
Critical gravitational collapse of a nonminimally coupled scalar field
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We study the critical gravitational collapse of a massless scalar field nonminimally coupled to gravity,
using a quadratic coupling function with a strength parameter ξ. We concentrate on critical phenomena of
type II, and determine with an accuracy of at least 10−12 the value of the critical amplitude for collapse to a
black hole, as well as the values of the critical and echoing exponents. Obtaining such high accuracy in the
critical amplitude requires us to do a coordinate radial transformation that effectively increases resolution
near the central regions by a factor of at least 103. As expected, we find that for the case of small coupling
the critical behavior is very similar to that of a minimally coupled scalar field. On the other hand, for high
coupling the dynamics become so violent that we need to introduce a special slicing condition, known as
the shock-avoiding slicing condition, in order to avoid gauge pathologies that would otherwise cause our
simulations to fail. With this new gauge condition we are able to perform high-accuracy simulations even in
the strong-coupling regime, where we find that the critical and echoing exponents become significantly
smaller, and that the echoing behavior is richer and cannot be modeled by a single harmonic.
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I. INTRODUCTION

Studying the gravitational collapse of a real massless
scalar field, Choptuik discovered a phenomenon where at
the threshold of black hole formation Einstein’s field
equations have a universal solution, independent of the
initial data [1]. Further studies have shown two different
types of critical collapse: type I where the black holes
have a finite minimum mass, and type II where taking a
uniparametric family of initial data parametrized by p, the
black hole mass follows a scaling relation of the form

M ∝ ðp − p�Þγ; ð1Þ
where a black hole forms for p > p�. The critical exponent
γ is universal with respect to different families of initial
data, depending only on the type of matter. The exact value
p ¼ p� corresponds to a large curvature solution called the
“critical solution,” which divides the parameter space into
two regimes: if p < p� the original matter content disperses
and no black hole is formed, and if p > p� a black hole is
always formed (see for example Ref. [2] for a general
review).
The critical solutions also have the property of self-

similarity. This symmetry can be either continuous self-
similarity (CSS), or discrete self-similarity (DSS). In the
discrete case, there exists an echoing exponent Δ such that
in logarithmic time,

T ¼ − lnðτ� − τÞ; ð2Þ

the critical solution is periodic in T, with period Δ. In
Eq. (2) τ is some measure of time and τ� is the so-called
“accumulation time,” i.e., a time where for every small
neighborhood there exist infinitely many echoes as we
approach from the left τ → ðτ�Þ−. Usually τ is taken as the
proper time of an observer located at the origin. For the case
of a real massless scalar field the critical solution has a
DSS, and the values of the characteristic exponents have
been found to be γ ¼ 0.374 and Δ ¼ 3.445. These values
have been obtained both through direct numerical simu-
lations and using a semianalytical approach [1,3–7]. The
DSS found for the case of real massless scalar field is the
only possibility when the scalar field is coupled minimally
to gravity, but Liebling and Choptuik have shown that in
the Brans-Dicke theory, the critical collapse of a scalar field
can show both CSS and DSS depending on the value of the
coupling parameter [8].
In the spirit of investigating the critical collapse of a real

massless scalar field in alternative theories of gravity, we
will explore this phenomenon for a generalization of the
Brans-Dicke theory, namely the scalar-tensor theories of
gravity. Among the many possible modifications to stan-
dard general relativity, scalar-tensor theories (STT) are
those for which in the so-called Jordan frame representation
a scalar field is nonminimally coupled to the Ricci scalar in
such a way that it can be understood as a local variation
of Newton’s constant. Due to these modifications, in STT
some phenomena arise that are not present in the standard
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general relativity description, such as an extra longitudinal
component of gravitational waves [9,10], and also a
phenomenon known as “spontaneous scalarization,” where
self-gravitating solutions with no initial scalar field can
spontaneously acquire a nontrivial scalar field that drives
the solution into an energetically more favored state. This
spontaneous scalarization has been studied for both neutron
stars [11,12] and boson stars [13,14]. In a cosmological
scenario, STT have been proposed as dark energy models
in substitution of the cosmological constant [15–17].
This paper is the organized as follows. In Sec. II we

present a brief review of scalar-tensor theories of gravity
and the relevant 3þ 1 equations. Section III presents our
numerical methods, initial data and diagnostics required to
find the critical amplitude. We present the results of our
numerical simulations in Sec. IV, and we conclude
in Sec. V.

II. BASIC EQUATIONS

In this section we summarize the relevant equations that
describe the STT of gravity (for more details see for
example Refs. [13,18]). The action for scalar-tensor the-
ories with a single scalar field in the Jordan frame is given
by (in units such that c ¼ 1)

S ¼
Z �

FðϕÞ
16πG0

R −
�
1

2
gμνð∂μϕÞð∂νϕÞ þ VðϕÞ

�� ffiffiffiffiffiffi
−g

p
dx4

þ SmatðΨ; gμνÞ; ð3Þ

with ϕ the nonminimally coupled scalar field, VðϕÞ a self-
interaction potential, R the Ricci scalar of the spacetime,
and where SðΨ; gμνÞ represents the action of all matter
fields other than ϕ. Finally, the function FðϕÞ is the
nonminimally coupling function, which we have taken
to be a quadratic function of the form

FðϕÞ ¼ 1þ 8πξG0ϕ
2; ð4Þ

with ξ a positive constant. This form of FðϕÞ has been used
as a toy model for the study of scalarization in both neutron
and boson stars [13,14]. In the following we will always
consider VðϕÞ ¼ 0, corresponding to a real massless non-
interacting scalar field. The constant G0 is the usual
gravitational constant, but notice that in (3) we can identify
the “effective” gravitational constant as Geff ¼ G0=FðϕÞ.
Varying the action with respect to the spacetime metric

and the scalar field one obtains the following field
equations:

Rab −
1

2
gabR ¼ 8πG0Tab; ð5Þ

□ϕþ 1

2
f0R ¼ 0; ð6Þ

with f ≔ F=8πG0, and where f0 indicates the derivative of
f with respect to the scalar field ϕ, and□ ¼ gab∇a∇b is the
d’Alambertian operator. The effective stress-energy tensor
Tab has three separate contributions given by

Tab ≔
Geff

G0

ðTf
ab þ Tϕ

ab þ Tmatt
ab Þ; ð7Þ

Tf
ab ≔ ∇aðf0∇bϕÞ − gab∇cðf0∇cϕÞ; ð8Þ

Tϕ
ab ≔ ð∇aϕÞð∇bϕÞ −

gab
2

ð∇ϕÞ2; ð9Þ

Geff ≔
1

8πf
; ð10Þ

where Tmat
ab is the stress-energy tensor of the matter fields

other than ϕ. Taking the trace of Eq. (5), one can rewrite the
source term in (6) as

□ϕ ¼ f0Tmatt − f0ð1þ 3f00Þð∇ϕÞ2
2fð1þ 3f02=2fÞ ; ð11Þ

with Tmat the trace of Tab
mat. In this context, the Bianchi

identities directly imply that the full stress-energy tensor is
conserved:

∇cTca ¼ 0: ð12Þ

Furthermore, the field equations also lead to the conserva-
tion of the stress-energy tensor of matter on its own:

∇cTca
matt ¼ 0; ð13Þ

which implies that test particles follow the geodesics
associated with the metric gab.
As usual, we can transform our quantities to the so-called

Einstein frame as follows:

g̃μν ≔ FðϕÞgμν; ð14Þ

ϕ̃ ≔
Z �

3

4

�
F0ðϕÞ
FðϕÞ

�
2

þ 4πG0

FðϕÞ
�
1=2

dϕ; ð15Þ

Wðϕ̃Þ ≔ 4πG0Ṽðϕ̃Þ
F̃

; ð16Þ

F̃ðϕ̃Þ ¼ FðϕÞ; ð17Þ

so that the action (3) takes the form

S½g̃μν; ϕ̃;ψ � ¼
1

16πG0

Z
½R̃ − 2ð∇̃ ϕ̃Þ2 − 4Wðϕ̃Þ�

ffiffiffiffiffiffi
−g̃

p
d4x

þ Smatt½g̃μν=F̃ðϕ̃Þ;ψ �; ð18Þ
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where all quantities with a tilde are computed using the
metric g̃μν and ϕ̃. We prefer not to work in this frame
because, as pointed out in [18], even though field equations
in the Einstein frame are simpler than those in the Jordan
frame, in the Einstein frame the divergence of the matter
stress-energy tensor does not vanish [19], i.e., it is not
conserved, whereas in the Jordan frame the Bianchi
identities guarantee the conservation equations, which in
turn imply that Einstein’s weak equivalence principle holds.

A. 3 + 1 decomposition

In order to study the evolution in time of our system, we
first need to recast the field equations (5) and (6) as a
Cauchy problem. We do this by following the 3þ 1
formalism [20], and considering a globally hyperbolic
spacetime which is foliated by a family of spacelike
hypersurfaces Σt parametrized by a global time function
t. With these considerations, we rewrite the spacetime
metric gab in the form

ds2 ¼ −ðα2 − βiβiÞdt2 þ 2βidxidtþ γijdxidxj; ð19Þ

with α the lapse function, βi the shift vector, and γij the
3-metric induced on the spatial hypersurfaces. We introduce
the unit normal timelike vector na to the spacelike hyper-
surfaces Σt, and perform the 3þ 1 decomposition via the
projection operator Pa

b ≔ δab þ nanb. The extrinsic curva-
ture Kab of the spatial hypersurfaces Σt is then given by

Kab ≔ −Pc
a∇cnb ¼ −ð∇anb þ nanc∇cnbÞ: ð20Þ

For the scalar field it is convenient to introduce the following
auxiliary quantities:

Qi ≔ Diϕ ¼ Pk
i∇kϕ; ð21Þ

Π ≔ na∇aϕ ¼ 1

α

dϕ
dt

; ð22Þ

where Di is the covariant derivative compatible with the
3-metric γij, and where we have defied the operator
d=dt ≔ ∂t − Lβ, with Lβ the Lie derivative along the shift
vector. The evolution equations for Qi and Π then become

dQi

dt
¼ DiðαΠÞ; ð23Þ

dΠ
dt

¼ α½ΠK þQlDlðlnαÞ þDlQl�

−
α

2fð1þ 3f02=2fÞ ½2fV
0 − 4f0V

− f0ð1þ 3f00ÞðQ2 − Π2Þ þ f0Tmatt�: ð24Þ

From the orthogonal decomposition of the stress-energy
tensor,

Tab ¼ Sab þ Janb þ naJb þ ρnanb; ð25Þ

we obtain the energy density ρ ≔ nanbTab, the momentum
density Ja ≔ −Pb

ancTbc, and the stress tensor Sab ≔
Pc
aPd

bTcd. From (7) we see that each component of the
stress-energy tensor has three separate contributions:

ρ ¼ Geff

G0

ðρf þ ρϕ þ ρmattÞ; ð26Þ

Ji ¼
Geff

G0

ðJfi þ Jϕi þ Jmatt
i Þ; ð27Þ

Sij ¼
Geff

G0

ðSfij þ Sϕij þ Smatt
ij Þ: ð28Þ

Using now Eqs. (10) and (11), the explicit expressions for
the matter quantities (26)–(28) become

ρ ¼ 1

8πG0f

�
f0ðDkQk þ KΠÞ þ Π2

2
þQ2

2
ð1þ 2f00Þ

þ VðϕÞ þ ρmatt

�
; ð29Þ

Ji ¼
1

8πG0f
½−f0ðKk

iQk þDiΠÞ − ΠQið1þ f00Þ þ Jmatt
i �;

ð30Þ

Sij¼
1

8πG0f

�
QiQjð1þf00Þþf0ðDiQjþΠKijÞ

−
γij

ð1þ3f02=2fÞ
�
1

2
ðQ2−Π2Þ

�
1þf02

2f
þ2f00

�

þVð1−f02=2fÞþf0V 0 þf02

2f
ðSmatt−ρmattÞ

�
þSmatt

ij

�
;

ð31Þ

with Q2 ≔ QlQl, and where K ≔ γijKij is the trace of the
extrinsic curvature tensor.
The 3þ 1 evolution equations obtained from the field

equation (5) are the standard ADM (Arnowitt-Deser-
Misner) equations, given by

dγij
dt

¼ −2αKij; ð32Þ

dKij

dt
¼ −DiDjαþ α½Rij þ KKij − 2KilKl

j�
þ 4πG0α½γijðS − ρÞ − 2Sij�; ð33Þ

where Rij is the 3-Ricci tensor associated with the spatial
metric γij, and S ≔ γijSij. The Hamiltonian and momentum
constraints take the form
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H ≔
1

2
ðRþ K2 − KijKijÞ − 8πG0ρ ¼ 0; ð34Þ

Mi ≔ DlðKil − γilKÞ − 8πG0Ji ¼ 0: ð35Þ

Since above we have defined the auxiliary variable Qi,
formally we also need to add its definition (21) and an
integrability condition as new constraints:

Qi −Diϕ ¼ 0; ð36Þ

D½iQj� ¼ 0: ð37Þ

One final comment about about the well-posedness of
the field equations in the Jordan frame. At first sight one
might worry that the extra second-order derivative terms
that appear in the field equations might affect the well-
posedness of the Cauchy problem in this frame. This is one
of the reasons why the Einstein frame is usually chosen for
analyzing the system. However, the well-posedness of the
system in the Jordan frame has already been addressed by
Salgado in [21], showing that the field equations in the
Jordan frame do indeed form a strong hyperbolic system if
one chooses the gauge appropriately (see below).

B. Gauge conditions

Additionally to the evolution equations for the gravita-
tional and scalar fields, in order to obtain a closed evolution
system we also have to impose gauge conditions for the
lapse α and shift vector βi. Following [13,21], we will use
a modified Bona-Masso slicing condition for the lapse
given by

dα
dt

¼ −α2FBMðαÞ
�
K −

Θ
fBMðαÞ

f0

f
Π
�
; ð38Þ

with FBMðαÞ a positive but otherwise arbitrary function of
α, and Θ an arbitrary parameter. The specific values
FBMðαÞ ¼ Θ ¼ 1 correspond to the so-called “pseudohar-
monic” foliation, and have been used in the hyperbolicity
analysis in [18,21]. With Θ ¼ 0 one recovers the usual
Bona-Masso slicing condition [22], but as shown in [21] in
our case this choice does not lead to a strongly hyperbolic
formulation. For this reason, in what follows we will
always take Θ ¼ 1.
In relation to the choice of the Bona-Masso gauge

function FBMðαÞ, one can take

FBMðαÞ ¼ 2=α; ð39Þ

which corresponds to the standard 1þ log slicing.
However, in Refs. [23,24] one of the authors (M. A.)
explored the alternative choice:

FBMðαÞ ¼ 1þ κ=α2; ð40Þ

with κ a positive but otherwise arbitrary constant. This
choice for FBMðαÞ is made in order to avoid a particular
type of gauge pathologies that lead to singular solutions.
These pathologies resemble the shock waves of hydro-
dynamics, and for this reason are known as “gauge shocks.”
As we will show below, for some values of the nonminimal
coupling constant the evolution using the 1þ log slicing
develops a gauge pathology that causes the numerical code
to fail. We have found that these gauge pathologies can be
eliminated using the gauge function (40). In our simula-
tions below we use this shock-avoiding gauge condition
with κ ¼ 1, so that when α → 1 in the asymptotic region
we have FBM → 2, and our gauge condition mimics the
standard 1þ log slicing.
Concerning the choice of the shift vector βi we simply

set it to zero since we are mainly interested in subcritical
evolutions. For the supercritical case when a black hole
forms, a nonzero shift would be preferable in order to avoid
the well-known slice stretching effects.

