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Black holes carrying a magnetic monopole charge have been a subject of interest for a long time. In this
work we explore the possibility of an observational evidence of such black holes carrying a magnetic
monopole, namely the Bardeen rotating black holes. We derive the theoretical spectrum from the accretion
disk surrounding a Bardeen black hole using the thin-disk approximation. We compare the theoretically
derived spectrum with the optical data of eighty Palomar Green quasars to constrain the monopole charge
parameter g and the spin parameter a of the quasars. From our analysis we note that the Kerr-scenario in
general relativity is observationally more favored than black holes with a monopole charge. We arrive at
such a conclusion using error estimators like χ2, the Nash-Sutcliffe efficiency, the index of agreement and
their modified forms. In particular, black holes with g ≥ 0.03 (in the unit of the black hole mass) is outside
99% confidence interval. The implications are discussed.
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I. INTRODUCTION

General relativity (GR) is the most successful theory of
gravity to date in explaining the nature of spacetime around
us. From table top experiments to prediction of planetary
motion general relativity has been verified to astounding
precision [1–3]. The two recent ground breaking discoveries
namely, the gravitational waves [4–8] and the black hole
image [9–15] have further validated that general relativity
holds good in the strong field regime as well. Although GR
continues to be the most successful theory of gravity till date
it cannot adequately address the dark sector [16–20].
Moreover, the theory fails to explain the black hole and
cosmological singularities. This has led to a proliferation of
alternative gravity theories to compensate the deficits of GR.
Such alternative theories include higher curvature gravity
[21–27], extra-dimensional models [28–31] and the scalar-
tensor/scalar-vector-tensor theories of gravity [32–35]
which reproduce GR in the low energy limit.
Black holes in general relativity have a curvature singu-

larity at r ¼ 0 where the theory itself breaks down. The
rotating black hole solution in GR, i.e., the Kerr scenario
turns out to be astrophysically most relevant. The goal of the
present work is to consider modifications to Einstein gravity
in light of nonlinear electrodynamics. Such nonlinear

modifications to the electromagnetic action are interesting
as they give rise to regular black holes which evades the
singularity at r ¼ 0. In this regard we study the Bardeen
black hole scenario in light of astrophysical observations
which are associated with a magnetic monopole charge.
Such black holes are characterized by the monopole charge
parameter g and the spin a. The abundance of astrophysical
data in the electromagnetic domain gives us a scope to test
these alternatives to GR. Since gravity is expected to be the
strongest near the horizon of black holes, the near horizon
regime of black holes seem to be important astrophysical
sites to test various modifications of GR.
In this paper we use observations related to the con-

tinuum spectrum of black holes to discern the signatures of
the background metric. The continuum spectrum depends
both on the nature of the background spacetime as well as
the characteristics of the accretion flow. We consider the
thin accretion disk model [36,37] to derive the continuum
spectrum in the Bardeen metric. The theoretically derived
continuum spectrum is then compared with the optical data
of eighty Palomar Green quasars to extract information
about the background metric. We use error estimators, in
particular, chi-square analysis to arrive at the observatio-
nally favored monopole charge. Our analysis reveals that
the Kerr scenario is observationally more favored than
black holes with a monopole charge. In particular, monop-
ole charges higher than g≳ 0.13 are outside 99% confi-
dence interval. Our results are further confirmed by error
estimators like Nash-Sutcliffe efficiency, index of agree-
ment and their modified forms.
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The paper is organized as follows: In Sec. II, we discuss
about the Bardeen black hole solution in nonlinear electro-
dynamics. The theoretical spectrum from the accretion
disk is evaluated in this background metric in Sec. III.
Section IV is dedicated to comparison of the optical data of
eighty PG quasars with the theoretical spectrum and the
associated error analysis. We summarize our results with
some scope for future work in Sec. V.
Notations and Conventions: In this paper we use mostly

positive metric convention and consider G ¼ c ¼ 1.

II. BRIEF INTRODUCTION TO BARDEEN
ROTATING BLACK HOLE

The general rotating, stationary and axially symmetric
black hole metric in Boyer-Lindquist coordinates is,

ds2 ¼ −
�
1 −

2m̄ðrÞr
Σ̃

�
dt2 −

4ã m̄ðrÞr
Σ̃

sin2 θdtdϕþ Σ̄
Δ
dr2

þ Σ̄dθ2 þ
�
r2 þ ã2 þ 2m̄ðrÞrã2

Σ̃
sin2 θ

�
sin2 θdϕ2

ð1Þ

where,

Σ̄ ¼ r2 þ ã2cos2θ; Δ ¼ r2 þ ã2 − 2m̄ðrÞr ð2Þ

Here, m̄ðrÞ is the mass function. Also limr→∞m̄ðrÞ ¼ M
and ã is the spin parameter which can be written as, ã ¼ J̄

