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It is known that the gravitational analog of the Faraday rotation arises in the rotating spacetime due to the
nonzero gravitomagnetic field. In this paper, we show that it also arises in the “nonrotating” Reissner-
Nordström spacetime, if it is immersed in a uniform magnetic field. The nonzero angular momentum (due
to the presence of electric charge and magnetic field) of the electromagnetic field acts as the twist potential
to raise the gravitational Faraday rotation as well as the gravitational Stern-Gerlach effect in the said
spacetimes. The twisting can still exist even if the mass of the spacetime vanishes. In other words, the
massless charged particle(s) immersed in a uniform magnetic field are able to twist the spacetime in
principle, and are responsible for the rotation of the plane of polarization of light. This, in fact, could have
applications in the basic physics and the analog models of gravity. Here, we also study the effect of
magnetic fields in the Kerr and Reissner-Nordström spacetimes, and we derive the exact expressions for the
gravitational Faraday rotation and the gravitational Stern-Gerlach effect in the magnetized Kerr and
Reissner-Nordström spacetimes. Calculating the lowest order of the gravitational Faraday effect arisen due
to the presence of a magnetic field, we show that the logarithm correction of the distance of the source and
observer in the gravitational Faraday rotation and gravitational Stern-Gerlach effect for the said spacetimes
is an important consequence of the presence of the magnetic field. From the astrophysical point of view, our
result could be helpful to study the effects of (gravito)magnetic fields on the propagation of polarized
photons in the strong gravity regime of the collapsed object.

DOI: 10.1103/PhysRevD.105.064072

I. INTRODUCTION

The Faraday effect is a magneto-optical phenomenon
discovered by Michael Faraday in 1845. It arises due to the
interaction between the light and magnetic fields of the
medium. If a beam of plane polarized light is passed
through a magnetic field, the plane of polarization is rotated
by an angle proportional to the field intensity, which is
known as the Faraday effect or Faraday rotation. Einstein’s
general relativity predicts that the light rays passing a
massive object bend toward it; i.e., the light is affected by
the gravitational field. Not only that, it has also been shown
[1,2] that the plane of polarization of the light rays is rotated
by some finite angle depending on the angular momentum
of the black hole, even if there is no magnetic field. This
means that one can see the gravitational analog of the
Faraday rotation in a rotating spacetime, and the gravito-
magnetic field (gravitational analog of the magnetic field)
is responsible for this phenomenon. The plane of polari-
zation of the light rays is rotated due to this gravitomagnetic
field. Therefore, this new Faraday rotation is called the
gravitational analog of the Faraday rotation or the so-called

gravitational Faraday rotation [1–4]. Note that the gravi-
tational Faraday rotation is not related to the magnetic field.
It is only related to the gravitomagnetic field, i.e., the
rotation of the spacetime. One cannot see the gravitational
Faraday rotation in a nonrotating spacetime such as the
Schwarzschild spacetime. Thus, as of now, one can expect
the gravitational Faraday rotation in the Kerr spacetime.
The Taub-Newman-Unti-Tamburino (NUT) spacetime has
no intrinsic rotation [5] but it has a sense of rotation due to
the presence of NUT charge. However, it has been shown
[4] that no gravitational Faraday rotation occurs in the
Taub-NUT spacetime.
In a stark contrast, we show in this paper that the

gravitational Faraday rotation can occur in the nonrotating
Reissner-Nordström (RN) spacetime, if it is immersed in a
uniform magnetic field. The RN spacetime is the electro-
vacuum solution of the Einstein-Maxwell equation with
mass and electric charge only. If it is immersed in the
magnetic field, its electric field and magnetic field together
constitute a nonzero electromagnetic angular momentum;
i.e., it gives a rotational sense to the magnetized RN
spacetime. This electromagnetic angular momentum acts as
the gravitomagnetic field, and, therefore, it shows the
gravitational Faraday rotation, i.e., if the light passes*chandrachur.c@manipal.edu
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through this spacetime, the plane of polarization of the light
or the electromagnetic wave rotates. Note that in a very
recent paper, the exact solution of the magnetized Reissner-
Nordström (mRN) solution was investigated by [6].
The magnetic field plays an important role in the many

astrophysical phenomena, e.g., the magnetohydrodynamics
(MHD) simulation for the accretion mechanism [7], im-
aging of the black hole shadow [8–10], and magnetic
Penrose process [11,12]. Although the magnetic Penrose
process was proposed assuming the magnetic field to be
asymptotically uniform [11], the Blandford-Znajek (BZ)
mechanism [13] is generally considered for the MHD
simulation as well as to deduce the polarization of the
photon ring [8]. However, the exact electrovacuum solution
of the Einstein-Maxwell equation for the Kerr metric placed
in a uniform magnetic field was first found byWald [14]. In
the next year, Ernst [15] presented a general procedure for
transforming an asymptotically flat axially symmetric
electrovacuum solution to an exact magnetized solution
of the same. Later, the effect of a plasma in the force-free
approximation was considered by Blandford and Znajek
[13]. For the lack of the direct measurements of the exact
shapes of the magnetic field configurations around realistic
collapsed objects, many other numerical techniques are
used to show the strong connections between the shape of
the magnetosphere and the characteristics of the accretion
mechanism [16,17]. In this paper, we consider the Wald
[14] and/or Ernst [15] solution as this is the exact electro-
vacuum solution of the Einstein-Maxwell equation.
Second, the uniform magnetic field configuration assumed
in the magnetic Penrose process [11,12] seems more
efficient than the magnetic field configuration of the BZ
mechanism for the electromagnetic extraction of the rota-
tional energy from a rotating black hole.
There was a drawback of the Ernst solution: it produces

the conical singularities at the polar axis [18], which was
removed by the Ernst-Wild (see [19]) solution in order to
obtain a physically meaningful solution [20]. Later, Aliev
and Gal’tsov [21] applied this solution to observe the
magnetic precession (see also [22,23]) in black hole
systems with magnetized accretion disks. It is known that
the gravitational energy is much greater than the electro-
magnetic energy, but those are comparable if the strength of
the magnetic field (B) surrounding a collapsed object with
mass M is the order of [20,24]

B ≃ Bmax ∼ 2.4 × 1019
M⊙

M
; ð1Þ

where M⊙ is the solar mass. The strength of the magnetic
field surrounding black holes is considered much smaller
than the value of Bmax (i.e., B ≪ Bmax) but the investiga-
tions suggest that the surrounding spacetimes around a
black hole could be highly distorted for B ∼ Bmax. Thus,
this magnetic field is very important as a background field
testing of the geometry around a collapsed object [25].

In this paper, we have chosen the magnetized Kerr and
magnetized RN spacetimes to study the effect of the
magnetic field on the gravitational Faraday effect. In
general, the Kerr black hole is considered as the most
relevant from the astrophysical point of view, and it is
supposed to immerse in a nonzero magnetic field. On the
other hand, although the ordinary RN spacetime is spheri-
cally symmetric, the magnetized RN is very special in this
sense that it becomes axisymmetric due to the presence of
the magnetic field (as discussed in the second paragraph of
this section). These are basically the main reasons why we
are interested in studying the gravitational Faraday effect in
these spacetimes. We also carry out a similar study for the
massless charged-RN solution, which is devoted only for
the theoretical purpose. The scheme of the paper is as
follows. In Sec. II, we revisit the formalism of the
gravitational analog of the Faraday rotation and derive
the relation of it with the gravitational analog of the Stern-
Gerlach effect and the so-called spin precession of a test
gyroscope. In Sec. III, we study the effect of the magnetic
field on the gravitational Faraday rotation and the gravi-
tational Stern-Gerlach effect in the magnetized Kerr space-
time. Sections IVand Vare devoted to studying the effect of
the magnetic field on the gravitational Faraday and Stern-
Gerlach effects in the mRN spacetime and the massless
mRN-like spacetime, respectively. Finally, we conclude
in Sec. VI.

