on the detector is at odds with relativistic
causality. Instead, in order to satisfy conditions (1) and
(2) we must partially give up on the physical significance of
density operators ρ̂ϕ and ρ̂uϕ as representatives of observer-
independent field states and simply treat them as states of
information about the field (much like it is done in
quantum-informational approaches to the measurement
problem in quantum mechanics [46–51]). This is precisely
what the next subsection focuses on.

B. A contextual update rule

As we just concluded, to properly formulate an update
rule that is respectful of relativity we need to consider the
field density operators to be observer dependent. In
particular, we propose that the update depends on the
context of the observer, i.e., the information available to
them according to their position in spacetime. Moreover,
because it depends on the observer, once they receive
information about a measurement the update only takes
place inside their causal future. It is perhaps interesting to
remark here the distinction between the measurement, that
is performed by the experimenter, and the update, that is
performed by each observer according to the information
they have about the field. It is in this sense that we say that
the update is observer dependent. As such, when we write
that a certain observer updates their field state, we mean
that they are updating their information about the field and
changing the field density operator that describes the field
state for them, without acting upon the field in any way
whatsoever. This operational approach can be summarized
as follows:
(1) After an experimenter provided with a detector

performs a projective measurement on the detector,
an observer that becomes aware that the measure-
ment has been performed can either have informa-
tion about its outcome or not. If they do, they apply
the selective update (13); if they do not, they apply
the nonselective update (24). Both updates take
place in the causal future of the observer.

(2) If an observer is spacelike separated from the
interaction region, at most they can be aware of
the measurement being performed, but they do not
have access to the outcome of the measurement.
Their update, if anything, should be nonselective,
and we have already seen that the nonselective
update does not have any effect on the outcome
of spacelike separated operations. Hence, the space-
like separated observer does not have to take into
account at all that a measurement has been per-
formed. As it is desirable in a relativistic measure-
ment theory, spacelike operations do not affect
each other.

(3) To update the n-point functions we need to take into
account where the information of the measurement
is accessible. As such, the n-point functions will
only be nontrivially updated (selectively or non-
selectively) if any point of their n arguments is in the
causal future of the measurement region. This will
be addressed in depth in Sec. VI.

This update rule respects causality by fiat, and its
consistency for spacelike separated observers is guaranteed
by the fact that the nonselective update is causal. However,
since it only updates the state in the causal future of the
detector, one could legitimately wonder if the measurement
prescription takes into account the correlations present in
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spacelike separated regions of the field that are well known
to exist [3,6,13,14]. Condition 3 tells us how to proceed in
order to ensure that this is the case. Consider two
experimenters, Alba and Blanca, each provided with their
own detector. The initial state of Alba’s detector is
ρ̂A ¼ jξihξj, while Blanca’s is ρ̂B ¼ jζihζj. While being
spacelike separated, they perform measurements, i.e.,
1) they couple their detectors to the field and 2) after
switching off the interaction they perform a projective
measurement on the detectors and update their field states
selectively with the information obtained in their local
measurements. Alba gets a result associated to state jai of
her detector, while Blanca gets another associated to jbi.
Their corresponding updates are

ρ̂A
ϕ ¼ M̂a;ξρ̂ϕM̂

†
a;ξ

trϕðρ̂ϕÊa;ξÞ
and ρ̂B

ϕ ¼ M̂b;ζρ̂ϕM̂
†
b;ζ

trϕðρ̂ϕÊb;ζÞ
: ð30Þ

In the future, they eventually meet and inform each other of
their results. Their final updates based on the exchanged
information are as follows: for Alba,

ρ̂ABϕ ¼ M̂b;ζρ̂
A
ϕM̂

†
b;ζ

trϕðρ̂A
ϕÊb;ζÞ

¼ M̂b;ζM̂a;ξρ̂ϕM̂
†
a;ξM̂

†
b;ζ

trϕðρ̂ϕÊa;ξÞtrϕðρ̂A
ϕÊb;ζÞ

; ð31Þ

while for Blanca

ρ̂BAϕ ¼ M̂a;ξρ̂
B
ϕM̂

†
a;ξ

trϕðρ̂B
ϕÊa;ξÞ

¼ M̂a;ξM̂b;ζρ̂ϕM̂
†
b;ζM̂

†
a;ξ

trϕðρ̂ϕÊb;ζÞtrϕðρ̂B
ϕÊa;ξÞ

: ð32Þ

Now, taking into account the form of the M̂ operators (14),
in terms of the unitary (8) and therefore the Hamiltonian
(1), it is straightforward to prove that if Alba’s and Blanca’s
measurements are carried out in spacelike separated
regions, then

½M̂a;ξ; M̂b;ζ� ¼ ½M̂a;ξ; M̂
†
b;ζ� ¼ 0: ð33Þ

This means that the numerators in Eqs. (31) and (32) are the
same. Since the denominators are normalization factors, we
first conclude that the updates are consistent. Once they
meet they have the same information, and indeed it holds
that

ρ̂ABϕ ¼ ρ̂BAϕ : ð34Þ

Moreover, by Eq. (33)

trϕðM̂b;ζM̂a;ξρ̂ϕM̂
†
a;ξM̂

†
b;ζÞ ¼ trϕðρ̂ϕÊa;ξÊb;ζÞ ð35Þ

so that we can write

trϕðρ̂A
ϕÊb;ξÞ ¼

trϕðρ̂ϕÊa;ξÊb;ζÞ
trϕðρ̂ϕÊa;ξÞ

≠ trϕðρ̂ϕÊb;ξÞ: ð36Þ

For a POVM, the probability of getting an outcome r from a
generic state σ̂ϕ is the trace trϕðσ̂ϕÊrÞ, where Êr is the
POVM element associated to the outcome r [45]. This
means that Eq. (36) displays the correlations between
the measurements due to the initial correlations in the
field state. Indeed, Eq. (36) can be read in terms of
probabilities as

ProbðBlanca gets bjAlba gets aÞ

¼ ProbðAlba gets a andBlanca gets bÞ
ProbðAlba gets aÞ

≠ ProbðBlanca gets bÞ; ð37Þ

where the first equality is the formula for conditional
probability, and in particular shows that Alba’s and
Blanca’s outcomes are not independent.
We conclude that the proposed update rule respects

causality, is consistent for spacelike separated measure-
ments (and trivially for timelike separated measurements),
and accurately accounts for spacelike correlations.
Therefore it is a suitable contextual rule for updating the
state of the field after measuring with detectors in QFT.
It is remarkable that the proposed update rule, for a

particular observer, is somewhat similar in its structure to
that proposed by Hellwig and Kraus [5]. The formalism
proposed in our work, however, relies on particle detectors
instead of on local projections, establishing a direct con-
nection with experiments [32–34,44].
It should be noted that by giving up on density operators

as global descriptions of the field state we are displacing the
focus from the Hilbert space description to another based
on what experimenters measure and the correlations
between the possible measurements. This is precisely the
approach adopted in algebraic quantum field theory (see
e.g., Refs. [52–55]), where the algebraic state is interpreted
to be the complex linear form that associates to each
observable6 its expectation value. Indeed, the contextual
update rule described above should be given just in terms of
updated n-point functions, as we will show in the next
section.

VI. UPDATE OF n-POINT FUNCTIONS

In a free quantum field theory, the state of the field can be
described in two interchangeable ways: either by a density
operator in some particular Hilbert space representation or,
equivalently, by the set of the field n-point functions.
However, in Sec. V, we have argued that there are serious

6As an element of the direct limit of the net of local
algebras [55].
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difficulties to apply a selective update to a field density
operator because of the incompatibility with a context-
independent description. Fortunately, the formalism of
n-point functions is still adequate for describing the
contextual update rule proposed in the previous section.
In the present section, we will formulate the update rule
proposed in the previous section explicitly in terms of the
n-point functions that fully characterize the state of the
field. The n-point functions directly appear in the most
common expressions for the response of particle detectors
(see e.g., Refs. [29,30,56] among others), so having an
update rule for all the n-point functions not only fully
characterizes the updated state but is also of practical
interest for any calculations involving particle detectors.
Notice that for the update after the measurement to be

given just as an update of n-point functions, we need to
initially assume that in our particular experiment the only
relevant systems are the field and the detector. If the field is
entangled with a third party in the past of the detector, we
will assume for now that this third party will not be
addressed in this measurement experiment, leaving the
more complicated case for future sections.7

For this section, this simplifying constraint will allow us
to “forget” about the causal past of the measurement and

define the update only in the region of spacetime outside of
it. In the spirit of the discussion in the previous section, we
will distinguish whether the measurement performed on the
detector is nonselective or selective.

A. Nonselective update

The nonselective update is straightforward to implement
from the state update in Sec. IV. Since, as we showed,
nonselective updates do not affect the state in regions
spacelike separated from the measurement, there is no need
to prescribe different updates whether the arguments are in
the causal future of the detector or in the spacelike
separated region. Hence, the updated n-point function is

wNS
n ðx1;…; xnÞ ¼ trϕðρ̂uϕϕ̂ðx1Þ � � � ϕ̂ðxnÞÞ

¼ hM̂†
s;ψ ϕ̂ðx1Þ � � � ϕ̂ðxnÞM̂s;ψ iρ̂ϕ

þ hM̂†
s̄;ψ ϕ̂ðx1Þ � � � ϕ̂ðxnÞM̂s̄;ψiρ̂ϕ ð38Þ

for every x1;…; xn ∈ M outside the causal past of the
interaction region. This update can be given explicitly in
termsof then-point functions of the initial state of the field. In
particular, for the one-point function and to first order in λ,

wNS
1 ðt1; x1Þ ¼ w1ðt1; x1Þ þ 2λ

Z
dt ddx χðtÞFðxÞhψ jμ̂ðtÞjψiImðw2ðt1; x1; t; xÞÞ þOðλ2Þ ð39Þ

where wn is the n-point function of the initial state of the field ρ̂ϕ. Analogously, for the two-point function,

wNS
2 ðt1; x1; t2; x2Þ ¼ w2ðt1; x1; t2; x2Þ þ iλ

Z
dt ddx χðtÞFðxÞhψ jμ̂ðtÞjψiðw3ðt; x; t1; x1; t2; x2Þ − w3ðt1; x1; t2; x2; t; xÞÞ

þOðλ2Þ: ð40Þ

And in general,

wNS
n ðt1; x1;…; tn; xnÞ ¼ wnðt1; x1;…; tn; xnÞ þ iλ

Z
dt ddx χðtÞFðxÞhψ jμ̂ðtÞjψiðwnþ1ðt; x; t1; x1;…; tn; xnÞ

− wnþ1ðt1; x1;…; tn; xn; t; xÞÞ þOðλ2Þ: ð41Þ

The details of these calculations can be seen in Appendix B. The second-order terms in λ for the previous perturbative
expressions are also displayed inEq. (B12) ofAppendixB. It isworth remarking thatmicrocausality ensures that Eqs. (39), (40)
and (41) reduce to the unchanged n-point function whenever their arguments are outside the causal future of the detector, since
in that case ½ϕ̂ðt; xÞ; ϕ̂ðtj; xjÞ� ¼ 0 for every j ∈ f1;…; ng and therefore

7This initial assumption can indeed be relaxed: treated with some care, the update rule for n-point functions which we are about to
formulate can also be used in arbitrarily general scenarios. The reason is that the scheme given in Sec. Vapplies to arbitrary states ρ̂ϕ that
may be extended to include third-party systems in addition to the field. We will show how this more general scenario can be
straightforwardly dealt with in Sec. VII.
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wnþ1ðt; x; t1; x1;…; tn; xnÞ
¼ trϕ

�
ρ̂ϕϕ̂ðt; xÞϕ̂ðt1; x1Þ � � � ϕ̂ðtn; xnÞ

�

¼ trϕ
�
ρ̂ϕϕ̂ðt1; x1Þ � � � ϕ̂ðtn; xnÞϕ̂ðt; xÞ

�

¼ wnþ1ðt1; x1;…; tn; xn; t; xÞ: ð42Þ
B. Selective update

For selective measurements, we will first present the
update for the one-point function. Second, we will consider
the two-point function, which involves a few subtleties that
deserve attention. And finally, with the one-point and two-
point functions as landmarks, we will generalize the update
scheme to n-point functions. As before, the details of the
calculations (as well as results at higher orders in the
coupling strength) can be found in Appendix B.

1. One-point function

As shown in Appendix A, when dealing with selective
measurements the update cannot be applied outside the
causal future of the detector. Moreover, it should be noticed
that in full rigor, and unlike for nonselective measurements,
the selective update does depend on the region of spacetime
in which the projective measurement on the detector is
performed, whose future we shall denote P. Therefore we
have to distinguish three cases depending on the argument
x1 ∈ M of the one-point function:
(a) If x1 ∈ P, then we should consider the state of the

field to be updated by the selective rule (13).
(b) If x1 ∈ J þðDÞnP, with J þðDÞ being the causal future

of the interaction region8 as defined in Eq. (5), then we
only have to take into account the interaction, which as
shown in Eq. (25) yields the same update as the
nonselective rule (24).

(c) If x1 is spacelike separated from D [i.e., it is outside the
causal support of the interaction region, x1 ∉ J ðDÞ],
then we should use the initial state of the field, or
equivalently the nonselective update.

