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The light rings (LRs) topological charge (TC) of a spacetime measures the number of stable LRs minus
the number of unstable LRs. It is invariant under smooth spacetime deformations obeying fixed boundary
conditions. Asymptotically flat equilibrium black holes (BHs) have, generically, TC ¼ −1. In Einstein-
Maxwell theory, however, the Schwarzschild-Melvin BH—describing a neutral BH immersed in a strong
magnetic field—has TC ¼ 0. This allows the existence of BHs without LRs and produces remarkable
phenomenological features, like panoramic shadows. Here we investigate the generalized Schwarzschild-
Melvin solution in Einstein-Maxwell-dilaton theory, scanning the effect of the dilaton coupling a. We find
that the TC changes discontinuously from TC ¼ 0 to TC ¼ −1 precisely at the Kaluza-Klein value
a ¼ ffiffiffi

3
p

, when the (empty) Melvin solution corresponds to a twisted Kaluza-Klein reduction of five-
dimensional flat spacetime, i.e., the dilaton coupling a induces a topological transition in the TC. We relate
this qualitative change to the Melvin asymptotics for different a. We also study the shadows and lensing of
the generalized Schwarzschild-Melvin solution for different values of a, relating them to the TC.

DOI: 10.1103/PhysRevD.105.064070

I. INTRODUCTION

The light rings (LRs) topological charge (TC) [1] has
proved to be a powerful concept to establish generic
properties on the existence and type of LRs around compact
objects. It was originally proposed to demonstrate that any
equilibrium ultracompact object, stationary and axisym-
metric, that can result from (an incomplete) gravitational
collapse of a near Minkowskian spacetime must have
TC ¼ 0 [1]. This means that LRs must come in pairs for
such ultracompact objects, with one being stable and
another unstable in each pair—see also [2] for an earlier
work restricted to spherical symmetry and [3] for a
discussion on the degenerate case. Thus, if a horizonless
ultracompact object contains an unstable LR, as to mimic
the properties of black holes (BHs), another (stable) LR
must also be present. It has been argued that the latter
triggers a spacetime instability [4,5]. Thus, this result has
the potential to rule out ultracompact objects smoothly
formed from Minkowski spacetime as dynamically viable
BH mimickers. Yet, the confirmation of the suggested
spacetime instability and the corresponding timescales are

open questions (see [6] for a discussion in a specific
example).
Another application of the TC was given in [7], to show

that, generically, asymptotically flat equilibrium BHs,
even in modified gravity, have TC ¼ −1. In other words,
BHs have one unstable LR in excess to any other possible
stable-unstable LR pairs. This is of course the case for the
paradigmatic BHs of general relativity (GR), described by
the Kerr metric [8]. Several generalizations of this result,
for which TC ¼ −1 still holds in BH spacetimes, have been
discussed—see e.g., [9–14].
A qualitatively different example for the TC of a BH

spacetime, however, was given in [15]. Therein a
Schwarzschild BH was immersed in a strong magnetic
field, described by the Melvin solution of Einstein-
Maxwell theory [16]. The resulting Schwarzschild-
Melvin spacetime, first discussed by Ernst [17], was shown
to have TC ¼ 0. This means that, regardless of how small,
but nonzero, the magnetic field B is, it changes the
spacetime concerning its LRs composition. At the basis
of this result stands the fact that any B ≠ 0 changes the
spacetime asymptotics; thus no Melvin solution, regardless
of how small B may be, is a perturbation of flat spacetime.
A similar status holds for a cosmological constant: no
matter how small, it changes the global structure of the
spacetime. It was shown in [15] that the Melvin asymp-
totics introduce a stable LR, which, together with the usual
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(unstable) Schwarzschild LR, explains TC ¼ 0. However,
for a fixed BH massM, there is critical value Bc, for which
the two LRs merge, and for B > Bc the BH spacetime
has no LRs.
It is well known that there is a close relation between the

LRs, or more generically the fundamental photon orbits
(FPOs) [18], and the edge of what is generally known as
the BH shadow [19]—see [20,21]. Thus, the absence of
LRs for sufficiently large BM in the Schwarzschild-Melvin
spacetime raises the interesting question on how does
this impact on the BH shadow. In fact, it was discussed
in [15] that this leads to panoramic shadows, seen (almost)
all around the observers’ sky, along the equatorial plane.
Moreover, the gravitational lensing of the Schwarzschild-
Melvin spacetime was discussed, for instance, in
Refs. [15,22].
The Schwarzschild-Melvin example shows how the

asymptotic structure may change the TC of a BH space-
time. To gain further insight on this connection, in this
paper we further deform the Schwarzschild-Melvin space-
time by embedding Einstein-Maxwell theory in a larger
family of models: Einstein-Maxwell-dilaton theory, with a
nonminimal coupling between the dilaton and the Maxwell
field, specified by a parameter a, cf. action (1) below. This
one-parameter family of models is known to describe
several special cases of interest. For:

(i) a ¼ 0, it describes the standard Einstein-Maxwell
theory;

(ii) a ¼ 1: it describes a truncation of a low-energy
effective field theory emerging from the heterotic
string;

(iii) a ¼ ffiffiffi
3

p
it describes the original Kaluza-Klein (KK)

theory, obtained by the dimensional reduction on a
circle of five dimensional (D ¼ 5) vacuum GR.

Independently of these special cases, one may consider any
value of a. Moreover, an appealing feature is that some
well-known Einstein-Maxwell solutions (a ¼ 0) can be
generalized to arbitrary a in closed analytic form [23]. This
is precisely the case of the Schwarzschild-Melvin solution,
that for generic a shall be dubbed Schwarzschild-dilatonic-
Melvin (SdM) BH, given in Eqs. (8)–(10) below. The SdM
solution can be seen as a three parameter family, described
by ðM;B; aÞ, althoughM, B are integration constants and a
is a parameter in the action. Nonetheless, for scanning the
space of solutions one can take these three parameters on
equal footing.
One of the interesting features concerning the SdM

family of solutions is the status of the empty dilatonic-
Melvin background (M ¼ 0) [24]. Its asymptotic structure
varies with a. Moreover, for the special KK value, a ¼ ffiffiffi

3
p

,
the Melvin background has a remarkably simple interpre-
tation when KK uplifted to D ¼ 5: it is just flat spacetime
compactified with a twist [23]. As we shall show, precisely
at this value of a there is a discontinuous change of the
TC of the SdM family, i.e., a topological transition: for

a ≤
ffiffiffi
3

p
, TC ¼ 0, which includes the Einstein-Maxwell

case studied in [15]; for a >
ffiffiffi
3

p
, on the other hand,

TC ¼ −1, as for asymptotically flat BHs [7].
We shall split the SdM family of solutions into three

distinct cases: Case I, Case IIA and Case IIB. Case I occurs
for a ≤

ffiffiffi
3

p
(TC ¼ 0), and there may be two or zero LRs

outside the horizon. Case IIA occurs for
ffiffiffi
3

p
< a <

ffiffiffiffiffiffiffiffiffiffi
19=6

p
(TC ¼ −1) and there may be one unstable or three (two
unstable and one stable) LRs outside the horizon. Finally
case IIB is described by a ≥

ffiffiffiffiffiffiffiffiffiffi
19=6

p
(TC = −1), and there

is only one unstable LR outside the horizon. Using the
backwards ray-tracing technique, we shall also compute
the shadows and gravitational lensing of the SdM BH for
each case described above, exhibiting qualitatively distinct
results for each case.
This paper is organized as follows. In Sec. II we discuss

the Einstein-Maxwell-dilaton model, describing in particu-
lar the connection to D ¼ 5 vacuum GR, for the KK
coupling a ¼ ffiffiffi

