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Bearing in mind our previous study on asymptotic behavior of null geodesics near future null infinity, we
analyze the behavior of geometrical quantities such as a certain extrinsic curvature and Riemann tensor in
the Bondi coordinates. In the sense of asymptotics, the condition for an r-constant hypersurface to be a
photon surface is shown to be controlled by a key quantity that determines the fate of photons initially
emitted in angular directions. In four dimensions, such a nonexpanding photon surface can be realized even
near future null infinity in the presence of enormous energy flux for a short period of time. By contrast, in
higher-dimensional cases, no such a photon surface can exist. This result also implies that the dynamically
transversely trapping surface, which is proposed as an extension of a photon surface, can have an arbitrarily
large radius in four dimensions.
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I. INTRODUCTION

In recent years, there have been unprecedented reports of
various observations on black holes: the gravitational-wave
observations (see [1] for the first detection) and the shadow
imaging [2]. In the discussion of systems far away from
massive objects, as in black hole observations, ideal
observers are considered to stay at future null infinity in
asymptotically flat spacetimes, which are formulated pre-
cisely in Refs. [3–11]. Thus, it is important to understand
the properties of the asymptotic structure near future null
infinity. Although the spacetime asymptotes to the
Minkowski spacetime near infinity, there are nontrivial
features of the asymptotics. One of them is the super-
translation, which gives an infinite number of independent
generators for symmetries [3,4]. By contrast with the cases
in four dimensions, however, supertranslations are absent in
higher dimensions if one supposes the finiteness of global
charges such as mass [11,12]. Recently, supertranslations
attract much attention in several topics including the
memory effect [13–15] and the soft theorem [16].
In our previous paper [17], meanwhile, the authors

examined null geodesics that correspond to worldlines of
photons emitted in angular directions of the Bondi coor-
dinates near future null infinity. Surprisingly, there exists a
nontrivial difference between four and higher dimensions

(see Ref. [18] for the extension for Brans-Dicke theory).
In higher dimensions, any of these null geodesics
always reaches future null infinity. In four dimensions,
by contrast, it is not guaranteed: Gravitational waves and
the flow of matter energy could affect the fate of the null
geodesics (see Sec. II for a brief review and/or Ref. [17] for
detail).
The behavior of geodesics is imprinted in the geomet-

rical quantities, namely curvatures. One of the examples is
the photon sphere, which describes the unstable circular
orbits of photons in the Schwarzschild black hole space-
time. That is to say, although the photon sphere indicates a
collection of specific null geodesics, equivalent conditions
can be given with the geometrical quantities as well
[19,20]. The concept of the photon sphere has been
extended to general spacetimes [20], called the photon
surface, which is the collection of certain (not necessarily
circular) photon orbits. The generalization of the photon
surface has been widely discussed [21–25] (see also
Ref. [26] for the stability for the photon surface). In this
paper, such an existing idea for photon spheres (or photon
surfaces) is applied to the cases for the asymptotic behavior
of null geodesics analyzed in our previous work [17]; that
is, we shall show the properties of the asymptotic null
geodesics emitted in the angular direction near future null
infinity in terms of the extrinsic curvature and the Riemann
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tensor. Our previous work [17] suggests that there is an
essential difference between the cases of four and higher
dimensions. We will see similar differences in the geo-
metrical quantities; i.e., their nontrivial asymptotic features
can be seen only in four-dimensional cases.
It is known that a hyperboloid in the Minkowski

spacetime is a photon surface, and thus, an arbitrarily
large expanding photon surface can be introduced in
general [20]. In this paper, in contrast to such an expanding
photon surface, we focus on the condition for an r-constant
hypersurface to be a photon surface (say, a nonexpanding
photon surface). The formation of such a photon surface is
fairly nontrivial, implying the existence of strong gravity.
We will see in four dimensions that nonexpanding photon
surfaces can exist (locally) in the asymptotic region if
enormous outgoing energy flux is present. In addition, we
will show that the nonexpanding photon surface described
above is, at the same time, the dynamically transversely
trapping surface (DTTS) proposed by four of us in order to
describe the strong gravity region in terms of behavior of
photons [24]. This indicates that a DTTS with an arbitrarily
large radius can form near future null infinity. Most of these
studies will be done in an approximate way by adopting the
leading-order terms in the powers of 1=r, but an exact
analysis using the Vaidya spacetime will also be briefly
reported.
The rest of this paper is organized as follows. In Sec. II,

we give a brief review of asymptotically flat spacetimes in
terms of the Bondi coordinates and our previous work [17].
In Sec. III, we show the extrinsic curvature of the surface
given by a constant radial coordinate near future null
infinity and discuss the presence of an approximate photon
surface. In Sec. IV, we see the fact that the result of Sec. III
implies that an arbitrarily large DTTS can form near future

null infinity. In Sec. V, we show asymptotic behavior of the
Riemann tensor. Section VI is devoted to a summary and
discussion. In Appendix, we present the calculations for a
Vaidya spacetime.