However, we saw in Sec. VI A that the nonselective update
can be safely applied to spacelike separated regions.
Therefore, we can consider cases (b) and (c) jointly when
prescribing the update rule. All together,

wS
1ðx1Þ ¼

8<
:

hM̂†
s;ψ ϕ̂ðx1ÞM̂s;ψ iρ̂ϕ
hÊs;ψ iρ̂ϕ

if x1 ∈ P;

wNS
1 ðx1Þ otherwise:

ð43Þ

Note that all expectation values are calculated for the initial
state of the field, ρ̂ϕ. For the case in which x1 ∈ P, we have
used Eq. (13) and the cyclic property of the trace.
Therefore, the update can be given in terms of the n-point

functions of the initial state of the field. In particular, if
hsjψi ≠ 0, to first order in λ,

wS
1ðt1; x1Þ ¼ w1ðt1; x1Þ þ

2λ

jhsjψij2
Z

dt ddx χðtÞ

× FðxÞIm
h
hψ jsihsjμ̂ðtÞjψi

�
w2ðt1; x1; t; xÞ

− w1ðt1; x1Þw1ðt; xÞ
�i

þOðλ2Þ ð44Þ
whenever ðt1; x1Þ ∈ P. The more cumbersome case in which
hsjψi ¼ 0 is displayed in Eq. (B33) of Appendix B, along
with the case hsjψi ≠ 0 up to order 2 in λ, that can be seen
in Eq. (B23).

2. Two-point function

For prescribing the update of the two-point function we
also need to distinguish different cases. Following the same
spirit of the prescription of the one-point function, when both
arguments x1, x2 ∈ P are in the causal future of the
projective measurement, we consider the field state to be
updated by Eq. (13), while if both x1, x2 are outside P, the
information of the measurement cannot propagate to those
points and therefore we should use the nonselective update of
the field state to calculate the expectation value. However,
what should we do when we have a mixed situation (e.g., if
x1 ∈ P and x2 ∉ P)? First, note that the two-point function
is a nonlocal object that is only relevant in nonlocal experi-
ments (for example, coordinating several labs around the
world, or an interaction that is extended in space). However, it
is only pertinent to ask about the result of a nonlocal
experiment if we assume that the information obtained by
the different measurements can be combined in a “process-
ing” region9 that intersects the causal futures of all the
experiments. It is reasonable then that when the two-point
function has mixed arguments inside and outside P, the
information about the outcome of the selective measurement
is accessible to the processing region, as it has to have a
nonzero intersection with P. Hence, as long as one of the
points of the two-point function is inside P we must use the
selective update of the field state.
This is consistent with treating the field state as a state of

information about the field. To update the field in accordance
with the outcome of a measurement we need to look at where
in spacetime the information obtained in the measurement
can be accessed. Conversely, if an observer never accesses the
causal future of a region in spacetime, it does not make sense
for them to ask about the correlations between the field in that
region and the region they have access to.10 All this
considered, we shall prescribe the selective update for the
two-point function as

8Note that, since the projective measurement on the detector
is performed in the causal future of the interaction region,
P ⊂ J þðDÞ.

9Notice the similarity with the notion of a processing region
introduced in Ref. [57].

10For example, if two observers never get to communicate,
directly or indirectly, it lacks physicalmeaning that they can ask any
question that involves the correlations between their operations.
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wS
2ðx1; x2Þ ¼

8<
:

hM̂†
s;ψ ϕ̂ðx1Þϕ̂ðx2ÞM̂s;ψ iρ̂ϕ

hÊs;ψ iρ̂ϕ
if x1 or x2 ∈ P;

wNS
2 ðx1; x2Þ otherwise:

ð45Þ

Again, the update can be given in terms of the n-point functions of the initial state of the field. In particular, if hsjψi ≠ 0, to first
order in λ,

wS
2ðt1; x1; t2; x2Þ ¼ w2ðt1; x1; t2; x2Þ þ

λ

jhsjψij2
Z

dt ddx χðtÞFðxÞðihsjψihψ jμ̂ðtÞjsiw3ðt; x; t1; x1; t2; x2Þ

− ihψ jsihsjμ̂ðtÞjψiw3ðt1; x1; t2; x2; t; xÞ − 2Imðhψ jsihsjμ̂ðtÞjψiÞw2ðt1; x1; t2; x2Þw1ðt; xÞÞ
þOðλ2Þ ð46Þ

whenever ðt1; x1Þ ∈ P or ðt2; x2Þ ∈ P (or both). As before, the case in which hsjψi ¼ 0 and the second-order term of the
previous expression are left to be displayed in Appendix B.

3. n-point function

The arguments given to justify the prescription for the two-point function immediately generalize to arbitrary n-point
functions, for which the selective update is

wS
nðx1;…; xnÞ ¼ wNS

n ðx1;…; xnÞ ð47Þ

if all x1;…; xn are outside P, and

wS
nðx1;…; xnÞ ¼

hM̂†
s;ψ ϕ̂ðx1Þ � � � ϕ̂ðxnÞM̂s;ψ iρ̂ϕ

hÊs;ψ iρ̂ϕ
ð48Þ

otherwise. Once again, the update can be given in terms of the n-point functions of the initial state of the field, and in
particular, if hsjψi ≠ 0, to first order in λ,

wS
nðt1; x1;…; tn; xnÞ ¼ wnðt1; x1;…; tn; xnÞ þ

λ

jhsjψij2
Z

dt ddx χðtÞFðxÞ
�
ihsjψihψ jμ̂ðtÞjsiwnþ1ðt; x; t1; x1;…; tn; xnÞ

− ihψ jsihsjμ̂ðtÞjψiwnþ1ðt1; x1;…; tn; xn; t; xÞ

− 2Imðhψ jsihsjμ̂ðtÞjψiÞwnðt1; x1;…; tn; xnÞw1ðt; xÞ
�

þOðλ2Þ ð49Þ

whenever ðti; xiÞ ∈ P for some i ∈ f1;…; ng. Just as
before, the second-order terms and the more tedious case
in which hsjψi ¼ 0 can be found in Appendix B.

VII. GENERALIZATION TO THE PRESENCE OF
ENTANGLED THIRD PARTIES

In the previous sections the analysis was performed
considering that the initial entanglement of the field with
systems other than the detector is not addressable and hence
irrelevant for the scenarios considered. However, the update
rule given in Secs. III and V is not restricted to these
situations. Generalizing beyond these situations is rather
straightforward and conceptually identical to the prescrip-
tion given in previous sections. For completeness, we will

show here how the prescribed update rule can be gener-
alized to the case in which there are other physical systems
apart from the field and the detector that are relevant for the
experiments under analysis.
First, note that in Sec. III we considered the initial state

of the system to be ρ̂ ¼ ρ̂d ⊗ ρ̂ϕ for the sake of simplicity,
since these two systems are the only ones involved in the
measurement. But it should be immediately realized that
we can consider general initial states of the form
ρ̂ ¼ ρ̂d ⊗ ρ̂Φ, where ρ̂Φ is the joint state of the field and
all the other physical systems with which it might share
entanglement that may be relevant for our experiment. For
simplicity of the treatment, let us first assume that all of
them are nonrelativistic, in the sense that their individual
dynamics can be dealt with using nonrelativistic quantum
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mechanics and in particular they are localized. We will
relax this assumption and allow for the presence of other
relativistic fields at the end of the section.
Let us denote the relevant physical systems that are not

the field or the detector by Σ ¼ fΣ1;Σ2; � � �g. The deriva-
tion of the updated state for ρ̂Φ proceeds as shown in
Sec. III. The only difference that we need to take into
account is that now, if Ô is an operator acting on the Hilbert
space of the whole system Hilbert space (detector, field and
Σ) and jψ1i, jψ2i are detector states, then we should
understand hψ1jÔjψ2i to be an operator acting on the
Hilbert spaceHΦ of the field and the systems in Σ, such that

hΦ1jhψ1jÔjψ2ijΦ2i ¼ hψ1;Φ1jÔjψ2;Φ2i ð50Þ

for any jΦ1i, jΦ2i ∈ HΦ. Clearly, Eq. (50) is the gener-
alization of Eq. (11). It is straightforward to check that all
the prescriptions given in Sec. V still apply after this direct
generalization has been made, taking into account the extra
systems when keeping track of the available information.
However, in this more general setup, giving the update
solely in terms of n-point functions as in Sec. VI would no
longer be possible. Nevertheless, we can consider “joint”
extended n-point functions of the joint system as follows:
notice, first of all, that just as any observable of the field can
be expressed in terms of the field operators, any observable
of the systems in a subset Γ ⊆ Σ can be expressed in terms
of the rank-one operators jγlihγmj, as

ÔΓ ¼
X
l;m

hγljÔΓjγmijγlihγmj ð51Þ

for an orthonormal basis fjγlig of the Hilbert space of Γ.
Thus, any operator acting on the field and Γ can be
expressed in terms of the field operators ϕ̂ðxÞ and the
rank-one operators jγlihγmj. We can therefore define the
extended n-point functions as

w̃Γ;nðl; m; x1;…; xnÞ
≔ trðρ̂Φjγlihγmjϕ̂ðx1Þ � � � ϕ̂ðxnÞÞ ð52Þ

for n ≥ 0, where

w̃Γ;0ðl; mÞ ≔ trðρ̂ΦjγlihγmjÞ: ð53Þ

The extended n-point functions characterize ρ̂Φ. The update
rule can nowbegiven in terms of an update of the extendedn-
point functions, which can be shown to be just amodification
of the update for n-point functions given in Sec. VI.
(a) Nonselective update. Since the nonselective update

(24) is trace preserving and it acts nontrivially only on
the Hilbert space of the field, we can simply prescribe
the same update of Eq. (38) for each of the extended
n-point functions:

w̃NS
Γ;nðl;m;x1;…;xnÞ
¼ tr

�
M̂s;ψ ρ̂ΦM̂

†
s;ψ jγlihγmjϕ̂ðx1Þ � � � ϕ̂ðxnÞ

�

þ tr
�
M̂s̄;ψ ρ̂ΦM̂

†
s̄;ψ jγlihγmjϕ̂ðx1Þ � � � ϕ̂ðxnÞ

�
: ð54Þ

As in Sec. VI A, this expression can be written in terms
of the nonupdated extended n-point functions. Note
that, in particular, w̃NS

Γ;0ðl; mÞ ¼ w̃Γ;0ðl; mÞ.
(b) Selective update. Same as in Sec. VI, the prescription

of the update requires to keep track of where the
information is accessible. This leads to a piecewise
definition as in Eqs. (47) and (48): let P be the causal
future of the region in which the projective measure-
ment on the detector is performed,

w̃S
Γ;nðl; m; x1;…; xnÞ ¼ w̃NS

Γ;nðl; m; x1;…; xnÞ ð55Þ

if all x1;…; xn and the systems of Γ are outside P, and

w̃S
Γ;nðl; m; x1;…; xnÞ

¼
tr

�
M̂s;ψ ρ̂ΦM̂

†
s;ψ jγlihγmjϕ̂ðx1Þ � � � ϕ̂ðxnÞ

�

trΦðρ̂ΦÊs;ψ Þ
ð56Þ

otherwise. In particular,

w̃S
Γ;0ðl; mÞ ¼ w̃NS

Γ;0ðl; mÞ ð57Þ
if the systems of Γ are outside P, and

w̃S
Γ;0ðl; mÞ ¼ trðM̂s;ψ ρ̂ΦM̂

†
s;ψ jγlihγmjÞ

trΦðρ̂ΦÊs;ψ Þ
ð58Þ

otherwise.
To end this section, we can address the case where the

third parties sharing entanglement with the probed field are
themselves relativistic fields. In that scenario, Eq. (51) is
not useful anymore, since for a basis of the Hilbert space of
a field, the rank-one operators jγlihγmj are not local objects
and the update to the extended n-point function has to be
defined over local regions of spacetime. Fortunately, the
field itself is defined in terms of local observables. The
local observables of a field σ in Σ can be expressed in terms
of its associated field operators σ̂ðxÞ. Thus, for the simplest
case in which the only system in Σ is a field σ, we define the
extended n-point function as an ðn0; nÞ-point function,

w̃n0;nðy1;…; yn0 ; x1;…; xnÞ
¼ trðρ̂Φσ̂ðy1Þ � � � σ̂ðyn0 Þϕ̂ðx1Þ � � � ϕ̂1ðxnÞÞ: ð59Þ

This expression provides the extended n-point function that
substitutes Eq. (52) for the case in which Σ is one
relativistic field. If there are more fields present, one can
build the extended n-point function in an analogous
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fashion. Regarding the update rule, in the same spirit of the
prescriptions given in Eqs. (54), (55) and (56),

w̃NS
n0;nðy1;…; yn0 ; x1;…; xnÞ
¼ trðM̂s;ψ ρ̂ΦM̂

†
s;ψ σ̂ðy1Þ � � � σ̂ðyn0 Þϕ̂ðx1Þ � � � ϕ̂ðxnÞÞ

þ trðM̂s̄;ψ ρ̂ΦM̂
†
s̄;ψ σ̂ðy1Þ � � � σ̂ðyn0 Þϕ̂ðx1Þ � � � ϕ̂ðxnÞÞ ð60Þ

for the nonselective case, while for the selective case,

w̃S
n0;nðy1;…; yn0 ; x1;…; xnÞ
¼ w̃NS

Γ;nðy1;…; yn0 ; x1;…; xnÞ ð61Þ

if all x1;…; xn and y1;…; yn0 are outside P, and

w̃S
n0;nðy1;…;yn0 ;x1;…;xnÞ

¼
tr

�
M̂s;ψ ρ̂ΦM̂

†
s;ψ σ̂ðy1Þ � � � σ̂ðyn0 Þϕ̂ðx1Þ � � � ϕ̂ðxnÞ

�

trΦðρ̂ΦÊs;ψ Þ
ð62Þ

otherwise.
Finally, for the mixed case in which Σ contains both

localized nonrelativistic systems and relativistic fields, we
just need to use the natural combination of both formal-
isms, that includes rank-one operators of the form jγlihγmj
for the nonrelativistic systems and field operators σ̂ðyÞ for
the relativistic fields.