II. GRAVITATIONAL FARADAY ROTATION IN
THE STATIONARY SPACETIME

The general metric of a stationary spacetime can be
written as

ds2 ¼ gμνdxμdxν ¼ g00ðdx0Þ2 þ 2g0idx0dxi þ gijdxidxj

ð2Þ

¼ hðdx0 − gidxiÞ2 − γijdxidxj; ð3Þ

where

h ¼ g00; gi ¼ −
g0i
h
; γij ¼ −gij þ

g0ig0j
g00

: ð4Þ

The Greek indices represent the time and space compo-
nents, i.e., xμ ¼ ðx0 ≡ t; xiÞ, and the Latin indices represent
only the space components, i.e., i ¼ 1, 2, 3. We denote

g≡ detðgμνÞ; γ ≡ detðγijÞ; ð5Þ

and, hence, −g ¼ hγ. In a static spacetime (gi ¼ 0), the
metric γij reduces to the so-called optical metric [3,26].
Spatial trajectories of light rays are geodesics of the optical
metric. Landau and Lifshitz [27] also showed that γij can
be regarded as a metric of space, as opposed to spacetime.

CHANDRACHUR CHAKRABORTY PHYS. REV. D 105, 064072 (2022)

064072-2



This is similar to the (3þ 1) decomposition of the metric
[Eq. (3)]. They showed that the test bodies following
geodesics of spacetime depart from the geodesic of space
as if acted on by the gravitational force F which can be
expressed as [28]1

F ¼ m0ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

p ðEg þ v ×
ffiffiffi
h

p
BgÞ; ð6Þ

where

Eg ¼ −∇ ln
ffiffiffi
h

p
¼ −

1

2

∇h
h

ð7Þ

and

Bg ¼ curlA≡ curlg ð8Þ
are the gravitoelectric (Eg) and gravitomagnetic (Bg)
fields, respectively. It is needless to say here that gi is
equivalent to Ai, i.e., gi ≡ Ai, the gravitational analog of the
vector potential (of electromagnetism). Now, one can
rewrite the Landau and Lifshitz form of Einstein’s equa-
tions as [4]

divBg ¼ 0; ð9Þ

curlEg ¼ 0; ð10Þ

divEg ¼ −
�
1

2
ð
ffiffiffi
h

p
BgÞ2 þ Eg

2

�
; ð11Þ

curlð
ffiffiffi
h

p
BgÞ ¼ 2Eg × ð

ffiffiffi
h

p
BgÞ: ð12Þ

It would be interesting to notice that
ffiffiffi
h

p
Bg also appears in

the expression of force [Eq. (6)], and the right-hand side
(RHS) of Eq. (12) could be considered as an energy current
corresponding to the Poynting vector flux of gravitational
field energy. Note all the operations in Eqs. (9)–(12) are
defined in the three-dimensional (3D) space with the metric
γij. However, one can also define the above gravitomag-
netic fields in the following covariant forms by using the
timelike Killing vector of the spacetime as [4]

Eς
g ¼ −

1

2

ðζσζσÞ;ς
jζj2 ; ð13Þ

Bς
g ¼ −

1

2
jζjζσϵσςιρ

��
ζρ
jζj2
�

;ι

−
�

ζι
jζj2
�

;ρ

�
; ð14Þ

where ϵσ
ςιρ is the four-dimensional (4D) antisymmetric

tensor, jζj ¼ ffiffiffi
h

p
, and the semicolon denotes the covariant

differentiation.

Now, using the analogy with the flat spacetime, we
consider the plane of polarization of an electromagnetic
wave consisting of two 3-vectors: the wave vector k and the
polarization vector f. The 4-vectors corresponding to these
3-vectors are related as

kσkσ ¼ 0; kσfσ ¼ 0; fσfσ ¼ 1 ðwith σ ¼ 0;1;2;3Þ;
ð15Þ

and both of them (kσ and fσ) are parallelly transported
along the null geodesic [27]. It should be useful to note here
that the covariant counterparts of these 3-vectors (k and f)
are not the spatial components of the covariant 4-vectors kσ
and fσ , rather

ð3Þkj ¼ γð3Þij k
i ¼ ð4Þkj þ k0gj ð16Þ

and

ð3Þfj ¼ γð3Þij f
i ¼ ð4Þfj þ f0gj: ð17Þ

There is a gauge freedom which enables us to put f0 ¼ 0
without the loss of generality [4]. Now, applying the above
decomposition with the gauge condition and using the
equations of parallel transport for kσ and fσ, the evolution
equations of k and f along the ray were derived as [1,4]

3∇kk ¼ L × kþ ðEg:kÞk; ð18Þ
3∇kf ¼ L × f; ð19Þ

where

L ¼ −
1

2
k0

�
Bg −

1

2
ðBg:fÞfþ

1

jfjEg:ðk × fÞf
�
: ð20Þ

If only the second term exists on the RHS of Eq. (18), it
would mean, by comparison with the 4D definition of the
parallel transport, that the 3-vector k is parallelly trans-
ported along the projection of the null geodesic, but the
presence of the first term indicates that k is rotated by the
angular velocity L. The same rotation also appears for
the polarization vector f [see Eq. (19)]. Thus, both of the
equations together lead to this important fact that the
polarization plane rotates with the angular velocity L
along the projected null geodesic. However, Ref. [4]
derived the angle of rotation (χ) around the tangent vector
k̂ along the path between the source and the observer as [4]

χ ¼
Z

observer

source
L:k̂ dλ ð21Þ

¼ −
1

2

Z
observer

source
k0Bg:k̂ dλ; ð22Þ1We use the geometrized unit (G ¼ c ¼ 1) in this whole paper

except Eq. (96).
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where λ is the affine parameter along the ray. If one
considers a small line element dl along the path of the ray,
one can write [see Eq. (19) of [4]]

k20
h
¼
�
dl
dλ

�
2

: ð23Þ

Now, substituting Eq. (23) in Eq. (22) with k̂dl ¼ dl, one
obtains from Eq. (22)

χ ¼ −
1

2

Z
observer

source

ffiffiffi
h

p
Bg:dl ð24Þ

¼ −
1

2

Z
observer

source
curlð

ffiffiffi
h

p
curlgÞ:dS ð25Þ

[4], where dS represents the surface enclosed by the path of
the light ray (i.e., a null geodesic) which passes close to a
collapsed object such as the black hole.2 Here, we use the
Stokes theorem and Eq. (8) to obtain Eq. (25) from
Eq. (24). Equation (24) indicates that a light ray propagates
along the line of sight starting from the source at infinity
and ending at the observer. The light rays reaching the
observer along the two different lines of sight [29] traverse
two different paths, and the rotation angles for their planes
of polarization are given by Eq. (24). Actually, the surface
enclosed [as shown in Eq. (25)] by the two referred paths
[29] could be physically referred to a spherical corona
between the source and the observer location.
It was pointed out in [3,30] that the spin-optical

interaction described by the effective force is proportional
to “curl curlg” [see Eqs. (71) and (81) of [30]], if one uses
the definition of the γ metric as in Eqs. (2) and (6) of [3]. In
our case, the effective force should be proportional to
“h curlð ffiffiffi

h
p

curlgÞ.” This effective force increases when a
photon approaches the collapsed object and reaches its
maximum near its radial turning point. Note, if one uses the
definition of the γ metric of [3], one obtains the angle of
rotation (χ̄) as3