C. Evolution in spherical symmetry

It is well known that the standard ADM formalism
results in a weakly hyperbolic formulation of general
relativity [20]. Because of this, for our simulations we
will use the BSSN (Baumgarte-Shapiro-Shibata-
Nakamura) formulation [25,26]. As we are only consider-
ing the case of spherical symmetry, we use the generalized
version of BSSN formulation which is adapted to curvi-
linear coordinates [13,27] [28]. Under these assumptions,
the conformal 3-metric decomposition takes the form

dl2 ¼ ψðt; rÞ4½Aðt; rÞdr2 þ Bðt; rÞr2dΩ2�; ð41Þ

where dΩ2 ¼ dθ2 þ sin θ2dφ2 is the solid angle element.
The evolution is performed using the spherically symmetric
BSSN version of Eqs. (32) and (33), where the energy
density, momentum density and stress tensor are given by
(29), (30) and (31). Additionally, as we are expecting a
spacetime with large gradients of curvature, we will use the
puncture method [29] by evolving χ ¼ ψ−4. The Klein-
Gordon equation (11) is rewritten as a first-order PD system
using (24). Specifically, we evolve the metric quantities A,
B, χ, the trace of the extrinsic curvatureK, the traceless part
of the conformal extrinsic curvature, and the radial com-
ponent of the conformal connection functions.

III. NUMERICAL SETUP

Numerical simulations are performed using the
OllinSphere code presented in [13,30,31]. OllinSphere
uses a finite difference method to discretize the Einstein
field equations using an equally spaced mesh in r.
Following [3,7], we propose a change of coordinates from
the original radial coordinate r to a new radial coordinate r̃
which is defined via the differential relation:
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dr
dr̃

¼ 1

1þ eðβr̃2þδÞ ; ð42Þ

where β and δ are arbitrary constants such that β < 0 and
δ > 0. With this transformation, as r̃ approaches infinity we
have dr=dr̃ → 1. On the other hand, as r̃ → 0, the relation
(42) approaches

dr
dr̃

¼ 1

1þ eδ
−

βeδr̃2

ð1þ eδÞ2 þOðr̃4Þ; ð43Þ

showing that the parameter δ adjusts the resolution near the
origin r̃ ¼ 0, while β measures how fast dr=dr̃ approaches
1 far away. The typical values we use for our simulations
are δ ¼ 5, β ¼ −1. With these choices, a uniform grid on r̃
becomes nonuniform in r, gaining a factor of about 103

times more resolution close to the origin. One final com-
ment related to Eq. (42): As this expression is not
analytically integrable, the differential relation must be
solved numerically. In order to reduce numerical error up to
machine precision we integrate this equation with a
Chebyshev quadrature starting from the origin, using a
fifth-order Chebyshev polynomial between each grid point.
Using the change of coordinates given by (42) does not

require any change in the internal structure of the
OllinSphere code, as it already uses the most general form
of the line element in spherical symmetry for the conformal
metric:

ds23 ¼ Aðt; rÞdr2 þ Bðt; rÞr2dΩ2; ð44Þ

with A and B positive metric functions, and dΩ2 ¼ dθ2 þ
sin θ2dφ2 the solid angle element. Once we have some
initial data (see next section), changing the radial coor-
dinate from r to r̃ modifies the explicit values of the metric
coefficients A and B, but the new metric has exactly the
same form as above with new metric coefficients given by

Ã ≔ A

�
dr
dr̃

�
2

; B̃ ≔ B

�
r
r̃

�
2

: ð45Þ

A. Initial data

As mentioned before, the matter content in our numerical
simulation consists of a massless scalar field coupled
nonminimally to gravity. For the scalar field we consider
the following initial data profiles:

ϕIð0; rÞ ¼ ϕ0eð−r
2=σ2Þ; ð46Þ

ϕIIð0; rÞ ¼ ϕ0r2eð−r
2=σ2Þ; ð47Þ

ϕIIIð0;rÞ¼ϕ0 cothðs0=σÞ
�
tanh

�
rþ s0
σ

�
− tanh

�
r− s0
σ

��
;

ð48Þ

where r, σ, s0 are free parameters. In our numerical
simulations we fix σ ¼ 1, s0 ¼ 0.5, and use the amplitude
ϕ0 as the tuning parameter for the initial pulse.
The conformal metric is initialized to the flat metric in

spherical symmetry, that is A ¼ B ¼ 1. However, once we
change to the rescaled radial coordinate r̃ this implies that

Ã ¼ ðdr=dr̃Þ2; B̃ ¼ ðr=r̃Þ2: ð49Þ

We also assume time-symmetric initial data, which
imply that the momentum constraint (35) is trivially
satisfied. This leaves the Hamiltonian constraint (34) as
the only equation to solve for the initial conformal factor
ψðr̃Þ. Boundary conditions for ψ are obtained from the
asymptotic flatness condition:

ψðr̃Þjr̃→∞ ¼ 1: ð50Þ

In practice, however, we use a boundary condition at a
finite radius of the form

∂ r̃ψ ¼ 1 − ψ

r̃
; ð51Þ

which is a Robin-type boundary condition and reflects the
fact that as r̃ → ∞ we have ψ → 1þOðr−1Þ. At the origin,
we demand that ψ must be an even function in r̃ for
regularity, that is,

∂ r̃ψðr̃Þjr̃¼0 ¼ 0: ð52Þ

Additionally, the initial gauge is completely specified by
choosing a precollapsed lapse of the form α ¼ ψ−2, as well
as zero shift vector βi ¼ 0.

