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Boson stars have attracted much attention in recent decades as simple, self-consistent models of compact
objects and also as self-gravitating structures formed in some dark-matter scenarios. Direct detection of
these hypothetical objects through electromagnetic signatures would be unlikely because their bosonic
constituents are not expected to interact significantly with ordinary matter and radiation. However, binary
boson stars might form and coalesce emitting a detectable gravitational wave signal, which might
distinguish them from ordinary compact object binaries containing black holes and neutron stars. We study
the merger of two boson stars by numerically evolving the fully relativistic Einstein-Klein-Gordon
equations for a complex scalar field with a solitonic potential that generates very compact boson stars.
Owing to the steep mass-radius diagram, we can study the dynamics and gravitational radiation from
unequal-mass binary boson stars with mass ratios up to q ≈ 23 without the difficulties encountered when
evolving binary black holes with large mass ratios. Similar to the previously studied equal-mass case, our
numerical evolutions of the merger produce either a nonspinning boson star or a spinning black hole,
depending on the initial masses and on the binary angular momentum. We do not find any evidence of
synchronized scalar clouds forming around either the remnant spinning black hole or around the remnant
boson stars. Interestingly, in contrast to the equal-mass case, one of the mechanisms to dissipate angular
momentum is now asymmetric and leads to large kick velocities (up to a few 104 km=s), which could
produce wandering remnant boson stars. We also compare the gravitational wave signals predicted from
boson star binaries with those from black hole binaries and comment on the detectability of the differences
with ground interferometers.

DOI: 10.1103/PhysRevD.105.064067

I. INTRODUCTION

We are well into the era of gravitational wave (GW)
astronomy with the rapidly growing catalog of GW events
detected by the LIGO-Virgo Collaboration [1,2].
With the very recent release of the third GW transient

catalog [3], the total number of reported coalescences
increased to 90. Some of the more remarkable events
detected to date include:

(i) GW190412 [4], a binary black hole (BBH) with
asymmetric component masses, showing evidence
for higher harmonics in its GW signal;

(ii) GW190425 [5], identified with a binary neutron star
(NS) merger lacking evidence of an electromagnetic
counterpart;

(iii) GW190521 [6], a BBH with a total mass greater than
150 solar masses, which is the most massive binary
yet detected, in which the posterior distribution of the

primary mass is nearly entirely in the pair-instability
supernova mass gap where BHs are not expected to
form from the collapse of massive stars;

(iv) GW190814 [7], a highly asymmetric system con-
sistent with the merger of a 23 solar mass black hole
(BH) with a 2.6 solar mass compact object, making
the latter either the lightest BH or the heaviest NS
observed in a compact binary;

(v) GW200105 and GW200115 [8], which are the first
detections consistent with a NS-BH merger.

The planned upgrades by the LIGO-Virgo Collaboration
and the addition of the KAGRA detector [9] promise even
more exciting observations in the future.
A primary target of GW observations is the merger of

very compact objects, with BHs and NSs being the most
natural candidates. However, a number of other hypotheti-
cal compact objects have been proposed, called exotic
compact objects (ECOs) [10,11]. The motivations for
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various ECOs arise both in beyond-Standard-Model theo-
ries and in modified-gravity scenarios, and some of the
most popular models include fuzzballs [12], gravastars
[13], wormholes [14], anisotropic stars [15], and boson
stars (BSs) [16]. Phenomenological studies of ECOs are
required to perform actual searches for their signatures. No
evidence for such ECOs has yet been found, but, because
they are expected to be too dim electromagnetically, it is
mostly through GW detections that we can hope to observe
them [11].
In this work we study BSs, which are solutions of the

Einstein equations coupled to a complex scalar field with a
harmonic time dependence describing a macroscopic wave
function of a Bose-Einstein condensate (see Refs. [17–19]
for reviews). BSs are particularly promising as possible
astrophysical objects because (i) a formation mechanism
for BSs has been identified, known as gravitational cooling
[20,21], whereby BSs can be produced from arbitrary scalar
field configurations, (ii) their stability properties resemble
those of NSs so that static BSs below a critical mass are
radially stable [18,22,23], and finally, (iii) BSs have been
invoked in open problems in cosmological and particle
physics, such as the nature of the dark matter and the
possibility of early Universe remnants. For instance, the
idea that dark matter is composed of ultralight bosonic
fields has received significant attention recently [24–26].
Although leading candidates for this kind of dark matter are
real scalars that are organized in time-dependent configu-
rations [27], BSs can serve as a proxy for such configu-
rations [28]. Some of these scenarios can allow for compact
BSs (or similar objects) to be produced in the early
Universe [29–35]
Collisions of BSs have been studied extensively, including