VIII. A PRACTICAL EXAMPLE
WITH DETECTORS

To further clarify how to use the formalism in a practical
implementation we will consider an example involving
three stationary experimenters, Alba, Blanca and Clara,
each provided with a two-level Unruh-DeWitt detector. The
situation, depicted in Fig. 1, is as follows11:
(1) Clara performs a measurement with her detector,

by first letting it interact with the field and then
performing a projective measurement on it, immedi-
ately after the interaction is switched off.

(2) Blanca lets her detector interact with the field in the
causal future of the projective measurement per-
formed by Clara, P.

(3) Alba lets her detector interact with the field in a
region that is spacelike separated from both Blanca’s
and Clara’s interaction regions.

We consider an initial state

ρ̂ ¼ ρ̂A ⊗ ρ̂B ⊗ ρ̂C ⊗ ρ̂ϕ ð63Þ

for the array of detectors and the field. For simplicity we
have assumed that the detector that is measured starts out in
a pure state, ρ̂C ¼ jψihψ j. In the interaction picture, the
interaction of the detectors with the field is given by the
Hamiltonian

ĤIðtÞ ¼ ĤAðtÞ þ ĤBðtÞ þ ĤCðtÞ; ð64Þ

where

ĤνðtÞ ¼ λνχνðtÞμ̂νðtÞ
Z

ddxFνðxÞϕ̂ðt; xÞ ð65Þ

is the same Unruh-DeWitt Hamiltonian from Eq. (1), for
ν ∈ fA;B;Cg. Now, since Clara’s operations causally
precede Blanca’s, and since Alba is spacelike separated
from both of them, the unitary operator that describes the
evolution of the three detectors and the field

Û ¼ T exp

�
−i

Z
∞

−∞
dt0ðĤAðt0Þ þ ĤBðt0Þ þ ĤCðt0ÞÞ

�
ð66Þ

can in fact be written as [27]

Û ¼ ÛAÛBÛC ¼ ÛBÛCÛA; ð67Þ

where

Ûν ¼ T exp

�
−i

Z
∞

−∞
dt0Ĥνðt0Þ

�
ð68Þ

for ν ∈ fA;B;Cg. In particular, we have that

½ÛA; ÛB� ¼ ½ÛA; ÛC� ¼ 0; ð69Þ

FIG. 1. Configuration in a slice of spacetime of the interaction
regions of detectors A, B and C. The causal future of the
projective measurement performed on C, P is shown in blue;
the causal future of the measurement that is not already in the
future of the projective measurement, J þðDÞnP is shown
in pale blue.

11This configuration is a pretty archetypal setup in relativistic
quantum information in scenarios of entanglement harvesting;
see e.g., Refs. [58,59] among many others.
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and by Eq. (14),

½ÛA; M̂c;ψ � ¼ ½ÛA; M̂
†
c;ψ � ¼ 0 ð70Þ

for any jci ∈ HC.
We are interested in studying how the measurement

performed by Clara affects the joint partial state of Alba and
Blanca, ρ̂AB, as well as their individual partial states ρ̂A and
ρ̂B. Along the lines of previous sections, we distinguish
whether the measurement performed by Clara is nonselec-
tive or selective. For the sake of clarity, in the main body of
this section we will use the approach that uses a context-
dependent density operator, as presented in Sec. V, instead
of the equivalent but more involved formulation based on
n-point functions and its extensions, presented in Secs. VI
and VII. Nevertheless, we have explicitly computed all the
updates using the formulation of extended n-point func-
tions in Appendix C, showing explicitly that both methods
give the same results.

A. Nonselective measurement

Since it is less involved from the point of view of the
update rule, let us first address the case in which Clara
measures nonselectively. We will show that in the non-
selective case the updated partial states of Alba and Blanca
will coincide with the case where the three detectors
interact with the field and we trace out the state of
Clara’s detector. That is, the only influence that Clara’s
detector has on ρ̂AB is through its coupling to the field since
no information about the measurement is assumed to be
known by Alba and Blanca.
We already argued in Sec. IV that all observers are

susceptible to being informed of the performance of the
measurement without knowing its outcome. Thus, we can
consider that both Alba and Blanca have access to the
nonselective update of the state.12 For our purposes, it is
simpler to consider the update of the measurement in the
first place. Thus, we obtain a final joint state

ρ̂0AB ¼ trϕðÛAÛB½ρ̂A ⊗ ρ̂B ⊗ M̂c;ψ ρ̂ϕM̂
†
c;ψ �Û†

BÛ
†
AÞ

þ trϕ½ÛAÛBðρ̂A ⊗ ρ̂B ⊗ M̂c̄;ψ ρ̂ϕM̂
†
c̄;ψ ÞÛ†

BÛ
†
A�

¼ trC;ϕ½ÛAÛBÛCðρ̂A ⊗ ρ̂B ⊗ jψihψ j ⊗ ρ̂ϕÞÛ†
CÛ

†
BÛ

†
A�;
ð71Þ

where in the last step we used Eq. (25). As anticipated, this
is the same result obtained for ρ̂AB in the case in which
Clara does not perform a projective measurement on the
detector at all. The partial states are

ρ̂0B ¼ trAðρ̂0ABÞ
¼ trC;ϕ½ÛBÛCðρ̂B ⊗ jψihψ j ⊗ ρ̂ϕÞÛ†

CÛ
†
B� ð72Þ

and

ρ̂0A ¼ trBðρ̂0ABÞ ¼ trϕ½ÛAðρ̂A ⊗ ρ̂ϕÞÛ†
A�; ð73Þ

where in order to trace out A and B we have used Eq. (69)
and the cyclic property of the trace.
The same results of Eqs. (71), (72) and (73) are

obtained by using the extended n-point function update
formalized in Sec. VII, as can be explicitly seen in the
calculations leading to Eqs. (C6), (C8) and (C10) in
Appendix C.
Notice in particular that ρ̂0A does not depend on the

operations performed by Blanca and Clara. In fact, as we
expected, this is the same result that we would have
obtained had we updated the state with the interaction of
Alba’s detector in the first place. Note that both partial
states satisfy

ρ̂0A ¼ trBðρ̂0ABÞ and ρ̂0B ¼ trAðρ̂0ABÞ: ð74Þ

This is a consequence of the fact that for nonselective
measurements, as we saw in Sec. IV, there is no need to
make a distinction in the update for observers inside P and
outside P, since they may in principle have access to the
same information: a measurement whose outcome is
unknown has potentially been performed. More concretely,
here both Alba and Blanca are ignorant about the outcome
of Clara’s measurement, and therefore all three partial
density operators, ρ̂AB, ρ̂A and ρ̂B are calculated with the
same amount of information about the field and its
interactions.

B. Selective measurement

The case in which Clara performs a selective measure-
ment requires slightly more care than the nonselective one,
since in this case the updated state after the measurement
depends on the observer and the information that is
available to them (in the language of n-point functions,
the update is defined piecewise, unlike the nonselective
case). As in the nonselective case, for the sake of formal
simplicity, in this derivation we will perform the update due
to Clara’s measurement in the first place. We will check
nevertheless that, as before and as should be required, the
results are the same if we evolve the state due to Alba’s
interaction in the first place.
To calculate the joint state ρ̂AB, we need to take into

account that the information in this state is only fully
accessible by an observer that eventually has access to the
information from both systems held by Alba and Blanca.

12Note that since Alba is spacelike separated from both Blanca
and Clara, it does not matter whether we carry out first the update
of Clara’s measurement or the evolution due to the interaction of
Alba’s detector, as we saw in Sec. IV and becomes apparent in
Eq. (70).
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In particular, such an observer has access to the outcome of
Clara’s measurement, since Blanca does.13 Therefore

ρ̂0AB ¼ trϕ½ÛAÛBðρ̂A ⊗ ρ̂B ⊗ M̂c;ψ ρ̂ϕM̂
†
c;ψÞÛ†

BÛ
†
A�

trϕðρ̂ϕÊc;ψÞ

¼ trϕ½ÛAÛBM̂c;ψðρ̂A ⊗ ρ̂B ⊗ ρ̂ϕÞM̂†
c;ψÛ

†
BÛ

†
A�

trϕðρ̂ϕÊc;ψÞ
; ð75Þ

where the last step is simply an abuse of notation. For
calculating ρ̂B, observe that since Blanca is in the causal
future of the measurement performed by Clara, she has
access to its outcome. Thus,

ρ̂0B ¼ trA;ϕ½ÛAÛBM̂c;ψðρ̂A ⊗ ρ̂B ⊗ ρ̂ϕÞM̂†
c;ψÛ

†
BÛ

†
A�

trϕðρ̂ϕÊc;ψÞ

¼ trϕ½ÛBM̂c;ψðρ̂B ⊗ ρ̂ϕÞM̂†
c;ψ Û

†
B�

trϕðρ̂ϕÊc;ψ Þ
¼ trAðρ̂0ABÞ: ð76Þ

Finally, if we want to obtain ρ̂A, we just need to take into
account that Alba does not have access to the outcome of
Clara’s measurement, and hence the state of the field that
she deals with is the one updated nonselectively or directly
the initial one (since both bring the same result, as we saw
in the previous section). The result is therefore the same as
in Eq. (73) for the nonselective measurement,

ρ̂0A ¼ trϕ½ÛAðρ̂A ⊗ ρ̂ϕÞÛ†
A�: ð77Þ

Notice that

ρ̂0A ≠ trBðρ̂0ABÞ; ð78Þ

since ρ̂0AB was calculated for an observer that, unlike Alba,
knows the outcome of Clara’s measurement. In fact, if Alba
eventually reaches the causal future of Clara’s measurement
and learns of its outcome, then the state should be
updated as

ρ̂00A ¼ trB;ϕ½ÛAÛBM̂c;ψðρ̂A ⊗ ρ̂B ⊗ ρ̂ϕÞM̂†
c;ψÛ

†
BÛ

†
A�

trϕðρ̂ϕÊc;ψÞ

¼ trϕ½ÛAM̂c;ψ ðρ̂A ⊗ ρ̂ϕÞM̂†
c;ψÛ

†
A�

trϕðρ̂ϕÊc;ψÞ
¼ trBðρ̂0ABÞ; ð79Þ

which coincides with what happens to ρ̂0B in Eq. (76).
The same results of Eqs. (75), (76), (77) and (79) are

obtained by using the extended n-point function update
formalized in Sec. VII, as can be explicitly seen in the

calculations leading to Eqs. (C22), (C24), (C26) and (C28)
in Appendix C.

IX. A MEASUREMENT THEORY

We have proposed a measurement scheme where local-
ized nonrelativistic quantum systems that couple cova-
riantly to the field gather information about its state. We are
now in position to argue that this measurement framework
has all the characteristics that one should expect from a
proper measurement theory for QFT. Namely:
(1) It is consistent with relativistic QFT. The measure-

ment process consists of two steps: the interaction
between the detector and the field, and the projective
measurement on the detector once the interaction has
been switched off in order to access the information
about the field stored in it. From recently established
results, we know that UDW detectors can be
coupled fully covariantly to quantum fields
[25,26], and that the interaction with the field does
not per se allow faster-than-light signaling [24,27].
Furthermore, when a detector is smeared, the pos-
sible signaling appears only in a restricted and
controlled way if there is a third, nonpointlike
detector mediating between them. Such a causality
violation does not even become apparent in leading
orders of perturbation theory [27]. As for the
projective measurement on the detector, in this work
we have shown that the effect of performing pro-
jective measurements on detectors and updating the
field state consistently is as safe from causality
violations as the interaction with the field itself
(Sec. IV).

(2) It provides an update rule. As we have explicitly
described and discussed in Secs. V, VI and VII, we
have given a consistent update rule for the field state
after the measurement that respects causality—as
explicitly manifested in the update of the (extended)
n-point functions—and includes the information
obtained from the outcome of the measurement in
the spirit of Lüders rule, enforcing the compatibility
of sequential measurements.

(3) It produces definite values for the outcome of single-
shot measurements. Since the detectors are mea-
sured through projective measurements, the outcome
of a measurement is a real number that can bewritten
down in an experimenter’s notepad.

