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The effects of reflecting boundaries on vacuum electric field fluctuations are treated. The presence
of the boundaries can enhance these fluctuations and possibly lead to observable effects. The electric
field fluctuations lead to voltage fluctuations along the worldline of a charged particle moving
perpendicularly to a pair of reflecting plates. These voltage fluctuations in turn lead to fluctuations in
the kinetic energy of the particle, which may enhance the probability of quantum barrier penetration by the
particle. A recent experiment by Moddel et al. is discussed as a possible example of this enhanced barrier
penetration probability.
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I. INTRODUCTION

The Casimir effect has become the topic of extensive
theoretical and experimental work in recent years [1]. In its
original form, it is a force of attraction between a pair of
perfectly reflecting plates due to modification of the
electromagnetic vacuum fluctuations. The presence of
the plates modifies vacuum modes whose wavelengths
are of the order of the plate separation and shifts the energy
of the vacuum state by an amount which is proportional to
an inverse power of the separation. The plates also modify
local observables in the region between the plates. These
observables can include the energy density and the electric
field correlation functions. The shifts in the electric field
fluctuations can in principle be detected by charged
particles moving between the plates in the form of modified
Brownian motion. This has been the topic of several
investigations in recent years [2–7]. For example,
Ref. [2] examined the shift in the mean squared compo-
nents of the velocity of a charge moving parallel to a plate
and found that this shift can be negative, which was
interpreted as a small reduction in the quantum uncertainty.
In this paper, this problem will be reexamined, with

particular attention paid to particles moving perpendicular
to one or two plates. The motivation for this study is a
recent experimental result by Moddel and co-workers [8,9],
who found that the current flowing through a metal-
insulator-metal (M-I-M) interface can be very sensitive
to the distance between the interface and an aluminum
mirror. The authors conjectured that this dependence may
be related to the Casimir effect. The purpose of this paper is
to explore this conjecture in more detail. The outline of the
paper is as follows: The electric field correlation functions

in the presence of two parallel perfectly reflecting plates
will be reviewed in Sec. II. These results will be used in
Sec. III to compute voltage fluctuations along a segment of
a particle’s worldline, which yield fluctuations in the
particle’s kinetic energy. The Moddel et al. experiment
is reviewed in Sec. IV, and the extent to which its results
might be explained by the modified electric field fluctua-
tions is discussed. The effects of finite temperature are
discussed in Sec. V. The paper is summarized in Sec. VI.
Lorentz-Heaviside units in which ℏ ¼ c ¼ 1 are used

throughout the paper, except as otherwise noted.

II. ELECTRIC FIELD CORRELATION
FUNCTIONS

We may define a vacuum correlation function for the
Cartesian components of the quantized electric field oper-
ator Eðt;xÞ as hEiðt;xÞEjðt0;x0Þi. Here we are interested
primarily in the shift in the correlation functions due to the
presence of mirrors, which is described by the renormalized
function

hEiðt;xÞEjðt0;x0ÞiR
¼ hEiðt;xÞEjðt0;x0Þi − hEiðt;xÞEjðt0;x0Þi0; ð1Þ

where hEiðt;xÞEjðt0;x0Þi is an expectation value in the
Casimir vacuum with the mirrors present and
hEiðt;xÞEjðt0;x0Þi0 is an expectation value in the
Minkowski vacuum without mirrors. We consider the
Casimir geometry of two parallel, perfectly reflecting
mirrors, one located at z ¼ 0 and the other at z ¼ a.
The correlation functions for this geometry were calculated
by Brown and Maclay [10] using an image sum method.
We are especially interested in the case i ¼ j ¼ z, the
correction function between the z component of the electric*ford@cosmos.phy.tufts.edu
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field at two different spacetime points which lie along a line
perpendicular to the mirrors, so x ¼ x0 and y ¼ y0. In this
case, the results of Ref. [10] may be used to show that