B. Diagnostics

The final state of the evolution is determined by the
strength of the initial data. For a critical value of the
amplitude ϕ�

0 one finds that weak initial data with ϕ0 < ϕ�
0

completely disperse leaving behind Minkowski spacetime,
while for stronger initial data with ϕ0 > ϕ�

0 the scalar field
collapses to form black hole. The critical value ϕ�

0 is found
using a bisection method, bracketing the interval between
an amplitude for which the scalar field is dispersed ϕd, and
an amplitude ϕc for which a black hole forms. In a similar
way to [7], the dimensionless quantity

δϕ ¼ ϕc − ϕd

ϕd
ð53Þ

indicates the precision with which we have found the
critical amplitude. In order to obtain the critical exponents
we need an accuracy equal to or better than δϕ ∼ 10−6.
Increasing precision leads to longer evolutions near the
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critical solution, resulting in less uncertainty in the esti-
mation of the critical exponent γ and echoing parameter Δ.
The final state of the evolution is analyzed looking at the

behavior of the lapse at the origin. If the initial data are
dispersed, the lapse will return to 1 as the spacetime
approaches Minkowski. On the other hand, if a black hole
forms our gauge condition causes the lapse to collapse to
zero at the center. In order to better study the collapsing
configurations, we also search for an apparent horizon at
every time step. This is done by calculating the expansion
of outgoing null geodesics and looking for a place where it
becomes zero. In spherical symmetry this expansion takes
the form

Θ ¼ 1

ψ2
ffiffiffiffi
A

p
�
2

r
þ ∂rB

B
þ 4

∂ψ
ψ

�
− 2Kθ

θ ¼ 0; ð54Þ

where Kθ
θ is the angular component of the extrinsic

curvature with mixed indices. Since our study only focuses
on subcritical evolutions, we do not need to determine very
accurately the final mass of the formed black hole.
In the subcritical regime, since ξ ¼ 0 corresponds to the

minimally coupled case, we expect that the maximum value
of the 4D-Ricci scalar evaluated at the origin will follow a
scaling law corresponding to a type II critical collapse:

Rmax ≃ jϕ�
0 − ϕ0j−2γ; ð55Þ

where the factor −2 in the scaling exponent is there because
the 4D-Ricci scalar has units of length to the minus two.
Additionally to this behavior, Hod and Piran [32] noticed
that for a scalar field coupled minimally to gravity, the self-
discrete nature of the critical phenomena adds a periodic
modulation to the scaling law. The 4D-Ricci scalar is then
expected to behave as

lnRmax ¼ c − 2γ ln jϕ�
0 − ϕ0j þ fðln jϕ�

0 − ϕ0jÞ; ð56Þ

with c a constant that depends on the initial data family, and
where fðxÞ is a periodic function with a frequency given by

ω ¼ Δ
2γ

; ð57Þ

with Δ the so-called echoing exponent. Usually, to first
order one can approximate fðxÞ by a simple trigonometric
function, for example:

fðxÞ ¼ a0 sinðωxþ φÞ: ð58Þ

The 4D-Ricci then behaves as

lnRmax ¼ c− 2γ ln jϕ�
0 − ϕ0j þ a0 sinðω ln jϕ�

0 − ϕ0j þ φ0Þ;
ð59Þ

where the constants c, a0, φ0 are family dependent. Fitting
the function (59) provides us with a first method to compute
the echoing exponent Δ. But there is a second method one
can use to find Δ due to Baumgarte [33]. One can consider
the times for two pairs of consecutive zero crossings of
the scalar field ϕ evaluated at the origin, ðτn; τnþ1Þ and
ðτm; τmþ1Þ. Substituting these values in the logarithmic time
(2) we will then have the corresponding pairs ðTn; Tnþ1Þ,
ðTm; Tmþ1Þ. Assuming now that each pair differs in half the
period Δ=2, one can solve for the accumulation time τ�,
obtaining

τ� ¼ τnτmþ1 − τnþ1τm
τn − τnþ1 − τm þ τmþ1

: ð60Þ

This estimation for the accumulation time also provides us
with an estimate of the echoing period Δ given by

Δ ¼ 2 ln

�
τ� − τn
τ� − τnþ1

�
: ð61Þ

IV. NUMERICAL RESULTS

All our simulations have been performed using a method
of lines with a fourth-order Runge-Kutta integration in
time, and fourth-order centered finite differences in space.
Values for the nonminimal coupling constant ξ in (4) were
chosen in a logarithmic scale, taking as specific values
ξ ¼ 10−3; 10−2; 10−1; 1; 10. For our simulations we use a
grid spacing of Δr ¼ 0.005, with Nr ¼ 2800 points in the
radial direction, and the parameters used by the radial
coordinate transformation are δ ¼ 5 and β ¼ −1.
Additionally, we have used an adaptive time step in order
to always satisfy the Courant-Friedrich-Levy condition
required for numerical stability [20].
Critical phenomena can be strongly affected by numeri-

cal error due to either the boundary conditions or the finite
difference method. The first source of error can be highly
reduced by using constraint-preserving boundary condi-
tions. These have been implemented using the algorithm
described in [13,30], reducing by a factor of about 103 the
error introduced by the artificial boundary in comparison
with the standard Sommerfeld (radiative) boundary con-
ditions. In relation to the error introduced by the finite
difference method, we also use sixth-order Kreiss-Oliger
dissipation in order to be compatible with the fourth-order
discretization. This artificial dissipation dampens high-
frequency modes which would otherwise spoil the evolu-
tion near the black hole formation threshold.
For each value of the coupling constant ξ we test the

three different families of initial data given by Eqs. (46),
(47), and (48). Reported values for the critical exponents
ðγ;ΔÞ are the averages of the critical exponents obtained for
each family, and the uncertainty is taken as the highest
deviation from this mean value, although we will only show
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plots for family I. In each case we find the critical amplitude
with a precision about δϕ ≈ 10−12.
In order to have a basis for comparison, we first analyze

the case of a massless scalar field coupled minimally to
gravity corresponding to ξ ¼ 0, using the 1þ log slicing
condition. Figure 1 shows the maximum value of the 4D-
Ricci scalar at the origin for a subcritical evolution in this
case. Fitting the function (59) allows us to find the critical
exponents γ ≈ 0.374� 0.001 and Δ ≈ 3.45� 0.005, which
are in excellent agreement with those reported in [7,34],
and for which a semianalytical calculation gives γ ¼
0.374� 0.001 and Δ ¼ 3.4453� 0.0005. Figure 2 shows
the central value of the scalar field for a simulation with an
initial amplitude ϕ0 ¼ 0.303350064438822, which we are
taking as the critical solution, versus the logarithmic time T
defined in (2). For this case we can also use the second
method for calculating the echoing exponent using
Eqs. (60) and (61), obtaining Δ ¼ 3.42� 0.003, again in
good agreement with previous results.