(4) It is capable of reproducing experiments. Indeed,
particle detector models have been proven to capture
the features of experimental setups in quantum
optics and the light-matter interaction [32–34,44],
as well as the phenomenology of the measurement of
other quantum fields such as, e.g., neutrinos [60,61].
Particle detector models are therefore directly con-
nected with experimentally realistic setups where
quantum fields are measured.

13This line of reasoning is completely analogous to the one
carried out in Sec. VI B 2 to prescribe the piecewise update of
two-point functions.
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By satisfying these four characteristics, we conclude
that the measurement scheme proposed in this article
constitutes a measurement theory for QFT that can still
rely on the projection postulate of nonrelativistic quantum
mechanics to access the information in the field. This
proposed scheme has the additional advantage of com-
bining localized rank-one projective measurements (that
return a definite value of a measurement outcome) with
compatibility with the relativistic nature of the theory.
This is something that we cannot accomplish by perform-
ing projective measurements on quantum fields, where
localized projective measurements are forced to be
infinite-rank [6].

X. CONCLUSIONS

Since Sorkin’s seminal paper in 1993, it has been evident
that the measurement theory of nonrelativistic quantum
mechanics cannot be directly imported to quantum field
theory due to relativistic considerations. As Sorkin put it,
“this problem leaves the Hilbert space formulation of
quantum field theory with no definite measurement theory”
[7]. In this paper we have proposed a way to build a
measurement theory for QFT based on particle detectors
that (1) has all the advantages of the measurement theory of
nonrelativistic quantum mechanics, in that it provides
the values of single-shot experiments and there is a state
update enforcing compatibility with future measurements,
(2) is compatible with relativity and is safe from gross
causality violations, and (3) can be easily connected to
experiments.
In order to establish the consistency of the proposed

measurement scheme—consisting of (1) interaction of the
detector with the probed field and (2) performing an
idealized measurement on the detector and updating
accordingly—we have relied on previous results establish-
ing the covariance of the UDW detector-field coupling
[25,26] and the compatibility of the interaction with
relativity [24,27]. In addition, in this work we have shown
that the performance of the projective measurement on the
detector does not introduce any causality violations, and—
effectively subscribing to an epistemic interpretation of the
field state—we have provided a contextual update rule for
the state of the field after the measurement. This update rule
has been given in full detail in terms of (extended) n-point
functions of the field for both nonselective and selective
measurements on particle detectors, and we have shown
how it is implemented in a practical example.
These results provide a formal basis for a measurement

theory for QFT. Furthermore, they pave the way to fully
relativistic formulations of problems where the role
of measurements is central, such as the quantum Zeno
effect [35,36], the delayed choice quantum eraser experi-
ment [37–41], and many other similar experiments that can
be performed within, e.g., the framework of the light-matter
interaction.
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APPENDIX A: CAUSAL BEHAVIOR
OF THE SELECTIVE UPDATE

In this appendix we analyze the causal structure of the
selective update, confirming that it affects local operations
outside the causal future of the interaction region and
therefore should not be applied as a global update anywhere
outside the causal support of the detector if we want the
update rule to be compatible with relativity.
Following a selective measurement, we consider the

updated state of the field to be

ρ̂uϕ ¼ ρ̂s;ψϕ ðA1Þ

where ρ̂s;ψϕ is given by Eq. (13) for a specific jsi coming
from the result of the measurement. For this update, we will
use the following estimator to evaluate where in spacetime
the POVM alters the field:

Δnðt1; x1;…; tn; xnÞ
¼ ðhϕ̂ðt1; x1Þ � � � ϕ̂ðtn; xnÞiρ̂uϕ
− hϕ̂ðt1; x1Þ � � � ϕ̂ðtn; xnÞiρ̂ϕÞhÊs;ψiρ̂ϕ

¼ hM̂†
s;ψ ϕ̂ðt1; x1Þ � � � ϕ̂ðtn; xnÞM̂s;ψ iρ̂ϕ

− hM̂†
s;ψM̂s;ψ iρ̂ϕhϕ̂ðt1; x1Þ � � � ϕ̂ðtn; xnÞiρ̂ϕ : ðA2Þ

This estimator is the difference between the n-point
function of the post-measurement and pre-measurement
states of the field, but multiplied by the quantity trðρ̂ϕÊs;ψÞ
to make the evaluation simpler. Note that this trace is finite
and positive if the updated state is well defined. Studying
where the estimator Δn is nonzero gives us information
about the spacetime domain of the effect of the selective
update.
We will first perform the analysis without making any

assumptions on the pure state of the detector jψi or the
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initial state of the field ρ̂ϕ. In this general case we will
see that already for the one-point function, Δ1ðt1; x1Þ can
be nonzero out of the causal future of the detector, to first
order in perturbation theory. In the next subsection, we
show this also happens for the updates associated with
eigenstates of the detector Hamiltonian, by going to order
λ2 in the one-point function. We end the appendix by
showing that there are certain conditions under which the
update does not affect the one-point function out of the
causal support of the detector. In this last case we have to

use the two-point function to confirm that, as in the rest
of the cases, the selective update has an effect over
regions of spacetime that are spacelike separated from the
measurement.

1. The general case

In order to analyze the change in the one-point function,
we use Eq. (A2) with n ¼ 1 and the perturbative expan-
sions considered at the end of Sec. III. For the first term in
Eq. (A2),

M̂†
s;ψ ϕ̂ðt1; x1ÞM̂s;ψ ¼ M̂†ð0Þ

s;ψ ϕ̂ðt1; x1ÞM̂ð0Þ
s;ψ þ λ

�
M̂†ð1Þ

s;ψ ϕ̂ðt1; x1ÞM̂ð0Þ
s;ψ þ M̂†ð0Þ

s;ψ ϕ̂ðt1; x1ÞM̂ð1Þ
s;ψ

�
þOðλ2Þ: ðA3Þ

Term by term, for the zeroth order,

M̂†ð0Þ
s;ψ ϕ̂ðt1; x1ÞM̂ð0Þ

s;ψ ¼ jhsjψij2ϕ̂ðt1; x1Þ: ðA4Þ

For the first order in λ,

M̂†ð1Þ
s;ψ ϕ̂ðt1; x1ÞM̂ð0Þ

s;ψ ¼ ihsjψi
Z

dt ddx χðtÞFðxÞhsjμ̂ðtÞjψi�ϕ̂ðt; xÞϕ̂ðt1; x1Þ ðA5Þ

and

M̂†ð0Þ
s;ψ ϕ̂ðt1; x1ÞM̂ð1Þ

s;ψ ¼ −ihsjψi�
Z

dt ddx χðtÞFðxÞhsjμ̂ðtÞjψiϕ̂ðt1; x1Þϕ̂ðt; xÞ ðA6Þ

which add up to

ðM̂†
s;ψ ϕ̂ðt1; x1ÞM̂s;ψ Þð1Þ ¼ 2

Z
dt ddx χðtÞFðxÞImðhψ jsisμ̂ðtÞjψiÞϕ̂ðt; xÞϕ̂ðt1; x1Þ

− i
Z

dt ddx χðtÞFðxÞhψ jsihsjμ̂ðtÞjψi½ϕ̂ðt1; x1Þ; ϕ̂ðt; xÞ�: ðA7Þ

On the other hand, for the second term in Eq. (A2) we have

M̂†
s;ψM̂s;ψ ¼ M̂†ð0Þ

s;ψ M̂ð0Þ
s;ψ þ λðM̂†ð1Þ

s;ψ M̂ð0Þ
s;ψ þ M̂†ð0Þ

s;ψ M̂ð1Þ
s;ψ Þ þOðλ2Þ ðA8Þ

with

ðM̂†
s;ψM̂s;ψÞð0Þ ¼ M̂†ð0Þ

s;ψ M̂ð0Þ
s;ψ ¼ jhsjψij2 ðA9Þ

and

ðM̂†
s;ψM̂s;ψÞð1Þ ¼ 2

Z
dt ddx χðtÞFðxÞImðhψ jsihsjμ̂ðtÞjψiÞϕ̂ðt; xÞ: ðA10Þ

We are now set to examine Δ1ðt1; x1Þ. At zeroth order it is trivial that there is no difference. Up to first order in λ,
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Δ1ðt1; x1Þ ¼ λΔ1ðt1; x1Þð1Þ þOðλ2Þ

¼ 2λ

Z
dt ddx χðtÞFðxÞImðhψ jsihsjμ̂ðtÞjψiÞhϕ̂ðt; xÞϕ̂ðt1; x1Þiρ̂ϕ

− iλ
Z

dt ddx χðtÞFðxÞhψ jsihsjμ̂ðtÞjψih½ϕ̂ðt; xÞ; ϕ̂ðt1; x1Þ�iρ̂ϕ

− 2λ

Z
dt ddx χðtÞFðxÞImðhψ jsihsjμ̂ðtÞjψiÞhϕ̂ðt; xÞiρ̂ϕhϕ̂ðt1; x1Þiρ̂ϕ þOðλ2Þ

¼ 2λ

Z
dt ddx χðtÞFðxÞImðhψ jsihsjμ̂ðtÞjψiÞCovρ̂ϕ ½ϕ̂ðt; xÞ; ϕ̂ðt1; x1Þ�

− iλ
Z

dt ddx χðtÞFðxÞhψ jsihsjμ̂ðtÞjψih½ϕ̂ðt; xÞ; ϕ̂ðt1; x1Þ�iρ̂ϕ þOðλ2Þ ðA11Þ

where Covρ̂½A;B� ¼ hABiρ̂ − hAiρ̂hBiρ̂. The term in the
last line, depending on the commutator, is definitely
not contributing to Δ1 when ðt1; x1Þ is out of the causal
future of the interaction region. However, the term in the
penultimate line will contribute in general to Δ1 not
being zero in that same case. Indeed, hψ jsihsjμ̂ðtÞjψi is
not real in general, and the correlations of the field
Covρ̂ϕ ½ϕ̂ðt; xÞ; ϕ̂ðt1; x1Þ� will not vanish in general if
ðt; xÞ and ðt1; x1Þ are spacelike separated. The reason
why Δ1 does not vanish everywhere outside the causal
support of the detector is that once the detector starts
interacting with the field, it gets entangled with it (in a way
that respects causality [24,27]). As the state of the field will
in general show spacelike correlations [3,6,13,14,62], the
projection operator destroys some of these correlations.
The entanglement between the detector and the field
generated by their interaction thus hinders the possibility
of applying the selective update outside the causal future of
the detector in a way consistent with the relativistic
framework of QFT. Not even in the—singular but generally
less problematic in causality-related issues—case in which
the detector is considered to be pointlike and the interaction
sudden, that is, with χðtÞ ¼ δðtÞ and FðxÞ ¼ δðxÞ, is the
update safe from being noncausal. Indeed, choosing

jψi ¼ 1ffiffiffi
2

p ðijgi þ jeiÞ jsi ¼ jei ρ̂ϕ ¼ j0ih0j ðA12Þ

we have hϕ̂ðt; xÞi ¼ 0 for every ðt; xÞ ∈ M and therefore

Δ1ðt1; x1Þ ¼ λhϕ̂ð0; 0Þϕ̂ðt1; x1Þiρ̂ϕ
þ λ

2
h½ϕ̂ð0; 0Þ; ϕ̂ðt1; x1Þ�iρ̂ϕ þOðλ2Þ: ðA13Þ

For spacelike ðt1; x1Þ, this gives

Δ1ðt1; x1Þ ¼ λhϕ̂ð0; 0Þϕ̂ðt1; x1Þiρ̂ϕ þOðλ2Þ ðA14Þ

which in general does not vanish.