hEzðt; zÞEzðt0; z0ÞiR
¼ 1

π2½ðt − t0Þ2 − ðzþ z0Þ2�2

þ 1

π2
X∞
n¼−∞

0� 1

½ðt − t0Þ2 − ðz − z0 − 2anÞ2�2

þ 1

½ðt − t0Þ2 − ðzþ z0 − 2anÞ2�2
�
; ð2Þ

where the prime on the summation denotes that the n ¼ 0
term is omitted. In the limit in which a → ∞, we obtain the
following result for a single mirror:

hEzðt; zÞEzðt0; z0ÞiR ¼ 1

π2½ðt − t0Þ2 − ðzþ z0Þ2�2 : ð3Þ

Note that in all cases hEzðt; zÞEzðt0; z0ÞiR > 0, meaning
that the presence of the plates enhances the electric field
fluctuations compared to those in empty space. Some
physical effects of this enhancement will be the primary
topic of this paper.

III. VOLTAGE AND PARTICLE ENERGY
FLUCTUATIONS

Consider a particle with electric charge q moving in the
z direction, normal to the plates. The work done by the
electric field when the particle moves from z ¼ z0 to
z ¼ z0 þ b along a spacetime path described by
z ¼ zðtÞ, or equivalently t ¼ tðzÞ, is

ΔU ¼ q
Z

z0þb

z0

EzðtðzÞ; zÞdz: ð4Þ

The corresponding voltage difference is ΔV ¼ ΔU=q. In
the vacuum state, hEzi ¼ 0, so the mean work vanishes
(hΔUi ¼ 0). However, the variance is nonzero and the
contribution to the variance due to the presence of the plates
may be written as

hðΔUÞ2i¼ q2
Z

z0þb

z0

dz
Z

z0þb

z0

dz0hEzðt;zÞEzðt0;z0ÞiR: ð5Þ

Assume that the particle moves at an approximately
constant speed v, so its worldline may be described by
t ¼ z=v, or t0 ¼ z0=v.

A. Single-plate case

First consider the case of one plate, where Eq. (3)
applies. The variance of the particle’s energy due to the
plate may now be written as

hðΔUÞ2i ¼ q2v4

π2
Iðz0; b; vÞ; ð6Þ

where

Iðz0; b; vÞ ¼
Z

z0þb

z0

dz
Z

z0þb

z0

dz0
1

½ðz− z0Þ2 − v2ðzþ z0Þ2�2 :

ð7Þ

This integral contains a second-order pole at points where
ðz − z0Þ2 ¼ v2ðzþ z0Þ2. The integral may be defined as a
principal value, obtained by writing the integrand as a
second derivative:

1

½ðz − z0Þ2 − v2ðzþ z0Þ2�2 ¼
∂
∂z

∂
∂z0 Fðz; z

0Þ: ð8Þ

An explicit form of Fðz; z0Þ is

Fðz; z0Þ ¼ 1

128v3ðzz0Þ2 ½8vzz
0 þ ð1 − v2Þðz2 − z02Þ

× ðlogf½ð1þ vÞz0 þ ðv − 1Þz�2=l2Þg
− logf½ð1þ vÞzþ ðv − 1Þz0�2=l2gÞ�; ð9Þ

where l is an arbitrary constant with the dimensions of
length. Note that Fðz; z0Þ is independent of the actual value
of l; if we rescale l → μl, then μ cancels. Now Iðz0; b; vÞ
may be expressed as

Iðz0; b; vÞ ¼ Fðz0 þ b; z0 þ bÞ − Fðz0 þ b; z0Þ
− Fðz0; z0 þ bÞ þ Fðz0; z0Þ: ð10Þ