M̄
by definition. J̄ represents the angular momentum of the
rotating black hole and M represents the ADM mass of
the same. Now the metric in Eq. (1) reproduces Kerr
spacetime when m̄ðrÞ ¼ M and Kerr-Newman spacetime

with m̄ðrÞ ¼ M − Q2

2r .
Bardeen[38] first proposed regular black hole with

horizons and no curvature singularity which is a modifi-
cation of the renowned Reissner-Nordstrom(RN) black
hole. Our interest of the project which is famous rotating
Bardeen black hole[39] belongs to this prototype of non-
Kerr black hole family. The mass function of the Bardeen
rotating black hole reads as,

m̄ðrÞ ¼ M
�

r2

r2 þ g̃2

�
3=2

: ð3Þ

HereM is the mass of the black hole and g̃ is the magnetic
monopole charge of a self-gravitating magnetic field
described by a nonlinear electrodynamics[40]. m̄ðrÞ can
be interpreted as the mass inside the sphere of radius r. This
spacetime is regular everywhere and it satisfies the weak
energy condition. This Bardeen black hole depicts a regular
space-time with curvature invariants,

R ¼ 6Mg̃2ð4g̃2 − r2Þ
ðr2 þ g̃2Þ7=2 ð4Þ

RσρRσρ ¼
18M2g̃4ð8g̃4 − 4g̃2r2 þ 13r4Þ

ðr2 þ g̃2Þ7 ð5Þ

RσρδαRσρδα¼
12M2ð8g̃8−4g̃6r2þ47g̃4r4−12g̃2r6þ4r8Þ

ðr2þ g̃2Þ7 :

ð6Þ

As stated above Bardeen black hole is similar to RN black
hole except the usual singularity of RN solution at r ¼ 0
which is smoothed out here and corresponds to the origin of
spherical coordinates. Since g̃ is associated with nonlinear
electrodynamics, the dynamics of the theory is governed by
the action,

S ¼
Z

d4x
ffiffiffiffiffiffi
−η

p �
R
16π

−
WðfÞ
4π

�
ð7Þ

with R as scalar curvature and WðfÞ is a function of
f ¼ 1

4
F μνF μν where F μν ¼ 2∇½μAν� as the electromagnetic

field strength. The action Eq. (7) results into the Einstein
nonlinear electrodynamics field equations as,

Gν
μ ¼ 2½WfðF μλF νλÞ − δνμW� ð8Þ

∇μðWfF βμÞ ¼ 0 ð9Þ

with Wf ¼ ∂W
∂f . The particular form of the function W

representing the Bardeen black hole is as follows,

WðfÞ ¼ 3M
jg̃jg̃2

� ffiffiffiffiffiffiffiffiffiffi
2g̃2f

p
1þ

ffiffiffiffiffiffiffiffiffiffi
2g̃2f

p
�
5=2

: ð10Þ

It is important to note that Kerr black hole can be retrieved
in the absence of nonlinear electrodynamics, i.e.,
g̃ ¼ f ¼ 0. We aim to constrain the both the parameters
a and g̃ in the light of astrophysical observations.
The event horizon of this said spacetime is evaluated

from grr¼0⇒Δ¼0 which leads to solving the equation,

r2 þ ã2 − 2Mr
�

r2

r2 þ g̃2

�
3=2

¼ 0 ð11Þ

We aim to solve this for real and positive event horizons of
the black hole and constrain the magnetic monopole charge
parameter g ¼ g̃2=M2. Now we will give a prescription to
demonstrate the dependence of luminosity from the accre-
tion disk on the background spacetime.
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III. ACCRETION DISK AROUND ROTATING
BARDEEN BLACK HOLE

In this section we derive the continuum spectrum emitted
from the accretion disk around a rotating black hole (which
gives rise to a stationary, axisymmetric background space-
time) in the thin-disk approximation [36,37]. The continuum
spectrum emitted by the accretion flow around a black hole
depends on the backgroundmetric and also on the character-
istics of the accretion flow. Therefore, the continuum
spectrum is an important observational tool to discern the
signatures of the background spacetime. In the thin-disk
approximation, the accretion flow is assumed to be localized
in the equatorial plane where θ ¼ π=2 such that the disk
height hðrÞ ≪ r where r is the radial distance from the
central black hole. The azimuthal velocity of the accreting
particles uϕ is much greater than the radial velocity ur and
vertical velocity,uz such thatuϕ ≫ ur ≫ uz and this ensures
nearly circular geodesics of the particles. The viscous stress
transmits minimal radial velocity to the accreting fluid such
that the accreting matter slowly inspirals and falls into the
black hole. The thin disk harbors no outflows as the vertical
velocity is negligible. The energy-momentum tensor of the
accreting fluid can be written as,