II. ASYMPTOTIC BEHAVIOR OF SPACETIME
AND NULL GEODESICS

In this section, we briefly review the spacetime behavior
near future null infinity following Refs. [3,4,11] (see also
[8,9,27]) and our previous results on null geodesics [17].
Let nð≥ 4Þ be the dimension of spacetimes. For asymp-

totically flat spacetimes, the metric near future null infinity
is written in the Bondi coordinates as

ds2 ¼ gμνdxμdxν ¼ −AeBdu2 − 2eBdudr

þ hIJr2ðdxI þ CIduÞðdxJ þ CJduÞ; ð1Þ

where the Greek indices denote the spacetime components.
A, B, CI , and hIJ are functions of u, r, and xI . Here, xI

stands for the angular coordinates. Future null infinity is
supposed to be in the limit of r → ∞, while u is finite. We
impose the gauge condition as

ffiffiffiffiffiffiffiffiffiffiffiffiffi
det hIJ

p
¼ ωn−2; ð2Þ

where ωn−2 is the volume element of the unit (n − 2)-
dimensional sphere Sn−2. The functions A, B, CI , and hIJ
can be expanded with respect to power of 1=r, whose
explicit formulas are shown in Ref. [11]. The vacuum
Einstein equation shows us that the nonzero components of
the metric behave as1

guu ¼ −AeB þ hIJCICJr2 ¼ −1 − Að1Þr−ðn=2−1Þ þmr−ðn−3Þ þOðr−ðn−1Þ=2Þ;
gur ¼ −eB ¼ −1 − Bð1Þr−ðn−2Þ þOðr−ðn−3=2ÞÞ;
gIJ ¼ hIJr2 ¼ ωIJr2 þ hð1ÞIJ r

−ðn=2−3Þ þOðr−ðn−5Þ=2Þ;
guI ¼ hIJCJr2 ¼ Cð1Þ

Ir−ðn=2−2Þ þOðr−ðn−3Þ=2Þ; ð3Þ

where ωIJ denotes the metric of the unit (n − 2)-
dimensional sphere. In general relativity, the integration
of mðu; xIÞ over the solid angle gives the Bondi mass,

MðuÞ ≔ n − 2

16π

Z
Sn−2

mdΩ: ð4Þ

We can also apply the falloff behavior of Eq. (3) to
nonvacuum spacetimes if the falloff behavior of the
stress-energy tensor is sufficiently fast such that
the lowest order of the Einstein tensor behaves as

Gμν ¼ Oðr−n=2Þ in the coordinate system, which asymp-
totes to the Cartesian coordinate system near null
infinity. For example, the stress-energy tensor of the
Maxwell field in even dimensions behaves as Tμν ¼
Oðr−ðn−2ÞÞ in the same coordinate, and then the current

1In even dimensions, each exponent in the Landau symbol of
Eq. (3) actually has the higher order by r1=2, but we write it in the
same way as in odd dimensions for unification. Note that
quantities below, such as the Christoffel symbols, do not have
half-integer powers with respect to 1=r in even dimensions.
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setup works. The example in Appendix also satisfies the falloff behavior of the stress-energy tensor for the n ¼ 4 case.
We list some components of the inverse metric and the Christoffel symbols, which we will use later:

grr ¼ 1þ Að1Þr−ðn=2−1Þ −mr−ðn−3Þ þOðr−ðn−1Þ=2Þ; ð5Þ

and

Γr
uu ¼

1

2
_Að1Þr−ðn=2−1Þ −

1

2
_mr−ðn−3Þ þOðr−ðn−1Þ=2Þ;

Γr
ur ¼ −

n − 2

4
Að1Þr−n=2 þ n − 3

2
mr−ðn−2Þ þOðr−ðnþ1Þ=2Þ;

Γr
rr ¼ −ðn − 2ÞBð1Þr−ðn−1Þ þOðr−ðn−1=2ÞÞ;

Γr
uI ¼

�
n − 4

4
Cð1Þ
I þ 1

2
Að1Þ
;I

�
r−ðn=2−1Þ þ

�
−
1

2
m;I þ

1

2
Cð1ÞJ _hð1ÞIJ

�
r−ðn−3Þ þOðr−ðn−1Þ=2Þ;

Γr
rI ¼

n
4
Cð1Þ
I r−ðn=2−1Þ þOðr−ðn−1Þ=2Þ;

Γr
IJ ¼ −ωIJrþ

1

2
_hð1ÞIJ r

−ðn=2−3Þ þOðr−ðn−5Þ=2Þ; ð6Þ

where Cð1Þ
I ≔ Cð1ÞJωIJ, and Að1Þ is set to be zero for n ¼ 4

because it is absorbed intom. The variables with dots, such
as _Að1Þ, denote their derivatives with respect to u.
Wewill look at the asymptotic behavior of null geodesics

near future null infinity (see our previous paper [17] for the
details). Let us focus on null geodesics that correspond to
worldlines of photons emitted in the tangential directions to
the r-constant surfaces near future null infinity, i.e., the
ones with r0 ¼ 0, where 0 denotes the derivative with
respect to the affine parameter. At the emission point, the
r-component of the geodesic equation is calculated as

r00jr0¼0¼−Γr
μνðxμÞ0ðxνÞ0

¼
�
ωIJr−

1

2
_hð1ÞIJ r

−ðn=2−3Þ þ1

2
_mωIJr−ðn−5Þ

−
1

2
_Að1ÞωIJr−ðn=2−3Þ þOðr−ðn−5Þ=2Þ

�
ðxIÞ0ðxJÞ0; ð7Þ

by using the null condition gμνðxμÞ0ðxνÞ0 ¼ 0, the future
directed condition u0 ≥ 0, and Eq. (6). In four dimensions,
Eq. (7) becomes