In the limit in which v ≪ 1, this result becomes

Iðz0;b;vÞ∼
z20þðz0þbÞ2
8z20ðz0þbÞ2v2

þð2z0þbÞ2ð2z20þ2bz0−b2Þ
24b2z20ðz0þbÞ2 þOðv2Þ: ð11Þ

The leading term proportional to v−2 is independent of b
when b≲ z0,

Iðz0; b; vÞ ≈
1

4z20v
2
: ð12Þ

Both the factor of v−2 and the lack of dependence upon b in
the above result may be traced to the singular nature of the
integrand in Eq. (7). In the limit in which v → 0, this
integrand approaches 1=ðz − z0Þ4 and the integral diverges.
This leads to the result in which Iðz0; b; vÞ ∝ 1=v2 for
small v. If the integrand in Eq. (7) were bounded, we would
expect to find Iðz0; b; vÞ ∝ b2 for small b rather than
Eq. (12). However, there is a limit to how small b may
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be for fixed v, as we need to have the Oðv0Þ term in
Eq. (11) be small compared to the Oð1=v2Þ term. In the
case in which b ≪ z0, the former term becomes 1=ð3b2Þ,
which is sufficiently small provided that

b≳ 2ffiffiffi
3

p vz0: ð13Þ

The lack of b dependence in Eq. (12) arises because the
contribution of the second-order pole in Eq. (7) is inde-
pendent of the length of the integration interval as long
as vz0 ≲ b≲ z0.
Note that when v ≪ 1 but b ≫ z0, Eq. (11) yields

Iðz0; b; vÞ ≈
1

8z20v
2
; ð14Þ

one-half of its value for small b. Furthermore, the decrease
in the energy variance as b increases is monotonic. This
decrease can be attributed to anticorrelated electric field
fluctuations.
We may now combine Eqs. (5) and (12) to write

hðΔUÞ2i ≈ q2v2

4π2z20
ð15Þ

when v ≪ 1 and b ≪ z0. In this limit, the root-mean-square
energy fluctuation is

ΔUrms ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðΔUÞ2i

q
≈

qv
2πz0

: ð16Þ

Note that this energy fluctuation corresponds to a voltage
fluctuation of

ΔVrms ¼
1

q
ΔUrms ð17Þ

along the worldline of the charged particle. This fluctuation
is proportional to the speed v. Remarkably, the fluctuation
is independent of the distance traveled, b, as long as

2ffiffiffi
3

p vz0 ≲ b ≪ z0: ð18Þ

B. Two-plate case

Now we turn to the case of two parallel plates, where the
shift in the electric field correlation function is given by
Eq. (2). Again we consider a particle moving at constant
speed v from z0 to z0 þ b and write Eq. (5) as

hðΔUÞ2i ¼ hðΔUÞ2ione plate þ
q2v4

π2
X∞
n¼−∞

0
½I2AðnÞ þ I2BðnÞ�:

ð19Þ

Here hðΔUÞ2ione plate is the result for a single plate calcu-
lated in the previous subsection, and we let

I2AðnÞ¼
Z

z0þb

z0

dz
Z

z0þb

z0

dz0
1

½ðz−z0Þ2−v2ðzþz0−2anÞ2�2
ð20Þ

and

I2BðnÞ¼
Z

z0þb

z0

dz
Z

z0þb

z0

dz0
1

½ðz−z0Þ2−v2ðz−z0−2anÞ2�2 :

ð21Þ

We may evaluate I2AðnÞ by noting that

1

½ðz− z0Þ2 − v2ðzþ z0 − 2anÞ2�2 ¼
∂
∂z

∂
∂z0Fðz− an; z0 − anÞ;

ð22Þ

so

I2AðnÞ ¼ Fðz0 þ b− an; z0 þ b− anÞ
−Fðz0 þ b− an; z0 − anÞ
−Fðz0 − an; z0 þ b− anÞ þFðz0 − an; z0 − anÞ:

ð23Þ

Here F may be taken to have the form given in Eq. (9). In
the limit v ≪ 1, the quantity I2AðnÞ is also proportional to
1=v2 and takes the form