χ̄ ¼ −
1

2

Z
observer

source
curlðcurlgÞ:dS: ð26Þ

One can take the example of the Kerr spacetime. From
the atsrophysical point of view, the most relevant spacetime
is the Kerr spacetime to describe the astrophysical

collapsed objects. The Kerr metric in the Boyer-
Lindquist coordinates xμ ≡ ðt; r; θ;ϕÞ can be written in
the form of Eq. (4) with

g00 ¼ h ¼
�
1 −

2Mr
Σ

�
; g≡ gϕ ¼ −

2aMrsin2θ
Σ − 2Mr

;

ð27Þ

and

γijdxidxj ¼
Σ
Δ
dr2 þ Σdθ2 þ Δ

h
sin2θdϕ2; ð28Þ

where a is the Kerr parameter, defined as a ¼ J
M, the

angular momentum (J) per unit mass (M), and

Σ ¼ r2 þ a2cos2θ; Δ ¼ r2 − 2Mrþ a2: ð29Þ

Considering Eqs. (127)–(131) in the notation of [3] one
can obtain from Eq. (26)

χ̄Kerr ¼ −
1

2

Z
observer

source

4aM2

Σ3
:
Σ sin θ
h2

drdθ ð30Þ

¼ −2aM2

Z
observer

source

sin θ
ðΣ − 2MrÞ2 drdθ; ð31Þ

which is the same as in Eq. (23) of [4]. In the weak-field
regime (r ≫ M), one can obtain from Eq. (31):
χ̄Kerr ∼ aM2=R3, where R is the distance between the
source and the observer. In our case, the effective force
for the gravitational Faraday effect changes as

jh curlð
ffiffiffi
h

p
curlgÞj ¼

����h 4aM2ffiffiffi
h

p
Σ2ðΣ − 2MrÞ :

ffiffiffiffi
Δ

p
sin θffiffiffi
h

p
����

¼ 4aM2
ffiffiffiffi
Δ

p
sin θ

Σ2ðΣ − 2MrÞ ð32Þ

≈
4aM2

r5
sin θ; ð33Þ

where Eq. (33) is valid far away (M=r ≪ 1) from a slowly
rotating (a=M ≪ 1) Kerr black hole as shown earlier
in [30].

A. Relation between the gravitational Faraday rotation
and the so-called spin precession

Considering Eq. (8), and using the relation
(ep̂ ¼ ep=

ffiffiffiffiffiffiffi
γpp

p [31]) between the orthonormal basis vec-
tors (ep̂) and the coordinate basis vectors (ep), one obtains
the gravitomagnetic field for the Kerr spacetime as

2Note, Eq. (24) was directly applied to deduce the gravitational
Faraday rotation in the “spherically symmetric” Taub-NUT
spacetime considering a closed path around the Taub-NUT hole
(see Sec. IV of [4]), whereas Eq. (25) was applied for the
“axisymmetric” Kerr spacetime (see Sec. Vof [4]). For the latter,
the integration was performed over the orbital plane which was
enclosed by the orbit of the null geodesic.

3We follow the definition of χ mentioned in Eq. (25) [not of
Eq. (26)] in the whole paper.
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ðcurlgÞp̂ep̂ ¼ −2aM
�

2r
ffiffiffiffi
Δ

p
cos θ

ΣðΣ − 2MrÞ3=2 er̂

þ ðr2 − a2cos2θÞ sin θ
ΣðΣ − 2MrÞ3=2 eθ̂

�
: ð34Þ

Interestingly, if one multiplies Eq. (34) with “−
ffiffiffi
h

p
=2,” one

obtains the same expression [Eq. (42) of [5]] which was
obtained as the spin precession frequency (Ωs), or the so-
called Lense-Thirring (LT) precession [32] frequency of a
test gyroscope or a test spin (for the detailed spin precession
formalism, see [33–35]). So, technically, Eq. (25) leads to
the angle of

χ ¼
Z

observer

source
ðcurlΩsÞ:dS: ð35Þ

Although the general expression for the LT precession
frequency of a test spin in terms of the coordinate basis
vectors was obtained in [36] as

Ω ¼ −
g00

2
ffiffiffiffiffiffi−gp ϵijpgi;jðep þ gpe0Þ ð36Þ

for a general stationary spacetime, we should only consider

Ωs ¼ −
1

2

ffiffiffi
h
γ

s
ϵijpgi;jep ≡ −

1

2

ffiffiffi
h

p
ðcurlgÞ ð37Þ

as we deal here only with the γij metric. ϵijp is the Levi-
Civita symbol.
Note, in case of the Taub-NUT spacetime [37,38],

(curlg) comes as nonzero [4,5], and, hence, the spin of
a test gyro can precess [5] in this spacetime. On the other
hand, (curlð ffiffiffi

h
p

curlgÞ) vanishes, and, therefore, no gravi-
tational Faraday rotation is induced in the Taub-NUT
spacetime [4]. This example could be helpful to differ-
entiate between the spin precession and the gravitational
Faraday rotation.

B. Angular separation (Θ) of the right and left
circularly polarized beams due to the gravitational
Faraday rotation: Gravitational Stern-Gerlach effect

There exists a gravitational analog of the Stern-Gerlach
effect [30]; i.e., in the spacetime of a rotating collapsed
object, the trajectories of the circularly polarized
photons depend on their polarization. Using this analogy,
Mashhoon [39,40] showed that the photons of the opposite
(right and left) circular polarization emitted by a distant
source deflects to the directions with the separation
angle (Θ)

Θ ∼
aM
ωD3

ð38Þ

after scattering, where ω is the photon frequency and D is
the distance from the photon to the body at the moment of
their minimal separation. As the gravitomagnetic field
depends upon position, there exists a gravitomagnetic
Stern-Gerlach force −∇ðΩs:NÞ on a spinning particle with
“intrinsic” spin vector N. This force naturally leads to a
differential deflection of the polarized beams [41].
In a recent paper, the authors of Ref. [3] have studied in

detail how the polarization of photons affects their motion
in a gravitational field created by a rotating massive
collapsed object, and have shown that the angular separa-
tion (Θ) of the right and left circularly polarized beams is
deduced using the dimensionless parameter: ε ¼ �ðMωÞ−1
[30] (with jεj ≪ 1). Thus, we obtain the relation among Θ,
χ, and Ωs as

Θ ¼ � 1

Mω
χ ¼∓ 1

2Mω

Z
observer

source
curlð

ffiffiffi
h

p
curlgÞ:dS ð39Þ

¼ � 1

Mω

Z
observer

source
ðcurlΩsÞ:dS; ð40Þ

where and þ and − correspond to the right and left circular
polarizations, respectively. Equation (39) depends on ω,
and this, in fact, can be used as the final expression to
obtain the angular separation of the right and left circularly
polarized beams due to the gravitational Faraday effect in a
stationary spacetime. In the next two sections, we study the
effects of the gravitational analog of Faraday rotation and
the Stern-Gerlach effect in the magnetized Kerr and
Reissner-Nordström spacetimes.