T μ
ν ¼ ρ0ð1þ Π̃Þuμuν þ tμν þ uμqν þ qμuν ð12Þ

In the above expression, uν is the four velocity and ρ0 is
the proper density of the accreting particles. tμν is the stress-
tensor and qμ is the energy flux relative to the local inertial
frame such that tμνuμ ¼ 0 ¼ qμuμ. Also Π̃ denotes the
specific internal energy of the accreting fluid and the
associated term expresses the contribution to the energy
density due to dissipation. In the thin-disk approximation
Π̃ ≪ 1 (i.e., no heat is retained by the accreting fluid) such
that only z− component of the energy flux vector qz has
effective nonzero contribution to the energy-momentum
tensor. The specific internal energy of the accreting fluid is
assumed to be negligible in comparison with its rest energy
(i.e., Π̃ ≪ 1) which ensures that the special relativistic
corrections due to local thermodynamic, hydrodynamic
and radiative properties of the fluid can be neglected in
comparison to its rest energy. This in turn ensures that the
accretion flow remains geodetic. However, the general
relativistic corrections associated with the black hole
continues to be significant [36,37]. The photons thus
emitted as a result of viscous dissipation interact effectively
with the accreting fluid before reaching the observer as a
result of which each annulus of the accreting disk emits
black body radiation. Therefore, the continuum spectrum
from the thin accretion disk in the Novikov-Thorne
approximation turns out to be a multicolor black body
spectrum.
After discussing the model approximation, next we will

compute the flux and then the luminosity from the accretion

disk. The black hole accretes at a steady rate, _M and hence
the accreting fluid follows mass conservation, energy
conservation, and angular momentum conservation laws.

(i) Mass conservation:

_M ¼ −2π
ffiffiffiffiffiffi
−η

p
urσ̃ ð13Þ

Here σ̃ is the average surface density of accreting
matter falling into the black hole. The determinant of
the metric is η ¼ −grrðg2tϕ − gttgϕϕÞ as we are
focussing on the motion along θ ¼ π=2 plane,
i.e., near-equatorial plane.

(ii) Energy conservation:

∂rð _M L̃−2π
ffiffiffiffiffiffi
−η

p
wr
ϕÞ ¼ 4π

ffiffiffiffiffiffi
−η

p
FL̃ ð14Þ

(iii) Angular momentum conservation:

∂rð _M Ẽ −2π
ffiffiffiffiffiffi
−η

p
Ω̃wr

ϕÞ ¼ 4π
ffiffiffiffiffiffi
−η

p
FẼ ð15Þ

In the above expressions Eqs. (14) and (15) the unknown
parameters are as follows, Ω̃ is the angular velocity, Ẽ is the
specific energy, and L̃ is the specific angular momentum of
the accreting fluid approximated as test particles. The
function F denotes the flux radiated from the accretion
disk and given as,

F≡ hqzðr; hÞi ¼ h−qzðr;−hÞi ð16Þ

and wr
ϕ is related to the time and height averaged stress

tensor in the local rest frame of the accreting particles and
denoted as,

wα
β ¼

Z
h

−h
dzhtαβi: ð17Þ

In a stationary, axisymmetric background spacetime, Ẽ and
L̃ are conserved quantities which can be written in terms of
metric coefficients as,

Ẽ ¼ −gtt − Ω̃gtϕffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−gtt − 2Ω̃gtϕ − Ω̃2gϕϕ

q ð18Þ

L̃ ¼ Ω̃gϕϕ þ gtϕffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−gtt − 2Ω̃gtϕ − Ω̃2gϕϕ

q ð19Þ

with the angular velocity, Ω̃¼dϕ
dt ¼

−gtϕ;r�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð−gtϕ;rÞ2−ðgϕϕ;rÞðgtt;rÞ

p
gϕϕ;r

.

It is clearly seen that the expressions of Ẽ and L̃ are only
radial functions as we are dealing with motion along the
equatorial plane and hence gθθ does not contribute to the
conserved quantities.
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The conservation laws lead to an analytical expression
for the flux F [37] and can be expressed as,