I2AðnÞ∼
2z20 − 4anz0 þ 2bz0 þ 2a2n2 − 2abnþ b2

8v2ðan− z0Þ2ðanþ b− z0Þ2
: ð24Þ

As b → 0, this approaches a nonzero value

I2AðnÞ →
1

4v2ðan − z0Þ2
: ð25Þ

We evaluate I2BðnÞ by first expressing its integrand as

1

½ðz − z0Þ2 − v2ðz − z0 − 2anÞ2�2 ¼
∂
∂z

∂
∂z0 Gðz; z

0Þ; ð26Þ

where
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Gðz; z0Þ ¼ 1

64ðnavÞ3 ½8navþ ½ð1 − v2Þðz − z0Þ þ 2nav2�ðlogf½ð1þ vÞðz0 − zÞ þ 2nav�2=l2Þg

− logf½ð1 − vÞðz − z0Þ þ 2nav�2=l2gÞ�: ð27Þ

This leads to

I2BðnÞ ¼ Gðz0 þ b; z0 þ bÞ − Gðz0 þ b; z0Þ − Gðz0; z0 þ bÞ þ Gðz0; z0Þ; ð28Þ

which has a form independent of b, but proportional to 1=v2, when v ≪ 1,

I2BðnÞ ∼
1

4a2v2n2
: ð29Þ

For the case in which v ≪ 1 and b ≪ z0, we may write Eq. (19) as

hðΔUÞ2i ¼ hðΔUÞ2ione plate þ
q2v2

4π2a2
X∞
n¼−∞

0� 1
n2

þ 1

ðnþ z0=aÞ2
�
: ð30Þ

The sums may be evaluated in closed form using

X∞
n¼−∞

0 1
n2

¼ 2ζð2Þ ¼ π2

3
; ð31Þ

where ζ is the Riemann zeta function and [11]

X∞
n¼1

�
1

ðnþ xÞ2 þ
1

ðn − xÞ2
�
¼ −

1

x2
þ π2csc2ðπxÞ: ð32Þ

These identities lead to our result for the particle energy
variance in the two-plate case

hðΔUÞ2i ¼ q2v2

12a2

�
1þ 3csc2

�
πz0
a

��
: ð33Þ

Note that the contribution of the 1=x2 term in Eq. (32) has
canceled the hðΔUÞ2ione plate term in Eq. (30). Furthermore,
hðΔUÞ2i is symmetric about the midpoint, z0 ¼ a=2. In the
limit in which z0 ≪ a, it reduces to the one-plate result,
Eq. (15). In the limit in which a − z0 is small, we have

hðΔUÞ2i ∼ q2v2

4π2ða − z0Þ2
; ð34Þ

which is the one-plate result due to the plate at z ¼ a.
Note that here and in the previous subsection, we have

assumed sudden switching at z ¼ z0 and z ¼ z0 þ b in
expressions such as Eqs. (20) and (21). This still produces
finite results, as we are interested in the difference between
the Minkowski and Casimir vacua, which is sensitive to
modes whose wavelength is of the order of the distance to
the plates. Had we been dealing with effects in the

Minkowski vacuum alone, sudden switching could produce
infinite results, as modes of arbitrarily short wavelength
could contribute. Here we are justified in using sudden
switching if the timescale for the onset of the coupling of
the modified vacuum fluctuations to the charge is short
compared to other timescales. If this is not the case, then the
switching needs to be modeled using a smooth function, as
discussed in Refs. [5,7].

C. Some estimates

Here we wish to make some numerical estimates of the
magnitude of the voltage or particle energy fluctuations.
Note that in all cases studied above the energy variance is
proportional to q2v2 and inversely proportional to the
square of the distance between the starting point and the
nearest plate. Thus, we may use the one-plate result,
Eq. (16), for the root-mean-square energy fluctuation as
an illustration. Let K ¼ 1

2
mv2 be the particle’s kinetic

energy. In the case where the particle is an electron, we
may write

ΔUrms ¼
e
πz0

ffiffiffiffiffiffiffi
K
2m

r
≈ 1.9 × 10−4 eV

ffiffiffiffiffiffiffiffiffiffi
K

1 eV

r �
100 nm

z0

�
:

ð35Þ

Thus, the magnitude of the energy fluctuations increases as
the square root of K, but the fractional fluctuation,
ΔUrms=K, is inversely proportional to

ffiffiffiffi
K

p
. In any case,

the energy and hence the velocity fluctuations are relatively
small for nonrelativistic particles. This justifies our
assumption that v remains approximately constant.
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D. Electric field fluctuations and quantum tunneling