head-on and orbital mergers of mini-BSs [36,37], head-on
mergers of oscillatons [28,38], orbital collisions of solitonic
BSs [39,40], and head-on and orbital mergers of Proca
stars [41,42] as a possible alternative explanation of the
GW190521 event [43,44]. The merger of ECOs can be
studied within various dark-matter scenarios as well, as, for
example, mergers between a NS and a star made of axions,
one of themost popular dark-matter type candidates [45–47],
mergers of dark stars composed of bosonic fields [48], or
mergers of binary NSs containing a small fraction of dark
matter [49] modeled using fermion BSs [50].
Motivated by the recent GW detections of very unequal-

mass binary mergers, we study here the coalescence of
unequal-mass BS binaries, focusing on their dynamics and
GW radiation. As in our previous works [39,40,48], we
adopt the nontopological solitonic BS potential [51] to
construct our asymmetric binaries because (i) it allows for
very compact configurations that reach a maximum com-
pactness (see below for its definition) in the stable branch of
approximately C ≈ 0.35 [52,53], and (ii) one can construct
binaries with a large mass ratio. Indeed, defining the mass
ratio q≡m1=m2 such that m1 > m2, we can produce

compact binaries with a mass ratio ranging1 approximately
from 1 to 45. Here, we focus on binaries within the range
q ∈ ½2; 23�. We note that, in contrast to the difficulties
encountered when evolving BBH with large mass ratios
[55–58], these evolutions require no change to the choice of
coordinates, namely gamma-driver shift condition, nor an
exceptionally high resolution. The reason for this difference
is because the radii of solitonic BSs even with vastly
different masses are of the same order, whereas the radius
of the BH scales linearly with the mass, and therefore a
large mass ratio in a BH binary necessarily implies a large
separation of length scales.
Our mergers of unequal-mass solitonic BSs produce

either a nonrotating BS or a spinning BH, as in the equal-
mass cases [40]. In the former cases, all the angular
momentum is emitted to infinity through scalar field and
GW radiation, while in the latter case, after performing a
very long-term simulation, we find no indication of a scalar
cloud synchronized with the rotation of the remnant BH, as
found in Ref. [59]. For one of our simulations with large
angular momentum, a blob of scalar field is ejected after
the merger, producing a significant kick velocity of the
remnant. Note that this blob ejection has already been
observed in solitonic BS binaries of equal mass [40].
Additionally, we study the dynamics and GW radiation
of a binary composed of a BS and an antiboson star, i.e.,
with the opposite frequency, allowing some annihilation of
the Noether charge during the merger.
This work is organized as follows: In Sec. II, we review

the evolution equations describing BSs, followed by the
construction of initial data for binary BSs and numerical
implementation. In Sec. III, the coalescence of unequal-
mass BS binaries is studied in detail. The GWs produced by
these systems are explored in Sec. IV, in particular,
analyzing the imprint of higher-order modes in the signal
and the postmerger frequencies of the remnant’s signal.
In Sec. V, we summarize our results. We use geometric
units in which G ¼ 1 and c ¼ 1, unless otherwise stated.

II. SETUP

In this section, we briefly summarize the evolution
equations describing a self-gravitating (complex) scalar
field and the construction of binary BSs in quasicircular
orbits that constitute the initial data. We also outline the
numerical methods and grid setup employed to perform the
simulations. Notice that our setup is very similar to the one
used in Ref. [40] (hereafter paper I) for studying equal-
mass binary BSs.

1Solitonic BSs in general admit two stable and two unstable
branches [52,54]. Here we focus on the more massive stable
branch, while the other stable branch corresponds to the weak-
field regime of mini-BSs for our choice of the potential
parameters [52].
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A. Einstein-Klein-Gordon equations

Self-gravitating (complex) scalar fields are described by
the Einstein-Klein-Gordon (EKG) equations

Rab −
1

2
gabR ¼ 8πTab; ð1Þ

gab∇a∇bΦ ¼ dV
djΦj2Φ; ð2Þ

where Rab is the Ricci tensor associated with the metric gab,
Φ is a minimally coupled, complex scalar field, and
VðjΦj2Þ is its associated self-interaction potential. The
stress-energy tensor Tab for the complex scalar field is
given by

Tab ¼ ∇aΦ∇bΦ� þ∇aΦ�∇bΦ

− gab½∇cΦ∇cΦ� þ VðjΦj2Þ�;

where Φ� is the complex conjugate of Φ. Different BS
models are classified according to their scalar self-potential
VðjΦj2Þ. Here we focus on the solitonic potential [51],
which allows for highly compact BSs and is given by

VðjΦj2Þ ¼ m2
bjΦj2

�
1 −

2jΦj2
σ20

�
2

; ð3Þ

where mb and σ0 are two free parameters. In our units
(in which the scalar field is dimensionless), mb has the
dimensions of an inverse length, and mbℏ is the bare mass
of the scalar field, whereas σ0 is dimensionless. We define
λ≡ σ0

ffiffiffiffiffiffi
8π

p
and set mbλ ¼ 1 for the rest of the paper.