2. The ground and excited states

By examining Eq. (A11) one observes that Δð1Þ
1 cancels

out of the causal future of the interaction region if both the
initial state jψi and the state associated with the projection
jsi are eigenstates of the free Hamiltonian of the detector,
that is, if jψi; jsi ∈ fjgi; jeig. These are important states,
and one could wonder if for these states the selective update
could be safe from showing the noncausal features we saw
in the previous subsection. The answer is no, as can be
checked by simply analyzing the next order of Δ1 in
perturbation theory. Proceeding as before,

ðM̂†
s;ψ ϕ̂ðt1; x1ÞM̂s;ψ Þð2Þ

¼ M̂†ð2Þ
s;ψ ϕ̂ðt1; x1ÞM̂ð0Þ

s;ψ

þ M̂†ð0Þ
s;ψ ϕ̂ðt1; x1ÞM̂ð2Þ

s;ψ þ M̂†ð1Þ
s;ψ ϕ̂ðt1; x1ÞM̂ð1Þ

s;ψ

¼ −
Z

dt dt0 ddx ddx0 χðtÞχðt0ÞFðxÞFðx0Þ · C ðA15Þ

where

C¼ θðt− t0Þ
× ðhsjψihψ jμ̂ðt0Þμ̂ðtÞjsiϕ̂ðt0;x0Þϕ̂ðt;xÞϕ̂ðt1;x1Þ
þhψ jsihsjμ̂ðtÞμ̂ðt0Þjψiϕ̂ðt1;x1Þϕ̂ðt;xÞϕ̂ðt0;x0ÞÞ
− hψ jμ̂ðtÞjsihsjμ̂ðt0Þjψiϕ̂ðt;xÞϕ̂ðt1;x1Þϕ̂ðt0;x0Þ: ðA16Þ

Now,

θðt − t0Þ þ θðt0 − tÞ ¼ 1 ðA17Þ

almost everywhere, as the diagonal set ft ¼ t0g ⊂ R2 in
which the equality does not hold has zero Lebesgue
measure. Therefore, for a smooth switching function χ
or, in general, one switching not involving delta functions,
we can write
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C ¼ θðt0 − tÞϕ̂ðt; xÞðhsjψihψ jμ̂ðtÞμ̂ðt0Þjsiϕ̂ðt0; x0Þϕ̂ðt1; x1Þ − hψ jμ̂ðtÞjsihsjμ̂ðt0Þjψiϕ̂ðt1; x1Þϕ̂ðt0; x0ÞÞ
þ θðt − t0Þðhψ jsihsjμ̂ðtÞμ̂ðt0Þjψiϕ̂ðt1; x1Þϕ̂ðt; xÞ − hψ jμ̂ðtÞjsihsjμ̂ðt0Þjψiϕ̂ðt; xÞϕ̂ðt1; x1ÞÞϕ̂ðt0; x0Þ ðA18Þ

and in particular

hsjψihψ jμ̂ðtÞμ̂ðt0Þjsiϕ̂ðt0; x0Þϕ̂ðt1; x1Þ − hψ jμ̂ðtÞjsihsjμ̂ðt0Þjψiϕ̂ðt1; x1Þϕ̂ðt0; x0Þ
¼ hsjψihψ jμ̂ðtÞμ̂ðt0Þjsi½ϕ̂ðt0; x0Þ; ϕ̂ðt1; x1Þ� þ ðhsjψihψ jμ̂ðtÞμ̂ðt0Þjsi − hψ jμ̂ðtÞjsihsjμ̂ðt0ÞjψiÞϕ̂ðt1; x1Þϕ̂ðt0; x0Þ ðA19Þ

and

hψ jsihsjμ̂ðtÞμ̂ðt0Þjψiϕ̂ðt1; x1Þϕ̂ðt; xÞ − hψ jμ̂ðtÞjsihsjμ̂ðt0Þjψiϕ̂ðt; xÞϕ̂ðt1; x1Þ
¼ hψ jsihsjμ̂ðtÞμ̂ðt0Þjψi½ϕ̂ðt1; x1Þ; ϕ̂ðt; xÞ� þ ðhψ jsihsjμ̂ðtÞμ̂ðt0Þjψi − hψ jμ̂ðtÞjsihsjμ̂ðt0ÞjψiÞϕ̂ðt; xÞϕ̂ðt1; x1Þ: ðA20Þ

Now, since the factors accompanying C in the integral of Eq. (A15) are symmetric in t and t0, we can safely exchange both
time parameters in the θðt0 − tÞ term, hence rewriting

C ¼ θðt − t0Þ
�
hsjψihψ jμ̂ðt0Þμ̂ðtÞjsiϕ̂ðt0; x0Þ½ϕ̂ðt; xÞ; ϕ̂ðt1; x1Þ� þ ðhsjψihψ jμ̂ðt0Þμ̂ðtÞjsi

− hψ jμ̂ðt0Þjsihsjμ̂ðtÞjψiÞϕ̂ðt0; x0Þϕ̂ðt1; x1Þϕ̂ðt; xÞ þ hψ jsihsjμ̂ðtÞμ̂ðt0Þjψi½ϕ̂ðt1; x1Þ; ϕ̂ðt; xÞ�ϕ̂ðt0; x0Þ

þ ðhψ jsihsjμ̂ðtÞμ̂ðt0Þjψi − hψ jμ̂ðtÞjsihsjμ̂ðt0ÞjψiÞϕ̂ðt; xÞϕ̂ðt1; x1Þϕ̂ðt0; x0Þ
�
: ðA21Þ

We still have to compute

ðM̂†
s;ψM̂s;ψÞð2Þ ¼ M̂†ð2Þ

s;ψ M̂ð0Þ
s;ψ þ M̂†ð0Þ

s;ψ M̂ð2Þ
s;ψ þ M̂†ð1Þ

s;ψ M̂ð1Þ
s;ψ : ðA22Þ

We proceed exactly as above, the difference being that we do not have the field operator ϕ̂ðt1; x1Þ in between anymore. In
the same spirit, we get

ðM̂†
s;ψM̂s;ψÞð2Þ ¼ −

Z
dt dt0 ddx ddx0 χðtÞχðt0ÞFðxÞFðx0Þ · I ðA23Þ

where

I ¼ θðt − t0Þ
�
ððhsjψiψμ̂ðt0Þμ̂ðtÞjsi − hψ jμ̂ðt0Þjsihsjμ̂ðtÞjψiÞϕ̂ðt0; x0Þϕ̂ðt; xÞ

þ ðhψ jsihsjμ̂ðtÞμ̂ðt0Þjψi − hψ jμ̂ðtÞjsihsjμ̂ðt0ÞjψiÞϕ̂ðt; xÞϕ̂ðt0; x0Þ
�
: ðA24Þ

We realize that the terms that are not included in the commutators in Eq. (A21) are conjugate to each other, and that the
same happens with the terms in Eq. (A24). Putting everything together, we get

Δð2Þ
1 ¼ −

Z
dt dt0 ddx ddx0 χðtÞχðt0ÞFðxÞFðx0Þθðt − t0Þ ·R ðA25Þ

where

R ¼ hsjψihψ jμ̂ðt0Þμ̂ðtÞjsihϕ̂ðt0; x0Þ½ϕ̂ðt; xÞ; ϕ̂ðt1; x1Þ�iρ̂ϕ þ hψ jsihsjμ̂ðtÞμ̂ðt0Þjψih½ϕ̂ðt1; x1Þ; ϕ̂ðt; xÞ�ϕ̂ðt0; x0Þiρ̂ϕ
þ 2ReðSÞ ðA26Þ

and
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S ¼ ðhψ jsihsjμ̂ðtÞμ̂ðt0Þjψi
− hψ jμ̂ðtÞjsihsjμ̂ðt0ÞjψiÞ
× ðhϕ̂ðt; xÞϕ̂ðt1; x1Þϕ̂ðt0; x0Þiρ̂ϕ
− hϕ̂ðt; xÞϕ̂ðt0; x0Þiρ̂ϕhϕ̂ðt1; x1Þiρ̂ϕÞ: ðA27Þ

Now, the first two terms of R are proportional to commu-
tators, so that if ðt1; x1Þ is spacelike separated from the
interaction region, they become zero. However, S is not
zero in general in that case, nor purely imaginary. In fact,
this is the term that allows us to confirm that even for the
ground and excited states the selective update should not be
applied outside the causal future of the detector. For
example, consider the case in which the field is initially
in a coherent state ρ̂ϕ ¼ jφihφj. For these states, the
correlation functions of one, two and three points are

hϕ̂ðxÞiρ̂ϕ ¼ φðxÞ; ðA28Þ

hϕ̂ðxÞϕ̂ðyÞiρ̂ϕ ¼ φðxÞφðyÞ þ wvacðx; yÞ; ðA29Þ

hϕ̂ðxÞϕ̂ðyÞϕ̂ðzÞiρ̂ϕ ¼ φðxÞφðyÞφðzÞ þ φðxÞwvacðy; zÞ
þ φðyÞwvacðx; zÞ þ φðzÞwvacðx; yÞ;

ðA30Þ

where x; y; z ∈ M, φðxÞ is the field amplitude of the
coherent state at x and

wvacðx; yÞ ¼ h0jϕ̂ðxÞϕ̂ðyÞj0i ðA31Þ

is the two-point Wightman function. If we additionally
consider jψi ¼ jgi and jsi ¼ jei, then

hψ jsihsjμðtÞμðt0Þjψi − hψ jμðtÞjsihsjμðt0Þjψi
¼ −e−iΩðt−t0Þ ðA32Þ

and

hϕðt; xÞϕ̂ðt1; x1Þϕðt0; x0Þiρ̂ϕ − hϕðt; xÞϕðt0; x0Þihϕ̂ðt1; x1Þiρ̂ϕ
¼ φðt; xÞwvacðt1; x1; t0; x0Þ þ φðt0; x0Þwvacðt; x; t1; x1Þ:

ðA33Þ

The product of both terms is not always purely imaginary,
as the sum of it and its conjugate is nonzero in general. We

conclude that, under these conditions, Δð2Þ
1 ðt1; x1Þ does not

cancel out for every ðt1; x1Þ spacelike separated from the
interaction region.

3. Gaussian states

Observation of Eq. (A27) reveals that still, if the initial
state of the field is the vacuum, or a thermal state, the
selective update does not affect the one-point function
outside the causal support of the detector. What these states
share that makes S in Eq. (A27) cancel out are its vanishing
one-point and three-point functions. In particular, we can
prove the following:
In the previous setting, if jsi and jψi are in fjgi; jeig and

ρ̂ϕ is a Gaussian state with hϕ̂ðxÞiρ̂ϕ ¼ 0 for every x ∈ M,
then the selective POVM update does not affect the one-
point function outside the causal future of the interaction
region.
To prove this claim, we proceed simply by examination

of the general term

Δðp;qÞ
1 ≔ hM̂†ðpÞϕ̂ðt1; x1ÞM̂ðqÞ

s;ψiρ̂ϕ
− hM̂†ðpÞ

s;ψ M̂ðqÞ
s;ψ ihϕ̂ðt1; x1Þiρ̂ϕ ; ðA34Þ

where the second term vanishes because of the assumption
hϕ̂ðxÞiρ̂ϕ ¼ 0. The exact same kind of calculation carried
out before yields

Δðp;qÞ
1 ¼ ipþ3q

Z
dt1 � � � dtpdt01 � � � dt0qddz1 � � � ddzpddz01 � � � ddz0qθðt1 − t2Þ � � � θðtp−1 − tpÞ

× θðt01 − t02Þ � � � θðtq−10 − tqÞχðt1Þ � � � χðt0qÞ
× Fðz1Þ � � �Fðz0qÞhψ jμ̂ðtpÞ � � � μ̂ðt1Þjsihsjμ̂ðt01Þ � � � μ̂ðt0qÞjψihϕ̂ðtp; zpÞ � � � ϕ̂ðt1; z1Þ
× ϕ̂ðt1; x1Þϕ̂ðt01; z01Þ � � � ϕ̂ðtq; zqÞiρ̂ϕ : ðA35Þ

In order to analyze this expression, we first calculate
the general form of the operator μ̂ðt1Þ � � � μ̂ðtNÞ: let us
define

T ≡XN
n¼1

ð−1Þn−1tn; ðA36Þ

then if N is odd, in the ordered basis fjgi; jeig,

μ̂ðt1Þ � � � μ̂ðtNÞ ¼
�

0 e−iΩT

eiΩT 0

�
ðA37Þ

while if N is even,
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μ̂ðt1Þ � � � μ̂ðtNÞ ¼
�
e−iΩT 0

0 eiΩT

�
: ðA38Þ

Thus, if jsi and jψi are in fjgi; jeig, the term
hψ jμ̂ðtpÞ � � � μ̂ðt1Þjsihsjμ̂ðt01Þ � � � μ̂ðt0qÞjψi in Eq. (A35) only
survives if
(1) jsi ≠ jψi and both p and q are odd, or.
(2) jsi ¼ jψi and both p and q are even.