F ¼
_M

4π
ffiffiffiffiffiffi−ηp f where ð20Þ

f ¼ −
Ω̃;r

ðẼ − Ω̃ L̃Þ2
�
Ẽ L̃−ẼmsL̃ms − 2

Z
r

rms

L̃Ẽ;r0dr0
�

ð21Þ

Ẽms and L̃ms in the expression Eq. (21) refers to the energy
and angular momentum of the marginally stable circular
orbit rms. In the Novikov-Thorne model the viscous stress
wr
ϕ is assumed to vanish at the marginally stable circular

orbit in order to derive Eq. (20). Hence the azimuthal
velocity of the accreting particles vanish after crossing rms
and radial accretion takes over. Now to determine rms, we
need to determine the point of inflection of the effective
potential in which the accreting fluid moves, i.e., by solving
Veff ¼ ∂rVeff ¼ ∂2

rVeff ¼ 0 and the functional form of this
potential is expressed as [41],

VeffðrÞ ¼
Ẽ2gϕϕ þ 2Ẽ L̃ gtϕ þ L̃2gtt

g2tϕ − gttgϕϕ
− 1: ð22Þ

It is important to check the vertical stability of the orbit
which is discussed in [42].
Since the outgoing photons undergo repeated collisions

with the accreting particles before being emitted from the
system the integrated emission from the accretion disk is a
multitemperature blackbody spectrum. This ensures that the
accretion disk remains “optically thick and geometrically
thin” and its temperature profile is given by Stefan-
Boltzmann law, TðrÞ ¼ ðF ðrÞ=σÞ1=4, where σ is the
Stefan-Boltzmann constant and F ðrÞ ¼ FðrÞc6=G2M2

where FðrÞ can be evaluated from Eqs. (20) and (21).
Accordingly at every radius with temperature profile

TðrÞ the accretion disk radiates Planck spectrum such that
the luminosity from the accretion disk at an observed
frequency ν is expressed as,

Lν ¼ 8π2r2g cos i
Z

xout

xms

ffiffiffiffiffiffi
grr

p
PνðTÞxdx ð23Þ

where x ¼ r=rg is the radial coordinate with gravitational
radius, rg ¼ GM=c2, i is the inclination angle between the
line of sight of the observer and the normal to the accretion
disk and

PνðTÞ ¼
2hν3

c2½expð hν
zgkT

Þ − 1� : ð24Þ

In Eq. (24), zg is the gravitational redshift factor corre-
sponding to the outgoing photons and is expressed as,

zg ¼ E

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−gtt − 2Ω̃gtϕ − Ω̃2gϕϕ

q
E −ΩL

ð25Þ

In Eq. (25), the specific energy, angular momentum and
angular velocity of the outgoing photon is E, L and Ω.
While traveling from emitting material to the observer,
photon experiences change in frequency and is given by
the redshift factor [43]. From Eq. (23) it is evident that the
luminosity from the disk Lν is dependent not only on the
mass of the black hole, accretion rate and the inclination
angle but also on the background metric through the
marginally stable circular orbit radius, energy, angular
momentum and the angular velocity of the accretion disk.
The variation of the theoretically derived luminosity

from the disk with the frequency is illustrated in Fig. 1 for
two sets of black holes masses namely M ¼ 107 M⊙ and
M ¼ 109 M⊙. The accretion rate is assumed to be
1 M⊙ year−1 and the inclination angle is taken to be
cos i ¼ 0.8. The temperature dependence, T ∝ M−1=4 of a
multicolor black body with black hole mass M ensures
that the spectrum peaks at a higher frequency from a lower
mass black hole [44]. For a black hole with a given mass
M the spectrum from the inner disk generally encodes the
information of the background metric. Since the inner disk
emits higher frequencies compared to the outer region, the
high frequency part of the continuum spectrum is useful to
decipher the signatures of the metric parameters g ¼ g̃=M
and a ¼ ã=M. The spectrum Fig. 1 is illustrated for three
sets of magnetic monopole charge parameters, i.e., black
lines corresponding to g ¼ 0, blue lines for g ¼ 0.3 and
red lines for g ¼ 0.5. These choices of g and a are taken

FIG. 1. In this figure we plot the theoretical luminosity from the
accretion disk with frequency assuming black hole masses M ¼
109 M⊙ and M ¼ 107 M⊙. The red, blue and black lines are
associated with g ¼ 0.5, g ¼ 0.3, and g ¼ 0, where g denotes the
magnetic monopole charge. Keeping g fixed, nonrotating black
holes are represented by solid lines, while dashed and dotted lines
correspond to prograde and retrograde black holes. We consider
the inclination angle to be i ¼ cos−1 0.8 while the accretion rate
taken to be 1 M⊙ year−1.
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from the consideration of a real, positive event hori-
zon [45].
For each charge parameter we consider solid lines

corresponding to nonrotating black holes, prograde spins
are represented by dashed lines while retrograde spins
correspond to dotted lines.