However, in some occurrences we shall reinsert the proper
factors of mbλ.
In the complex-Φ space the potential has the typical

Mexican-hat shape, with a maximum at Φ ¼ 0 and a
minimum (degenerate vacuum) at jΦj ¼ σ0=

ffiffiffi
2

p
. When

σ0 ≪ 1 the scalar profile is roughly constant within the star
and steeply vanishes over a length scale ∼1=mb [52,60].
Because of the Uð1Þ invariance of the EKG action, BSs

admit a conserved Noether charge current

ja ¼ igabðΦ�∇bΦ −Φ∇bΦ�Þ: ð4Þ

The spatial integral of the time component of this current
defines the conserved Noether charge N, which can be
interpreted as the number of bosonic particles in the
star [18].

B. Binary initial data

The procedure to construct the initial data for a binary BS
is the same as in paper I, that is, a superposition of two
boosted, isolated, solitonic BSs.

The solution of a single solitonic BS is constructed as
described in Ref. [23], by adopting the usual harmonic
ansatz for the scalar field Φ ¼ ϕðrÞe−iωt with a real
frequency ω. Assuming stationarity and spherical sym-
metry, the EKG equations reduce to a set of ordinary
differential equations that can be solved numerically with a
shooting method. Integrating from the center with a given
central value of the scalar field ϕc and frequency ω, one
looks for solutions satisfying regularity and boundary
conditions. The resulting BS equilibrium configurations
can be characterized by their mass and radius. However,
because the scalar field only vanishes asymptotically as it
decays exponentially, the definition of its radius is neces-
sarily somewhat ambiguous. Following previous work,
we can define the effective radius RM as the radius within
which 99% of the total mass is contained, i.e.,
mðRMÞ ¼ 0.99M. Consequently, we define the compact-
ness as C≡M=RM. As a reference, the compactness for a
Schwarzschild BH is C ¼ 0.5 and C ≈ 0.1–0.2 for NSs. In
numerical simulations, it is, however, more convenient to
estimate the radius of the final remnant through the radius
that contains 99% of the Noether charge RN , so we will use
this definition when required. The radius of the remnant is
calculated with respect to its center of mass.
The maximum mass of static configurations in this

model is

Mmax ≈ 5 M⊙

�
10−12

σ0

�
2
�
500 GeV
mbℏ

�
; ð5Þ

where the scaling with m−1
b is exact, whereas the scaling

with σ−20 is approximately valid only in the σ0 ≪ 1 limit.
Thus, depending on ðmb; σ0Þ, the model supports self-
gravitating configurations across a wide mass range.
Paper I presented a sequence of isolated BS solutions

characterized by the central value of the scalar field ϕc that
we use to construct our unequal-mass binaries here. In the
top panel of Fig. 1, the compactness C is shown as a
function of ϕc. The circular markers denote the five
representative BSs employed in this paper. The bottom
panel of Fig. 1 displays the radial profile of the scalar field
for these isolated solutions, while Table I lists the key
properties of these configurations.
Notice that these solutions can be rewritten in terms of

the following dimensionless quantities [23]:

MðmbλÞ; NðmbλÞ2; rðmbλÞ; ω=ðmbλÞ; ð6Þ

recalling that λ ¼ σ0
ffiffiffiffiffiffi
8π

p
. In terms of these parameters, the

equations become independent of mb, and hence mb serves
to set the units of the physical solution. Again, the linear
scaling in mb in the above expressions is exact, whereas
that with respect to λ is approximately valid only in the
σ0 ≪ 1 limit. For the chosen value, σ0 ¼ 0.05, this scaling
is already a good approximation, and so smaller values of
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σ0 can be studied simply by applying such a rescaling.
Here we restrict ourselves to σ0 ¼ 0.05, which sufficiently
fulfills the condition σ0 ≪ 1 and also allows for very
compact, stable configurations.
The initial data for the BS binary follow the procedure

described in Ref. [39] and paper I. Once the isolated BSs
are constructed in spherical coordinates, the solution is
extended to Cartesian coordinates, with the centers of the
stars located along the y axis at ð0; yjc; 0Þ, so that the center
of mass of the system is located at the origin.2 A Lorentz
transformation is performed to boost each star along the�x

directions, and finally the boosted solutions for both stars
are superposed to obtain our binary initial data. Obviously,
this superposition is only an approximate solution that does
not satisfy exactly the constraints at the initial time (see
Ref. [63] for a partial solution in case of equal-mass
binaries of BSs). However, our evolution scheme enforces
an exponential decay of this constraint violation dynami-
cally (e.g., see Fig. 10 in Ref. [39]).
In contrast with paper I, where the positions and initial