3
p

. In Sec. III we present the SdM solution,
discuss some of its properties and show the D ¼ 5
interpretation of the Melvin KK solution. In Sec. IV we
discuss null geodesics in the SdM spacetime and use them
as a probe of the asymptotic structure for different a. In
Sec. V we study the LRs in this SdM family for different
values of a and B, while in Sec. VI we explain the results
for the total number of LRs using topological arguments
and show that the parameter a induces a topological
transition of the TC. In Sec. VII we discuss the shadows
and lensing of a selection of SdM spacetimes. In Sec. VIII
we present our final remarks about the TC, shadow and
lensing in the SdM family of solutions. In the remaining
of this paper, we shall use geometrized units such that
G ¼ c ¼ 1.

II. EINSTEIN-MAXWELL-DILATON THEORY

We shall study the Einstein-Maxwell-dilaton model
described by the following action:

S ¼ 1

16π

Z
d4x

ffiffiffiffiffiffi
−g

p ½R − 2ð∇ΦÞ2 − e−2aΦF2�; ð1Þ

where R is the Ricci scalar curvature computed from the
metric gμν, with determinant g, Φ is the dilaton field, and
F2 ≡ FμνFμν is the Maxwell invariant where Fμν ¼ ∂μAν −
∂νAμ is the Maxwell-Faraday 2-form and Aμ the electro-
magnetic potential 1-form. The spacetime coordinates take
values μ, ν ¼ 0, 1, 2, 3. The shadows in the Einstein-
Maxwell-dilaton for asymptotically flat BHs was studied,
for instance, in Ref. [25]. Here we focus on Einstein-
Maxwell-dilaton BHs with Melvin asymptotics.
As described in the Introduction, one may take any value

for the dilatonic coupling, a ∈ R. Since a → −a corre-
sponds simply to Φ → −Φ, we can restrict to a ∈ Rþ

0 .
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There are, moreover, three special values: a ¼ 0, 1,
ffiffiffi
3

p
.

The latter, in particular, provides interesting geometrical
connections. For a ¼ ffiffiffi

3
p

, the action (1) is the KK dimen-
sional reduction of D ¼ 5 GR without matter. Let us make
this explicit, as it will be of use below.
One considers the D ¼ 5 Einstein-Hilbert action

S ¼ 1

16πG5

Z
d5X

ffiffiffiffiffiffi
−ĝ

p
R̂; ð2Þ

whereG5 is the five dimensional Newton’s constant (which
was reinserted for the sake of clarity), hatted quantities are
five dimensional and XM ¼ ðxμ; yÞ are the five dimensional
coordinates, with M ¼ ðμ; 4Þ and X4 ≡ y is the coordinate
along the fifth dimension. Next one considers the KK
ansatz; it amounts to writing the five dimensional metric
ĝMN in terms of four dimensional fields, ðgμν; Ãμ; Φ̃Þ. It
is assumed that the 4-dimensional fields depend on xμ

but not on y; the latter is assumed to be a cylindrical
coordinate, i.e., 0 ≤ y ≤ 2πRwith the endpoints identified,
y ∼ yþ 2πnR, ∀ n ∈ Z, and R a fixed radius scale of the
extra dimension. Thus, this assumption is called cylindrical
condition.1 The explicit ansatz KK is

dŝ2 ¼ eαΦ̃½gμνdxμdxν þ e2Φ̃ðdyþ ÃμdxμÞ2�: ð3Þ

Ignoring, for the moment, the prefactor eαΦ̃, the KK ansatz
has a simple geometrical interpretation. One describes the
five dimensional spacetime as a circle fiber bundle over a
4-dimensional base spacetime with metric gμν. At a given

point of the base, the proper size of the circle is 2πReΦ̃—
hence the name dilaton for the scalar field, as it describes
the variation in size of the extra dimension. Moreover, the
4-dimensional gauge potential Ãμ describes how the fiber
bundle twists.
Expressing Eq. (2) in terms of the ansatz (3), one can

integrate out the fifth coordinate due to the cylindrical
condition. Then, one finds a four dimensional action which,
in general, is not in the Einstein frame, except if one chooses

α ¼ −
2

3
: ð4Þ

With this choice, the action (2) becomes

S ¼ 2π

16πG5

Z
d4x

ffiffiffiffiffiffi
−g

p �
R −

2

3
ð∇Φ̃Þ2 − 1

4
e2Φ̃F̃2

�
: ð5Þ

Rescaling ðÃμ; Φ̃Þ and relating the Newton’s constant in four
and five dimensions as

Ãμ ¼ 2Aμ; Φ̃ ¼ −
ffiffiffi
3

p
Φ;

G5

2π
¼ G4; ð6Þ

where G4 is the 4-dimensional Newton’s constant, then
Eq. (5) becomes Eq. (1), with the KK value a ¼ ffiffiffi

3
p

(G4 was
set to unity).
To summarize, any solution ðgμν; Aμ;ΦÞ of Eq. (1) with

a ¼ ffiffiffi
3

p
yields a five dimensional Ricci flat metric of the form

dŝ2 ¼ e2Φ=
ffiffi
3

p
gμνdxμdxν þ e−4Φ=

ffiffi
3

p
ðdyþ 2AμdxμÞ2: ð7Þ

III. SCHWARZSCHILD-DILATONIC-MELVIN
SOLUTION

A solution of the model (1) describing a neutral BH in a
Melvin-like magnetic field for arbitrary values of a—the
SdM solution—was found in Ref. [23]. The line element is
given by

ds2 ¼ Λðr; θÞ 2

1þa2

�
−fðrÞdt2 þ dr2

fðrÞ þ r2dθ2
�

þ Λðr; θÞ− 2

1þa2r2sin2θdϕ2; ð8Þ

where the two metric functions are

fðrÞ≡1−
2M
r

; Λðr;θÞ≡1þ
�
1þa2

4

�
B2r2sin2θ: ð9Þ

The solution is completed by the dilaton field and the
electromagnetic potential 1-form, which describes the
external magnetic field. These are given by

e−2aΦ ¼Λðr;θÞ 2a2

1þa2 ; A¼ 2

ð1þa2ÞB
�
1−

1

Λðr;θÞ
�
dϕ: ð10Þ

The solution is, therefore, determined by three param-
eters ðM;B; aÞ. Some special cases are

(i) for M ¼ 0 it reduces to a generalized Melvin
solution. The original Melvin solution was found
for a ¼ 0 [16], whereas this generalization, first
found in Ref. [24], holds for general a, thus depend-
ing on both B and a;

(ii) for B ¼ 0, it reduces to the Schwarzschild solution,
regardless of a. The dilaton becomes a constant in
accordance with scalar no-hair theorems—see e.g.,
Ref. [26] and the solution depends solely on M;