Now, the last factor of the integral in Eq. (A35) is the
ðpþ qþ 1Þ-point correlation function

hϕðtp; zpÞ � � �ϕðt1; z1Þϕ̂ðt1; x1Þϕðt01; z01Þ � � �ϕðtq; zqÞiρ̂ϕ :
ðA39Þ

But for both cases 1) and 2), the parities of p and q are the
same, so that pþ qþ 1 is odd, and therefore the corre-
lation function above is zero, since the state ρ̂ϕ is Gaussian
[52,53]. We conclude that under the stated hypotheses,

Δðp;qÞ
1 ðt1; x1Þ ¼ 0 ðA40Þ

for every ðp; qÞ and therefore

Δ1ðt1; x1Þ ¼ 0 ðA41Þ

for every point ðt1; x1Þ.
Observe that rather than showing that the conditions of

the claim guarantee that the selective update does not affect
the one-point function outside the causal support of the
interaction region, we have proven that it does not affect it
at all. As a consequence, to show that the selective update
alters the state of the field outside the causal future of the
detector under the hypotheses of the claim’s statement,
we need to consider the two-point function of the
updated state.
First, we have by Eq. (A2) for n ¼ 2 that

Δ2ðx1; x2Þ ¼ hM̂†
s;ψ ϕ̂ðx1Þϕ̂ðx2ÞM̂s;ψiρ̂ϕ

− hM̂†
s;ψM̂s;ψiρ̂ϕhϕ̂ðx1Þϕ̂ðx2Þiρ̂ϕ : ðA42Þ

Following the same calculations as in Appendix A 1, but
with two field operators instead of one, it is straightforward
to see that, up to second order in λ,

Δ2ðt1; x1; t2; x2Þ ¼ 2λ

Z
dt ddx χðtÞFðxÞImðhψ jsihsjμ̂ðtÞjψiÞCovρ̂ϕ ½ϕ̂ðt; xÞ; ϕ̂ðt1; x1Þϕ̂ðt2; x2Þ�

− iλ
Z

dt ddx χðtÞFðxÞhψ jsihsjμ̂ðtÞjψih½ϕ̂ðt; xÞ; ϕ̂ðt1; x1Þϕ̂ðt2; x2Þ�iρ̂ϕ

− λ2
Z

dt dt0 ddx ddx0 χðtÞχðt0ÞFðxÞFðx0Þθðt − t0Þ ·R2 þOðλ3Þ ðA43Þ

where

R2 ¼ hsjψihψ jμ̂ðt0Þμ̂ðtÞjsi
× hϕ̂ðt0; x0Þ½ϕ̂ðt; xÞ; ϕ̂ðt1; x1Þϕ̂ðt2; x2�iρ̂ϕ
þ hψ jsihsjμ̂ðtÞμ̂ðt0Þjψi
× h½ϕ̂ðt1; x1Þϕ̂ðt2; x2; ϕ̂ðt; xÞ�ϕ̂ðt0; x0Þiρ̂ϕ
þ 2ReðS2Þ ðA44Þ

with

S2 ¼ ðhψ jsihsjμ̂ðtÞμ̂ðt0Þjψi
− hψ jμ̂ðtÞjsihsjμ̂ðt0ÞjψiÞ
× ðhϕ̂ðt; xÞϕ̂ðt1; x1Þϕ̂ðt2; x2Þϕ̂ðt0; x0Þiρ̂ϕ
− hϕ̂ðt; xÞϕ̂ðt0; x0Þiρ̂ϕhϕ̂ðt1; x1Þϕ̂ðt2; x2Þiρ̂ϕÞ: ðA45Þ

When we consider jsi; jψi ∈ fjgi; jeig, the first order in λ
becomes zero. Moreover, when ðt1; x1Þ and ðt2; x2Þ are

spacelike separated from the detector, the first two terms of
R2, that depend on commutators, are zero, and only the real
part of S2 remains. When jsi and jψi are eigenstates of the
detector’s Hamiltonian, then it can be checked that the first
factor in S2 is �e�iΩðt−t0Þ, where the signs depend on
whether we take the ground or the excited state for each of
jsi and jψi. For the second factor, because the field state is
Gaussian, it holds that

w4ðx; x1; x2; x0Þ − w2ðx; x0Þw2ðx1; x2Þ
¼ w2ðx; x1Þw2ðx2; xÞ þ w2ðx; x2Þw2ðx1; x0Þ: ðA46Þ

This makes apparent that if we exchange t and t0, the
modified S2 is the complex conjugate of the original.
Taking advantage of the fact that only the real part of S2

contributes, and proceeding as in Appendix A 2 to get rid of
the Heaviside step functions θ, we conclude that under the
conditions of the claim above,
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Δ2ðt1; x1; t2; x2Þ

¼ �λ2
Z

dt dt0 ddx ddx0 χðtÞχðt0ÞFðxÞFðx0Þe�iΩðt−t0Þ

× ðw2ðt; x; t1; x1Þw2ðt2; x2; t0; x0Þ
þ w2ðt; x; t2; x2Þw2ðt1; x1; t0; x0ÞÞ þOðλ3Þ; ðA47Þ

which as a distribution is nonzero in general. Consider for
example the case in which the initial state of the field is the
vacuum. In that case the last factor of the integrand
involving the two-point functions is

λ2
Z

ddk
2ð2πÞdωk

Z
ddk0

2ð2πÞdωk0
ðe−i½ωkðt−t1Þ−k·ðx−x1Þ�

× e−i½ωk0 ðt2−t0Þ−k0·ðx2−x0Þ� þ e−i½ωkðt−t2Þ−k·ðx−x2Þ�

× e−i½ωk0 ðt1−t0Þ−k0·ðx1−x0Þ�Þ: ðA48Þ
Particularizing for jψi ¼ jgi and jsi ¼ jei and using
Eq. (A47), we get that if ðt1; x1Þ and ðt2; x2Þ are spacelike
separated from the detector,

Δ2ðt1; x1; t2; x2Þ ¼
λ2

4ð2πÞd−1
Z

ddk
ωk

Z
ddk0

ωk0

× χ̃ðωk þ ΩÞχ̃ðωk0 þ ΩÞ�F̃ðkÞ�F̃ðk0Þ
× ðeiðωkt1−ωk0 t2−k·x1þk0·x2Þ

þ e−iðωkt2−ωk0 t1−k·x2þk0·x1ÞÞ
þOðλ3Þ: ðA49Þ

This expression does not cancel out in general, as can be
checked considering for example Gaussian smearings and
switchings.
With these calculations we have discarded the last of the

cases that remained open to the possibility of applying the
selective update globally in a way compatible with cau-
sality. We thus conclude that the selective update cannot be
applied outside the causal future of the interaction region if
we want the update to be consistent with the relativistic
nature of QFT.

APPENDIX B: UPDATE RULES
FOR n-POINT FUNCTIONS

In this appendix we give some of the details behind the
perturbative results of Secs. VI A and VI B, where we
formulated the update rule for the n-point functions
explicitly in terms of the initial n-point functions to first
order in λ. We will reuse some of the calculations already
performed in Appendix A.

1. Nonselective case

After a nonselective measurement, we consider the
update wNS

n given in Eq. (38) for the n-point function.
By Eq. (A4), we have that

ðM̂†
l;ψ ϕ̂ðt1; x1Þ � � � ϕ̂ðtn; xnÞM̂l;ψ Þð0Þ

¼ hψ jlihljψiϕ̂ðt1; x1Þ � � � ϕ̂ðtn; xnÞ ðB1Þ

for l ¼ s; s̄. Since jsihsj þ js̄ihs̄j ¼ 1d and jψi is normal-
ized, the zeroth order of wNS

n is

wNS
n ðt1; x1;…; tn; xnÞð0Þ ¼ hϕ̂ðt1; x1Þ � � � ϕ̂ðtn; xnÞiρ̂ϕ

¼ wnðt1; x1;…; tn; xnÞ: ðB2Þ

For the first order, by Eq. (A5) we have

M̂†ð1Þ
l;ψ ϕ̂ðt1; x1Þ � � � ϕ̂ðtn; xnÞM̂ð0Þ

l;ψ

¼ ihψ jli�
Z

dt ddx χðtÞFðxÞhljμ̂ðtÞjψi�

× ϕ̂ðt; xÞϕ̂ðt1; x1Þ � � � ϕ̂ðtn; xnÞ ðB3Þ

and by Eq. (A6)

M̂†ð0Þ
l;ψ ϕ̂ðt1; x1Þ � � � ϕ̂ðtn; xnÞM̂ð1Þ

l;ψ

¼ −ihψ jli
Z

dt ddx χðtÞFðxÞhljμ̂iðtÞjψi

× ϕ̂ðt1; x1Þ � � � ϕ̂ðtn; xnÞϕ̂ðt; xÞ; ðB4Þ

for l ¼ s; s̄. Taking the expectation values and taking into
account again that fjsi; js̄ig form an orthonormal basis of
the Hilbert space of the detector,

wNS
n ðt1; x1;…; tn; xnÞð1Þ

¼ i
Z

dt ddx χðtÞFðxÞhψ jμ̂ðtÞjψi

× ðhϕ̂ðt; xÞϕ̂ðt1; x1Þ � � � ϕ̂ðtn; xnÞiρ̂ϕ
− hϕ̂ðt1; x1Þ � � � ϕ̂ðtn; xnÞϕ̂ðt; xÞiρ̂ϕÞ: ðB5Þ

This equation, along with the zeroth order and the defi-
nition of n-point functions, yields Eq. (41). The particu-
larization to n ¼ 2 leads immediately to Eq. (40). For
n ¼ 1, we can use the property

w2ðt; x; t1; x1Þ� ¼ w2ðt1; x1; t; xÞ: ðB6Þ

Thence,

iw2ðt; x; t1; x1Þ − iw2ðt1; x1; t; xÞ
¼ Im½w2ðt1; x1; t; xÞ�; ðB7Þ

which yields Eq. (39).
In a completely analogous way, we can perform the

somewhat more tedious calculations leading to the expres-
sion for wNS

n to second order in λ. Using the expansion in
Eq. (A15) and Eqs. (20), (21) and (22),
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M̂†ð2Þ
l;ψ ϕ̂ðt1; x1Þ � � � ϕ̂ðtn; xnÞM̂ð0Þ

l;ψ ¼ −hψ jli�
Z

dt dt0 ddx ddx0 θðt − t0ÞχðtÞχðt0ÞFðxÞFðx0Þhsjμ̂ðtÞμ̂ðt0Þjψi�

× ϕ̂ðt0; x0Þϕ̂ðt; xÞϕ̂ðt1; x1Þ � � � ϕ̂ðtn; xnÞ; ðB8Þ

M̂†ð0Þ
l;ψ ϕ̂ðt1; x1Þ � � � ϕ̂ðtn; xnÞM̂ð2Þ

l;ψ ¼ −hψ jli
Z

dt dt0 ddx ddx0 θðt − t0ÞχðtÞχðt0ÞFðxÞFðx0Þhsjμ̂ðtÞμ̂ðt0Þjψi

× ϕ̂ðt1; x1Þ � � � ϕ̂ðtn; xnÞϕ̂ðt; xÞϕ̂ðt0; x0Þ; ðB9Þ

M̂†ð1Þ
l;ψ ϕ̂ðt1; x1Þ � � � ϕ̂ðtn; xnÞM̂ð1Þ

l;ψ ¼ hψ jli
Z

dt dt0 ddx ddx0 χðtÞχðt0ÞFðxÞFðx0Þhψ jμ̂ðtÞjsihsjμ̂ðt0Þjψi

× ϕ̂ðt; xÞϕ̂ðt1; x1Þ � � � ϕ̂ðtn; xnÞϕ̂ðt0; x0Þ; ðB10Þ

for l ¼ s; s̄. Taking again the expectation values, we arrive at the second-order contribution to wNS
n ,

wNS
n ðt1;x1;…; tn;xnÞð2Þ ¼ −

Z
dt dt0 ddx ddx0 χðtÞχðt0ÞFðxÞFðx0Þ

h
θðt− t0Þðhψ jμ̂ðt0Þμ̂ðtÞjψiwnþ2ðt0;x0; t;x; t1;x1;…; tn;xnÞ

þ hψ jμ̂ðt0Þμ̂ðtÞjψiwnþ2ðt1;x1;…; tn;xn; t;x; t0;x0ÞÞ
− hψ jμ̂ðtÞμ̂ðt0Þjψiwnþ2ðt;x; t1;x1;…; tn;xn; t0;x0Þ

i
: ðB11Þ

All together,

wNS
n ðt1; x1;…; tn; xnÞ ¼ wnðt1; x1;…; tn; xnÞ þ iλ

Z
dt ddx χðtÞFðxÞhψ jμ̂ðtÞjψi

× ðwnþ1ðt; x; t1; x1;…; tn; xnÞ − wnþ1ðt1; x1;…; tn; xn; t; xÞÞ

− λ2
Z

dt dt0 ddx ddx0 χðtÞχðt0ÞFðxÞFðx0Þ

×
h
θðt − t0Þðhψ jμ̂ðt0Þμ̂ðtÞjψiwnþ2ðt0; x0; t; x; t1; x1;…; tn; xnÞ

þ hψ jμ̂ðt0Þμ̂ðtÞjψiwnþ2ðt1; x1;…; tn; xn; t; x; t0; x0ÞÞ
− hψ jμ̂ðtÞμ̂ðt0Þjψiwnþ2ðt; x; t1; x1;…; tn; xn; t0; x0Þ

i
þOðλ3Þ: ðB12Þ

2. Selective case

For the selective update wS
n, we consider the update corresponding to the case in which not all the points in the argument

are outside the causal future of the region in which the projective measurement on the detector is performed, P (otherwise
the update is just the nonselective one). Recalling Eq. (48), we need to consider two expansions. First, by Eq. (A3),

hM̂†
s;ψ ϕ̂ðt1; x1Þ � � � ϕ̂ðtn; xnÞM̂s;ψiρ̂ϕ ¼ hM̂†ð0Þ

s;ψ ϕ̂ðt1; x1Þ � � � ϕ̂ðtn; xnÞM̂ð0Þ
s;ψ iρ̂ϕ þ λðhM̂†ð1Þ

s;ψ ϕ̂ðt1; x1Þ � � � ϕ̂ðtn; xnÞM̂ð0Þ
s;ψiρ̂ϕ

þ hM̂†ð0Þ
s;ψ ϕ̂ðt1; x1Þ � � � ϕ̂ðtn; xnÞM̂ð1Þ

s;ψiρ̂ϕÞ þOðλ2Þ: ðB13Þ

And second, by Eq. (A8),

hÊs;ϕiρ̂ϕ ¼ hM̂†
s;ψM̂s;ψiρ̂ϕ

¼ hM̂†ð0Þ
s;ψ M̂ð0Þ

s;ψiρ̂ϕ þ λðhM̂†ð1Þ
s;ψ M̂ð0Þ

s;ψiρ̂ϕ þ hM̂†ð0Þ
s;ψ M̂ð1Þ

s;ψiρ̂ϕÞ þOðλ2Þ: ðB14Þ

If the zeroth-order term is not zero,

hM̂†ð0Þ
s;ψ M̂ð0Þ

s;ψ iρ̂ϕ ¼ jhsjψij2 ≠ 0; ðB15Þ
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we can give an expansion for the inverse