It is well known that a quantum particle can tunnel
through a potential barrier even when its energy is below
the maximum of the barrier. It is also well known that a
nonzero temperature can enhance the rate at which particles
can pass over the barrier. This process, thermal activation,
arises not from quantum tunneling but rather from the
fraction of particles in the tail of the Boltzmann distribution
that have enough energy to fly over the barrier classically. It
is less well known that even at zero temperature, quantum
electric field vacuum fluctuations can enhance the tunnel-
ing rate compared to that predicted in single-particle
quantum mechanics [12,13]. In quantum electrodynamics,
this effect arises as a one-loop radiative correction to the
tree-level scattering amplitude for an electron to scatter
from a potential barrier. The basic physical process may be
understood as follows: when the electron is in the vicinity
of the barrier, it is equally likely to receive forward and
backward kicks from the electric field vacuum fluctuations.
However, the net effect of the forward kicks is greater, so
the tunneling rate is increased by the field fluctuations. The
root-mean-squared energy fluctuation of an electron with
initial kinetic energy K while passing a barrier of width a is
found in Ref. [13] to be

ΔUMV ≈
e2K
m2a2

: ð36Þ

Here the effect is due to vacuum electric field fluctuations
in the Minkowski vacuum of empty space. This may be
compared to the effect in the Casimir vacuum given by
Eq. (35) to find

ΔUrms

ΔUMV
¼ a2m3=2

πez0
ffiffiffiffi
K

p ≈1.9×104
�

a
1 nm

�
2
�
100 nm

z0

� ffiffiffiffiffiffiffiffiffi
1 eV
K

r
:

ð37Þ

For a wide choice of parameters, ΔUrms ≫ ΔUMV, so the
effect due to the presence of plates is much larger than the
effect in empty space. The actual increase in tunneling rate
due to the presence of plates will depend upon the relative
magnitudes of ΔUrms and jK − Vmaxj, where Vmax is the
maximum value of the potential. When these two quantities
become comparable, the increase can be very large.

E. Effects of finite reflectivity

Thus far, we have assumed perfectly reflecting plates.
For a metal, this is a good approximation for electromag-
netic waves with angular frequencies below the plasma
frequency, ωp, but not for higher frequency modes. Thus, in
a regime where the dominant contribution to a Casimir
effect comes from modes where ω≲ ωp, we can expect the
results assuming perfect reflectivity to be a reasonable
approximation. This is illustrated in calculations of the

mean squared electric field, hE2ðzÞi, at a distance z from a
single plate [14]. In the limit in which ωpz≳ 1, we have

hE2ðzÞi ∼ 3

16π2z4
: ð38Þ

This is also the result at all values of z for a perfectly
reflecting plate, as may be found from the results in
Ref. [10]. In the case in which ωpz≲ 1, the mean squared
electric field becomes

hE2ðzÞi ∼
ffiffiffi
2

p
ωp

32πz3
: ð39Þ

Note that finite reflectivity modifies the singular behavior
of hE2ðzÞi as z → 0 but does not remove it. This implies
that another physical cutoff is required. One possibility is
that the assumption of an exactly smooth plane is too
strong, and that surface roughness provides this cutoff. For
our purposes, we need not answer this question, but rather
confine the use of the perfectly reflecting results to the
region where z > 1=ωp.
Note that results such as Eq. (39) give local expectation

values, not correlation functions. A more detailed study of
the latter in the presence of boundaries with finite reflec-
tivity is needed. Until such a study has been performed, it is
not clear how sensitive results such as Eq. (16) are to finite
reflectivity.