velocities of each binary were antisymmetric (i.e., veloc-
ities with the same magnitude but opposite direction), for
these unequal cases we have set those parameters as
follows: Given an initial separation, we have calculated
the second-order post-Newtonian orbital velocity [64] such
that the system would be in quasicircular orbit and the
velocity of the center of mass would be close to zero. Then,
we modify these velocities by adding a tiny amount of
linear drift velocity to account for the finite initial orbital
distance and higher-order relativistic effects, and fix this
drift velocity such that the velocity of the binary center of
mass is close to zero. The positions and velocities of each
binary system considered in this work, together with other
parameters of our simulations, are presented in Table II.
As mentioned, our binary initial data is only approxi-

mate, but constraint violations quickly propagate off the
grid by our evolution scheme. Hence, it makes sense to
evaluate the global characteristics of the initial data not at
the initial time but instead just after the constraint-violating
transient. We therefore extract numerically the Arnowitt-
Deser-Misner (ADM) mass M0 of the spacetime after the
transient, and, assuming that the mass ratio remains
constant through the transient, we decompose this mass
into the constituent effective masses as

M̃1 ¼
�

q
qþ 1

�
M0; M̃2 ¼

�
1

qþ 1

�
M0: ð7Þ

Notice that this calculation tacitly assumes that, even after
the constraint violation transient (approximately) ends,
stars are sufficiently separated so that general relativity
nonlinearities are subleading. During this transient regime,
we note that the masses of the constituent stars increase,
which results in a decrease in the number of orbits.
Furthermore, we can construct fitting formulas for the

compactness CðMÞ and particle number NðMÞ as functions
of BS mass from the equilibrium configurations of isolated
BSs. We obtain

CðMÞ ≈ 0.0157þ 0.376M − 0.3M2

þ 0.136M3 − 0.0195M4; ð8Þ

NðMÞ ≈ −0.0187þ 0.6221M þ 0.3872M2: ð9Þ

With the above functions, one can calculate the effective
Noether charges and compactness of the stars in our binaries

FIG. 1. Isolated BS solutions. Top: Compactness as a function
of the central value of the scalar field ϕc for isolated, nonrotating
BSs with σ0 ¼ 0.05. Circular markers refer to the equilibrium
configurations used in this work to construct initial data for BS
binaries (cf. Table I). The radius RM is defined as that containing
99% of the mass of the star. Bottom: Profile of the scalar field as a
function of the isotropic radius for the different configurations.

2Here we define the center of mass using the masses of isolated
configurations listed in Table I. Constraint violation transient will
change these masses, see the discussion of “effective” configu-
rations below.
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as a function of their effective masses, respectively.
In Table III, we provide these data for all configurations
consider in this work and paper I.We also provide the relative
differences between the properties of the isolated initial data
and the effective ones. Comparing the total Noether charge in

the system N0 with the sum of the individually calculated
charges NðM̃1Þ þ NðM̃2Þ provides a test of the consistency
of this approach. As explained below in Sec. III B, the
effective initial data presented here agree roughly with our
initial data after the constraint-violating transient.

TABLE I. Characteristics of solitonic BS models with σ0 ¼ 0.05. The table shows the compactness C, the central value of the scalar
field ϕc=ðσ0=

ffiffiffi
2

p Þ, the ADM mass Mmbλ, the Noether charge NðmbλÞ2, the radius of the star (the radius containing 99% of either the
mass or of the Noether charge for RM or RN, respectively), and the angular frequency of the field in the complex plane ω=ðmbλÞ, in
dimensionless units. In the last two columns, we give the normalized, Newtonian, moment of inertia (where I ¼ R

ρ2dm, where ρ is the
distance from the axis of rotation) and the dimensionless tidal Love number ktidal, as computed in Refs. [61,62]. For a NS with an
ordinary equation of state and C ∼ 0.1, ktidal ¼ Oð200Þ, while ktidal ¼ 0 for a BH.

C ϕc=ðσ0=
ffiffiffi
2

p Þ Mmbλ NðmbλÞ2 ðRM;RNÞmbλ ω=ðmbλÞ I=M3 ktidal

0.03 1.065 0.0463 0.01653 (1.507, 1.380) 2.129620346 245.3 136494
0.06 1.045 0.1238 0.0605 (2.0334, 1.8288) 1.545745909 84.9 8420
0.12 1.030 0.3650 0.2551 (3.0831, 2.8360) 1.066612350 27.8 332
0.18 1.025 0.7835 0.7193 (4.2572, 3.9960) 0.790449025 12.5 41
0.22 1.025 1.0736 1.1147 (4.9647, 4.7068) 0.685760351 8.34 20

TABLE II. Properties of unequal binary BS models and of the final remnant. Each case is characterized by the compactness C of the

individual BSs in the binary, the mass ratio q, the symmetric mass ratio ν, the two initial centers yðiÞc , the initial velocities of the boost vðiÞx ,
the ADM mass M0 of the system, and the orbital ADM angular momentum J0 of the system, after the constraint-violating transient,
respectively. The merger and remnant are characterized by the coordinate time of contact of the two stars tc (defined as the time at which
the individual Noether charge densities make contact for the first time), the merger retarded time (defined as the time when the maximum
of the modulus of the Ψ2;2