IV. NUMERICAL ANALYSIS

In this section we use thin-disk approximation for the
accretion phenomena to evaluate the optical luminosities
of a sample of eighty Palomar Green (PG) quasars
considered in Davis and Laor [46]. According to Davis
and Laor [46], the observations corresponding to 4861 Å
is reported which lies in the optical domain. The masses of
all the quasars are constrained independently by rever-
beration mapping method [47–50] while for some of the
quasars masses based onM − σ method is also reported in
[46]. In this work masses based on reverberation mapping
will be considered. The bolometric luminosities of the
said quasars are also determined independently using
observed data in different domains such as in the optical
[51], UV [52], far-UV [53], and soft x-ray [54]. The
dominant contribution to the error in the bolometric
luminosity comes from the far-UV regime since the
uncertainty in the UV luminosity surpassed all other
sources of error. Hence, although the emission from the
accretion disk for quasars peaks in the optical or UV
regime of the spectrum, it is difficult to unravel the role of
the metric from UVobservations. Therefore we use data in
the optical domain and compare the optical data of quasars
with the theoretical estimates as discussed in the previous
section.
The accretion disks associated with the quasar sample

considered here are considered to be nearly face-on systems
such that the inclination angle varies between cos i ∈
ð0.5; 1Þ [46,55,56]. This is in agreement with [57] where
the inclination angle for some of the quasars in the sample
have been estimated using degree of polarization of the
scattered radiation from the accretion disk. In this work we
allow the inclination angle of the quasars to vary in the
aforesaid range.
The observed optical luminosity and the accretion rates

are reported in [46]. These accretion rates are determined
using stellar-atmospherelike assumptions of the disk struc-
ture (termed as TLUSTY model) with spin a ¼ 0.9 as their
base model. However, the amount of variation in the
accretion rate is also estimated using different disk models
or black hole spins. If TLUSTY model with spin a ¼ 0 is
used the accretion rates of quasars with higher mass get
enhanced by 40% while that of lower mass get enhanced by
10% compared to the base model. In contrast, with black
body models and a ¼ 0.9 the accretion rates turn out to be
lowered by 10%–20% for all quasars. Similarly, if we
consider black body model with a ¼ 0, quasars with

higher mass tends to increase accretion rate by 40%
whereas the quasars with lower mass decreases accretion
rate by 20% compared to the base TLUSTY model. Hence,
no matter what disk model or black hole spin is chosen, the
accretion rate varies between 80% to 140% for all the
Palomar Green quasars as discussed in [46].
We determine the theoretical estimates of the optical

luminosity Lopt by varying the inclination angle and the
accretion rates in the aforementioned range which in turn is
compared with the observed optical luminosities to obtain a
constrain on the metric parameters. In order to have a real,
positive horizon there arises an upper bound on the
magnetic monopole charge parameter g ∼ 0.55 determined
by Δ ¼ 0 from Eq. (1). We adopt the following procedure
to derive an estimate on the most favored choice of g which
is outlined below:
(1) First we fix a value of g between 0 ≤ g ≤ 0.55. This

constrains the allowed values of spin such that a real
positive event horizon exists. For every g we choose
an allowed spin a.

(2) Keeping g and a fixed we vary _M in the range
0.8–1.4 times the accretion rate provided in [46].
Now, for every _M in the aforesaid range we vary the
inclination angle in the range cos i ∈ ð0.5; 1Þ.

(3) For every combination of _M, cos i and a the
theoretical optical luminosity is calculated for the
fixed g at the wavelength 4861 Å. The values of _M,
cos i and a that best reproduces the observed optical
luminosity, is considered to be the most favored
magnitude of accretion rate, inclination angle and
spin for the chosen quasar at the given g. We denote
these values of accretion rate, spin and inclination
angle by _Mmin, amin and cos imin.

(4) Keeping g fixed, this process is repeated for all the
eighty PG quasars which gives us the most favored
_M, cos i and a for the chosen g.

(5) We now vary g and repeat the above procedure.
It is important to note that in the above analysis we assume
that all the eighty quasars have the same average magnetic
monopole charge g. Since the magnetic monopole charge
varies in a relatively small range 0 ≤ g ≤ 0.55 this
assumption may be justified. Now to arrive at the most
favorable magnetic monopole charge parameter g several
error estimators are examined which will be discussed
thereafter.

A. Discussion on error estimators

(i) Chi-square χ2: If fOig represents a set of
observed data with possible errors fσig, and
fΩiðg; amin; cos imin; _MminÞg denotes the correspond-
ing theoretical estimates of the optical luminosity
for a given g, then the χ2 of the distribution is
given by,
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χ2ðg; famin; cos imin; _MmingÞ

¼
X
j

fOj −Ωjðg; amin; cos imin; _MminÞg2
σ2j

: ð26Þ

As discussed earlier, amin; cos imin; _Mmin denotes
the set of spin, inclination angle and accretion rate
associatedwith the jth quasar thatminimizes the error
between the theoretical and the observed optical
luminosity for the chosen g. For our sample, the
error fσig corresponding to optical luminosities of
individual quasars are not explicitly reported in [46].
Hence in Eq. (26), we consider the errors in the
bolometric luminosity as themaximumpossible error
in the estimation of optical luminosity.
FromEq. (26), we note that the value of g for which