r00jr0¼0 ¼ ½ΩIJrþOðr0Þ�ðxIÞ0ðxJÞ0; ð8Þ

where ΩIJ is defined as

ΩIJ ≔ ωIJ −
1

2
_hð1ÞIJ þ 1

2
_mωIJ: ð9Þ

Therefore, even at sufficiently large r, the trajectory of a
photon is not approximated by that in the flat spacetime but
determined by ΩIJ. Moreover, the sign of r00 is determined
by that of the eigenvalues of ΩIJ, and thus, r00 can be
negative. In Ref. [17], we have proved that the null

geodesics will reach future null infinity provided that
ΩIJ is positive definite and _m ≤ 0 in four dimensions.
Unless these conditions are satisfied, the null geodesics
with the same initial conditions may not be able to reach

future null infinity. One may expect that _hð1ÞIJ and _m would
be sufficiently small and ΩIJ would be positive definite for
almost all situations. However, the possibility that photons
do not reach future null infinity would be fairly surprising.
In the case n ≥ 5, Eq. (7) becomes

r00jr0¼0 ¼ ½ωIJrþOðr−ðn=2−3ÞÞ�ðxIÞ0ðxJÞ0: ð10Þ

This implies that the trajectory of photons is approximated
by that in the flat spacetime, and any null geodesic always
reach future null infinity [17].

III. EXTRINSIC CURVATURE AND PHOTON
SURFACE

The behavior of geodesics depends on the geometry of a
spacetime. This gives us an expectation that the properties
corresponding to the nontrivial asymptotic behavior of null
geodesics described in the previous section can be seen in
the geometric quantities. In the discussion of the photon
sphere (or the photon surface), such a relation has been
shown [20]. Photon surfaces are defined to be nowhere-
spacelike codimension-one hypersurface S such that, for
every point p ∈ S and every null vector ka ∈ TpS (small
latin indices run the coordinate u and angular coordinate
indices I), a null geodesic γ tangent to ka at p is included in
S at least for a finite section of the geodesics around p.
Alternatively, an equivalent condition of the photon surface
is given in terms of the geometric quantities; i.e., S is a
photon surface if and only if χabkakb ¼ 0 holds for all null
tangent vectors ka to S, where χab is the extrinsic curvature.
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This condition is also equivalent to the condition that the
surface is umbilical, i.e., vanishing of the traceless part of
the extrinsic curvature, σab, of S, i.e., σab ¼ 0 [20,28].
Similarly, the nontrivial behavior of asymptotic null geo-
desics found in four dimensions would be reflected in the
asymptotic behavior of the geometric quantities, and it is
natural to expect that the r-constant hypersurface with
vanishingΩIJ defined by Eq. (9) becomes a photon surface.
We begin this section with the calculation of the extrinsic

curvature χab of the r-constant hypersurface Sr with
sufficiently large r. The induced metric on Sr is given by

Pabdxadxb¼−AeBdu2þhIJr2ðdxIþCIduÞðdxJþCJduÞ;
ð11Þ

that is, each component of the metric is written in

Puu¼−AeBþhIJCICJr2

¼−1−Að1Þr−ðn=2−1Þ þmr−ðn−3Þ þOðr−ðn−1Þ=2Þ; ð12Þ

PuI ¼ hIJCJr2 ¼ Cð1Þ
I r−ðn=2−2Þ þOðr−ðn−3Þ=2Þ; ð13Þ

PIJ ¼ hIJr2 ¼ ωIJr2 þ hð1ÞIJ r
−ðn=2−3Þ þOðr−ðn−5Þ=2Þ: ð14Þ

For later convenience, we also write down the inverse
of Pab,

Puu ¼ −A−1e−B ¼ −1þ Að1Þr−ðn=2−1Þ −mr−ðn−3Þ

þOðr−ðn−1Þ=2Þ; ð15Þ

PuI ¼ A−1e−BCI ¼ Cð1ÞIr−n=2 þOðr−ðnþ1Þ=2Þ; ð16Þ

PIJ ¼ hIJr−2 − A−1e−BCICJ

¼ ½ωIJ − hð1ÞIJr−ðn=2−1Þ þOðr−ðn−1Þ=2Þ�r−2: ð17Þ

The extrinsic curvature of the r-constant hypersurface is

χab ≔ ∇arb ¼ −
1ffiffiffiffiffiffi
grr

p Γr
ab; ð18Þ

where we used the fact that the outward unit normal vector
ra is written as ra ¼ ðgrrÞ−1=2ðdrÞa in the Bondi coordi-
nates. Using Eqs. (5) and (6), the components of χab are
calculated as