ðhÊs;ψ iρ̂ϕÞ−1 ¼ ðhM̂†ð0Þ
s;ψ M̂ð0Þ

s;ψiρ̂ϕÞ−1 − λðhM̂†ð0Þ
s;ψ M̂ð0Þ

s;ψiρ̂ϕÞ−2ðhM̂
†ð1Þ
s;ψ M̂ð0Þ

s;ψ iρ̂ϕ þ hM̂†ð0Þ
s;ψ M̂ð1Þ

s;ψ iρ̂ϕÞ þOðλ2Þ: ðB16Þ

Thus, by Eqs. (A4) and (A9), if hsjψi ≠ 0, the zeroth order of wS
n is

wS
nðt1; x1;…; tn; xnÞð0Þ ¼ ðhM̂†ð0Þ

s;ψ M̂ð0Þ
s;ψ iρ̂ϕÞ−1hM̂

†ð0Þ
s;ψ ϕ̂ðt1;x1Þ � � � ϕ̂ðtn; xnÞM̂ð0Þ

s;ψiρ̂ϕ
¼ wnðt1; x1;…; tn; xnÞ: ðB17Þ

Also, for the first order,

wS
nðt1; x1;…; tn; xnÞð1Þ ¼ ðhM̂†ð0Þ

s;ψ M̂ð0Þ
s;ψiρ̂ϕÞ−1ðhM̂

†ð1Þ
s;ψ ϕ̂ðt1; x1Þ � � � ϕ̂ðtn; xnÞM̂ð0Þ

s;ψiρ̂ϕ
þ hM̂†ð0Þ

s;ψ ϕ̂ðt1; x1Þ � � � ϕ̂ðtn; xnÞM̂ð1Þ
s;ψ iρ̂ϕÞ

− ðhM̂†ð0Þ
s;ψ M̂ð0Þ

s;ψiρ̂ϕÞ−2ðhM̂
†ð1Þ
s;ψ M̂ð0Þ

s;ψiρ̂ϕ þ hM̂†ð0Þ
s;ψ M̂ð1Þ

s;ψiρ̂ϕÞ
× hM̂†ð0Þ

s;ψ ϕ̂ðt1; x1Þ � � � ϕ̂ðtn; xnÞM̂ð0Þ
s;ψiρ̂ϕ : ðB18Þ

By Eqs. (A7) and (A10),

wS
nðt1; x1;…; tn; xnÞð1Þ ¼

1

jhsjψij2
Z

dt ddx χðtÞFðxÞ
�
ihsjψihψ jμ̂ðtÞjsi

× hϕ̂ðt; xÞϕ̂ðt1; x1Þ � � � ϕ̂ðtn; xnÞiρ̂ϕ − ihψ jsi
× hsjμ̂ðtÞjψihϕ̂ðt1; x1Þ � � � ϕ̂ðtn; xnÞϕ̂ðt; xÞiρ̂ψ
− 2Imðhψ jsihsjμ̂ðtÞjψiÞhϕ̂ðt1; x1Þ � � � ϕ̂ðtn; xnÞiρ̂ϕhϕ̂ðt; xÞiρ̂ϕ

�
: ðB19Þ

This equation, along with the one for the zeroth order, yields Eq. (49). Particularization for n ¼ 2 gives Eq. (46)
immediately. For the one-point function, it only remains to use

w2ðt; x; t1; x1Þ� ¼ w2ðt1; x1; t; xÞ ðB20Þ

as for the nonselective case, to get the final expression in Eq. (44).
We can get involved in more cumbersome calculations in order to arrive at the second-order terms of the expression for

wS
n when hsjψi ≠ 0. First, by Eq. (A15),

hM̂†
s;ψ ϕ̂ðt1; x1Þ � � � ϕ̂ðtn; xnÞM̂s;ψið2Þρ̂ϕ

¼ hM̂†ð2Þ
s;ψ ϕ̂ðt1; x1Þ � � � ϕ̂ðtn; xnÞM̂ð0Þ

s;ψiρ̂ϕ þ hM̂†ð0Þ
s;ψ ϕ̂ðt1; x1Þ � � � ϕ̂ðtn; xnÞM̂ð2Þ

s;ψiρ̂ϕ
þ hM̂†ð1Þ

s;ψ ϕ̂ðt1; x1Þ � � � ϕ̂ðtn; xnÞM̂ð1Þ
s;ψ iρ̂ϕ : ðB21Þ

Removing the field operators in this last equation we get the expansion to second order of hÊs;ψ iρ̂ϕ , and thus for its inverse
the second-order contribution is

ðhÊs;ψi−1ρ̂ϕ Þð2Þ ¼ hM̂†ð0Þ
s;ψ M̂ð0Þ

s;ψi−3ρ̂ϕ ½ðhM̂
†ð1Þ
s;ψ M̂ð0Þ

s;ψ iρ̂ϕ þ hM̂†ð0Þ
s;ψ M̂ð1Þ

s;ψ iρ̂ϕÞ2 − hM̂†ð0Þ
s;ψ M̂ð0Þ

s;ψiρ̂ϕðhM̂
†ð2Þ
s;ψ M̂ð0Þ

s;ψiρ̂ϕ
þ hM̂†ð0Þ

s;ψ M̂ð2Þ
s;ψ iρ̂ϕ þ hM̂†ð1Þ

s;ψ M̂ð1Þ
s;ψ iρ̂ϕÞ�: ðB22Þ

Taking also into account the first-order contributions in Eqs. (B13) and (B16), and proceeding along the lines of the

calculations for wSð0Þ
n and wSð1Þ

n we get that

wS
nðt1; x1;…; tn; xnÞð2Þ ¼ −

1

jhsjψij2
Z

dt dt0 ddx ddx0 χðtÞχðt0ÞFðxÞFðx0Þ
�
θðt − t0ÞJ þK −

L
jhsjψij2

�
; ðB23Þ
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where

J ¼ hsjψihψ jμ̂ðt0ÞμðtÞjsi
�
wnþ2ðt0; x0; t; x; t1; x1;…; tn; xnÞ − w2ðt0; x0; t; xÞwnðt1; x1;…; tn; xnÞ

�

þ hψ jsihsjμ̂ðtÞμ̂ðt0Þjψi
�
wnþ2ðt1; x1;…; tn; xn; t; x; t0; x0Þ − wnðt1; x1;…; tn; xnÞw2ðt; x; t0; x0Þ

�
; ðB24Þ

as well as

K ¼ hψ jμ̂ðtÞjsihsjμ̂ðt0Þjψi
�
wnþ2ðt; x; t1; x1;…; tn; xn; t0; x0Þ

− w1ðt; xÞwnþ1ðt1; x1;…; tn; xn; t0; x0Þ − wnþ1ðt; x; t1; x1;…; tn; xnÞw1ðt0; x0Þ
− w2ðt; x; t0; x0Þwnðt1; x1;…; tn; xnÞ þ 2w1ðt; xÞw1ðt0; x0Þwnðt1; x1;…; tn; xnÞ

�
ðB25Þ

and

L ¼ 2Re
�
hsjψi2hψ jμ̂ðtÞjsihψ jμ̂ðt0Þjsi

�
w1ðt; xÞw1ðt0; x0Þwnðt1; x1;…; tn; xnÞ

þ hsjψi2hψ jμ̂ðtÞjsihψ jμ̂ðt0Þjsiw1ðt; xÞwnþ1ðt0; x0; t1; x1;…; tn; xnÞ
þ hψ jsi2hsjμ̂ðtÞjψihsjμ̂ðt0Þjψiw1ðt; xÞwnþ1ðt1; x1;…; tn; xn; t0; x0Þ: ðB26Þ

We finish this appendix by addressing the selective update when hsjψi ¼ 0. In this case, M̂ð0Þ
s;ψ ¼ 0, and therefore, by

Eqs. (B13) and (B14), the zeroth-order and first-order contributions of both the numerator and the denominator in Eq. (48)
cancel out. Hence,

hM̂†
s;ψ ϕ̂ðt1; x1Þ � � � ϕ̂ðtn; xnÞM̂s;ψiρ̂ϕ ¼ λ2hM̂†ð1Þ

s;ψ ϕ̂ðt1; x1Þ � � � ϕ̂ðtn; xnÞM̂ð1Þ
s;ψiρ̂ϕ þ λ3ðhM̂†ð2Þ

s;ψ ϕ̂ðt1; x1Þ � � � ϕ̂ðtn; xnÞM̂ð1Þ
s;ψ iρ̂ϕ

þ hM̂†ð1Þ
s;ψ ϕ̂ðt1; x1Þ � � � ϕ̂ðtn; xnÞM̂ð2Þ

s;ψiρ̂ϕÞ þOðλ4Þ; ðB27Þ

and in particular,

hÊs;ϕiρ̂ϕ ¼ hM̂†
s;ψM̂s;ψiρ̂ϕ

¼ λ2hM̂†ð1Þ
s;ψ M̂ð1Þ

s;ψiρ̂ϕ þ λ3ðhM̂†ð2Þ
s;ψ M̂ð1Þ

s;ψiρ̂ϕ þ hM̂†ð1Þ
s;ψ M̂ð2Þ

s;ψiρ̂ϕÞ þOðλ4Þ: ðB28Þ

Since the update depends on the quotient of both expressions, we can drop the factor λ2 and proceed as we did formerly with
the case hsjψi ≠ 0. For the zeroth order, as in Eq. (17),

wS
nðt1; x1;…; tn; xnÞð0Þ ¼ ðhM̂†ð1Þ

s;ψ M̂ð1Þ
s;ψiρ̂ϕÞ−1hM̂

†ð1Þ
s;ψ ϕ̂ðt1;x1Þ � � � ϕ̂ðtn; xnÞM̂ð1Þ

s;ψiρ̂ϕ : ðB29Þ

And for the first order, as in Eq. (18),

wS
nðt1;x1;…; tn;xnÞð1Þ ¼

�
hM̂†ð1Þ

s;ψ M̂ð1Þ
s;ψiρ̂ϕ

�
−1
�
hM̂†ð2Þ

s;ψ ϕ̂ðt1;x1Þ � � � ϕ̂ðtn;xnÞM̂ð1Þ
s;ψiρ̂ϕ þhM̂†ð1Þ

s;ψ ϕ̂ðt1;x1Þ � � � ϕ̂ðtn;xnÞM̂ð2Þ
s;ψiρ̂ϕ

�

−
�
hM̂†ð1Þ

s;ψ M̂ð1Þ
s;ψ iρ̂ϕ

�−2�hM̂†ð2Þ
s;ψ M̂ð1Þ

s;ψiρ̂ϕ þhM̂†ð1Þ
s;ψ M̂ð2Þ

s;ψiρ̂ϕ
�
hM̂†ð1Þ

s;ψ ϕ̂ðt1;x1Þ � � � ϕ̂ðtn;xnÞM̂ð1Þ
s;ψiρ̂ϕ : ðB30Þ

For the sake of clarity, let us denote

F n ¼
Z

dt dt0 ddx ddx0 χðtÞχðt0ÞFðxÞFðx0Þhψ jμ̂ðtÞjsihsjμ̂ðt0Þjψiwnþ2ðt; x; t1; x1;…; tn; xn; t0; x0Þ ðB31Þ

and
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Gn ¼ i
Z

dt dt0 dt00 ddx ddx0 ddx00 χðtÞχðt0Þχðt00ÞFðxÞFðx0ÞFðx00Þθðt − t0Þ

×
�
hsjμ̂ðt00Þjψihψ jμ̂ðt0Þμ̂ðtÞjsiwnþ3ðt0; x0; t; x; t1; x1;…; tn; xn; t00; x00Þ

− hψ jμ̂ðt00Þjsihsjμ̂ðtÞμ̂ðt0Þjψiwnþ3ðt00; x00; t1; x1;…; tn; xn; t; x; t0; x0Þ
�
: ðB32Þ

Thus, by Eqs. (B29) and (B30), when hsjψi ¼ 0 we have

wS
nðt1; x1;…; tn; xnÞ ¼

F n

F 0

þ λGn

F 0

−
λG0F n

F 2
0

þOðλ2Þ: ðB33Þ

APPENDIX C: A PRACTICAL EXAMPLE USING n-POINT FUNCTIONS

In this appendix we study the practical example considered in Sec. VIII using the approach based on n-point functions to
implement the update rule. In particular, we will calculate the joint partial state ρ̂AB, and the partial states ρ̂A and ρ̂B, using
n-point functions and its extensions as presented in Secs. VI and VII. As we will show, the results are the same as those
obtained in Sec. VIII using a context-dependent density operator.