χ2 gets minimized is the most favored value of the
monopole charge. However, it is important to note
that although we have two metric parameters g and a
we do not minimize χ2 for both the metric parameters
simultaneously since our goal is to investigate the
most favored magnetic monopole charge from the
quasar data. Therefore, χ2 is minimized with respect
to only one parameter such that Δχ2 ¼ 1, 2.71, 6.63
corresponding to 68%, 90% and 99% confidence
intervals [58]. In Fig. 2, we show the variation of χ2

with the magnetic monopole charge parameter g.
Since the theoretical optical luminosity depends
on both the inner radius (which in the present
context corresponds to rms) and the outer radius
rout we use two sets of outer radii rout ¼ 500Rg and
rout ¼ 1000Rg. The figure clearly depicts that χ2 get
minimized for g ¼ 0 irrespective of the choice of

outer radius of the disk. The confidence intervals
corresponding to 68%, 90% and 99% are shown by
the black, blue and magenta dashed lines. We note
that when rout ≃ 500Rg, g≳ 0.03 is outside 99% con-
fidence interval while when rout ≃ 1000Rg, g≳ 0.13
is outside 99% confidence interval. This shows that
very high values of monopole charge are not favored
from quasar optical data. We next discuss several
error estimators to validate our findings.

(ii) Nash-Sutcliffe efficiency and its modified form: The
functional form of the Nash-Sutcliffe efficiency E
[59–61] is given by,

Eðg; famin; cos imin; _MmingÞ

¼ 1 −
P

jfOj −Ωjðg; famin; cos imin; _MmingÞg2P
jfOj −Oavg2

ð27Þ

Here, Oav represents the mean value of the observed
optical luminosities of the PG quasars. It is important
to note that the magnetic monopole charge parameter
g for which E gets maximized corresponds to the
observationally favored value of g. From Eq. (27) it is
clear that E can range from −∞ to 1. A model with
negative E indicates that the average of the observed
data is a better predictor than the theoretical model.
Figure 3 illustrates the variation of Nash-Sutcliffe
efficiency E with the charge parameter g for two sets
of rout. The figure clearly shows that E gets maxi-
mized at g ¼ 0 which is consistent with our finding
based on the χ2 estimate.

Due to the presence of the squared term in the
numeratorNash-Sutcliffe efficiencyE is oversensitive

FIG. 2. The above figure depicts the variation of χ2 with the magnetic monopole charge g for the sample of eighty PG quasars. In the
left panel, the theoretical luminosity and hence the χ2 is calculated with rout ¼ 500Rg while rout ¼ 1000Rg is used to compute χ2 in
the right panel. Interestingly, the χ2 minimizes for the same monopole parameter (g ¼ 0) irrespective of the choice of rout, although the
values of χ2 vary in different range if a different choice of rout is considered. The Δχ2 corresponding to 68%, 90% and 99% confidence
intervals (for a single parameter) are also plotted in the figure with black, blue and magenta dashed lines, respectively.
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to higher values of the luminosity. Therefore, a
modified version of the same is proposed which is
denoted by E1 [60]. This is due to the presence of
the square of the error in the numerator in Eq. (27).
Hence, the modified Nash-Sutcliffe efficiency E1 is
expressed as,

E1ðg;famin;cosimin; _MmingÞ

¼ 1−
P

jjOj−Ωjðg;ðamin;cosimin; _MminÞjP
jjOj−Oavj

ð28Þ

The figures explicitly elucidate that the most
favored g maximizes its modified form as well.
Figure 4 clearly depicts that this maximization ap-
pears at g ¼ 0 irrespective of the choice of outer radius
which again validates our earlier findings.

(iii) Index of agreement and its modified form:
The index of agreement d [61–63] is proposed in

order to overcome the insensitivity of Nash-Sutcliffe
efficiency and its modified form toward the
differences between the theoretical and the observed
luminosities from the respective observed mean [60]
and its functional form is expressed as follows,

dðg; amin; cos imin; _MminÞ

¼ 1 −
P

jfOj −Ωjðg; famin; cos imin; _MmingÞg2P
jfjOj −Oavj þ jΩjðg; famin; cos imin; _MmingÞ −Oavjg2

ð29Þ

FIG. 4. The above figure shows the variation of the modified Nash-Sutcliffe efficiency E1 with the magnetic monopole charge
parameter g. As before, E1 computed with rout ¼ 500rg is shown in the left panel while E1 computed with rout ¼ 1000rg is illustrated in
the right panel. As reported in Fig. 3, irrespective of the choice of rout, E1 maximizes for g ¼ 0.