χuu ¼ −½1þOðr−1Þ�Γr
uu

¼ −
1

2
_Að1Þr−ðn=2−1Þ þ 1

2
_mr−ðn−3Þ þOðr−ðn−1Þ=2Þ; ð19Þ

χuI ¼−½1þOðr−1Þ�Γr
uI¼−

�
n−4

4
Cð1Þ
I þ1

2
Að1Þ
;I

�
r−ðn=2−1Þ

þ
�
1

2
m;I−

1

2
Cð1ÞJ _hð1ÞIJ

�
r−ðn−3Þ þOðr−ðn−1Þ=2Þ; ð20Þ

χIJ ¼ −½1þOðr−1Þ�Γr
IJ

¼ ωIJr −
1

2
_hð1ÞIJ r

−ðn=2−3Þ þOðr−ðn−5Þ=2Þ: ð21Þ

In the current setup, it is easy to see

r00jr0¼0 ¼ −Γr
μνkμkν ¼ ½1þOðr−1Þ�χabkakb ð22Þ

on Sr. We can see the relation between the extrinsic
curvature χab and the behavior of null geodesic momen-
tarily tangent to Sr. Equation (8) shows that, in four
dimensions, the behavior of null geodesics cannot be
approximated by that in the flat spacetime because of

the existence of _m and _hð1ÞIJ in ΩIJ. We can see in Eqs. (18)–
(21) that the nontrivial asymptotic properties are imprinted
in the extrinsic curvature χab in four dimensions: In the

leading order of χabkakb, _m and _hð1ÞIJ appear together with
χabkakb of the flat spacetime. We have seen, moreover, that
r00 becomes negative if and only if ΩIJkIkJ is negative, and
then r decreases at least for a short period of time. Here, kI

is composed of the angular components of a null vector ka

tangent to Sr. Equations (8) and (22) show that the
condition for the negativity of ΩIJkIkJ corresponds to that
of χabkakb. By contrast, in higher dimensions, χabkakb is
always positive, which is consistent with the fact that any
null geodesics always reach future null infinity. The leading
contributions are the same as those in the flat spacetime,
and thus the extrinsic curvature can be approximated by
that of the flat spacetime.
Let us see the condition where the r-constant hypersur-

face becomes a photon surface. It is equivalent to the
traceless part of the extrinsic curvature vanishes (σab ¼ 0)
or χabkakb ¼ 0 for any null vector ka tangent to Sr. The
traceless part of the extrinsic curvature is written in

σab ≔ χab −
1

n − 1
χPab; ð23Þ

where χ denotes the trace part of χab. Each components of
σab is evaluated as

σuu ¼
n − 2

n − 1
r−1 −

n − 2

2ðn − 1Þ
_Að1Þr−ðn=2−1Þ

þ n − 2

2ðn − 1Þ _mr−ðn−3Þ þOðr−ðn−1Þ=2Þ; ð24Þ
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σuI ¼ −
�
n2 − n − 4

4ðn − 1Þ Cð1Þ
I þ 1

2
Að1Þ
;I

�
r−ðn=2−1Þ

þ
�
1

2
m;I −

1

2
Cð1ÞJ _hð1ÞIJ −

1

2ðn − 1Þ
_Að1ÞCð1Þ

I

�
r−ðn−3Þ

þ 1

2ðn − 1Þ _mCð1Þ
I r−ð3n=2−5Þ þOðr−ðn−1Þ=2Þ; ð25Þ

σIJ¼
1

n−1
ωIJr−

1

2
_hð1ÞIJ r

−ðn=2−3Þ−
1

2ðn−1Þ
_Að1ÞωIJr−ðn=2−3Þ

þ 1

2ðn−1Þ _mωIJr−ðn−5Þ þOðr−ðn−5Þ=2Þ: ð26Þ

Motivated by the property of the photon surface that
σab ¼ 0, we call a retarded time interval ui < u < uf of
the r-constant hypersurface Sr near future null infinity an
“approximate photon surface” when σab ¼ 0 at the leading
order in r−1 expansion on this retarded time interval of Sr.
One can see that the leading-order contributions of σab are
generically nonzero, which means that an approximate
photon surface does not exist in general near future null
infinity. This is quite reasonable. However, only in four
dimensions, there is a possibility that the leading-order
contributions are canceled with each other, and the results
in the previous section suggest that the photon surface
would appear if ΩIJ vanishes.
In four dimensions, σab becomes

σuu ¼
�
2

3
þ 1

3
_m

�
r−1 þOðr−2Þ; ð27Þ

σuI ¼ σIu ¼ Oðr−1Þ; ð28Þ

σIJ ¼
�
1

3
ωIJ −

1

2
_hð1ÞIJ þ 1

6
_mωIJ

�
rþOðr0Þ: ð29Þ

The condition for the approximate photon surface, i.e., for
σab ¼ 0 at the leading order, is that

_m ¼ −2 and _hð1ÞIJ ¼ 0 ð30Þ

are satisfied.2 Note that these conditions are not satisfied
simultaneously for vacuum spacetimes in general relativity.
_m ¼ −2 describes the existence of outgoing matter flux,
which determines the rate of change of the Bondi mass.
_hð1ÞIJ ¼ 0 describes the absence of gravitational wave radi-

ation. From the definition of ΩIJ≔ ωIJ − 1
2
_hð1ÞIJ þ 1

2
_mωIJ,

we see that it is equivalent to

ΩIJ ¼ 0: ð31Þ

Here, we used ωIJhð1ÞIJ ¼ 0, which is a consequence of the
gauge condition Eq. (2). As seen in the previous section, it
indicates that r00 vanishes if r0 ¼ 0; that is, r does not change
and thus geodesics stay on Sr.
By contrast, in dimensions higher than four, the traceless