1. Nonselective case

We consider the case in which Clara performs a nonselective measurement in the first place. For an initial state of the field
ρ̂ϕ, the initial n-point functions are

wnðx1;…; xnÞ ¼ trϕðρ̂ϕϕ̂ðx1Þ � � � ϕ̂ðxnÞÞ: ðC1Þ

After the measurement, we update wn to wNS
n following the prescription in Eq. (38),

wNS
n ðx1;…; xnÞ ¼ trϕðM̂c;ψ ρ̂ϕM̂

†
c;ψ ϕ̂ðx1Þ � � � ϕ̂ðxnÞÞ þ trϕðM̂c̄;ψ ρ̂ϕM̂

†
c̄;ψ ϕ̂ðx1Þ � � � ϕ̂ðxnÞÞ

¼ trC;ϕ½ÛCðjψihψ j ⊗ ρ̂ϕÞÛ†
Cϕ̂ðx1Þ � � � ϕ̂ðxnÞ�; ðC2Þ

where M̂c;ψ is the M̂ operator as defined in Eq. (14), for jci and jψi states of the Hilbert space of Clara’s detector. Now, we
need to include the knowledge about the initial states of detectors A and B in the n-point functions using the extended
formalism described in Sec. VII,

w̃Γ;nðk; l; x1;…; xnÞ ¼ tr½ÛCðρ̂A ⊗ ρ̂B ⊗ jψihψ j ⊗ ρ̂ϕÞÛ†
Cjkihljϕ̂ðx1Þ � � � ϕ̂ðxnÞ�; ðC3Þ

where Γ ⊆ fA; Bg and jki; jli are elements of an orthonormal basis of the Hilbert space of Γ. We now update w̃Γ;n taking
into account the time evolution of the detectors A and B coupled to the field as

w̃0
Γ;nðk; l; x1;…; xnÞ ¼ tr½ÛAÛBÛCðρ̂A ⊗ ρ̂B ⊗ jψihψ j ⊗ ρ̂ϕÞÛ†

CÛ
†
BÛ

†
Ajkihljϕ̂ðx1Þ � � � ϕ̂ðxnÞ�: ðC4Þ

Once we have obtained the extended n-point function (C4), we are in position to calculate the different partial states we are
interested in. In particular,

hlA; lBjρ̂0ABjkA; kBi ¼ w̃fA;Bg;00ððkA; kBÞ; ðlA; lBÞÞ
¼ tr½ÛAÛBÛCðρ̂A ⊗ ρ̂B ⊗ jψihψ j ⊗ ρ̂ϕÞÛ†

CÛ
†
BÛ

†
AjkA; kBihlA; lBj�

¼ hlA; lBjtrC;ϕ½ÛAÛBÛCðρ̂A ⊗ ρ̂B ⊗ jψihψ j ⊗ ρ̂ϕÞÛ†
CÛ

†
BÛ

†
A�jkA; kBi; ðC5Þ

where jkνi; jlνi ∈ fjgνi; jeνig for ν ∈ fA;Bg. Therefore,

ρ̂0AB ¼ trC;ϕ½ÛAÛBÛCðρ̂A ⊗ ρ̂B ⊗ jψihψ j ⊗ ρ̂ϕÞÛ†
CÛ

†
BÛ

†
A� ðC6Þ

as we obtained in Sec. VIII. For the partial state ρ̂0B,
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hlBjρ̂0BjkBi ¼ w̃0
B;0ðkB; lBÞ

¼ tr½ÛAÛBÛCðρ̂A ⊗ ρ̂B ⊗ jψihψ j ⊗ ρ̂ϕÞ
× Û†

CÛ
†
BÛ

†
AjkBihlBj� ðC7Þ

so that, proceeding as for ρ̂0AB above,

ρ̂0B ¼ trA;C;ϕ½ÛAÛBÛC

× ðρ̂A ⊗ ρ̂B ⊗ jψihψ j ⊗ ρ̂ϕÞÛ†
CÛ

†
BÛ

†
A�

¼ trC;ϕ½ÛBÛCðρ̂B ⊗ jψihψ j ⊗ ρ̂ϕÞÛ†
CÛ

†
B�: ðC8Þ

Analogously,

hlAjρ̂0AjkAi ¼ w̃0
A;0ðkA; lAÞ

¼ tr½ÛAÛBÛCðρ̂A ⊗ ρ̂B ⊗ jψihψ j ⊗ ρ̂ϕÞ
× Û†

CÛ
†
BÛ

†
AjkBihlBj�; ðC9Þ

thus getting

ρ̂0A ¼ trB;C;ϕ½ÛAÛBÛC

× ðρ̂A ⊗ ρ̂B ⊗ jψihψ j ⊗ ρ̂ϕÞÛ†
CÛ

†
BÛ

†
A�

¼ trϕ½ÛAðρ̂A ⊗ ρ̂ϕÞÛ†
A�: ðC10Þ

We see that the results obtained for the density operators
associated with the partial states ρ̂0AB, ρ̂0A and ρ̂0B using the n-
point function formalism for implementing the update rule
are the same as those obtained with the context-dependent
density operator formalism.

2. Selective case

Let us now analyze the case in which the measurement
performed by Clara is selective. In this case, the approach
based on n-point functions has the advantage that the
analysis of where the information is accessible is already
contained in the piecewise definition of the selective
update, so the calculations are more systematic. As a
downside, it is more cumbersome than the density operator
approach. Starting from the same initial n-point functions
of Eq. (C1), after the measurement we update wn to wS

n
following the prescription of Eqs. (47) and (48):

wS
nðx1;…; xnÞ
¼ trC;ϕ½ÛCðjψihψ j ⊗ ρ̂ϕÞÛ†

Cϕ̂ðx1Þ � � � ϕ̂ðxnÞ� ðC11Þ

if all x1;…; xn are outside P, and

wS
nðx1;…; xnÞ ¼

trðM̂c;ψ ρ̂ϕM̂
†
c;ψ ϕ̂ðx1Þ � � � ϕ̂ðxnÞÞ

trϕðρ̂ϕÊc;ψ Þ
ðC12Þ

otherwise. Now, to include detectors A and B in the picture
we use the extended formalism we introduced in Sec. VII.

Since B is in the causal future of the measurement, we have

w̃S
fA;Bg;nððkA;kBÞ;ðlA; lBÞ;x1;…;xnÞ
¼ trA;B;ϕ½M̂c;ψðρ̂A ⊗ ρ̂B ⊗ ρ̂ϕÞM̂†

c;ψ

× jkA;kBihlA; lBjϕ̂ðx1Þ � � � ϕ̂ðxnÞ�trϕðρ̂ϕÊc;ψÞ−1 ðC13Þ

and

w̃S
B;nððkB; lBÞ; x1;…; xnÞ
¼ trA;B;ϕ½M̂c;ψðρ̂A ⊗ ρ̂B ⊗ ρ̂ϕÞM̂†

c;ψ

× jkBihlBjϕ̂ðx1Þ � � � ϕ̂ðxnÞ�trϕðρ̂ϕÊc;ψÞ−1
¼ trB;ϕ½M̂c;ψðρ̂B ⊗ ρ̂ϕÞM̂†

c;ψ

× jkBihlBjϕ̂ðx1Þ � � � ϕ̂ðxnÞ�trϕðρ̂ϕÊc;ψÞ−1: ðC14Þ

Now, because A is not in the causal future of the
measurement,

w̃S
A;nððkA; lAÞ; x1;…; xnÞ
¼ tr½ÛCðρ̂A ⊗ ρ̂B ⊗ jψihψ j ⊗ ρ̂ϕÞÛ†

C

× jkAihlAjϕ̂ðx1Þ � � � ϕ̂ðxnÞ� ðC15Þ

if x1;…; xn ∉ P, and

w̃S
A;nððkA; lAÞ; x1;…; xnÞ
¼ trA;ϕ½M̂c;ψ ðρ̂A ⊗ ρ̂ϕÞM̂†

c;ψ

× jkAihlAjϕ̂ðx1Þ � � � ϕ̂ðxnÞ�trϕðρ̂ϕÊc;ψÞ−1 ðC16Þ

otherwise.
After taking into account the interaction of the field with

A and B, we update the extended n-point functions
accordingly: for the n-point functions involving both
detectors A and B,

w̃0
fA;Bg;nððkA; kBÞ; ðlA; lBÞ; x1;…; xnÞ
¼ trA;B;ϕ½ÛAÛBM̂c;ψðρ̂A ⊗ ρ̂B ⊗ ρ̂ϕÞM̂†

c;ψ

× Û†
BÛ

†
AjkA; kBihlA; lBjϕ̂ðx1Þ � � � ϕ̂ðxnÞ�

× trϕðρ̂ϕÊc;ψÞ−1; ðC17Þ

and for the ones involving only B,

w̃0
B;nððkB; lBÞ;x1;…;xnÞ
¼ trA;B;ϕ½ÛAÛBM̂c;ψ ðρ̂A ⊗ ρ̂B ⊗ ρ̂ϕÞM̂†

c;ψ

× Û†
BÛ

†
AjkBihlBjϕ̂ðx1Þ � � � ϕ̂ðxnÞ�trϕðρ̂ϕÊc;ψÞ−1: ðC18Þ

For the extended n-point functions involving A, however,
we get
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w̃0
A;nððkA; lAÞ; x1;…; xnÞ
¼ tr½ÛAÛBÛCðρ̂A ⊗ ρ̂B ⊗ jψihψ j ⊗ ρ̂ϕÞ
× Û†

CÛ
†
BÛ

†
AjkAihlAjϕ̂ðx1Þ � � � ϕ̂ðxnÞ� ðC19Þ

if x1;…; xn and Alba are outside P, and

w̃0
A;nððkA; lAÞ; x1;…; xnÞ
¼ trA;B;ϕ½ÛAÛBM̂c;ψðρ̂A ⊗ ρ̂B ⊗ ρ̂ϕÞM̂†

c;ψ

× Û†
BÛ

†
AjkAihlAjϕ̂ðx1Þ � � � ϕ̂ðxnÞ�

× trϕðρ̂ϕÊc;ψÞ−1 ðC20Þ

otherwise. This is a complete account of the relevant
extended n-point functions for the practical example we
are dealing with, so that now we can calculate the partial
states. In particular,

hlA; lBjρ̂0ABjkA; kBi ¼ w̃0
fA;Bg;0ððkA; kBÞ; ðlA; lBÞÞ

¼ trA;B;ϕ½ÛAÛBM̂c;ψðρ̂A ⊗ ρ̂B ⊗ ρ̂ϕÞM̂†
c;ψ

× Û†
BÛ

†
AjkA; kBihlA; lBj�trϕðρ̂ϕÊc;ψÞ−1

ðC21Þ

giving

ρ̂0AB ¼ trϕ½ÛAÛBM̂c;ψðρ̂A ⊗ ρ̂B ⊗ ρ̂ϕÞM̂†
c;ψÛ

†
BÛ

†
A�

trϕðρ̂ϕÊc;ψÞ
: ðC22Þ

Analogously,

hlBjρ̂0BjkBi ¼ w̃0
B;0ðkB; lBÞ

¼ trA;B;ϕ½ÛAÛBM̂c;ψðρ̂A ⊗ ρ̂B ⊗ ρ̂ϕÞM̂†
c;ψ

× Û†
BÛ

†
AjkBihlBj�trϕðρ̂ϕÊc;ψÞ−1 ðC23Þ

gives

ρ̂0B ¼ trϕ½ÛBM̂c;ψ ðρ̂B ⊗ ρ̂ϕÞM̂†
c;ψÛ

†
B�

trϕðρ̂ϕÊc;ψÞ
: ðC24Þ

On the other hand, since A stays spacelike separated from
the causal future of Clara’s measurement P,

hlAjρ̂0AjkAi ¼ w̃0
A;0ðkA; lAÞ

¼ hlAjtrB;C;ϕ½ÛAÛBÛC

× ðρ̂A ⊗ ρ̂B ⊗ jψihψ j ⊗ ρ̂ϕÞÛ†
CÛ

†
BÛ

†
A�jkAi

¼ hlAjtrϕ½ÛAðρ̂A ⊗ ρ̂ϕÞÛ†
A�jkAi ðC25Þ

yielding

ρ̂0A ¼ trϕ½ÛAðρ̂A ⊗ ρ̂ϕÞÛ†
A� ≠ trBðρ̂0ABÞ; ðC26Þ

as expected. Finally, if Alba eventually reaches P, then
following the prescribed update rule for the case when A is
inside P,

hlAjρ̂00AjkAi
¼ w̃0

A;0ðkA; lAÞ

¼ hlAjtrB;ϕ½ÛAÛBM̂c;ψ ðρ̂A ⊗ ρ̂B ⊗ ρ̂ϕÞM̂†
c;ψÛ

†
BÛ

†
A�jkAi

trϕðρ̂ϕÊc;ψÞ

¼ hlAjtrϕ½ÛAM̂c;ψ ðρ̂A ⊗ ρ̂ϕÞM̂†
c;ψ Û

†
A�jkAi

trϕðρ̂ϕÊc;ψÞ
ðC27Þ

yielding

ρ̂00A ¼ trϕðÛAM̂c;ψ ½ρ̂A ⊗ ρ̂ϕ�M̂†
c;ψ Û

†
AÞ

trϕðρ̂ϕÊc;ψÞ
¼ trBðρ̂AB0 Þ: ðC28Þ

These results are again identical to those obtained in
Sec. VIII, giving some insight into the equivalence of both
formalisms, while showing a practical example of how to
perform the calculations in each of them.
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