III. GRAVITATIONAL FARADAY ROTATION
IN THE MAGNETIZED KERR SPACETIME

A. Brief discussion on the Kerr spacetime immersed
in the uniform magnetic field

The exact electrovacuum solution of the Einstein-
Maxwell equation for the magnetized Kerr spacetime is
written as [18,20]

ds2¼
�
Δ
A
dt2−

dr2

Δ
−dθ2

�
ΣjΛj2−Asin2θ

ΣjΛj2 ðjΛ0j2dϕ−ϖdtÞ2;

ð41Þ

where

Δ ¼ r2 þ a2 − 2Mr; Σ ¼ r2 þ a2cos2θ; ð42Þ

A ¼ ðr2 þ a2Þ2 − Δa2sin2θ; ϖ ¼ v − wΔ
r2 þ a2

: ð43Þ

Λðr; θÞ is a complex quantity and it has two parts, the real
part of Λ∶ ReΛ and the imaginary part of Λ∶ ImΛ. So, one
can express it as
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Λ≡ Λðr; θÞ ¼ ReΛþ iImΛ

¼ 1þ B2sin2θ
4

�
ðr2 þ a2Þ þ 2a2Mrsin2θ

Σ

�

− i:
aB2M cos θ

2

�
3 − cos2θ þ a2sin4θ

Σ

�
; ð44Þ

where ið≡ ffiffiffiffiffiffi
−1

p Þ represents the imaginary unit. In the
expression of ϖ (Eq. (43),

v ¼ að1 − a2M2B4Þ ð45Þ

and

w ¼ aΣ
A

þ aMB4

16

�
−8rcos2θð3 − cos2θÞ − 6rsin4θ

þ 2a2sin6θ
A

½2Ma2 þ rða2 þ r2Þ�

þ 4Ma2cos2θ
A

½ðr2 þ a2Þð3 − cos2θÞ2 − 4a2sin2θ�
�
:

ð46Þ
It was first pointed out in [42] that the “magnetic”

transformation of the Kerr spacetime is only locally valid,
as it produces the conical singularities at the polar axis. This
conical singularities on the polar axis generate some singular
stress energy tensor on the right-hand side of the Einstein
equation in addition to theMaxwellian term. This deficiency
can be removed by changing the interval of variation of the
azimuthal angle ϕ from 2π to 2πjΛ0j2 [18,20], where

jΛ0j2 ¼ jΛðr; 0Þj2 ¼ 1þ a2M2B4 ð47Þ

is theHarrison-Ernst functionΛðr; θÞ at the polar axis θ ¼ 0.
That is the reason jΛ0j2 appears just before dϕ in Eq. (41).

Without the factor jΛ0j2 before dϕ, the magnetized Kerr
metric is not really a solution of the Einstein-Maxwell
equations elsewhere, as it produces the Ricci tensor singular
at thepolar axis [18,20]. Such a singularity is similar to that of
the cosmic string [43], which has positive energy density and
negative tension by analogy with the physical string. Note,
the horizon radii

r� ¼ M �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2

p
ð48Þ

are the same for the ordinary Kerr metric and themagnetized
Kerr metric, as they do not depend on the value of B. On the
other hand, the ergoradii in the magnetized Kerr metric
depend on the value of B. Therefore, the expressions of
ergoradii for the magnetized Kerr metric cannot be the same
with the ordinary Kerr metric.

B. Effective force for the gravitational Faraday
rotation in the magnetized Kerr spacetime

For the magnetized Kerr spacetime, one can deduce

g00 ¼ h ¼
�
ΔΣjΛj2

A
−
Aϖ2sin2θ
ΣjΛj2

�
;

g≡ gϕ ¼ −
ϖA2jΛ0j2sin2θ

ΔΣ2jΛj4 − A2ϖ2sin2θ
; ð49Þ

and

γijdxidxj ¼
ΣjΛj2
Δ

dr2 þ ΣjΛj2dθ2 þ ΔjΛ0j4
h

sin2θdϕ2

ð50Þ

from Eq. (41). Now, using Eq. (50), we obtain4

ðcurlgÞp ¼ −
4aMrΔ cos θ

Σ3=2ðΣ − 2MrÞ3=2 :
�
1 −

B2sin2θ
32ΣðΣ − 2MrÞC1ðr; θÞ

�
δpr

−
2aM sin θ

Σ3=2ðΣ − 2MrÞ3=2
�
ðr2 − a2cos2θÞ þ B2sin2θ

128ΣðΣ − 2MrÞC2ðr; θÞ
�
δpθ þOðB3Þ ð51Þ

and

ðcurlð
ffiffiffi
h

p
curlgÞÞp ¼

�
4aM2

Σ3=2ðΣ − 2MrÞ3=2 −
3aMB2

64Σ5=2ðΣ − 2MrÞ5=2 C3ðr; θÞ þOðB3Þ
�
δpϕ; ð52Þ

4Although we have calculated the exact expressions for ðcurlð ffiffiffi
h

p
curl gÞÞ and ðcurl gÞ, we do not show it here as those expressions are

very big in size and useless for the current purpose of this paper. Those expressions could be important for the numerical calculations
which we plan to report in the future. As the magnetic energy is much less than the gravitational energy for a massive magnetized
collapsed object (see Sec. I), considering the order of magnetic field up to B2 should suffice for the current purpose of this paper. Hence,
we show all the required expressions up to the order of B2.
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where C1ðr; θÞ, C2ðr; θÞ, and C3ðr; θÞ are the functions of r
and θ.5

Now, one can calculate the effective force for the
gravitational Faraday rotation that varies as

jh curlð
ffiffiffi
h

p
curlgÞj ¼ 4aM2

ffiffiffiffi
Δ

p
sin θ

Σ2ðΣ − 2MrÞ

−
aMB2

ffiffiffiffi
Δ

p
sin θC4ðr; θÞ

64Σ3ðΣ − 2MrÞ2 þOðB3Þ;

ð53Þ

where C4ðr; θÞ is the function of r and θ.
The second term in the right-hand side of Eq. (53)

appears as the correction term due to the presence of the
magnetic field. Far away (M=r ≪ 1) from a slowly rotating
Kerr black hole (a=M ≪ 1), Eq. (53) falls down as

jh curlð
ffiffiffi
h

p
curlgÞjða=M≪1;M=r≪1Þ

≈ sin θ

�
4aM2

r5
−
3aMB2

r2
ð1þ 3 cos 2θÞ

�
: ð54Þ

Equation (54) shows that although the effective force for
the gravitational Faraday effect decreases as ∼r−5 for the
ordinary Kerr spacetime [see Eq. (81) of [30]], the same
due to the presence of the nonzero magnetic field decreases
as ∼r−2 in the magnetized Kerr spacetime. Interestingly,
one cannot see the effect of the magnetic field in Eq. (54)
for θ ¼ π

2
− 1

2
cos−1 1

3
≈ 54.74°, as the second term in the

square brackets of Eq. (54) vanishes for that value.