part of the extrinsic curvature σab becomes

σuu ¼
n − 2

n − 1
r−1 þOðr−ðn=2−1ÞÞ; ð32Þ

σuI ¼ σIu ¼ Oðr−ðn=2−1ÞÞ; ð33Þ

σIJ ¼
1

n − 1
ωIJrþOðr−ðn=2−3ÞÞ: ð34Þ

All of the leading terms of σab do not vanish, and they are
the same as the components of σab in the flat spacetime.
Thus, there is no approximate photon surface for space-
times whose dimensions are higher than four.
Note that, since the above study only took account of the

leading order terms, the photon surface is an approximate
one: The r-constant surface satisfies the condition for the
photon surface with the error of Oð1=rÞ. As discussed in
Appendix, for an outgoing Vaidya solution, which is an
exact solution representing the spherically symmetric with
the null outgoing matter, it is possible to make a situation
where an r-constant hypersurface becomes a photon sur-
face exactly. This requires a fine-tuning of the behavior of
the Bondi mass MðuÞ ¼ mðuÞ=2.
We emphasize again that the difference of the behavior of

the null geodesics near null infinity between four dimen-
sions and higher dimensions arises even when j _mj and _hð1ÞIJ
are not so large as _m ∼ −2. The trajectory is affected even by
small _m and _hð1ÞIJ in four dimensions but is not in higher
dimensions. This is similar to the memory effect in the sense
that both of them lead to critical differences between four
dimensions and higher dimensions due to the asymptotic
behavior. We have shown here that this effect is understood
in terms of the extrinsic curvature.

IV. DTTS FORMATION NEAR
FUTURE NULL INFINITY

We have seen in Sec. III that in a four-dimensional
spacetime, the behavior of null geodesics can be drastically
different from that in the Minkowski spacetime due to the
difference of the extrinsic curvature, and the r-constant
hypersurface becomes an approximate photon surface if the
conditions of Eq. (30) are satisfied. This immediately
implies that the formation of a dynamically transversely
trapping surface (DTTS) near future null infinity is possible
as well in four dimensions. The DTTS has been defined as
an extension of a photon surface by four of us in Ref. [24].
The DTTS has an analogy with an apparent horizon, and

2In the normalized basis, σû û ¼ Oðr−1Þ, σû Î ¼ Oðr−2Þ, and
σ Î Ĵ ¼ Oðr−1Þ, where the hatted indices denote the components
with respect to the normalized basis. Since the order of σû Î is
higher compared the others, there is no requirement from σuI .
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thus, it is calculable on a spacelike hypersurface in generic
spacetimes. To be specific, an (n − 2)-dimensional closed
spacelike surface σ0 is called a DTTS if there is an (n − 1)-
dimensional timelike surface S that contains σ0 and satisfies
the following three conditions on σ0:

k̄ ¼ 0; ð35Þ

max ðK̄abkakbÞ ¼ 0; ð36Þ

ð3Þ£̄n̄k̄ ≤ 0: ð37Þ

Here, we span the time coordinate t starting from σ0 in S so
that its lapse function is constant on each t-constant surface,
and k̄ denotes the trace of the extrinsic curvature of t-
constant surfaces in S. K̄ab is the extrinsic curvature of S,
and ka is an arbitrary null vector tangent to S. ð3Þ£̄n̄ denotes
the Lie derivative with respect to the unit normal n̄ to σ0 in
S. If the equality in the inequality of Eq. (37) holds, σ0 is
called a marginally DTTS.
The physical meaning of this definition is as follows.

From σ0, we emit photons in tangential directions to S. The
condition of Eq. (35) means that S is chosen so that σ0 is an
extremal surface in S. The condition of Eq. (36) determines
how the surface S bends in the neighborhood of σ0: The
emitted photons must propagate inside of S or on S, and for
each point on σ0, at least one photon must propagate on S.
Then, we consider the time slice of S, and the condition of
Eq. (37) implies that σ0 is a DTTS if σ0 is a maximal
surface.
We call a section of a u-constant surface Su;r in Sr near

future null infinity an “approximate marginally DTTS”
when Eqs. (35) and (36) and the equality in the inequality
of Eq. (37) are satisfied at the leading order in r−1

expansion. Note that the DTTS, σ0, is supposed to be a
closed surface in the definition to exclude a trivial one such
as a plane in flat spacetime, but we do not explicitly impose
this condition for the approximate DTTS because by
ignoring higher-order contributions, Su;r is almost closed
with a coarse-grained sense although it may not be
necessarily closed. For a spherically symmetric spacetime
discussed in Appendix, one can construct a closed one.
Let us confirm that the u-constant surface Su;r in

the approximate photon surface Sr constructed above in
the four-dimensional case is an approximate marginally
DTTS.3 Since the photon surface Sr satisfies K̄abkakb ¼ 0