(iii) for a ¼ 0, it reduces to the Schwarzschild-Melvin
solution found by Ernst [27], which depends on M
and B, whose TC was discussed in Ref. [15];

The line element (8) presents singularities at r ¼ 0
and r ¼ 2M. The former is an irremovable singularity,
as can be seen by computing the Kretschmann scalar of
this geometry. The latter is a coordinate singularity, and
can be removed by writing the line element in, say,

1A possible dependence of the 4-dimensional fields on y can
be expressed in Fourier modes, leading to an infinite tower of, so
called, KK modes.
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Eddington-Finkelstein-like coordinates. Thus one introdu-
ces the advanced time u,

du ¼ dtþ dr
1 − 2M

r

; ð11Þ

yielding the line element

ds2 ¼ Λ
2

1þa2ð−fðrÞdu2 þ 2dudrþ r2dθ2Þ
þ Λ− 2

1þa2r2sin2θdϕ2; ð12Þ

which is regular at r ¼ 2M. In the standard Schwarzschild
solution r ¼ 2M corresponds to the location of the event
horizon. Since the line element (8) is not asymptotically
flat, the definition of a teleological event horizon becomes
subtle. In Ref. [15] it was shown that r ¼ 2M corresponds
to the location of an apparent horizon in the Schwarzschild-
Melvin geometry (a ¼ 0). Similarly, we can also show that
r ¼ 2M is the location of an apparent horizon for general a
(see Sec. II of Ref. [15] for further details). In Fig. 1 we
show the isometric embedding in Euclidean 3-space of the
SdM apparent horizon for different values of a and B. The
coordinates x and z are defined as (see Refs. [28–30] for
further details):

FðuÞ≡ 1 − u2

Λ
2

1þa2
; u≡ cos θ; ð13Þ

x≡ 2M
ffiffiffiffiffiffiffiffiffiffiffi
FðuÞ

p
cosϕ; ð14Þ

z≡ 2M
Z ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 1
4
ðdFduÞ2

FðuÞ

s
du: ð15Þ

One observes that increasing BM for fixed a (a for fixed
BM) makes the horizon geometry more (less) prolate.
Let us close this section by considering the special case

with M ¼ 0 and a ¼ ffiffiffi
3

p
, for which the SdM solution

simplifies considerably to

ds2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λðr; θÞ

p
½−dt2 þ dr2 þ r2dθ2� þ r2sin2θdϕ2ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Λðr; θÞp ;

where

Λðr; θÞ≡ 1þ B2r2sin2θ ð16Þ

and

e−2Φ=
ffiffi
3

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λðr; θÞ

p
; A ¼ 1

2B

�
1 −

1

Λðr; θÞ
�
dϕ: ð17Þ

Then, using Eq. (7), the corresponding five dimensional
geometry is, after a slight rearrangement:

dŝ2 ¼ −dt2 þ dr2 þ r2dθ2 þ r2 sin2 θðdϕþ BdyÞ2 þ dy2:

ð18Þ

This is obviously 5-dimensional Minkowski spacetime,
where the five dimensional azimuthal coordinate of the
latter is

φ5 ≡ ϕþ By: ð19Þ

FIG. 1. Embedding of the apparent horizon geometry of the
SdM BH in Euclidean 3-space for: (top panel) several values of
B and a ¼ ffiffiffi

3
p

(KK value); (bottom panel) several values of a
and BM ¼ 0.5.
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Thus, the four-dimensional KK Melvin solution is simply
flat five-dimensional spacetime. The four-dimensional non-
triviality comes from a twisted KK reduction. Indeed, the
geometrical interpretation is that one is simultaneously
identifying the cylindrical coordinate y and the five-dimen-
sional azimuthal coordinate φ5 as

ðy;φ5Þ ∼ ðyþ 2πnR;φ5 þ 2πmþ 2πnRBÞ; ð20Þ

where m ∈ Z reflects the standard periodicity of the five
dimensional azimuthal coordinate. In other words, each
period along y induces a variation of 2πRB along φ5,
where B is a parameter defining this twist in φ5. The KK
reduction is then performed along the orbits of this identi-
fication, corresponding to the Killing vector ∂y þ B∂φ5

. The
four-dimensional azimuthal coordinate ϕ is a constant along
these orbits and has the standard period inherited from
φ5, ϕ ∼ ϕþ 2πm.

IV. NULL GEODESICS AND ASYMPTOTICS

Let us now consider null geodesics on the SdM geometry.
We adopt the Hamiltonian formalism. The Hamiltonian for
null geodesics in a curved spacetime is given by

H ¼ 1

2
gμνpμpν ¼ 0; ð21Þ

where pμ is the photon’s momentum 4-covector. Hamilton’s
equations are

_xμ ¼ ∂H
∂pμ

; ð22Þ

_pμ ¼ −
∂H
∂xμ ; ð23Þ

where the overdots denote differentiation with respect to the
affine parameter. The spacetime’s [given by Eq. (8)] statio-
narity and axial symmetry imply two conserved quantities
along the null geodesics; they are

pt ¼ −E; ð24Þ

pϕ ¼ L: ð25Þ

Taking account the constants of motion pt and pϕ, the
explicit form of the Hamiltonian (21) becomes

H ¼ Tðr; θÞ þ Vðr; θ; E; LÞ; ð26Þ

where

Tðr; θÞ ¼ grrðprÞ2 þ gθθðpθÞ2; ð27Þ

Vðr; θ; E; LÞ ¼ −
Λðr; θÞ− 2

1þa2E
fðrÞ þ Λðr; θÞ 2

1þa2L2

r2sin2θ
; ð28Þ

are the kinetic and the potential terms, respectively. The latter
can be cast in terms of a new effective potential, Hðr; θÞ,
which is independent of E and L:

Vðr; θ; E; LÞ ¼ L2Λðr; θÞ 2

1þa2

fðrÞ
�
Hðr; θÞ − 1

η

��
Hðr; θÞ þ 1

η

�
ð29Þ

and η≡ L=E is the impact parameter of the geodesic. For the
SdM BH, this new effective potential is given by

Hðr; θÞ≡ Λðr; θÞ 2

1þa2fðrÞ12
r sin θ

: ð30Þ

This effective potential is illustrated in Fig. 2.
The kinetic term [Tðr; θÞ] is always non-negative.