FIG. 3. The above figure depicts the variation of the Nash-Sutcliffe Efficiency E with the magnetic monopole charge parameter g. The
Nash-Sutcliffe Efficiency computed with rout ¼ 500rg is shown in the left panel while E computed with rout ¼ 1000rg is shown in the
right panel. We note that irrespective of the choice of rout, E maximizes for g ¼ 0.
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where, Oav refers to the average value of the
observed luminosities. The denominator, often
known as the potential error, denotes the maximum
deviation of each pair of observed and predicted
luminosities from the average luminosity. Again due

to the presence of squared terms in the numerator the
index of agreement suffers from oversensitivity to
higher values of optical luminosity and hence a
modified version d1 is proposed, where,

d1ðg; famin; cos imin; _MmingÞ

¼ 1 −
P

jjOj − Ωjðg; famin; cos imin; _MmingÞjP
jfjOj −Oavj þ jΩjðg; famin; cos imin; _MmingÞ −Oavjg

ð30Þ

From Eqs. (29) and (30) it is clear that the choice
of g for which d and d1 maximizes is the most
favored monopole charge derived from the observed
sample. From Figs. 5 and 6 we note that both the
index of agreement and its modified form maximize

for g ¼ 0 which again is consistent with our pre-
vious results. Also, irrespective of the choice of rout,
the most favored magnetic monopole charge param-
eter turns out to be g ¼ 0 which is validated from all
the five error estimators discussed here.

FIG. 5. The above figure shows the variation of the index agreement d with the magnetic monopole charge parameter g. The left panel
depicts the index of agreement computed with rout ¼ 500rg, while the right panel shows the index of agreement computed with
rout ¼ 1000rg. Both peak at g ¼ 0 which confirms that the Kerr scenario is most favored.

FIG. 6. The variation of the modified version of the index of agreement d1 with magnetic monopole charge parameter g, computed
with rout ¼ 500rg (left panel) and rout ¼ 1000rg (right panel) is shown in the figure above. Once again the modified index of agreement
also maximizes for g ¼ 0, regardless of the choice of rout.
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The entire analysis of the error estimators reveal that the
χ2 minimizes for g ¼ 0 while the other error estimators
maximize for the same magnetic monopole charge param-
eter value. It is interesting to note that estimating the error
estimators for different choice of rout keep the result
unaltered. Since the quasars are rotating in nature, it is
important to report the spins of the same corresponding to
the most favored choice of the monopole parameter gwhich
in turn corresponds to the Kerr scenario in general
relativity.

B. Spins of the quasars

In this section we try to estimate the observationally
favored values of spin from the quasar optical data. We
have discussed earlier in Sec. IV the procedure to extract
the most favored value of spin for a given g. Since g ¼ 0
(which corresponds to the Kerr scenario) is observationally
most favored we report in Table I the values of spin
associated with g ¼ 0. For some of these quasars the spins
are estimated by other independent methods which will be
compared with our present findings in this section. In
Sec. IVA it has already been discussed that the theoretical
estimates of optical luminosity, Lopt depends both on the
marginally stable orbit radius rms as well as the outer radius
of the disk, rout. However, the flux emitted from the
accretion disk peaks close to rms and hence the emission
from the inner radius has much greater impact on the
luminosity than the outer parts of the disk. Therefore, the
choice of outer radius should not significantly affect our
findings. This is further confirmed by our results in the last
section where the observationally favored value of g does
not change by varying the outer radius from rout ¼ 500rg to
rout ¼ 1000rg although the value of error estimators depend
on rout.

In Table I, the spins of quasars which remain indepen-
dent of the choice of rout is reported. It is important to note
that the choice of rout do affect the best choice of spins
corresponding to a given g for some quasars in our model.
This is because we allowed variation of accretion rates and
inclination angle for each of the quasars. Further, apart
from the metric parameters the theoretical optical lumi-
nosity which in turn is related to the temperature profile
TðrÞ depends on the ratio _M=M2. Hence, although the
optical luminosity generally has negligible contribution
from rout, the quasars for which this ratio is high the outer
disk also contributes to some extent to the optical lumi-
nosity. In Table I we report the spins of only those quasars
where the most favored choice of spin amin remains
unaltered with rout. It turns out that for most of the quasars
whose spin remain unchanged with rout are maximally
spinning with a ∼ 0.99 for g ¼ 0 (see Table I).
We now compare the spins obtained from the present

analysis with earlier findings. According to [64,65], PG
0003þ 199, PG 0050þ 124, PG 1244þ 026, PG
1404þ 226, PG 1440þ 356 are maximally spinning
which is based on the general relativistic disk reflection
model. Keek et al. [66] also constrained the spin of
PG 0003þ 199 to a ∼ 0.89� 0.05 while according to the
findings of Walton et al. [67] the spin of PG 0003þ 199