4 is produced minus the travel time to the sphere where it is measured), the type of final remnant, the remnant
mass Mrmbλ, the remnant radius RNmbλ (i.e., containing 99% of the Noether charge), and the main GW frequency Mrω

0
r in the

postmerger. When the final remnant is a BH, the radius is computed from the expression for Kerr BHs, RH ¼ Mrð1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − a2

p
Þ, where

a ¼ Jr=M2
r ≈ 0.5 is the dimensionless spin.

Binaries q ν yð1Þc yð2Þc vð1Þx vð2Þx M0mbλ J0ðmbλÞ2 tc tretm Remnant Mrmbλ RNmbλ Mrω
0
r

C003-C022A 23.2 0.039 −9.58 0.42 −0.34 0.02 1.16 0.229 790 811 BS 1.07 4.50 0.218
C003-C022 23.2 0.039 −9.58 0.42 −0.34 0.02 1.16 0.229 790 808 BS 1.13 4.76 0.228
C006-C022 8.6 0.093 −8.96 1.04 −0.36 0.05 1.34 0.668 510 539 BS 1.24 5.0 0.239
C012-C022 2.9 0.189 −8.95 3.05 −0.33 0.136 1.90 2.388 370 402 BH 1.89 3.48 0.467
C012-C018 2.1 0.21 −8.18 3.81 −0.26 0.135 1.36 1.488 660 684 BS 1.17 4.34 0.250

TABLE III. Effective properties of the individual stars within the binary after the constraint-violating transient. Tildes represent
effective quantities of the stars in the binary. For the equal-mass binaries of paper I and the unequal-mass binaries studied here, we use
the mass from Eq. (7), the compactnessC from Eq. (8), the Noether charge from Eq. (9), and for each of these, their fractional differences
ΔX=X, with respect to the initial data for the isolated star used in the construction of the binary.

Binaries M̃1mbλ ΔM1=M̃1 C̃1 ΔC1=C̃1 Ñ1ðmbλÞ2 ΔN1=Ñ1 M̃2mbλ ΔM2=M̃2 C̃2 ΔC2=C̃2 Ñ2ðmbλÞ2 ΔN2=Ñ2

C006-C006 0.13 0.066 0.061 0.0099 0.071 0.14
C012-C012 0.43 0.15 0.13 0.093 0.32 0.21
C018-C018 1.0 0.22 0.21 0.14 1.0 0.29
C022-C022 1.6 0.32 0.28 0.20 1.9 0.42
C003-C022 0.048 0.034 0.033 0.093 0.012 0.38 1.1 0.035 0.22 0.0028 1.2 0.034
C006-C022 0.14 0.11 0.063 0.044 0.076 0.20 1.2 0.11 0.23 0.044 1.3 0.13
C012-C022 0.49 0.25 0.14 0.16 0.38 0.32 1.4 0.24 0.25 0.14 1.6 0.32
C012-C018 0.44 0.17 0.13 0.10 0.33 0.23 0.92 0.15 0.20 0.10 0.88 0.19

GRAVITATIONAL WAVES AND KICKS FROM THE MERGER OF … PHYS. REV. D 105, 064067 (2022)

064067-5



C. Numerical setup and analysis

The computational code, generated by the Simflowny
platform [65–68], runs under the SAMRAI infrastructure
[69–71], which provides parallelization and the adaptive
mesh refinement required to resolve the different scales in the
problem. We use fourth-order spatial, finite difference
operators to discretize the EKG equations,which are evolved
in time using a fourth-order Runge-Kutta integrator [72].
Our computational domain ranges within ½−264; 264�3

and contains eight levels of refinement. Each level has
twice the resolution of its coarser parent level, achieving a
resolution of Δx8 ¼ 0.03125 on the finest grid. We use a
Courant factor λc ≡ Δtl=Δxl ¼ 0.4 on each refinement
level l to ensure the stability of the numerical scheme.
We analyze some relevant global physical quantities

from our simulations, such as the ADM and the Komar
mass, the ADM angular momentum, and the Noether
charge, computed as in Ref. [39]. We focus our attention
mainly on the gravitational radiation represented by the
strain h, which is the quantity directly observable by GW
detectors. We consider first the Newman-Penrose scalarΨ4,
which can be expanded in terms of spin-weighted s ¼ −2
spherical harmonics [73,74] as

rΨ4ðt; r; θ;ϕÞ ¼
X
l;m

Ψl;m
4 ðt; rÞ−2Yl;mðθ;ϕÞ; ð10Þ

where the coefficients Ψl;m
4 are extracted and calculated on

spherical surfaces at different extraction radii. The relation
between this scalar and the two polarizations of the strain is
given byΨ4 ¼ ḧþ − iḧ×. The components of the strain in the
time domain can be calculated by performing the inverse
Fourier transform of the strain in the frequency domain,
hl;mðtÞ≡ F−1½h̃l;mðfÞ�, where a high-pass filter has been
applied in the frequency domain in order to attenuate the
signal with frequencies lower than the initial orbital fre-
quency [39,75]. The instantaneous angular frequency of each
GW mode can be calculated easily from Ψ4 as