Thus, the phase space of null geodesics must obey
Vðr; θ; E; LÞ ≤ 0. Hence the motion of null geodesics
obeys the following inequality:

1

jηj ≥ Hðr; θÞ: ð31Þ

In Ref. [15] it was shown that for a ¼ 0 and B ≠ 0—the
electrovacuum Melvin case—light rays with L ≠ 0 cannot
escape to infinity due to the asymptotic behavior ofHðr; θÞ.
Thus, the Einstein-Maxwell Melvin solution works as a
confining box for light rays; only outwards radially directed
light rays can reach r → ∞. For general a, on the other
hand, the asymptotic behavior is modified. For the effective
potential Hðr; θÞ we find (for θ ≠ 0, π)

lim
r→∞

Hðr; θÞ ∼ r
3−a2

1þa2 : ð32Þ

This implies three qualitatively distinctive behaviors. For:
(i) a <

ffiffiffi
3

p
, light rays with L ≠ 0 cannot escape to

spatial infinity; only radially outgoing light rays
reach the spatial infinity. This includes the standard
Einstein-Maxwell case analyzed in Ref. [15];

(ii) a ¼ ffiffiffi
3

p
, light rays with L ≠ 0 can escape to spatial

infinity if 1=jηj ≥ jBj;
(iii) a >

ffiffiffi
3

p
, all the light rays can escape to spatial

infinity, similarly to any asymptotically flat geometry.
These behaviors can be understood from the corresponding
effective potentials plotted for different values of a in
Fig. 2. Thus, as a is increased, the SdM solution behaves as
an asymptotically flat spacetime concerning the motion of
null geodesics, with the transition point occurring at the KK
value a ¼ ffiffiffi

3
p

. This provides a context for our findings
below concerning the LRs TC.
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V. LIGHT RINGS

LRs correspond to critical points of V. In terms of the
effective potential Hðr; θÞ, they are determined by

Hðr; θÞ ¼ 1

η
; ð33Þ

∇Hðr; θÞ ¼ 0: ð34Þ

Let us consider first the dilatonic Melvin case (M ¼ 0).
From Eqs. (30) and (34) we find that a LR exists at
θ ¼ π=2 and

r ¼ 2ffiffiffiffiffiffiffiffiffiffiffiffiffi
3 − a2

p
B
: ð35Þ

For a ¼ 0, we recover the LR radial coordinate in the
Melvin spacetime [15]. For a ≠ 0, there are two distinct
cases. For:

(i) a <
ffiffiffi
3

p
, there is one stable LR with radial coor-

dinate given by Eq. (35);
(ii) a ≥

ffiffiffi
3

p
, there are no LRs at finite radial coordinate.

We remark that due to the additional Killing vector in the z
direction in the dilatonic Melvin case, there is a LR tube for
a <

ffiffiffi
3

p
with radius given by Eq. (35), instead of a single

LR along the equatorial plane. As the value of a approachesffiffiffi
3

p
, the cylindrical radius of the LR tube approaches

infinity. This result generalizes the a ¼ 0 case studied
in Ref. [15].
Let us now consider the SdM general case. From

Eqs. (33) and (34), we find that LRs are located at
θ ¼ π=2 and

ð3 − a2ÞB2r3 þMB2ð3a2 − 5Þr2 − 4rþ 12M ¼ 0: ð36Þ

The number of real positive roots of Eq. (36) depends on a.
Applying the Descartes rule of signs to Eq. (36) we
obtain that:

(i) For a ≤
ffiffiffi
3

p
, we may have zero or two LRs;

(ii) For a >
ffiffiffi
3

p
, we may have one or three LRs.

Again, the KK case (a ¼ ffiffiffi
3

p
) provides a threshold for the

total number of LRs. A confirmation on the number and
location of the LRs can be done numerically. In Fig. 3 we
show the numerical results for the LRs radial coordinates,
which corresponds to the roots of Eq. (36), in terms of B for
fixed values of a. This analysis identifies three qualitatively
different cases:

(i) Case I: For any a ≤
ffiffiffi
3

p
, there may be zero [for

B > BcðaÞ] or two [for B < BcðaÞ] LRs outside the
horizon, where BcðaÞ is an a-dependent critical
value (cf. top panel of Fig. 3). In the latter case,
one LR is stable and one is unstable;

(ii) Case IIA: For any
ffiffiffi
3

p
< a <

ffiffiffiffi
19
6

q
, there may be one

(for B < B1
cðaÞ or B > B2

cðaÞ) or three (for B1
cðaÞ <

B < B2
cðaÞ) LRs outside the horizon, where B1

cðaÞ
and B2

cðaÞ are two critical values (cf. middle panel of
Fig. 3). In the former case the LR is unstable; in the
latter case, two LRs are unstable and one is stable;

(iii) Case IIB: For any a ≥
ffiffiffiffi
19
6

q
, there is one unstable LR

outside the horizon for any value of B (cf. bottom
panel of Fig. 3).

To represent more systematically the roots of Eq. (36), we
have displayed in Fig. 4 the location of LRs in both

FIG. 2. Effective potential Hðr; π=2Þ for the SdM spacetime
with: (top panel) M ¼ 0, B ¼ 1 and different a; (middle panel)
BM ¼ 0.1 and different a; (bottom panel) a ¼ ffiffiffi

3
p

and
different BM.
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dilatonic Melvin (upper panel) and SdM (lower panel) as
contour plots in the ðu≡ 1=r; aÞ-plane for different values
of B. We choose the u coordinate in order to better visualize
the behavior of the LRs close to spatial infinity, which is
mapped to u ¼ 0. Each colored solid line represents a fixed
value of B (normalized byM in the SdM case) indicated by
the numbers next to some colored lines. The gray area
denotes the region where there are no LRs. The location of
the LRs in Fig. 4 is depicted by considering any a ¼ const

horizontal line, and then by inspecting all the intersections
between that horizontal line and the colored B ¼ const
solid lines. Any such intersection yields a LR radial
position for that chosen value of a and for the different
values of B. Considering first the dilatonic Melvin case (top
panel), we note that there exists at most one LR for a given
value of a, and that its radial coordinate r increases along
each B ¼ const. colored line, as a is increased. The black
dashed line denotes the limit when B → ∞ and a →

ffiffiffi
3

p
.

Considering now the SdM case (bottom panel), colored
solid lines are disconnected for lower values of BM

FIG. 3. Radial coordinate of the LRs, scanning BM for
illustrative cases. Top panel: case I; middle panel: case IIA;
bottom panel: case IIB. The arrows indicate the direction of
increasing/decreasing radial coordinate of the LRs as BM
increases and rh indicates the radial coordinate of the apparent
horizon.

FIG. 4. Representation of the LRs as contour plots in the ðu; aÞ-
plane. Each colored solid line represents a fixed value of the
magnetic field B. We show the values of B (normalized by M in
the SdM case) next to some colored lines. In the top panel we
show the dilatonic Melvin (M ¼ 0) case, while in the bottom
panel we show the SdM case (M ≠ 0). The grey area denotes the
region of the ðu; aÞ-plane where there are no LRs.
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(e.g., BM ¼ 0.1). As the value of BM is increased, the two
disconnected line pieces become connected for BM larger
than ≃0.189. To illustrate how this impacts on the number
of LRs, we have displayed a horizontal a ¼ const red
dotted-dashed line in the bottom panel of Fig. 4. For that
specific horizontal red line there can be: (i) two intersec-
tions with the BM ¼ 0.19 contour line (the red and black
points), and therefore two LRs; (ii) a single intersection
with a BM ≃ 0.2 line at the green point, corresponding to a
merger/formation of a stable/unstable LR pair; (iii) not a
single intersection with any BM ≳ 0.2 line, and thus no
LRs. A similar analysis reveals that for a >

ffiffiffi
3

p
there are

either one or three (nondegenerate) LRs. As before, the
black dashed line represents the contour plot line limit
B → ∞. In the next section, this numerical analysis will be
confirmed by computing the TC in the SdM family.
To close this section, let us consider the specific case of

a ¼ ffiffiffi
3

p
and the interpretation of the corresponding LRs in

D ¼ 5. Uplifting the SdM solution (8)–(10) with a ¼ ffiffiffi
3

p
using the KK ansatz (7), one gets the D ¼ 5 Ricci flat
geometry

dŝ2¼−fðrÞdt2þ dr2

fðrÞþr2dθ2þr2sin2θðdϕþBdyÞ2þdy2:

ð37Þ
This is simply the four-dimensional Schwarzschild solution
with one added flat direction, y. The radial equation for null
geodesics with θ ¼ π=2 in this geometry is _r2 ¼ E2 − Veff ,
where the effective potential is

Veff ¼ fðrÞ
�
L5

r2
þ p2

y

�
: ð38Þ

Here, L5 and py are the conserved angular momentum and
momentum associated to the D ¼ 5 Killing vector fields
∂φ5

and ∂y, respectively. The critical points of Eq. (38),
obeying both V 0

eff ¼ 0 and Veff ¼ E2, determine the LRs.
Solving these equations leads to a family of LRs, with the
values of fr; L5g parametrized by jpyj ∈ ½0; ffiffiffiffiffiffiffiffi

9=8
p

E�.
For instance, if one imposes no motion in y, py ¼ 0, then

there is only one critical point at r ¼ 3M, as expected from
the Schwarzschild solution, as the extra dimension does not
contribute for the motion in this case. More generically, the
twisted identification (20), that leads to the D ¼ 4 KK
SdM, imposes

py ¼ BL5: ð39Þ
It follows that the critical points of Eq. (38) obey

MB2r2 − rþ 3M ¼ 0; ð40Þ

which is precisely Eq. (36) for a ¼ ffiffiffi
3

p
. Thus, in the KK

case, the SdM LRs correspond, in D ¼ 5, to LR orbits

moving both in φ5 and y, with the corresponding momenta
related by the twisted identification.

VI. TOPOLOGICAL CHARGE

The analysis of the TC in stationary, axi-symmetric and
asymptotically flat BH spacetimes was discussed in
Ref. [7]. Since the SdM spacetime is not asymptotically
flat, that analysis needs to be adapted, following Ref. [15].
Let us introduce the vector field v ¼ ðvr; vθÞ, where the

components are given by

vi ≡ ∂iHffiffiffiffiffi
gii

p ; i ¼ ðr; θÞ: ð41Þ

Hence the components of the vector field v for the SdM
BH are

vr ¼
sin θ

4r3Λ
a2

1þa2

½ð3 − a2ÞB2r3 þ ð3a2 − 5ÞMB2r2

−4ðr − 3MÞcsc2θ�; ð42Þ

vθ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2M

r

q
cos θ

4r2Λ
a2

1þa2

½ð3 − a2ÞB2r2 − 4 csc2 θ�: ð43Þ

We can write these components of the vector field in
terms of a norm v and the angle Ω, as given by

vr ¼ v cosΩ; ð44Þ

vθ ¼ v sinΩ; ð45Þ

where the norm v is written as

v2 ¼ v2r þ v2θ: ð46Þ

In the top row of Fig. 5, we represent the vector field v in
the ðρ≡ r sin θ; z≡ r cos θÞ space for the dilatonic Melvin
with a ¼ 1 (left panel) and a ¼ ffiffiffi

3
p

(right panel). In the
bottom row of Fig. 5 we represent the vector field v in the
ðr; θÞ space for the SdM spacetime with a ¼ 1 (left panel)
and a ¼ 2 (right panel). We notice that the parameter a
modifies the asymptotic behavior of the vector field v.
We compute the total TC (w) by considering a piecewise

smooth and positive oriented curve C in the (r, θ) space.
The total TC is given by the following integer quantity

w ¼ 1

2π

I
C
dΩ: ð47Þ

One can deform the contour C, without intersecting the
LRs, and the value of w remains unaltered. A standard
unstable LR contributes with w ¼ −1 to the total TC,
while a standard stable LR contributes with w ¼ þ1 [1,7].
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For any value of a and MB, we choose a finite contour C
such that all the LRs outside the event horizon are placed
inside the contour. We choose the same contour adopted in
Ref. [7] (see, for instance, Fig. 2 of Ref. [7]), where
C ¼ L1 ∪ L2 ∪ L3 ∪ L4. Thus we can separate the integral
(47) into four distinct integrals:

2πwI ¼ I1 þ I2 þ I3 þ I4; ð48Þ

where

I1 ¼
�Z

π−ϵ

ϵ

dΩ
dθ

dθ

�
r¼R

; ð49Þ

I2 ¼
�Z

r0

R

dΩ
dr

dr

�
θ¼π−ϵ

; ð50Þ

FIG. 5. Top row: plot of the normalized vector field v in the (ρ, z)-plane, for the dilatonic Melvin spacetime with a ¼ 1 and B ¼ 1 (left
panel) and a ¼ ffiffiffi

3
p

(right panel). Bottom panel: plot of the normalized vector field v in the (r, θ)-plane, for the SdM spacetime with
a ¼ 1 (left panel) and a ¼ 2 (right panel). The red line in the top row left panel denotes the location of the stable LR tube. In this figure
we have chosen B ¼ 1 for the dilatonic Melvin spacetime and BM ¼ 1 for the SdM spacetime.
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I3 ¼
�Z

ϵ

π−ϵ

dΩ
dθ

dθ

�
r¼r0

; ð51Þ

I4 ¼
�Z

R

r0

dΩ
dr

dr

�
θ¼ϵ

: ð52Þ

The TC outside the BH apparent horizon is obtained by
considering the limit

w ¼ lim
R→∞

lim
r0→2M

ðlim
ϵ→0

wIÞ: ð53Þ

In what follows we discuss in detail each limit in Eq. (48)
for the SdM BH.

(i) SdM axis limit:
Let us first analyze the behavior of the field v in

the SdM metric when we approach the axis of
symmetry, i.e., for θ → 0; π. From Eq. (44) we have
that

Ω ¼ arcsin
�
vθ
v

�
: ð54Þ

Using Eqs. (42) and (43), we can compute the value
ofΩ, given in Eq. (54), as one approaches the axis of
symmetry:

Ωjθ¼0;π ¼
�− π

2
; for θ → 0;

þ π
2
; for θ → π:

ð55Þ

The conclusion drawn from the above result is that
the vector v becomes constant as one approaches the
symmetry axis. The vector v points upwards (down-
wards) at θ ¼ π (θ ¼ 0) [see bottom row in Fig. 5].
Hence the integrals I2 and I4 do not contribute to w,
since they approach zero as ϵ → 0. This result was
first obtained in Ref. [7] for asymptotically flat BHs
and it is also valid for the SdM case. This can be
explained by the fact that along the axis of sym-
metry, the line element (8) is equal to the Schwarzs-
child geometry. Therefore the axis limit behavior is
similar to that of an asymptotically flat geometry.