C. Logarithm correction in the gravitational Faraday
rotation and Stern-Gerlach effect for the slowly rotating

magnetized Kerr black hole

The gravitational Faraday effect in the Kerr spacetimewas
studied earlier [4,44]. It was shown that when a light ray
passes through the outside of rotating matter, its polarization
plane rotates [2]. In this section, we consider a general orbit
(following [4]) around a magnetized Kerr black hole, which
intersects the equatorial plane (θ ¼ π=2) and is symmetric
about it (see theAppendix). Using Eq. (35)we obtain that the
polarization plane is rotated by an angle

χ ¼ −
Z

ro

rorbðθÞ

Z
θo

θs

�
2aM2

ðΣ − 2MrÞ2 −
aMB2

32ðΣ − 2MrÞ3 C5ðr; θÞ
�

× sin θdrdθ; ð55Þ

whereC5ðr; θÞ is the function of r and θ. In Eq. (55), ro is the
location of the distant observer and rorbðθÞ is the equation of

the projection [seeEq. (A9)] of the orbit in the ðr; θÞ plane. θs
and θo are the position angles of the source and the observer,
respectively. Note, Eq. (55) reduces to Eq. (23) of [4]
for B ¼ 0.
To find the lowest order of gravitational Faraday effect,

we calculate the above integral (Eq. 55) considering the
weak-field and slow-rotation approximation, i.e., neglect-
ing ðM=rÞ1 and ða=MÞ2 [4], and rewrite it as

χ ¼ −
Z

ro

rorbðθÞ

Z
θo

θs

�
2aM2

r4
−
3aMB2

2r
ð1þ 3 cos 2θÞ

�

× sin θdrdθ

¼
Z

ro

rorbðψÞ

Z
ψ0

−ψ0

�
2aM2

r4
−
3aMB2

r
ð3ψ2 − 1Þ

�
drdψ ; ð56Þ

where we substitute ψ ¼ cos θ in the last expression, and,
hence, the integration limit is changed. See Appendix for
the discussion on the integration limit. Performing the
integration over r, we obtain from Eq. (56)

χ ¼
Z

ψ0

−ψ0

�
2aM2

3

�
1

ðrorbðψÞÞ3
−

1

r3o

�

− 3aMB2ð3ψ2 − 1Þ ln
�

ro
rorbðψÞ

��
dψ ; ð57Þ

where [see Eq. (A9)]

rorbðψÞ ¼
rminffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − ðr2min=ηÞψ2
p : ð58Þ

Finally, we obtain from Eq. (57)

χ ¼ aM2 cos θ0

�
π

4r3min

−
4

3r3o

�
− 6aMB2 cos θ0

×

�
1 −

4

3
cos2θ0 − sin2θ0 ln

�
2ro
rmin

��
; ð59Þ

substituting ψ0 ¼ ffiffiffi
η

p
=rmin ¼ cos θ0. Equation (59)

reduces to the expression obtained earlier [4] for B → 0
and ro → ∞. We do not consider ro → ∞ unlike [4], as the
value of ro gives a finite correction for the logarithm term
obtained in Eq. (59) due to the presence of a nonzero B.
One can notice that Eq. (59) vanishes for the orbits in the
equatorial plane (θ0 ¼ π=2), which is commensurate to
Sec. A of [4]. Therefore, no gravitational Faraday effect can
be seen for the equatorial orbits, even in the presence of a
nonzero magnetic field. In addition, the effect of the
magnetic field on the gravitational Faraday rotation is
absent for

θ0 ¼ sin−1

0
B@ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4 − 3 lnð2rormin
Þ

q
1
CA; ð60Þ5As the exact expressions of C1−5ðr; θÞ are not very relevant

for this paper, we do not mention it here. However, the exact
expressions of the same can be available upon request.
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as the terms inside the square bracket of Eq. (59) vanish. In
the case of the slowly rotating black hole (a=M ≪ 1) and
for a distant observer (M=r ≪ 1), one can obtain [using
Eq. (39) or Eq. (59)] the separation angle (Θ) of the right
and left circularly polarized beams arisen due to the
gravitational Faraday rotation as

Θjða=M≪1;M=r≪1Þ ¼ � a
ω

�
M cos θ0

�
π

4r3min

−
4

3r3o

�

− 6B2 cos θ0

�
1 −

4

3
cos2θ0

− sin2θ0 ln

�
2ro
rmin

��	
: ð61Þ

Equation (61) reveals, although the gravitational Stern-
Gerlach effect arises due to the inhomogeneous gravito-
magnetic field (as it depends on the position), it is
also affected by the constant magnetic field B. The first
term (∝r−3) is already reported in several papers
[1–4,30,39,40,45] but the second term, i.e., the logarithmic
correction in the gravitational Faraday rotation and Stern-
Gerlach effect, due to the presence of the magnetic field is
completely new.
Note that Eq. (51) reduces to the combinations of the

expressions of Br
g and Bθ

g of Sec. V.B of Ref. [4] for B → 0.
There is no discrepancy between Eq. (52) of this paper and
Eq. (131) of [3] for B → 0. If one multiplies Eq. (52) with
h3=2, it reduces to Eq. (131) of [3]. The apparent discrep-
ancy between these two expressions arises due to the
different definition of the γij metric [see Eq. (4) of this
paper and Eq. (6) of [3]]. Moreover, Eq. (131) of [3]
derived (curl curlg), whereas we derive (curlð ffiffiffi

h
p

curlgÞ).
Eventually, the term inside the square bracket of Eq. (55)
reduces to Eq. (23) of [4] for B → 0, as the final expression
(scalar quantity) for calculating the separation angle (Θ)
due to the gravitational Stern-Gerlach effect.

IV. GRAVITATIONAL FARADAY
ROTATION IN THE MAGNETIZED

REISSNER-NORDSTRÖM SPACETIME

A. Brief discussion on the Reissner-Nordström
spacetime immersed in the uniform magnetic field

If the Reissner-Nordström spacetime is immersed in a
uniform magnetic field B, the transformed metric can be
expressed as [15]

ds2 ¼ jΛj2
�
Δ
r2
dt2 −

dr2
Δ
r2

− r2dθ2
�

− jΛj−2r2sin2θðjΛ0j2dϕ −ϖdtÞ2; ð62Þ

where

Δ ¼ r2 − 2MrþQ2;

Λ ¼ 1þ 1

4
B2ðr2sin2θ þQ2cos2θÞ − iBQ cos θ; ð63Þ

and

ϖ ¼ BQ
2r

½−4þ 2B2r2 þ B2Q2 − B2Δsin2θ�: ð64Þ

Here, M and Q are the mass and charge of the spacetime
which is immersed in a uniform magnetic field B. The
mRN spacetime will reduce to the ordinary RN spacetime
(oRN) for B ¼ 0. One should note here that the mRN
metric [Eq. (62)] is the exact electrovacuum solution of
the Einstein-Maxwell equation (with a nonzero magnetic
field), similar to the oRN. Another similarity between oRN
and mRN is that the locations of the horizons (r�) occur at
the same distance, i.e.,

r� ¼ M �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 −Q2

p
; ð65Þ

where rþ and r− indicate the locations of the event horizon
and Cauchy horizon, respectively. Equation (65) shows that
both of the horizons exist only for 0 < Q ≤ M, whereas the
horizons vanish for the overcharged (Q > M) RN space-
time. The reason to add

jΛ0j2 ¼ jΛðr; 0Þj2 ¼
�
1þ B2Q2

4

�
2

þ B2Q2 ð66Þ

before dϕ of Eq. (62) is the same as discussed in Sec. III A.
Thus, we do not repeat it here. Now, the Cartan components
of the electric (E) and magnetic fields (H) in the mRN
spacetime are given by [see Eqs. (4.5) and (4.6) of [15]]

Hr þ iEr ¼ Λ−2
�
iQ=r2

�
1 −

1

4
B2ðr2sin2θ þQ2cos2θÞ

�

þ Bð1 − 1=2iBQ cos θÞð1 −Q2=r2Þ cos θ
	
;