ωl;m
GW ¼ −

1

m
Im

�
_Ψl;m
4

Ψl;m
4

�
; fl;mGW ¼ ωl;m

GW

2π
: ð11Þ

We will refer to ωGW as the one given by the dominant
mode l ¼ m ¼ 2.
The mass, the angular momentum, and Ψ4 are calculated

on spherical surfaces at different extraction radii between
Rext ¼ 100 and Rext ¼ 200, which are located far away
from the sources in the wave zone.

III. DYNAMICS FOR UNEQUAL-MASS
BS BINARIES

We have evolved four unequal-mass binary BS cases
fC003-C022;C006-C022;C012-C022;C012-C018g cov-
ering mass ratios q≡m1=m2 roughly between 2 and 23.

Additionally, we have studied a variation of the most
extreme case, C003-C022A, in which the heavier BS
has been transformed into an anti-BS. In what follows,
we describe first qualitatively the dynamics for all the cases
and then analyze the GWs produced by these mergers in the
next section.

A. Binary dynamics in the inspiral

We display some representative snapshots along the
equatorial plane to characterize the dynamics of these
binary evolutions. In particular, the Noether charge den-
sities in Fig. 2 show the dynamics of the condensed bosons,
whereas the scalar field norm in Fig. 3 shows the dynamics
of the scalar field generally.
The binaries in C003-C022A and C003-C022 complete

five full orbits before colliding, C006-C022 and C012-
C018 complete three orbits, and C012-C022 performs just
two. While such a short inspiral limits their use for guiding
templates, the inspiral is long enough for constraint
violations resulting from the construction of the initial
data to propagate away.
During the inspiral, the spacetime curvature is dominated

mainly by the heavier BS, which moves in a spiral trajectory
very close to the origin (i.e., see the leftmost column of
Fig. 2), while the lighter one induces a perturbation orbiting
around the most massive object. This effect is especially
pronounced in the fourmost unequal-mass cases inwhich the
heavier BS accounts for at least 75% of the binary mass.
During the inspiral, the scalar field constituting each star has
no significant overlap (see the first column of Fig. 3), and
therefore nonlinear scalar interactions only play a significant
role inside the stars. Roughly speaking, the BSs behave then
like point particleswithmoderate deviations produced by the
tidal deformations. As the mass ratio approaches unity, the
binary behaves similar to the equal-mass cases of paper 1.
In particular, C012-C018 with q ¼ 2.1 resembles those
equal-mass cases.
The aforementioned deviations due to tidal deformations

can be estimated by looking at the quadrupole-moment
tensorQðiÞ

ab of the ith object induced by the tidal-field tensor

GðjÞ
ab produced by the jth object (i, j ¼ 1, 2) [76,77],

QðiÞ
ab ¼ λiG

ðjÞ
ab ∼ λi

mj

r3
; ð12Þ

where r is the orbital distance and λi ¼ 2
3
m5

i k
ðiÞ
tidal is the tidal

Love number of the ith object, with kðiÞtidal being its
dimensionless counterpart. Hence, the dimensionless quad-

rupole moment Q̄i ¼ jQðiÞ
abj=m3

i reads

Q̄1 ∼ kð1Þtidal
q2

ð1þ qÞ3
M3

0

r3
; ð13Þ
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Q̄2 ∼ kð2Þtidal
q

ð1þ qÞ3
M3

0

r3
; ð14Þ

where M0 ¼ m1 þm2 is the binary total mass. In the large
mass-ratio limit q ≫ 1, the tidally induced quadrupole
moments of the primary and secondary are suppressed by a

factor q−1 and q−2, respectively. For example, for a fixed

value of kðiÞtidal, the tidally induced quadrupole moment of
the primary for q ¼ 23 is suppressed by a factor 3 relative
to q ¼ 1, whereas that of the secondary is even a factor
∼100 smaller. Overall, tidal effects on the secondary object
are less relevant than those on the primary.