(here, K̄ab ¼ χab), the u-constant surface satisfies the
condition of Eq. (36). For the family of u-constant hyper-
surfaces, the trace k̄ of the extrinsic curvature in Sr is

k̄ ¼ ð3Þ£̄n̄ log
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det ðr2hIJÞ

q
¼ Oðr−2Þ ð38Þ

from the gauge condition of Eq. (2). Here, we used n̄ ¼
ð−PuuÞ−1=2∂u − PIuð−PuuÞ1=2∂I ≃ ½1 þ Oðr−1Þ�∂u − Cð1ÞI

r−2∂I. Then, the condition of Eq. (35) is approximately
satisfied. Although the lapse function of the u coordinate on
Sr is not constant on each u-constant surface in general, the
change in its value is Oð1=rÞ, and the condition of Eq. (37)
is also approximately satisfied. Therefore, the section of u-
constant and Sr is an approximate marginally DTTS.
The above approximate study can be performed exactly

in the spherically symmetric Vaidya spacetime. Due to the
spherical symmetry, the lapse function of the coordinate u
is constant on each u-constant hypersurface. In this case,
Eq. (38) becomes k̄ ¼ 0. From the calculation of Appendix,
the section of an r-constant hypersurface and a u-constant
hypersurface becomes a DTTS if

dM
du

≤ −
�
1 −

2M
r

��
1 −

3M
r

�
; ð39Þ

taking account of all orders with respect to the powers of
1=r, where M is the Bondi mass defined in Eq. (4). This
means that in four dimensions, an arbitrarily large DTTS
can form. Although in Ref. [24], four of us have proved the
Penrose-like inequality,

A ≤ 4πð3GM0Þ2; ð40Þ

for the area A of any DTTS on a time-symmetric spacelike
hypersurface with a certain condition such as negativity of
the radial pressure, whereM0 is the Arnowitt-Deser-Misner
(ADM) mass, this areal inequality does not hold in general.
Enormously large energy flux, whose radial pressure is
positive, can create a strong gravity field even near future
null infinity in the sense of the effect on the motion of
transversely emitted photons.

V. RIEMANN CURVATURE OF Sr

In this section, we shall examine the inner geometry of
the r-constant surface Sr looking at the Riemann tensor for
sufficiently large r. The calculations are done for general

situation, i.e., in general dimensions with _hð1ÞIJ being
generically nonzero. The case where Sr becomes an
approximate photon surface in four dimensions is briefly
commented on.
After short calculations, we have the (n − 1)-dimen-

sional Riemann tensor ðn−1ÞRa
bcd as

3In Ref. [21], four of us defined a loosely trapped surface
(LTS), which is another concept to characterize a strong gravity
region. The LTS is defined as an (n − 2)-dimensional surface on
some spacelike hypersurface whose mean curvature k satisfies
dk=dr ≥ 0. If we introduce the spacelike hypersurface by
t ¼ constant with t ¼ uþ r in the Bondi coordinates, the mean
curvature k of the r-constant surface is evaluated as k ≃ 2=r −
m=r2 and dk=dr ≃ ð−2þ _mÞ=r2 cannot be non-negative.
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ðn−1ÞRu
IuJ ≃ ∂ðn−1Þ

u Γu
IJ ¼

1

2
ḧð1ÞIJ r

−ðn=2−3Þ þOðr−ðn−5Þ=2Þ;
ð41Þ

ðn−1ÞRu
IJK ≃Dðn−1Þ

J Γu
IK −Dðn−1Þ

K Γu
IJ

¼ 1

2
ðDJ

_hð1ÞIK −DK
_hð1ÞIJ Þr−ðn=2−3Þ þOðr−ðn−5Þ=2Þ;

ð42Þ

ðn−1ÞRI
JKL ¼ ðωÞRI

JKL þ 1

4
ð _hð1ÞIK _hð1ÞJL − _hð1ÞIL _h

ð1Þ
JKÞr−ðn−4Þ

þOðr−ðn=2−1ÞÞ; ð43Þ

where ðωÞRI
JKL is the Riemann tensor of the (n − 2)-

dimensional round sphere; that is, ðωÞRIJKL ¼ ωIKωLJ−
ωILωKJ. In the derivation of the above, the Christoffel
symbol for the induced metric Pab is required to be
calculated,

ðn−1ÞΓu
uu≃

1

2
Puu∂uPuu

¼1

2
_Að1Þr−ðn=2−1Þ−

1

2
_mr−ðn−3Þ þOðr−ðn−1Þ=2Þ; ð44Þ

ðn−1ÞΓu
uI ≃

1

2
Puu∂IPuu þ

1

2
PuJ∂uPIJ

¼ 1

2
Að1Þ
;I r−ðn=2−1Þ −

1

2
m;Ir−ðn−3Þ

þ 1

2
Cð1ÞJ _hð1ÞIJ r

−ðn−3Þ þOðr−ðn−1Þ=2Þ; ð45Þ

ðn−1ÞΓu
IJ ≃ −

1

2
Puu∂uPIJ ¼

1

2
_hð1ÞIJ r

−ðn=2−3Þ þOðr−ðn−5Þ=2Þ;
ð46Þ

ðn−1ÞΓI
uu ≃ PIJ∂uPJu ¼ _Cð1ÞIr−n=2 þOðr−ðnþ1Þ=2Þ; ð47Þ

ðn−1ÞΓI
uJ ≃

1

2
PIK∂uPKJ ¼

1

2
_hð1ÞIJr−ðn=2−1Þ þOðr−ðn−1Þ=2Þ;