Next we consider the values ξ ¼ 10−3; 10−2; 10−1 for the
nonminimal coupling parameter in Eq. (4), again using the
1þ log slicing condition. Results of the maximum value of
the 4D-Ricci scalar at the origin for each value of ξ are
shown in Fig. 3, where we also include the case ξ ¼ 0 for
comparison. In the same way as before, we fit the function
(59) and obtain the critical exponents ðγ;ΔÞ, and we also
use Eqs. (60) and (61) for a second estimate of Δ. Our
results are summarized in Table I. Figure 4 also shows the
echoing behavior of the value of the scalar at the origin as a
function of logarithmic T. For all these evolutions we
obtain a critical exponent γ ≈ 0.374, with an uncertainty of
less than 0.3%. Also, the echoing exponent is almost
exactly equal in all three cases up to a small uncertainty.
We then find that there are no major differences in the
critical behavior when compared to the minimally coupled
case.
Values of the coupling parameter such that ξ ≥ 1 require

a different treatment than the previous cases. For the
particular case with ξ ¼ 1 using a 1þ log slicing condition
we find that, while bracketing the critical amplitude using
the bisection method, once we reach a precision in the
amplitude close to δϕ ≈ 10−3 the numerical code crashes
and our simulations fail. For example, when using the
initial data family I [Eq. (46)] with an initial amplitude of
ϕ0 ¼ 0.2354, we find that the lapse α, the conformal metric

FIG. 1. Scaling of the maximum value at the origin of the 4D-
Ricci scalar for a minimally coupled scalar field (ξ ¼ 0) field. The
plot corresponds to the subcritical case, and the dots are equally
spaced along the ln jϕ0 − ϕ�

0j axis.

FIG. 2. Central value of the minimally coupled scalar field vs
logarithmic time T, clearly showing the periodic behavior of the
scalar field.

FIG. 3. Same as Fig. 1, but for different values of the coupling
parameter ξ ¼ 0; 10−3; 10−2; 10−1. All curves shows the same
slope and oscillation period.

TABLE I. Critical exponent γ and echoing exponent Δ (ob-
tained by two different methods), for different values of the
coupling parameter in (4). The three cases ξ ¼ 10−3; 10−2; 10−1

have the same critical exponents up to a small uncertainty.

ξ γ Δ (59) Δ (61)

0.001 0.374� 0.001 3.441� 0.001 3.446� 0.004
0.01 0.374� 0.001 3.442� 0.007 3.446� 0.002
0.1 0.372� 0.004 3.442� 0.003 3.445� 0.005
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coefficient Ã, and the trace of extrinsic curvature trK all
develop very large gradients at r̃ ≈ 2.55 that cause the code
to crash at a coordinate time t ≈ 3.53. We have found
that these large gradients in fact becomes worse as we
increase our numerical resolution. This is shown in Fig. 5,
where we plot results from three different resolutions:
Δr̃ ¼ 0.02; 0.01; 0.005. This behavior is quite similar to
the “gauge shocks” described by one of the authors in
[23,24], as well as the problems reported by Hilditch et al.
in [35] while evolving near-critical Brill wave space-
times [36,37].
We have in fact traced the problem with these large

gradients to the choice of the 1þ log slicing condition, and
have therefore changed our gauge choice to the “shock-
avoiding” lapse fBMðαÞ ¼ 1þ 1=α2 described in Eq. (40)
(with κ ¼ 1). In order to compare both slicing conditions
we also evolved the case ξ ¼ 0 using the shock-avoiding
slicing condition, obtaining the critical exponents γ ¼
0.374� 0.003 and Δ ¼ 3.44� 0.005. Figure 6 shows
the critical behavior using both lapse conditions for the
initial data family I. The top panel shows a comparison of
the scaling of the maximum central value of the 4D-Ricci
scalar for both slicings, while the lower panel shows the
absolute difference between them. Although in the lower
panel of the figure some sharp peaks can be observed, the
maximum absolute difference is only about 6 × 10−2,
implying a maximum percentage difference of less than
0.3%. These peaks occur mostly for simulations that are
extremely close to the critical solution, and are probably
due to the high sensitivity of the results on the numerical
method, particularly when obtaining the maximum value of
the Ricci scalar which can become quite large. Still, one can
clearly see from the top panel of the figure that both slicing
conditions give very similar results.
Changing to the shock-avoiding slicing condition now

also allows us to evolve the case with ξ ¼ 1 and ϕ0 ¼
0.2354 that we mentioned above until a black hole is

formed at t ≈ 5.5, thus showing that this in fact corresponds
to a supercritical case. As was already pointed out in [24],
one possible problem with the shock-avoiding slicing
condition is that lapse is now allowed to take negative
values. We can see that this is indeed the case in Fig. 7,
where we plot the central value of the lapse as a function of

FIG. 4. Central value of the scalar field plotted vs logarithmic
time T for ξ ¼ 0; 10−3; 10−2; 10−1, showing the periodic behavior
of the scalar field.