FIG. 2. Dynamics of the Noether charge. Noether charge densities in the equatorial plane (z ¼ 0) at representative times. Each row
represents one of the cases (from top to bottom): fC003-C022A; C003-C022; C006-C022; C012-C022; C012-C018g. The first column
illustrates a time roughly one orbit before the contact time tc (defined as the time at which the individual Noether charge densities make
contact for the first time), the second column occurs at contact time, the third is roughly an orbit after the contact time (except for the
C012-C018 case, in order to visualize the ejected blob), and the fourth one occurs at the end of our simulations. Note that the final
remnant for C012-C022 is a rotating BH which quickly engulfs the surrounding scalar field (i.e., not visible on this natural scale).
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B. Final fate of the binary merger

If the system is sufficiently massive such that the
remaining mass after merger exceeds the maximum stable
BS mass [i.e., Mr ≥ Mmax ≈ 1.85=ðmbλÞ], one expects the
system to collapse to a remnant BH. If instead the total
mass is below this threshold, a remnant BS is expected.

In the latter case, the possibility of forming a rotating BS
should be considered. At least two conditions appear to be
required for such formation: (i) because rotating BSs have
quantized angular momentum, binaries need to have
angular momentum at the point of contact at least slightly
larger than or equal to the first discrete level of the rotating

FIG. 3. Dynamics of the scalar field. Logarithm of the modulus of the scalar field kΦk in the equatorial plane (z ¼ 0), at representative
times. Each row represents the unequal cases considered. Notice that there is only some scalar emission around the contact time tc
(defined as the time at which the individual Noether charge densities make contact for the first time), suggesting that the final object is an
almost stationary BS (except for the simulation on the third row, in which the remnant is a spinning BH).
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star,3 and (ii) the rotating solution to which the remnant
might settle must be stable.
Once the stars contact each other, one expects scalar field

interactions to produce additional attractive forces that
accelerate the merger (see the discussion of the effective
force with just a massive potential in Appendix B of [36]).
The newly formed, rotating object is initially largely
nonaxisymmetric, and, even by the end of our simulations,
the remnant is a highly perturbed BS (see the rightmost
column of Fig. 2). Some general features of the dynamics
can be found in certain global quantities (mass, Noether
charge, and angular momentum) which are displayed
in Fig. 4.
The mass and the Noether charge are unambiguously

defined global quantities, in contrast to the radius of the
star. In the case of a complex field, the Uð1Þ symmetry,
which ensures the conservation of the Noether charge,
significantly restricts the ways in which the remnants
might relax. Figure 5 shows the mass-Noether charge
phase space for two representative cases, C006-C012
and C012-C018. Here, we present several estimates of
the initial and final data along with families of isolated BSs,
to facilitate the understanding of the relaxation of the
remnant.
The orange squares indicate the simplest estimate of the

initial data ðM1 þM2; N1 þ N2Þ, obtained by adding the
properties of the isolated BSs used to construct the binary.
These two squares fall far from our two other estimates of
the initial data. In particular, the total mass and Noether
charge measured by the numerics after the transient is
shown in black circles. We then construct the effective
initial data (red crosses) by decomposing the numerically
obtained total mass via Eq. (7) and computing the charge of
each BS from these individual masses [with Eq. (9) in
Sec. II B].
We further note that, due to the nonlinearity of the

function NðMÞ, some amount of scalar and/or GW emis-
sion is needed during the merger in order for the remnant to
settle into either a static or rotating configuration. If the
remnant is assumed to be a BS that relaxes only by the
emission of GWs, namely, no emission of scalar field to
infinity, the evolutionary path of the binary would follow a
horizontal line in the N −M phase space (blue dashed line
on Fig. 5), ultimately settling into the remnant BS occurring
at the intersection with the family of nonrotating BSs given
by Eq. (9) (red dotted line). Our simulations indicate
emission of scalar field, in addition to GWs, a process
known as “gravitational cooling” [20,21]. Indeed, the path
of the numerical evolution (green dots) indicates that the
dynamics are driving each system toward a stationary BS

(red dotted line). Although most of these BS mergers ended
before the remnant fully relaxed to stationarity, we have
established for C003-C022 and C012-C012 that the point
ðMr;NrÞ [where Nr ≡ NðtendÞ] indeed lies on the isolated

FIG. 4. Global quantities. ADMmass (top), angular momentum
Jz (middle), andNoether charge (bottom) as functions of time. The
time has been shifted such that contact time happens at t ¼ 0 and
rescaled with the initial total mass M0 of each binary. Horizontal
dashed lines in themiddle panel indicate the angularmomentum of
the ground state rotating BS corresponding to the Noether charge
measured at the contact time. Notice that the angular momentum
decreases monotonically (although slowly) after merger for all
remnants except for that of C012-C022 which collapses to a BH.
This decrease in angular momentum, along with the fact that these
binaries (except C012-C022 which collapses to a BH) have less
angular momentum than any rotating BS with the same Noether
charge, support our claim that all noncollapsed cases settle to a
nonrotating BS. The nonmonotonic, brief drops in the mass and
angular momentum plots for the C003-C022A and C012-C018
cases correspond to the passage of transients across the extraction
surface on which mass and angular momentum are calculated (the
retarded time is used). The Noether charge is computed as a
volume integral and therefore less subject to such errors.