ð67Þ

Hθ þ iEθ ¼ −BΛ−2ð1 − 1=2iBQ cos θÞ
ffiffiffiffi
Δ

p

r
sin θ: ð68Þ

Thus,E ×H serves as the source of twist potential in the
mRN spacetime as

jE ×Hj ¼ jErHθ − EθHrj ¼ −
BQ

ffiffiffiffi
Δ

p
sin θ

16r3Λ4

×

�
1 −

1

4
B2ðr2sin2θ þQ2cos2θÞ

�
: ð69Þ

If B and/or Q vanishes, the twist potential becomes zero.
The stark contrast between an oRN and a mRN is that the
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mRN is a stationary and axisymmetric spacetime, whereas
the oRN is a static and spherically symmetric spacetime.
Which makes this important difference between these two?
Of course, the presence of the magnetic field. If the

magnetic field vanishes, ϖ becomes zero. One can see
the nonzero gravitational Faraday rotation or the so-called
spin precession only because of the presence of ϖ or gi or
B. It is interesting to see that ϖ or gi can vanish at

r0 ¼ rjϖ¼0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8 − 2B2Q2 þ ð3B2Q2 − 4Þsin2θ þ B2ðM2 −Q2Þsin4θ

p
−MBsin2θ

Bð2 − sin2θÞ ð70Þ

for a particular radius r ¼ r0 even if B ≠ 0. So, one cannot
see the gravitational Faraday rotation at this particular orbit,
whereas the ordinary Faraday rotation can be seen. Note
that to obtain a physically realistic r0, it must be positive,
which satisfies

sin2θ ≥
�
1 −

4

B2Q2

�
; i:e:; BQ ≤ 2 sec θ: ð71Þ

B. Gravitational Faraday rotation and Stern-Gerlach
effect in the magnetized Reissner-Nordström spacetime

For the mRN spacetime, one can deduce

g00 ¼ h ¼
�
ΔjΛj2
r2

−
r2ϖ2sin2θ

jΛj2
�
;

g≡ gϕ ¼ −
ϖr4jΛ0j2sin2θ

ΔjΛj4 − r4ϖ2sin2θ
; ð72Þ

and

γijdxidxj ¼
r2jΛj2
Δ

dr2 þ r2jΛj2dθ2 þ ΔjΛ0j4
h

sin2θdϕ2

ð73Þ

from Eq. (62). Now, using Eq. (73), we obtain

ðcurlgÞp ¼
�

4Q cos θ

r1=2ðr − 2MÞ1=2 δ
p
r

−
2Q sin θðr − 4MÞ
r3=2ðr − 2MÞ3=2 δpθ þOðQ3Þ

�
BþOðB3Þ

ð74Þ

and

ðcurlð
ffiffiffi
h

p
curlgÞÞp ¼

�
4Qðr − 3MÞ

r5=2ðr − 2MÞ3=2 δ
p
ϕ þOðQ3Þ

�
B

þOðB3Þ: ð75Þ

Now, one can calculate the effective force for the
gravitational Faraday rotation that varies as

jh curlð
ffiffiffi
h

p
curlgÞj ¼

�
4Qðr − 3MÞ sin θ
r5=2ðr − 2MÞ1=2 þOðQ3Þ

�
B

þOðB3Þ ð76Þ

≈
4BQ sin θ

r2
; ð77Þ

where Eq. (77) is valid far away (M=r ≪ 1) from the mRN
spacetime. This indicates that the effective force is propor-
tional to r−2, as the magnetic field is nonzero here. This is
similar to the “magnetic” correction term of the magnetized
Kerr case.
Now, one has to integrate the following expression:

χ ¼ −2BQ
Z

ro

rs

Z
θo

θs

ðr − 3MÞ sin θ
ðr − 2MÞ2 drdθ ð78Þ

≈ − 2BQ
Z

ro

rs

Z
θo

θs

sin θ
r

drdθ ð79Þ

to find the lowest order [i.e., neglecting ðM=rÞ1 and
ðQ=rÞ2] of the gravitational Faraday effect for the mag-
netized RN spacetime. Here we follow exactly the same
procedure that we followed in Sec. III C to calculate
Eq. (55), and obtain from Eq. (79),

χ ¼ 2BQ
Z

ψ0

−ψ0

ln

�
ro

rorbðψÞ
�
dψ

¼ 4BQ cos θ0

�
1 − ln

�
2ro
rmin

��
: ð80Þ

Equation (80) reveals that one cannot see the gravitational
Faraday effect for the equatorial orbits in the mRN
spacetime. However, the angular separation of the right
and left circularly polarized beams due to the gravitational
Faraday rotation is obtained using Eq. (39) or Eq. (80) as

Θ ¼ � 4BQ
Mω

cos θ0

�
1 − ln

�
2ro
rmin

��
: ð81Þ

The separation angle (Θ) depends on the logarithm of the
observer’s distance in this case too. This is similar to the
magnetized Kerr case. It seems that the presence of a

GRAVITATIONAL ANALOG OF FARADAY ROTATION IN THE … PHYS. REV. D 105, 064072 (2022)

064072-9



uniform magnetic field in a spacetime is responsible for Θ
to depend on the logarithm of the distance of the observer.
Interestingly, Eq. (81) shows that Θ is inversely propor-
tional to M unlike the magnetized Kerr case.
Note that an unmagnetized Reissner-Nordström space-

time cannot show the gravitational Faraday rotation and
Stern-Gerlach effect, which leads to Θ ¼ 0. On the other
hand, a mRN spacetime shows the gravitational Faraday
rotation, the gravitational Stern-Gerlach effect, the spin
precession of a test gyro and the frame-dragging effect. In
conclusion, the mRN spacetime acts as a perfectly rotating
charged collapsed object, although its spin/Kerr parameter
is zero. The source of its angular momentum is the
Poynting vector or the nonzero twist potential (E ×H).
Recently, Ref. [46] has discussed the possibility of Faraday
rotation even in Schwarzschild spacetime, due to the
possibility of curvature-dependent interactions.

V. GRAVITATIONAL FARADAY ROTATION AND
STERN-GERLACH EFFECT IN THE MASSLESS

CHARGED REISSNER-NORDSTRÖM-LIKE
SPACETIME IMMERSED IN A UNIFORM

MAGNETIC FIELD

If the mass term vanishes (M → 0) in Eq. (62), it implies
a massless charged RN-like spacetime [47]. Now, if the
massless charged RN-like spacetime is immersed in a
uniform magnetic field B, the transformed metric can be
expressed as [setting M → 0 in Eq. (62)]

ds2 ¼ jΛj2
�
−
�
1þQ2

r2

�
dt2 þ dr2

1þ Q2

r2

þ r2dθ2
�

þ jΛj−2r2sin2θðjΛ0j2dϕ −ϖdtÞ2; ð82Þ

where [18,20]

Λ ¼ 1þ 1

4
B2ðr2sin2θ þQ2cos2θÞ − iBQ cos θ; ð83Þ

jΛ0j2 ¼ jΛðr; 0Þj2 ¼
�
1þ 1

4
B2Q2

�
2

þ B2Q2; ð84Þ

and

ϖ ¼ BQ
2r

�
−4þ 2B2r2 þ B2Q2 − B2r2sin2θ

�
1þQ2

r2

��
:

ð85Þ

As the horizons do not exist for the metric presented in
Eq. (82), it represents a naked singularity, in principle.
Now, one can obtain

ðcurlgÞp¼
�
4Qcosθ

r
δpr −

2Qsinθ
r2

δpθ þOðQ3Þ
�
BþOðB3Þ

ð86Þ

and

ðcurlð
ffiffiffi
h

p
curlgÞÞp ¼

�
4Q
r3

δpϕ þOðQ3Þ
�
BþOðB3Þ: ð87Þ

The effective force for the gravitational Faraday rotation
varies as

jh curlð
ffiffiffi
h

p
curlgÞj ¼

�
4Q sin θ

r2
þOðQ3Þ

�
BþOðB3Þ:

ð88Þ

Thus, the separation angle of the right and left circularly
polarized beams arisen due to the gravitational Faraday
rotation is obtained using Eq. (39) as