FIG. 5. Snapshots of the lapse function α, the conformal radial
metric coefficient Ã, and the trace of the extrinsic curvature trK,
at coordinate time t ≈ 3.53, for ξ ¼ 1 and initial data of type I
with ϕ0 ¼ 0.2354, using a 1þ log slicing condition and three
different resolutions. We can see that all three functions develop
large gradients close to r̃ ≈ 2.55, that in fact become worse with
increased resolution. These gradients cause the simulations to fail
shortly after this time.
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coordinate time for this same simulation. We have found
that having the lapse sometimes become negative in the
central regions does not in fact seem to cause any problems.
Quite the opposite, the negative values of the lapse helps to
avoid the large gradients that caused the simulations to
crash with the 1þ log slicing condition. The negative
lapse would seem to make the slices back away from a
possible coordinate singularity, and later start moving
forward again.
Using the shock-avoiding slicing condition we have been

able to perform simulations with much larger values of the
coupling parameter ξ, and have accurately determined the
critical exponents. The critical behavior for the cases with
ξ ¼ 1; 10 is shown in Fig. 8, which plots the scaling of the
maximum value of the 4D-Ricci scalar for these cases.
Even by eye one can see that the plot now shows at least
two different superposed oscillation frequencies. This can
be seen more clearly after subtracting a linear fit from the
numerical data, as shown in Fig. 9. This observation is
further confirmed by applying a fast Fourier transform

FIG. 8. 4D-Ricci scaling for the subcritical case with coupling
parameters ξ ¼ 1; 10.

FIG. 9. Same data as in Fig. 8 after subtracting a linear fit. The
top panel shows the case for ξ ¼ 1, while the bottom panel shows
the case for ξ ¼ 10.

FIG. 6. Top panel: 4D-Ricci scaling for the subcritical case with
coupling parameter ξ ¼ 0, using both the 1þ log and shock
avoiding slicing conditions. Bottom panel: Absolute value of the
difference between both plots on a logarithmic scale.

FIG. 7. Lapse function α evaluated at the origin using the
shock-avoiding slicing condition for the case with ξ ¼ 1 and
ϕ0 ¼ 0.2354. Using this condition the lapse becomes negative at
coordinate time t ≈ 0.8, but it quickly returns to positive values.
The negative values of the lapse do not seem to cause any
problems with the simulation.
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(FFT) to the data after subtracting a linear fit of the form
2γ ln jϕ0 − ϕ�

0j þ c. Results of this FFT can be seen in
Fig. 10, which clearly reveals the presence of a fundamental
frequency ω and at least the first two harmonics.
In fact, the difference of the 4D-Ricci scaling from the

linear fit for the case with ξ ¼ 10 resembles a smooth
sawtooth. From Fig. 10 we can observe that the highest
peaks in the Fourier transform are at frequencies ω and 2ω.
Accordingly, instead of just fitting a function of the form
(59), we add a second term with frequency 2ω:

lnRmax ¼ C− 2γ ln jϕ�
0 − ϕ0j þ a0 sinðω ln jϕ�

0 − ϕ0j þ φ0Þ
þ a1 sinð2ω ln jϕ�

0 − ϕ0j þ φ1Þ: ð62Þ

Table II shows our results for the cases ξ ¼ 1; 10. The
uncertainty in the critical exponent γ in each case is less
than %2, although the echoing exponent Δ could not be so
accurately determined having an uncertainty of about %6.
Figure 11 also shows the periodic behavior of ϕ in
logarithmic time T for these two cases.
Considering only the cases shown in Tables I and II, one

can observe a decrease in the critical exponent values, even
though the strong-coupling cases ξ ¼ 1; 10 require a better
study. Also, for the cases with a stronger coupling it is clear
that the second harmonic of the fundamental frequency
cannot be neglected in the 4D-Ricci scaling.

V. CONCLUSION

We performed numerical simulations for the critical
collapse of a nonminimally coupled massless scalar field
with a quadratic coupling function, using a BSSN code
adapted to spherical symmetry. Although the original
structure of the code uses a uniform radial grid, the
extremely high resolution needed for evolving the data
in the threshold of black hole formation required us to
employ a coordinate transformation in the radial direction.
With this modification we gain a factor of about 103 times
more resolution near the origin when compared to the
original grid. In all cases the value of the critical amplitude
is found to an accuracy of approximately δϕ ≈ 10−12.
We find that for small values of the coupling parameter

ξ < 1, the results obtained for both the critical exponent γ
and echoing exponent Δ show no significant difference
from the case of a massless minimally coupled scalar field.
On the other hand, for values of the coupling parameter
such that ξ ≥ 1 we have found that, when using the 1þ log
slicing condition, large gradients develop in the lapse, the
conformal coefficient metric Ã, and the trace of extrinsic
curvature trK, that cause the numerical code to crash and
severely limit the accuracy with which we can find the
critical amplitude to only about δϕ ≈ 10−3. Further analysis
shows that these large gradients are even sharper at higher
numerical resolutions, resembling results obtained in the
study by Hilditch et al. on Brill waves [35]. For this reason,
in the case of large coupling parameters we have switched
to using the so-called shock-avoiding slicing condition
introduced in [23,24] in order to avoid a particular class of
gauge pathologies known as gauge shocks.
Using this new slicing condition we have been able to

follow much further the simulations with strong-coupling
parameters and have been able to determine the critical
amplitude with high accuracy. This has allowed us also to
find both the critical exponent and echoing exponent,

FIG. 10. Fourier transforms of the data shown in Fig. 8. One
can clearly see a fundamental frequency plus at least its first two
harmonics.