turns out to be a ∼ 0.83þ0.09
−0.13 . These results are nearly

consistent with our estimated spins (Table I). From the iron-
line method Bottacini et al. [68] reported that PG 1613þ
658 (Mrk 876) harbors a rotating black hole which is in
agreement with our findings. The spins of PG 0003þ 199,
PG 0050þ 124, PG 0923þ 129, PG 2308þ 098, PG
1022þ 519, PG 1425þ 267, PG 1545þ 210, PG
1613þ 658, and PG 1704þ 608 have been independently
estimated based on polarimetric observations of AGNs
[69]. While the spins of PG 0003þ 199, PG 0050þ 124,
PG 0923þ 129, and PG 2308þ 098 are in agreement with
our results, the spins of PG 1022þ 519, PG 1425þ 267,
PG 1545þ 210, PG 1613þ 658, and PG 1704þ 608
exhibit some variations. Moreover, [57] constrained the
spin of PG 1704þ 608 (3C 351) to a < 0.998 in tandem
with our results.

V. CONCLUDING REMARKS

In this paper we derive the continuum spectrum from the
accretion disk around black holes in Bardeen spacetime.
The significance of the Bardeen spacetime lies in the fact
that it can avoid the curvature singularity in black holes
by introducing a magnetic monopole charge. Thus, the
Bardeen spacetime is characterized by the rotation param-
eter a and the magnetic monopole charge parameter g. After
computing the theoretical spectrum in the Bardeen space-
time we compare it with the optical observations of eighty
Palomar Green quasars. Our analysis reveals that the
Kerr scenario in general relativity is observationally more

TABLE I. Spin parameters of quasars corresponding to g ¼ 0.

Object log m log Lobs log Lbol ag¼0

0003þ 199 6.88 43.91 45.13� 0.35 0.99
0050þ 124 6.99 44.41 45.12� 0.04 0.99
0923þ 129 6.82 43.58 44.53� 0.15 0.99
1011 − 040 6.89 44.08 45.02� 0.23 0.99
1022þ 519 6.63 43.56 45.10� 0.39 0.99
1119þ 120 7.04 44.01 45.18� 0.34 0.99
1244þ 026 6.15 43.70 44.74� 0.22 0.99
1404þ 226 6.52 44.16 45.21� 0.26 0.99
1425þ 267 9.53 45.55 46.35� 0.20 0.7
1440þ 356 7.09 44.37 45.62� 0.29 0.99
1535þ 547 6.78 43.90 44.34� 0.02 0.99
1545þ 210 9.10 45.29 46.14� 0.13 0.1
1552þ 085 7.17 44.50 45.04� 0.01 0.99
1613þ 658 8.89 44.75 45.89� 0.11 0.3
1704þ 608 9.29 45.65 46.67� 0.21 −0.4
2308þ 098 9.43 45.62 46.61� 0.22 0.95
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favored than black holes with a monopole charge.
However, it may be noted that the Kerr scenario also arises
in other theories of gravity apart from general relativity
[70]. Our results are obtained by computing error estima-
tors like the χ2, the Nash-Sutcliffe efficiency, the index of
agreement and their modified forms. We also report the
spins corresponding to some of the quasars for g ¼ 0. We
note that magnetic monopole charge with g ≥ 0.03 is
outside 99% confidence interval.
Before concluding we would like to mention several

limitations of the present analysis. First, the spectral energy
distribution (SED) of the quasars comprises of the accretion
disk, the corona, the jet and the dusty torus which are not
always easy to observe and model [71]. Understanding the
role of each of these components, e.g., the accretion disk,
the corona, the jet and the dusty torus on the SED is
extremely difficult which limits accurate determination of
the black hole parameters, e.g., distance, inclination, mass,
spin, or other associated metric components. As a result the
spin of the same quasar estimated by different methods
assuming general relativity often leads to inconsistent
results [71–75].
Second, the continuum spectrum depends not only on the

background spacetime but also on the properties of the
accretion flow. In the present work the spectrum is

computed using the Novikov-Thorne model where the
effects of outflows or the radial velocity of the accretion
flow are not taken into account. A more comprehensive
modeling of the disk is expected to constrain the back-
ground spacetime better. Presently, these issues are
addressed by several phenomenological models which is
beyond the scope of this work. Further, it may be worth-
while to carry out the present analysis with a different
observational sample of black holes. Apart from the
continuum spectrum, observations like the black hole
shadow [11,14,15], quasiperiodic oscillations [76,77] and
iron K − α line [78,79] in the power spectrum and the
reflection spectrum of black holes respectively are some of
the independent observations which can be used to probe
the background metric. Such a study will be conducted in
future and reported elsewhere.
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