IV. A CAVITY-INDUCED CURRENT
EXPERIMENT

Here we briefly summarize a recent experiment by
Moddel and co-workers [8,9]. This experiment involves
electrical current in a metal-insulator-metal interface which
is adjacent to a cavity, as illustrated in Fig. 1, which is
adapted from Fig. 1 in Refs. [8,9]. A potential difference V0

is imposed between the palladium and nickel electrodes,
which causes a current I to flow through the layer of
insulator separating the two electrodes. On the far side of

FIG. 1. An optical cavity of thickness dC is bounded by an
aluminum mirror and a M-I-M interface. The latter consists of a
nickel electrode, a palladium electrode of thickness dE, and a
layer of insulator of thickness dI .
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the palladium electrode, there is an optical cavity of
thickness dC, and beyond the cavity an aluminum mirror
is located. The key result, illustrated in Fig. 3(a) of Ref. [8]
and Fig. 4(a) of Ref. [9], is that the magnitude of I for a
fixed V0 is inversely related to the cavity thickness dC. In
effect, the electrical resistance of the insulator layer
decreases as dC decreases.
The cavity is filled with a transparent dielectric, PMMA,

and has various thicknesses, dC ¼ 33, 79, 230, and
1100 nm. The insulator layer consists of 1.3 nm aluminum
oxide Al2O3 and 1 nm of nickel oxide, for a net thickness
of dI ¼ 2.3 nm. The palladium electrode has a thickness of
dE ¼ 8.3 nm, the aluminum mirror has a thickness of
150 nm, and the nickel electrode has a thickness of either
38 or 50 nm. The plasma frequencies of aluminum,
palladium, and nickel are, respectively, ωpðAlÞ ¼ 15 eV,
ωpðPdÞ ¼ 7.4 eV, and ωpðNiÞ ¼ 9.5 eV. The correspond-
ing length scales are 1=ωpðAlÞ ¼ 14 nm, 1=ωpðPdÞ ¼
22 nm, and 1=ωpðNiÞ ¼ 27 nm.
The measured current flows through the layer of the

insulator, possibly by quantum tunneling. The distance of
this layer from the aluminum mirror is z0 ≈ dC, and in all
cases ωpðAlÞz0 > 1. Hence, we may approximate the
aluminum mirror as a perfect mirror for the purpose of
estimating its effect on the electric field fluctuations at the
M-I-M location. The palladium electrode may be viewed as
approximately transparent because ωpðPdÞdE ≪ 1. The
effect of the nickel electrode is difficult to assess. It is
too close to the insulator to be treated as a perfect mirror, as
ωpðNiÞdI ≪ 1, but its effect could be significant.
The applied potential differences between the nickel and

palladium electrodes in Ref. [9] are of the order of 0.1 mV,
which would produce kinetic energies of the order of K ≈
10−4 eV for freely accelerating electrons. We will use this
value of K and set z0 ¼ 33 nm in Eq. (35) to estimate the
magnitude of the electron energy fluctuations to be of the
order of

ΔUrms ≈ 0.06K ≈ 6 × 10−6 eV: ð40Þ

The corresponding potential differences in Ref. [8] are of
the order of 0.2 V, which leads to the estimate

ΔUrms ≈ 0.0013K ≈ 2.5 × 10−4 eV: ð41Þ

It is unclear whether either of these are large enough to
explain the results for the current flowing through the

insulator discussed in Refs. [8,9]. A more detailed model of
the potential barrier involved is needed. It should also be
noted that Ref. [9] seems to find a small current even at zero
applied voltage. There does not seem to be a plausible
explanation of this effect in terms of vacuum electric field
fluctuations.

V. FINITE TEMPERATURE EFFECTS

Thus far, we have assumed that the quantized electro-
magnetic field is in the Casimir vacuum state at zero
temperature. Here we wish to estimate the magnitude of the
thermal corrections to the electric field fluctuations. We
consider a single perfectly reflecting plate here, as in
Sec. III A, but now assume a thermal bath of photons at
temperature T. We use the well-known result [15] in which
a finite temperature two-point function may be constructed
by requiring periodicity in imaginary time, with period
β ¼ 1=ðkBTÞ, where kB is Boltzmann’s constant. For a
review, see Ref. [16].
This may be done explicitly as an image sum of the form

hEzðt;zÞEzðt0;z0Þiβ¼
1

π2
X∞
n¼−∞

1

½ðt− t0 þ inβÞ2−ðzþz0Þ2�2 :