(ii) SdM horizon limit:
For the horizon limit of the SdM geometry, it is

sufficient for our purpose to analyze only the sign of
vr as r0 → rh ¼ 2M. From Eq. (42), we obtain that
in the horizon limit:

vrjrh ¼
1

4M
ffiffiffiffiffiffiffiffiffiffiffiffi
gϕϕjrh

q : ð56Þ

Therefore we conclude that the radial component
of v is positive in the horizon limit, regardless of
the value of a. Hence, along I3, v winds in the

clockwise direction, as we integrate along I3 in the
counterclockwise direction, pointing upwards
(downwards) at θ ¼ π (θ ¼ 0), and resulting in

I3 ¼ Ωrh
θ¼0 − Ωrh

θ¼π ¼ −π: ð57Þ

Before proceeding to the asymptotic limit, let us
remark that in Ref. [7], the following general
expression was obtained for the horizon limit

vrjrh ¼
κffiffiffiffiffiffiffiffiffiffiffiffi
gϕϕjrh

q ; ð58Þ

where κ is the surface gravity along the horizon.
Comparing Eqs. (56) and (58) we obtain that the
surface gravity for the SdM BH is given by

κ ¼ 1

4M
; ð59Þ

which is equal to the Schwarzschild case. This result
implies, for instance, that the Hawking temperature
of the SdM and Schwarzschild BHs are equal, which
is in accordance with Ref. [31], where it was shown
that all the thermodynamic properties of a Schwarzs-
child BH are unaffected by the external mag-
netic field.

(iii) SdM asymptotic limit
As we discussed before, the axis and horizon

limits are similar to that of an asymptotically flat
BHs. This is not the case for the asymptotic limit
of the SdM BH, as we show now. The expansion of
the radial component of the vector v as R → ∞ is
given by

vrj∞ ≈
ð3 − a2ÞΛ 1

1þa2

ð1þ a2Þr2 sin θ þ
ð3a2 − 5ÞMΛ

1

1þa2

ð1þ a2Þr3 sin θ

þO
�

1

r
2þ4a2

1þa2

�
: ð60Þ

From Eq. (60) we note that the asymptotic limit
analysis must be separated in three different
branches: a <

ffiffiffi
3

p
, a ¼ ffiffiffi

3
p

, and a >
ffiffiffi
3

p
.

For a <
ffiffiffi
3

p
, the leading term in Eq. (60) is

positive. This means that along I1, v winds in the
counterclockwise direction as we integrate along I1

in the counterclockwise direction, resulting in

I1 ¼ Ω∞
θ¼0 −Ω∞

θ¼π ¼ π; if a <
ffiffiffi
3

p
: ð61Þ

For a ¼ ffiffiffi
3

p
, the first term on the right-hand side

of Eq. (60) vanishes, and the second term remains
greater than zero. Hence the leading order in this
case is positive and we obtain again that
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I1 ¼ Ω∞
θ¼0 −Ω∞

θ¼π ¼ π; if a ¼
ffiffiffi
3

p
: ð62Þ

For a >
ffiffiffi
3

p
, the first term in the right-hand side of

Eq. (60) becomes negative, and the picture changes
completely in comparison to the other cases. For
a >

ffiffiffi
3

p
, v winds in the clockwise direction as we

integrate along I1 in the counterclockwise direction,
resulting in

I1 ¼ Ω∞
θ¼0 −Ω∞

θ¼π ¼ −π; if a >
ffiffiffi
3

p
: ð63Þ

This result is similar to the one obtained for an
asymptotically flat BH geometry in Ref. [7].

(iv) SdM total TC:
Summarizing the results obtained above for the

four different paths fI1; I2; I3; I4g, we obtain the
following total TC for SdM:

w ¼
�
0; if a ≤

ffiffiffi
3

p
;

−1; if a >
ffiffiffi
3

p
:

ð64Þ

The result (64) explains, through topological argu-
ments, the existence of the two different cases (case I
and case II) studied in Sec. V, since a topological
transition happens exactly at the KK case (a ¼ ffiffiffi

3
p

).
Let us remark that this topological transition is only
possible due to the role played by the parameter a in
the asymptotic limit. For a >

ffiffiffi
3

p
, the SdM geom-

etry behaves as an asymptotically flat BH concern-
ing the motion of null geodesics.
dilaton Melvin TC: Finally, let us remark that the

contour integral approach to compute the TC cannot
be applied to the dilatonic Melvin case (M ¼ 0) with
a ≤

ffiffiffi
3

p
, due to the existence of the stable LR tube

for a <
ffiffiffi
3

p
, and the stable LR at spatial infinity for

a ¼ ffiffiffi
3

p
. In both cases, the contour C would intersect

at least one LR, hence a different approach is
required.
For a >

ffiffiffi
3

p
(andM ¼ 0), however, we can adopt

a contour C without intersecting any LR, and then
compute the TC. The results for the axis limit and
the asymptotic limit will be exactly the same as in
the SdM case. The main difference arises due to the
absence of an event horizon, since the vector field in
the radial direction behaves as

vrjr¼0 ≈ −
1

r2 sin θ
þ 3

4
B2 sin θ þOðr2Þ; ð65Þ

next to the origin. The radial component of the
vector field v is negative in the dilaton Melvin case,
in contrast to the SdM case with a >

ffiffiffi
3

p
. This

implies that the TC for the dilaton Melvin case is
equal to

w ¼ 0; if a >
ffiffiffi
3

p
and M ¼ 0; ð66Þ

which explains why the dilaton Melvin solution with
a >

ffiffiffi
3

p
has no LRs at all for r > 0.

VII. SHADOWS AND GRAVITATIONAL LENSING

A. Observer setup

We now study the gravitational lensing and shadows in
SdM and dilatonic Melvin spacetimes. We apply the so-called
backwardsray-tracingmethodinorderproduceacomputational
simulation of the optical appearance of these geometries. We
solve numerically the following equations of motion:

_t ¼ E

Λ
2

1þa2ð1 − 2M
r Þ

; ð67Þ

_ϕ ¼ LΛ
2

1þa2

r2 sin2 θ
; ð68Þ

̈rþ Γr
μν _xμ _xν ¼ 0; ð69Þ

θ̈ þ Γθ
μν _xμ _xν ¼ 0; ð70Þ

where Γα
μν are the Christoffel symbols for the geometry. The

initial conditions for the system are obtained computing the
4-momentum of the photon in the vierbein of a static
observer:

λ̂0̂μ ¼
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 −
2M
r

r
Λ

1

1þa2 ; 0; 0; 0

�
; ð71Þ

λ̂1̂μ ¼

0
B@0;

Λ
1

1þa2ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2M

r

q ; 0; 0

1
CA; ð72Þ

λ̂2̂μ ¼
�
0; 0; rΛ

1

1þa2 ; 0
	
; ð73Þ

λ̂3̂μ ¼
�
0; 0; 0;

r sin θ

Λ
1

1þa2

�
: ð74Þ

The components of the photon 4-momentum projected in
the vierbein (pâ ¼ λ̂âμpμ) are given by

pt̂ ¼ Effiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2M

r

q
Λ

1

1þa2

; pr̂ ¼ Λ
1

1þa2ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2M

r

q _r; ð75Þ

pθ̂ ¼ rΛ
1

1þa2 _θ; pϕ̂ ¼ LΛ
1

1þa2

r sin θ
: ð76Þ

We can parametrize the photon linear 3-momentum p in
terms of the angles ðα; βÞ as given by
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pr̂ ¼ jpj cos α cos β; ð77Þ

pθ̂ ¼ jpj sin α; ð78Þ

pϕ̂ ¼ jpj cos α sin β; ð79Þ

and from Eqs. (75)–(78), we obtain that

E ¼ jpj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

2M
r

r
Λ

1

1þa2 ; ð80Þ

_r ¼ jpj
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2M

r

q
Λ

1

1þa2
cos α cos β; ð81Þ

_θ ¼ jpj
rΛ

1

1þa2
sin α; ð82Þ

L ¼ jpjr sin θ
Λ

1

1þa2
cos α sin β; ð83Þ

which are the initial conditions for Eqs. (67)–(70). We solve
the equations of motion from the observer position, and
backwards in time, until the light ray is scattered to infinity
or absorbed by the event horizon (when present). Each pair
ðα; βÞ represents a point in the image plane of the observer.
If the light ray, evolved backwards in time, hits the event
horizon, we assign a black color to the coordinate ðα; βÞ in
the image. On the other hand, if the light ray is scattered to
a celestial sphere of radius rcs, we assign a color to the
coordinate ðα; βÞ. We use the same pattern of colors as in
Refs. [32–34], where the celestial sphere is divided in four
quadrants (red, green, blue, yellow).
In order to place the observer in similar observational

condition, we adopt the perimetral radius (rp) as a
geometrically invariant measure of distance:

rp ≡ ffiffiffiffiffiffiffi
gϕϕ

p jθ¼π=2 ¼
r

½1þ ð1þa2Þ
4

B2r2� 1

1þa2
: ð84Þ

We note that the perimetral radius has a maximum value at

rpjmax ¼
2

B
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − a2

p ; 0 ≤ a < 1: ð85Þ

In Fig. 6, the perimetral radius is compared with the
coordinate radius r for several values of a, and BM ¼ 0.5.
For a ¼ 1, the perimetral radius tends to a constant value at
the spatial infinity, while for a > 1 it is a monotonically
increasing function of the radial coordinate r, as can be seen
in Fig. 6. It is remarkable that this transition in the behavior
of the perimetral radius occurs at another special value of a,
as emphasized in the Introduction.

B. Gravitational lensing for the dilatonic Melvin
spacetime

Before exploring the shadow and gravitational lensing
in SdM, let us first analyze the gravitational lensing in the
dilatonic Melvin geometry (M ¼ 0). In Fig. 7 we show
the panoramic images for the gravitational lensing of the
dilatonic Melvin geometry with different values of a. In
this figure, the observer is located at Brp ¼ 1, θobs ¼ π=2
and the celestial sphere has a radius Brcs ¼ 2.0. We have
chosen two values of a for which a stable LR exists and
two values for which it does not exist. One key difference
between the panoramic images for a <

ffiffiffi
3

p
and a ≥

ffiffiffi
3

p
is

the existence of chaotic lensing regions for the former case.
Such chaotic lensing regions for a <

ffiffiffi
3

p
arise due to the

existence of bound orbits, i.e., orbits that are bound
between two radii and hence cannot escape to infinity.
This is closely connected to the existence of a stable LR.
For a ≥

ffiffiffi
3

p
the gravitational lensing becomes regular,

since light rays can escape to infinity and there are no
bound orbits in general, as the stable LR is absent.

C. Shadow and gravitational lensing for the SdM BH:
Case I

Let us now analyze the shadows and gravitational
lensing of the SdM BH. First, we compare the shadow
and gravitational lensing for the three distinct cases (Case I,
II-A and II-B) with BM ≪ 1, which, at least in the vicinity
of the horizon, may be closer to real astrophysical envi-
ronments. In Fig. 8 we show solely the contour of the
shadow for several values of a, and fixed BM ¼ 0.06.
We place the observer at the equatorial plane (θ ¼ π=2) and
at the perimetral radius rp ¼ 10M. This shows that the
shadow edge varies weakly with a. In Fig. 9 we show the
shadow and also the gravitational lensing for BM ¼ 0.06
and the same values of a as in Fig. 8. From Figs. 8 and 9,

FIG. 6. Behavior of the perimetral radius as a function of r for
several values of a, and BM ¼ 0.5. Observe that for a ¼ 1 the
perimetral radius tends to a constant value at spatial infinity, while
for a > 1 it is a monotonically increasing function of the radial
coordinate.
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we note that the contour of the shadow has an oblate shape
in comparison to the Schwarzschild case, and as we
increase the value of a, keeping fixed the value of BM,

the oblateness slightly decreases. The same applies to some
lensing features in the images: they become less oblate
when a increases.
In Fig. 10 we show the panoramic image of the shadow

and gravitational lensing for a SdM BHwith BM ¼ 0.2 and
a ¼ 0.5 (case I). We have chosen the observer to be located
at the perimetral radius rp ¼ 5M and at the equatorial plane
(θobs ¼ π=2). We observe that the shadow and gravitational
lensing display a chaotic behavior under this stronger
external magnetic field. Since there are no LRs along
the equatorial plane, the shadow is panoramic for BM ¼
0.2 and a ¼ 0.5. The chaotic behavior for the shadow and
gravitational lensing in Fig. 10 arises due to the confining
behavior of the geometry in Case I. Since light rays cannot
escape to infinity, they can bounce at several turning points
before falling into the event horizon or reaching the
celestial sphere. This sort of “ping-pong” leaves a chaotic
pattern imprint, alongside the panoramic shadow in the
SdM solution in this parameter range, as in the a ¼ 0
case [15].

D. Shadow and gravitational lensing for the SdM BH:
Case IIA

In Fig. 12 we show the panoramic image of the shadow
and gravitational lensing for a SdM BH with BM ¼ 0.27
and a ¼ 1.76 (top panel) and BM ¼ 0.31365 and a ¼
1.779 (bottom panel), corresponding to Case IIA. The
perimetral radius and the θ coordinate of the observer were
chosen to be the same as in Fig. 10. From Fig. 12 we note

FIG. 8. Contour of the shadow of SdM BHs for several values
of a and fixed BM ¼ 0.06. In this figure, the observer is located
at the equatorial plane (θ ¼ π=2) and at the perimetral radius
rp ¼ 10M.

(a)

(b)

(c)

(d)

FIG. 7. Panoramic images of the gravitational lensing of the
dilatonic Melvin geometry for different values of a. In this figure,
the observer is located at the equatorial plane (θ ¼ π=2) and at the
perimetral radius Brp ¼ 1. The radius of the celestial sphere is
chosen as Brcs ¼ 2.5.
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that the shadow and gravitational lensing for case IIA is
quite distinctive from case I for large values of MB. In
particular, we note that there are no chaotic regions in the
panoramic image in Fig. 12(a), and that neither of the
shadows is panoramic. The absence of chaotic regions and
panoramic shadows for case IIA arises from the fact that
light rays can escape to infinity (see Eq. (32) and do not
describe bound orbits with several turning points. From
Fig. 12 we note the existence of strong gravitational lensing
far from the shadow edge in the panoramic images and
nontrivial lensing features also close to the shadow edge
near the equatorial plane, especially in Fig. 12(b) where we
cannot exclude some chaoticity. These effects are caused
mainly by the strong external magnetic field, which plays
a role even for large values of the radial coordinate r.