ð48Þ

ðn−1ÞΓI
JK ≃

1

2
PILð∂JPLK þ ∂KPLJ − ∂LPJKÞ −

1

2
PIu∂uPJK

¼ ðωÞΓI
JK þ Γð1ÞI

JKr−ðn=2−1Þ −
1

2
Cð1ÞI _hð1ÞJKr

−ðn−3Þ

þOðr−ðn−1Þ=2Þ; ð49Þ

where ðωÞΓI
JK denotes the Christoffel symbol with respect to

ωIJ, Γð1ÞI
JK is defined as

Γð1ÞI
JK ≔

1

2
ðDJhð1ÞIK þDKhð1ÞIJ −DIhð1ÞIK Þ; ð50Þ

DI is the covariant derivative with respect to ωIJ, and DI

denotes ωIJDJ.
In the normalized basis, we see that the orders of the

first two components of the Riemann tensor become
ðn−1ÞRû

Î û Ĵ ¼ Oðr−ðn=2−1ÞÞ and ðn−1ÞRû
Î Ĵ K̂ ¼ Oðr−n=2Þ,

where the hatted indices denote the components with
respect to the normalized basis. For the third component,

we have ðn−1ÞRÎ
Ĵ K̂ L̂ ¼ Oðr−2Þ þOðr−ðn−2ÞÞ.

For four dimensions, Eq. (43) becomes

ð3ÞRI
JKL¼ðωÞRI

JKLþ
1

4
ð _hð1ÞIK _hð1ÞJL − _hð1ÞIL _h

ð1Þ
JKÞþOðr−1Þ:

ð51Þ

This is a quite impressive result because, as seen soon, the
term such as the second one in the right-hand side of
Eq. (51) does not appear in dimensions higher than four.
The reason of the appearance in four dimensions is that the
Ricci scalar of a round sphere with the radius r is Oð1=r2Þ,
while the amplitude of gravitational waves decay as
Oð1=rÞ. This behavior is related to the memory effect
originated from supertranslations.
One can show that the leading-order term of ð3ÞRI

JKL is
identical to the Riemann tensor of the round sphere if and

only if _hð1ÞIJ ¼ 0. Under the condition _hð1ÞIJ ¼ 0, it is trivial to
show that the leading term of ð3ÞRI

JKL coincides with the
Riemann tensor of the round sphere. Conversely, when the
leading term of ð3ÞRI

JKL is identical to the Riemann tensor
of the round sphere at the leading order,

_hð1ÞIK
_hð1ÞJL − _hð1ÞIL

_hð1ÞJK ¼ 0 ð52Þ

holds. With Eq. (2) and four-dimensional speciality, it is easy

to see that Eq. (52) implies _hð1ÞIJ ¼ 0. See Ref. [29] for similar

discussion. To sum up, _hð1ÞIJ ¼ 0 is the necessary and
sufficient condition for the leading part of ð3ÞRI

JKL to be
identical to the Riemann tensor of the round sphere.
In addition, we can see that the other components of
the Riemann tensor fall off as ð3ÞRû

Î û Ĵ ¼ Oðr−1Þ and
ð3ÞRû

Î Ĵ K̂ ¼ Oðr−2Þ. Here, we recall the case where Sr is
the photon surface at the leading order in four dimensions
examined in Sec. III. In that case, ΩIJ vanishes, which gives
_hð1ÞIJ ¼ 0 on Sr. Thus, one can see that ð3ÞRI

JKL is identical to
the Riemann tensor of the round sphere at the leading order.
We now discuss the higher-dimensional cases. In these

cases, Eq. (43) becomes

ðn−1ÞRI
JKL ¼ ðωÞRI

JKL þOðr−ðn−4ÞÞ þOðr−ðn=2−1ÞÞ; ð53Þ

and thus, the leading term of ðn−1ÞRI
JKL is identical to the

Riemann tensor of the sphere. The other components of
ðn−1ÞRa

bcd rapidly decay for n ≥ 7. For five dimensions,
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ð4ÞRû
Î û Ĵ ¼ Oðr−3=2Þ is larger than ð4ÞRÎ

Ĵ K̂ L̂ ¼ Oðr−2Þ, and,
for six dimensions, ð5ÞRû

Î û Ĵ ¼ Oðr−2Þ is comparable to
ð5ÞRÎ

Ĵ K̂ L̂ ¼ Oðr−2Þ.
It is merely trivial from the setup that, at the leading order

in both four dimensions and higher dimensions, the
Riemann tensor RI

JKL with respect to the induced metric
on the u-constant surface in Sr is identical to that of the
round sphere. It is easily obtained as