ð42Þ

Here the n ¼ 0 term is the zero temperature function given
in Eq. (3), and the n ≠ 0 terms describe the finite temper-
ature corrections. Again we consider a particle with electric
charge q moving perpendicularly to the plate at a speed v
from z ¼ z0 to z ¼ z0 þ b. The variance of the particle’s
energy fluctuations is given by an integral of the finite
temperature correlation function analogous to that in
Eq. (5). We may obtain the contribution to this variance
coming from finite temperature effects by omitting the
n ¼ 0 term in the sum. Denote this contribution by
hðΔUÞ2iT . It may be expressed as

hðΔUÞ2iT ¼ q2v4

π2
X

n
0Iβðz0; b; v; nÞ: ð43Þ

Here the prime on the summation indicates a sum on all
nonzero integers and

Iβðz0; b; v; nÞ ¼
Z

z0þb

z0

dz
Z

z0þb

z0

dz0
1

½ðz − z0 þ inβvÞ2 − v2ðzþ z0Þ2�2 : ð44Þ

Unlike in the zero temperature case, the integrand in Eq. (44) is now free of singularities for n ≠ 0, and the integration is
more straightforward. We may simplify the integration by assuming (1) v ≪ 1 and (2) β ≫ z0. In this case, we may drop the
v2ðzþ z0Þ2 term in the denominator and write
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Iβðz0; b; v; nÞ ≈
Z

z0þb

z0

dz
Z

z0þb

z0

dz0
1

ðz − z0 þ inβvÞ4 ¼
1

6ðinβvþ bÞ2 þ
1

6ðinβv − bÞ2 þ
1

3n2β2v2
: ð45Þ

If b ≪ βv, we may expand this result to lowest order in b,
with the result

Iβðz0; b; v; nÞ ≈
b2

ðvβnÞ4 þOðb4Þ: ð46Þ

In contrast to the corresponding result for zero temperature,
Eq. (12), Iβðz0; b; v; nÞ vanishes as b → 0. Next we use the
above form in Eq. (43) and employ the identity

X
n
0 1
n4

¼ 2ζð4Þ ¼ π4

45
; ð47Þ

where ζ denotes the Riemann zeta function. The result is

hðΔUÞ2iT ≈
π2q2b2

45β4
: ð48Þ

The ratio of this expression to the zero temperature
result, Eq. (15), gives a fractional measure of the magnitude
of the thermal effect:

r ¼ hðΔUÞ2iT
hðΔUÞ2i0

¼ 4π4

45

�
bz0
vβ2

�
2

: ð49Þ

Let us estimate this ratio for the case of the experiment
described in Sec. IV. At room temperature, T ¼ 300 K,
β ≈ 7.6 μm. Take b ¼ 2.3 nm and z0 ¼ 33 nm. If the
charged particles are electrons with a kinetic energy of
K ¼ 0.2 eV, and hence speeds of v ¼ 8.9 × 10−4, then we
find that r ≈ 1.9 × 10−5. In this case, the thermal effect is
very small. In the case in which K ¼ 10−3 eV,
v ≈ 2.0 × 10−5, leading to r ≈ 0.0038, which is still a

relatively small thermal correction. Note that here we are
discussing the effects of finite temperature on electric field
fluctuations, and not the effect of thermal activation coming
from the thermal kinetic energy of the particles. The latter
effect could be important at room temperature, depending
upon the details of the potential barrier, but seems unlikely
to depend upon the distance to a mirror, as was observed in
the Moddel and co-workers [8,9] experiment. We have
restricted our attention to the case of a single perfectly
reflecting plate. The study of the thermal corrections in the
cases of two plates and of finite reflectivity is a topic for
future work.

VI. SUMMARY

In this paper, we examined the effects of vacuum electric
field fluctuations on a charged particle moving perpen-
dicularly to one or two perfectly reflecting plates. This was
done by integrating the electric field correlation function in
the Casimir vacuum along a segment of the particle’s
worldline and results in expressions describing fluctuations
in the voltage difference along the segment and in the
particle’s energy. We then considered the possibility that
these energy fluctuations could be linked to enhanced
quantum tunneling through a potential barrier. The pos-
sibility that this effect has already been observed was
discussed.
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