(a) a = 0 (b) a = 1

(c) a =
√

3 (d) a = 2

FIG. 9. Shadow and gravitational lensing of SdM BHs for BM ¼ 0.06 and different values a. In this figure, the observer is located at
the equatorial plane (θ ¼ π=2) and at the perimetral radius rp ¼ 10M.

FIG. 10. Panoramic image of the shadow and gravitational
lensing for the SdM BH with BM ¼ 0.2 and a ¼ 0.5 (case I).
The observer is located at the perimetral radius rp ¼ 5M and
θobs ¼ π=2.

JUNIOR, YANG, CRISPINO, CUNHA, and HERDEIRO PHYS. REV. D 105, 064070 (2022)

064070-14



We have chosen BM ¼ 0.27 and a ¼ 1.76 (top panel)
because there are two unstable LRs (and one stable) on the
equatorial plane for such values, and the observer is located
between the unstable LRs. On the other hand, for BM ¼
0.31365 and a ¼ 1.779 (bottom panel) the observer is
located outside the LRs. We note a slight difference on the
scattering next to the shadow edge on the equatorial plane.
The existence of a second unstable LR may give rise to a
local maximum on the scattered angle for light rays
constrained to the equatorial plane, as can be seen in
Fig. 11 where we compare the scattering angle for light
rays constrained to the equatorial plane for cases IIA and
IIB. The LR that determines the shadow edge at the
equatorial plane is the one with the smallest value of
ηLR, the so-called dominant LR [35]. We point out that the
shadow edge outside the equatorial plane is determined by
fundamental photon orbits (FPO), and the existence of two
unstable LRs at the equatorial plane does not necessarily
imply the existence of more than one FPO for two given
impact parameters (α, β).

E. Shadow and gravitational lensing for the SdM BH:
Case IIB

In Fig. 13 we show the panoramic image of the shadow
and gravitational lensing for a SdM BH with BM ¼ 0.2
and a ¼ 2, which is an example of case IIB. The perimetral
radius and the polar angle of the observer are the same as in
Figs. 10 and 12. We note that, as in case IIA, the shadow
and gravitational lensing are regular, and do not display
chaotic regions. We also note the existence of gravitational
lensing far from the shadow edge due to the influence of
the external magnetic field for large values of the radial
coordinate. Comparing case IIA and IIB, we note that as we
increase the value of the parameter a, the oblateness of the
shadow decreases becoming more round. We remark that

case IIB behave similarly to an asymptotically flat space-
time concerning the motion of null geodesics, despite the
nonzero magnetic field extending all the way to spatial
infinity.

VIII. FINAL REMARKS

We have considered the null geodesic flow in the SdM
family of BH solutions of Einstein-Maxwell-dilaton theory,

FIG. 11. Scattered angle for null geodesics constrained to the
equatorial plane for different values of a and BM. In this figure,
we have selected two SdM BHs corresponding to case IIA and
one SdM BH corresponding to case IIB. We notice that when two
unstable LRs are present, there may be a local maximum in the
scattered angle.

(a)

(b)

FIG. 12. Panoramic image of the shadow and gravitational
lensing for two SdM BHs within case II. Top panel: BM ¼ 0.27
and a ¼ 1.76. Bottom panel: BM ¼ 0.31365 and a ¼ 1.779. The
observer is located at the equatorial plane (θobs ¼ π=2) and at the
perimetral radius rp ¼ 5M.

(a)

FIG. 13. Panoramic image of the shadow and gravitational
lensing for the SdM BH with BM ¼ 0.2 and a ¼ 2 (case II-B). In
this figure, the observer is located at the equatorial plane
(θobs ¼ π=2) and at the perimetral radius rp ¼ 5M.
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where a nonminimal coupling between the Maxwell field
and the dilaton exists, ruled by the parameter a. In
particular, we investigated the LRs, total TC, shadows
and gravitational lensing for arbitrary values of the dilaton
coupling. The present work generalizes the Einstein-
Maxwell theory (a ¼ 0) results obtained in Ref. [15],
where the Schwarzschild solution immersed in an external
magnetic field was considered.
We analyzed how the dilaton coupling a impacts the

motion of null geodesics in the asymptotic region. We found
that for a ≤

ffiffiffi
3

p
, (nonradially moving) light rays cannot

escape to infinity, which is a manifestation of the confining
box behavior of the Melvin asymptotics [15]. For a ≥

ffiffiffi
3

p
,

however, the LR rays can reach spatial infinity and the SdM
family loses the confining box behavior. Curiously, for the
KK theory (a ¼ ffiffiffi

3
p

), the light rays can escape to infinity
only if the impact parameter is greater or equal to 1=jBj. This
analysis is valid both for the Melvin dilatonic (M ¼ 0) and
the SdM BH solutions. These results show that the dilaton
coupling modifies the asymptotic behavior of the spacetime,
as we indeed confirmed by computing the LRs TC.
We computed the LRs in the Melvin dilatonic and SdM

families of solutions and obtained that there is a qualitative
change at a ¼ ffiffiffi

3
p

in both cases. For the Melvin dilatonic
family with a <

ffiffiffi
3

p
there is a stable LR tube whose

cylindrical coordinate depends on a and B, and for a ≥ffiffiffi
3

p
there is no LR in a finite radial coordinate. On the other

hand, for the SdM family with a ≤
ffiffiffi
3

p
there may be zero or

two LRs outside the horizon (case I), while for a >
ffiffiffi
3

p
there may be three (case IIA) or one LRs (case IIB). For
cases I and IIA it is possible to have the creation/
annihilation of a pair of LRs by fixing the dilatonic
coupling and varying the magnetic field strength. Case
IIB admits only one unstable LR, and as we increase the
value of B and fix a, the radial coordinate of the LR
increases monotonically. By computing the TC of the SdM
family we were able to shown that the dilaton coupling
induces a topological transition, i.e., the TC changes
discontinuously from TC ¼ 0 (case I) to TC ¼ −1 (cases
IIA and IIB). This topological transition arises due to the
modification in the asymptotic behavior of the SdM family.

The horizon and the axis limit are not modified qualita-
tively by varying the dilaton coupling.
Taking advantage of the higher dimensional interpretation

of the KK case a ¼ ffiffiffi
3

p
we were able to give an interpre-

tation of the LRs of the SdM BH in D ¼ 5 in that case.
Finally, we have applied the backwards ray-tracing

technique to the SdM family in order to study the
gravitational lensing and shadows. For case I, the shadow
and gravitational lensing present a chaotic behavior, while
for the cases IIA and IIB they become regular even for high
values of the magnetic field. Moreover, for case I it is
possible to have panoramic shadows, as a consequence of
the absence of LRs outside the horizon, similarly to the
a ¼ 0 case investigated in Ref. [15]. Our results suggest
that the shadows and gravitational lensing of the SdM BHs
are qualitatively similar to those of an asymptotically flat
spacetime for large values of the dilatonic coupling.
As future work, it could be interesting to analyze the

possible impact of rotation in our study, as it was done in
[36] for the case of a ¼ 0.
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