Θ ¼ −ε
Z

observer

source
2BQ

�
sin θ
r

�
drdθ: ð89Þ

Although we have, so far, used ε ¼ �ðMωÞ−1 (see
Sec. II B), the same cannot be used in Eq. (89), as M ¼
0 in this particular case. However, by solving the wave
equation with the magnetic potential [see Eq. (118) of
Chap. 8 of [48]], one obtains a modified plane wave
equation due to the presence of the magnetic field [49].
From that, one may conclude the following:
ε ¼ �ðω2=B2Þ−1, where jεj ≪ 1. As the magnetic energy
(∼B2) is much less than the gravitational energy, the
contribution of ðω2=B2Þ−1 is negligible compared to
ðMωÞ−1, and therefore it does not appear in the case of
the magnetized Kerr and mRN spacetimes. On the other
hand, M vanishes in the massless RN spacetime, and this
particular term ε ¼ �ðω2=B2Þ−1 becomes important for
this case. Note, without solving the wave equation, one
may also deduce the term ðω2=B2Þ−1 from the dimension
analysis. However, eventually, we obtain from Eq. (89)

Θ ¼ ∓ 2B3Q
ω2

Z
ro

rs

Z
θo

θs

�
sin θ
r

�
drdθ ð90Þ

¼ � 4B3Q
ω2

cos θ0

�
1 − ln

�
2ro
rmin

��
; ð91Þ

which looks very similar to Eq. (81). Equation (91) also
depends on the logarithmic term, which is expected.
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A. Spin precession in the massless magnetized
Reissner-Nordström-like spacetime

Using Eq. (37), one can obtain the exact expression for
the spin precession in the massless RN spacetime as

Ωs ≈
BQ
r

½−2 cos θr̂þ sin θθ̂� þOðB3ÞQþOðQ3Þ ð92Þ

¼ rjEjjBj½2 cosðπ − θÞr̂þ sinðπ − θÞθ̂�; ð93Þ

where jEj ∼Q=r2 is the modulus of the electric field.
Although we have calculated the exact expression of
the above expression [Eq. (92)], here we write it up to
the order of B2 and Q2. To draw an analogy with the spin
(LT) precession ðΩKerr

s Þ for a slowly rotating Kerr black
hole [5,31]

ΩKerr
s ¼ 1

r3
½3ðJ:r̂Þr̂ − J� ¼ J

r3
½2 cos θr̂þ sin θθ̂� ð94Þ

(J ¼ jJj is the angular momentum of the Kerr spacetime),
we can rewrite Eq. (92) or Eq. (93) as

Ωs ¼ j½2 cosðπ − θÞr̂þ sinðπ − θÞθ̂�; ð95Þ

where j ¼ jjj ∼ rjEjjBj (i.e., E is orthogonal to B as well
as E ×B is orthogonal to r6) is the modulus of the angular
momentum density (j) of the electromagnetic field. It is
clear from Eq. (95) that the spin precession frequency
for the EM field does not follow the inverse cube law of
distance. Although jΩsj ∝ j, the angle is different by
(π − θ). This means that if the direction of angular
momentum (j) of the electromagnetic field is separated
by an angle θ with the radial direction r̂, the direction of
spin precession occurs separated by an angle (π − θ) with r̂.
As the massless charged particles have not been

observed yet [50,51] in nature, Sec. V is devoted only
for the theoretical purpose. Another problem is that the
massless charged RN-like spacetime describes a naked
singularity. Thus, as of now, this particular spacetime is
completely unrealistic. However, one can notice the sole
importance of the magnetic fields and electric charges for
the gravitational Faraday rotation and Stern-Gerlach effect
without the presence of mass and rotation parameter.
Specifically, as all the derivations of Sec. VA are inde-
pendent of mass, those might be important for the very
small massive charged particles, such as electrons and
protons. The possible applications of this special spin
precession derived in this section as well as the gravita-
tional analog of the Faraday rotation and the Stern-Gerlach

effect may be studied in the laboratory applying it to the
analog models of gravity [52–54]. For example, one may
proceed with the same arrangement as mentioned in [55]
with some modifications (i.e., submerging the whole
system in a uniform magnetic field and adding charges
of a “very low mass” at the center of the radial vortex) to
visualize the above-mentioned effect.

VI. CONCLUSION AND DISCUSSION

Our calculation has revealed a precise relation between
the gravitational Faraday rotation, gravitational Stern-
Gerlach effect, and the spin precession of a test spin in
a general stationary spacetime. We have applied this to
derive the exact expressions of the above mentioned effects
for the magnetized Kerr, magnetized Reissner-Nordström,
and magnetized massless Reissner-Nordström-like space-
times, and shown that the logarithm correction of the
distance of the source and observer in the gravitational
Faraday rotation and Stern-Gerlach effect for the said
spacetimes is an important consequence of the presence
of the magnetic field. Interestingly, we have shown that the
spin precession frequency in the magnetized massless
Reissner-Nordström-like spacetime is proportional to the
angular momentum density (j) of an ordinary electromag-
netic field, and it does not follow the inverse cube law of
distance as the slowly rotating Kerr black hole.
In the original Faraday effect at the flat spacetime, a

plane polarized electromagnetic wave rotates by an angle
ðδθFÞ [4]:

δθF ¼ 2πe3

m2
ec2ω2

Z
D

0

neðsÞBjjðsÞds; ð96Þ

where neðsÞ is the density of electrons at each point s along
the path; D is the length of the path where the light and
magnetic field interact; BjjðsÞ is the component of the
interstellar magnetic field in the direction of propagation at
each point s along the path; e is the charge of an electron; c
is the speed of light in the vacuum; me is the mass of an
electron; and ω is the frequency of light. In contrast, the
gravitational Faraday effect for an ordinary slowly rotating
Kerr black hole is proportional to aM2 and inversely
proportional to r3. In the presence of the magnetic field,
the modified term is proportional to aMB2 and ln r. Note
that the gravitational analog of the Faraday effect occurs
only when a light ray passes through the vacuum region
outside a rotating strongly gravitating object such as the
rotating black hole and rotating neutron star. It cannot be
seen in our laboratory located in the nonrotating flat
spacetime where we observe the ordinary Faraday effect.
Comparing Eqs. (59) and (80) with Eq. (96), one can find
that the ordinary Faraday effect does not have any math-
ematical relation with the gravitational Faraday effect.

6The angular momentum density (j) of an electromagnetic
(EM) field is written as

j ∼ r × ðE × BÞ:
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In the case of the gravitational Stern-Gerlach effect for an
ordinary slowly rotating Kerr black hole, it is proportional
to aM and inversely proportional to ωr3 for a distant
observer, whereas, in the presence of the magnetic field,
the modified term is proportional to aB2 and ln r, and is
inversely proportional to ω. We have shown that the
gravitational Faraday rotation and the gravitational Stern-
Gerlach effect become nonzero if the RN spacetime is
immersed in a magnetic field. In a stark contrast with the
magnetized Kerr spacetime, the gravitational Stern-Gerlach
effect in the magnetized RN spacetime is proportional to
BQ, ln r, and inversely proportional to Mω for a distant
observer. In the case of the massless charged RN spacetime,
it depends on ∼B3Q ln r=ω2. Overall, we have shown that
the magnetic field has a non-negligible effect on the
gravitational Faraday rotation and the gravitational Stern-
Gerlach effect. Although the massless charge(s) cannot be
found in nature, our result could be applicable for a very
light mass (M → 0) charged particle. Note, as the exact
expressions of the gravitational Faraday rotation and Stern-
Gerlach effect derived from our result are applicable to the
strong gravity regime, it could be helpful to study the
effects of the magnetic field on the propagation of polarized
photons of the rapidly rotating collapsed object. Another
important point which emerges is that the general spin
precession formulation (see [34] and Sec. 1.10.1 of [36]) is
applicable to any spin (with a little modification, as
mentioned in Sec. II A), i.e., the polarization vector of a
particle whether it is massive (gyroscope) or massless
(photon, graviton, etc.).
The EHT Collaboration has recently studied the polari-