TABLE II. Critical exponent γ and echoing exponent Δ
(obtained by two different methods), for values of the coupling
(4) ξ ¼ 1; 10.

ξ γ Δ (62) Δ (61)

1 0.368� 0.001 3.386� 0.017 3.450� 0.080
10 0.365� 0.006 3.109� 0.007 2.981� 0.193

FIG. 11. Central value of the scalar field plotted vs logarithmic
time T for ξ ¼ 1; 10, showing the periodic behavior of the
scalar field.
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showing a decrease in their values as the coupling param-
eter ξ increases. Furthermore, we have also found that for
strong couplings the periodic function which appears in
the scaling of the 4D-Ricci scalar could not be simply
approximated by a single sine function. After performing a
Fourier transform we observe that this scaling also has
important contributions from the second harmonic of the
fundamental frequency, and maybe even from the third.
In summary, our results show that for small coupling

parameters the simulations are very similar to the case of a
minimally coupled scalar field, while for the case of large
coupling parameter the evolution is significantly more
complex, leading to stronger dynamics that require the
use of improved gauge conditions, and resulting in a
modification of the critical exponents as well as a richer
periodic structure in the echoes of the scalar field.
One final comment about the fact that while using the

shock-avoid slicing condition (40) the lapse function can
sometimes become negative. Allowing for negative values
of the lapse implies that the spatial slices will sometimes
evolve backwards in time for a while before moving
forward again. Such behavior can introduce some spurious
oscillations that might complicate the analysis of the critical
collapse. This is shown in Fig. 12, where one can see that at
each zero crossing of the nonminimally coupled (NMC)
scalar field at the origin, there are small oscillations around
zero, possibly due to the negative values of the lapse.
Because of this, in Eq. (60) instead of using consecutive
zero crossings of the scalar field, we have used the
maximum values of the absolute value of the NMC scalar
field. In order to make sure that the negative values of the
lapse do not affect our results we just need to verify that for
each two arbitrary pairs ðN;MÞ of the maximum absolute
value of the scalar field, which occur at coordinate times
ðtN; tmÞ and corresponding proper times at the origin
ðτN; τMÞ, if we have tN < tM then we also have τN < τM.
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APPENDIX: EINSTEIN FRAME ANALYSIS

Using Eqs. (14) and (15) we can also repeat our analysis
of the critical behavior in the Einstein frame, but now using
the quantities ϕ̃ and R̃. In the Einstein frame, the scalar field
(15) with coupling function (4) can be approximated for
ξ ≪ 1 as

ϕ̃ ¼ 2
ffiffiffi
π

p
ϕ −

8

3
ðG0π

3=2ϕ3ÞξþOðξ3=2Þ: ðA1Þ

Since the maximum value of jϕj is of order 10−1, ϕ̃ and ϕ
are related up to a scaling factor plus some negligible terms.
Also, from (14), the proper time in the Einstein frame τE for
ξ ≪ 1 will be approximately equal to the proper time in the
Jordan frame τJ, up to second order in ξ. This implies that
the zero crossings for ϕ̃ will occur at the essentially same
proper time in both frames, so we expect that the echoing
exponents in both frames will be the same up to second
order in ξ2 for ξ ≪ 1. As was done before, we estimate the
echoing period by analyzing the periodic behavior in the
Ricci scalar R̃, which can be computed through

R̃¼ 1

8πG0f

�
R

�
1þ 3

2

f02

f

�
−
3

2

�
2ff00 − f02

f2

�
gμν∂μϕ∂νϕ

�
:

ðA2Þ

Figure 13 shows the scaling behavior of R̃max. Even by eye
we can see that the critical exponents are very similar to
each other. Next, we subtract a linear fit to highlight the
periodic behavior. The resulting functions are shown
in Fig. 14.

FIG. 12. Central value of the scalar field plotted for coupling
values ξ ¼ 1; 10 with their respective value of the lapse. The
scalar field develops small oscillations around zero due to the
negative value of the lapse.

FIG. 13. Scaling of the maximum value of the Ricci scalar in
the Einstein frame for different coupling values.
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After applying a Fourier transform to the curves shown
in Fig. 14, we find that for the cases ξ ¼ 0.001, 0.01 obtains
only one frequency mode that characterizes the periodic
behavior, so that we can fit the Ricci scalar with a function
of the form (59). For ξ ≥ 0.1, we obtain a second frequency
which is the double of the fundamental frequency as we
show in Fig. 15, so that in these cases we fit the behavior
using a function of the form (62). In particular, we see that
for these cases, while in both the Jordan and Einstein
frames there exists a second-harmonic frequency, the
amplitude of the second harmonic is considerably smaller
in the Einstein frame. Interestingly, we also find that for the
case ξ ¼ 0.1 there is a clear contribution from a second
harmonic in the Einstein frame which was not apparent in
the Jordan frame. At this point we are unsure as to how to
interpret these differences. It could have something to do
with the fact that in the Jordan frame the effective
gravitational constant oscillates with the scalar field, while
in the Einstein frame it does not.
Finally, our results for γ and Δ are presented in Table III.

As done in the Jordan frame, we use (61) to obtain a second
estimation for the echoing period Δ. As expected, for
ξ ¼ 0.001, 0.01γ and Δ are very similar to that obtained in
the Jordan frame.
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