RI
JKL ≃ ðωÞRI

JKL þ ðDKΓð1ÞI
JL −DLΓð1ÞI

JKÞr−ðn=2−1Þ:
ð54Þ

VI. SUMMARY AND DISCUSSION

In this paper, adopting the Bondi coordinates, we have
analyzed the asymptotic behavior of the extrinsic curvature
and the Riemann tensor of the r-constant surface near
future null infinity. In particular, we explored the relations
to our previous study, that is, asymptotic behavior of null
geodesics. Therein, in four dimensions, one could see that
the tensor ΩIJ defined by Eq. (9) determines the fate of
photons emitted in angular directions. As a consequence,
the nontrivial properties of asymptotic behavior of null
geodesics have been shown in terms of the geometric
quantities, and we have confirmed the direct relation
between vanishing of ΩIJ and the umbilical feature of
the nonexpanding photon surface. This result also implies
that an arbitrarily large DTTS can be formed if enormously
large energy flux is present. These analyses have been done
approximately adopting the leading order in the powers of
1=r, but we briefly commented on the exact condition for
the formation of a nonexpanding photon surface and a
DTTS near future null infinity for a Vaidya spacetime. The
behavior of null geodesics near null infinity in four and
higher dimensions differs even when _m is not so large.
Equivalent properties have been also seen in the extrinsic
curvature of an r-constant hypersurface. A similarity
between our results and the memory effect can be recog-
nized since the memory effect also gives nontrivial differ-
ence between four dimensions and higher dimensions due
to asymptotic behavior of the spacetimes. We have also
seen the contributions from gravitational waves at the
leading order of the Riemann tensor on an r-constant
hypersurface only in four dimensions.
Finally, we evaluate the order of the energy flux required

for the formation of nonexpanding photon surface or the
DTTS near future null infinity. For simplicity, we focus on
the spherically symmetric case, in which the condition of
Eq. (30) is reduced to _mðuÞ ¼ −2. Using Eq. (4), we find
_MðuÞc2 ¼ −c5=G ∼ −4 × 1059 erg=s, which is the Planck
luminosity [30]. Since this is conjectured to be the
maximum luminosity in the Universe [31], its realization
near future null infinity would be rather difficult. Therefore,
it is expected that the photon emitted in the angular

directions near future null infinity will reach future null
infinity for almost all cases in four dimensions. However, it
is mathematically interesting to explore the possibility for
the construction of some concrete but unfamiliar examples,
and this topic will be addressed in near future.
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APPENDIX: EXPLICIT CONSTRUCTION IN A
VAIDYA SPACETIME

In this Appendix, we perform exact calculations for
finding the condition for an r-constant hypersurface to be a
photon surface in a four-dimensional Vaidya spacetime.
The metric of the Vaidya spacetime is

ds2 ¼ −fðu; rÞdu2 − 2dudrþ r2ωIJdxIdxJ; ðA1Þ

where fðu; rÞ ¼ 1 − 2MðuÞ=r andMðuÞ is the Bondi mass.
We span the standard spherical-polar coordinates ðθ;ϕÞ on
the unit sphere. In this spacetime, the nonzero component
of the stress-energy tensor is

Tuu ¼ −
1

4π

_M
r2

; ðA2Þ

to which we can apply the falloff behavior of Eq. (3).
We study the behavior of a photon in this spacetime. Due

to the spherical symmetry, it is sufficient to study on the
equatorial plane, θ ¼ π=2. Since the system is axially
symmetric, the angular momentum is conserved:

L ¼ r2ϕ0: ðA3Þ

The null condition gives

−fu02 − 2u0r0 þ L2

r2
¼ 0; ðA4Þ

and the r-component of the geodesic equations is
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r00 þ 1

2
ð∂uf þ f∂rfÞu02 þ ∂rfu0r0 − fr

�
L
r2

�
2

¼ 0: ðA5Þ

Combining these equations, we obtain

r00 þ2 _M
fr

u0r0−
L2

fr3

��
1−

2M
r

��
1−

3M
r

�
þ _M

�
¼0: ðA6Þ

We now examine the condition for an r-constant hyper-
surface to be a photon surface. This condition is derived by
requiring r0 ¼ 0 and r00 ¼ 0. Then, we have

_M ¼ −
�
1 −

2M
r

��
1 −

3M
r

�
: ðA7Þ

Since the Bondi massMðuÞ and the quantitymðu; xIÞ in the
Bondi coordinates are related as m ¼ 2M in four dimen-
sions, we have the approximate condition of Eq. (30) by
ignoring the terms of OðM=rÞ.
So far, we have considered the condition for Sr to be an

appropriate photon surface by ignoring higher-order terms
in the r−1 expansion. It is also possible for the portion of Sr
to be an exact photon surface with MðuÞ satisfying

Eq. (A7). Note that Eq. (A7) cannot be satisfied eternally
because the total mass is finite. Here, we consider the finite
time interval 0 < u < uf in which Eq. (A7) is exactly
satisfied. Let M0 be the Bondi mass at u ¼ 0. Consider the
situation in which the Bondi mass decreases intensively so
that Eq. (A7) is exactly satisfied in the interval 0 < u < uf.
The dependence of M on the u coordinate must be fine-
tuned as

MðuÞ¼M0−
rðeu=r−1Þð1−2M0=rÞð1−3M0=rÞ
3ð1−2M0=rÞ−2ð1−3M0=rÞeu=r

: ðA8Þ

For this expression, the portion of 0 < u < uf of Sr
becomes the photon surface. Here, the end of the interval
is uf ¼ r log½ð1 − 2M0=rÞ=ð1 − 3M0=rÞ�, and then the
Bondi mass becomes zero; i.e., MðufÞ ¼ 0. After
u ¼ uf, MðuÞ must be zero due to non-negativity of the
Bondi mass.
For a two-dimensional section of a u-constant hyper-

surface and an r-constant hypersurface to be an exact
DTTS, r0 ¼ 0 and r00 ≤ 0 in Eq. (A6) is the necessary and
sufficient condition. This leads to the condition of Eq. (39).
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