zation of the ring [8] and the magnetic field structure near
M87* [9]. They have found that a part of the ring is
significantly polarized [8], and the polarization is attributed
to the Faraday rotation [9]. They also estimated that the
magnetic field strength is B ∼ 1–30 G. As a Kerr black
hole [56], it is not very unlikely that this resulting polarization
of M87* could be a mixture of both the usual Faraday
rotation and the gravitational Faraday rotation with the
additional contribution from the nonzero magnetic field,
which we presented in Eq. (59). Therefore, one may try to
extract those contributions from the data and image released
by the EHT Collaboration for M87* in 2021 [8,9]. Note,
although the estimated magnetic field strength is not so high
for M87*, a magnetic field of several hundred Gauss could be
present near Sgr A* [57]. Therefore, the gravitational Faraday
effect due to the contribution from the magnetic field could
also be higher in Sgr A* compared to M87*. This was also
one of our motivations to study the gravitational Faraday
effect in the magnetized Kerr spacetime.
In this paper, we have applied the modified geometric

optics developed in [3]. The trajectories of the polarized
photons are the null curves, which coincide with the null
geodesic for ω → 0. A deviation of the null rays from the
null geodesic is controlled by the small parameter ε. The

formalism presented in this paper has been developed from
the point of view of the static observer, and it is well
applicable for a light ray passes through the vacuum region
outside the rotating matter [4]; i.e., a null geodesic passes
close to the black holes. Therefore, we have applied this
formalism for the equatorial orbits and the symmetric
orbits about it (following [4]), to find the lowest order
of gravitational Faraday effect (arisen due to the presence of
the magnetic field) for those orbits. From the astrophysical
point of view, our result provided in this paper is well
applicable for the null geodesics which occur outside the
ergoregion; i.e., our result covers a large space from the
ergoregion to infinity, in principle. For example, one can
calculate the rotation (χ) of the plane of polarization of a
light ray [from Eq. (59)], which passes close to a Kerr black
hole immersed in a magnetic field.
Our formalism is not applicable inside the ergoregion, as

it diverges there. This is at least clear from Eq. (55) for the
Kerr spacetime. Therefore, we need to modify the current
formalism of the gravitational Faraday rotation and the
gravitational Stern-Gerlach effect following the formalism
developed in [34], which we plan to report soon in a
different article. One has to modify this present formalism
by attaching the photons to stationary observers that move
with a nonzero angular velocity [34], which helps to avoid
the divergence at the ergosurface. This approach would
allow us to study the polarization-dependent effects for
photons which closely approach a (non)magnetized col-
lapsed object.
It could be interesting to study how the polarization of

light due to the gravitational Faraday rotation and/or the
gravitational Stern-Gerlach effect modifies the black hole
shadow of M87* [8,9] in the presence of the magnetic
field. If the “bright” radiation behind the rotating collapsed
object (such as M87*) is nonmonochromatic, the position
of the shadow should depend on the frequency (ω) of the
radiation; i.e., one may observe a peculiar “rainbow effect”
[3] for the shadow of a collapsed object. The polarization
splitting might also be detectable in the future by the
astrophysical observations. Finally, it would be worthwhile
to study the possible applications of the gravitational
Faraday rotation and/or the gravitational Stern-Gerlach
effect in the realistic astrophysical problems as in [58,59].
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APPENDIX: PROJECTION OF THE ORBIT IN
THE ðr;θÞ PLANE FOR THE SLOWLY-

ROTATING KERR SPACETIME

The projection of the orbit in the ðr; θÞ plane for the Kerr
metric is governed by the following equation [see
Eqs. (178), (190), (191) of Chap. 7 of [48]]:
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Z
r

drffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r4 þ ða2 − ξ2 − ηÞr2 þ 2M½ηþ ðξ − aÞ2�r − a2η

p
¼
Z
θ

dθffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ηþ a2cos2θ − ξ2cot2θ

p ; ðA1Þ

where η and ξ are constants of motion with η > 0 which
corresponds to the null geodesics that intersect the equa-
torial plane and are symmetric about it [4,48]. This
equation determines the family of null geodesics reaching
the observer from an emitting ring. The above integration is
performed for the weak deflections only, i.e., to find the
lowest order of the gravitational Faraday effect, we calcu-
late the above integration for a=r ≪ 1, M=r ≪ 1 (follow-
ing [4]) with the weakly magnetized collapsed objects.
Therefore, Eq. (A1) reduces toZ

r

drffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r4 − ðξ2 þ ηÞr2

p ¼
Z
θ

dθffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
η − ξ2cot2θ

p : ðA2Þ

Note, Eq. (A2) does not include any term related to any of
the so-called black hole hairs (see Appendix of [4]), i.e., a
and/or M, as long as the weak deflection (i.e., the lowest
order of gravitational Faraday effect) is concerned. In a
similar manner, Eq. (A2) does not depend on B and/or Q,
and, hence the said equation is also applicable to the
magnetized Kerr as well as magnetized Reissner-
Nordström black holes which we consider in this paper.
Equation (A2) mainly depends on two parameters, η and ξ,
which are in fact related to the “celestial coordinates” α and
β [48] of the image as seen by a distant observer who
receives the light ray. One can readily verify that [48]

α ¼ ξcosecθ0; ðA3Þ

β ¼ ðη − ξ2 cot2 θ0Þ1=2; ðA4Þ

or, conversely,

ξ ¼ α sin θ0; ðA5Þ

η ¼ β2 þ α2 cos2 θ0; ðA6Þ

where θ0 is the angular coordinate of the distant observer, α
is the apparent perpendicular distance of the image from the
axis of symmetry, and β is the apparent perpendicular
distance of the image from its projection on the equatorial
plane [48].
Now, performing the integration of the left-hand side

(LHS) in Eq. (A2), one obtains

Z
dr

r2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − r2min=r

2
p ¼ 1

rmin
cos−1

�
rmin

r

�
; ðA7Þ

where rmin ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ2 þ η

p ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α2 þ β2

p
is the leading term of

the largest root of the denominator of LHS of Eq. (A1) for
the small deflection. Substituting ψ ¼ cos θ, one can obtain
from the RHS of Eq. (A2)

−
Z

dψffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
η − ψ2r2min

p ¼ −
1

rmin
sin−1

 
ψ

ffiffiffiffiffiffiffiffi
r2min

η

s !
: ðA8Þ

Now, equating Eqs. (A7) and (A8) we obtain

rorb ¼
rminffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − ðr2min=ηÞ cos2 θ
p ; ðA9Þ

which is the projection of the orbit in the ðr; θÞ plane for
small deflections. In fact, no deflection is seen in this case
[4], as Eq. (A9) does not depend on M, a, Q, and B. It is
noticed that one obtains cos θ ¼ � ffiffiffi

η
p

=rmin for a very large
r, i.e., r → ∞. Here, the plus and minus signs correspond to
the position angles θo (i.e., ψ0 ¼ ffiffiffi

η
p

=rmin) and θs (i.e.,
ψ s ¼ − ffiffiffi

η
p

=rmin ¼ −ψ0) of the observer and source,
respectively.
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