3This argument excludes some exotic possibility in which, say,
GWs with some opposite angular momentum are radiated
copiously until the remnant achieves the sufficient amount of
angular momentum.
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BS curve. However, the near constancy of the Noether
charge in the late postmerger (Fig. 4) and the close
approach of the final simulation to the isolated BS curve
(Fig. 5) both indicate that the mergers that do not collapse
are forming a stable, nonrotating, solitonic BS.
If the late stage evolution is dominated by GW emission

(since most of the ambient scalar field has already been
radiated), then we would expect the final object to be that
represented by the black solid diamond,ðMr;NðMrÞÞ, itself
a stationary BS, because the Noether charge would not be
changing.
An important unresolved question is whether a merger of

two BSs can produce a rotating BS. The stability of
rotating, solitonic BSs has been studied recently. First,
rotating BSs without scalar self-interactions were found to
be unstable due to a nonaxisymmetric instability [79].
However, a subsequent study showed that this instability
was quenched for the solitonic model of the potential [78]
(see also Ref. [80]) if M > 0.13=ðmbλÞ, for the value
σ0 ¼ 0.05 considered here. Without stability, one would
not expect formation of such configurations from a merger.
Rotating BSs have quantized angular momentum,

J ¼ kN for some integer k, and one can calculate the
function NðMÞ for the k ¼ 1 family of rotating BSs
following Ref. [78] (see also Ref. [81]). We display this

family of solutions as a green solid curve in the right panel
of Fig. 5 (case C012-C018) because this binary has angular
momentum close to this first quantized level. Actually, only
two cases among those studied in this work and paper I
(i.e., C012-C018 and C012-C012) are close to satisfying
the quantization condition, namely, that the angular
momentum is greater than or equal to the Noether charge
at the time of contact. In neither of these two cases do we
find a rotating remnant, and the angular momentum is
primarily reduced through emission of scalar “blobs.”
The case C012-C018 is shown in the right panel of

Fig. 5. We display the Noether charge equal to the binary’s
angular momentum at the time of contact with the hori-
zontal, yellow dot-dashed line. However, as shown in the
figure, the point of intersection of the dynamical path of the
binary ðMðtÞ; NðtÞÞ, shown in green dots, with the curve
indicating the k ¼ 1 family of rotating BSs (solid green
curve) occurs above this yellow line. Because these rotating
solutions have angular momentum equal to their charge, the
evolution lacks sufficient angular momentum to form the
rotating BS indicated by this point of intersection.
In an effort to understand the configuration space of

binaries in terms of possible end states, in particular,
including formation of a rotating remnant or a blob, we
parametrize the quantization condition. We first compute a

FIG. 5. Mass-Noether charge phase space. Evolution of the total mass and charge of the system for two representative cases: C006-C012
(left) and C012-C018 (right) which ejects a blob of scalar field after merger. The orange square for each case represents the value of
ðM1 þM2; N1 þ N2Þ obtained from the individual stars as listed in Table I. The black, open circles are the masses and charges ðM0; N0Þ
obtained from the numerical evolution just after the transient. The red crosses are the effective values ðM̃1 þ M̃2; NðM̃1Þ þ NðM̃2ÞÞ, as
explained in Sec. II B. The fact that the red crosses and black circles are close to each other supports the validity of this approach. The green
dots trace the numerical evolution by showing the extracted quantities ðMðtÞ; NðtÞÞ. Thevalues characterizing the final state ðMr; NrÞ of the
simulation are represented by a green triangle. The black diamond is the point ðMr;NðMrÞÞ, with the same mass as the green triangle but
with the charge obtained from the fit in Eq. (9). If one assumes that the remnant is a BS that relaxes only via emission of gravitationalwaves,
one obtains a horizontal phase space trajectory (blue dashed line) through the initial data (namely, the black circle here). The family of
nonrotating BSs given by Eq. (9) are plotted with a (red dotted curve). Only the case on the right has angular momentum comparable to the
first rotating solution, and so for this casewe also show the family of k ¼ 1 rotating BS configurations for our same potential fromRef. [78]
with a solid green curve. Because J ¼ kN for such rotatingBSs,we also show thevalue ofN corresponding to the angularmomentumof the
binary at contact time with a horizontal, yellow dot-dashed line.
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Keplerian estimate of the angular momentum either at
the time of first contact Rc ¼ C1=M1 þ C2=M2 or when
the binary reaches the innermost stable circular orbit,
RISCO ¼ 6M0, whichever occurs first. We then correct this
estimate by including the relativistic effects of strong
gravity. Because of the precontact scalar emission, the
total Noether charge in the binary at the point of contact
will be slightly smaller than the initial one. In addition, we
have observed blob emission in both cases where the total
charge of the binary is slightly higher than Jc. We
incorporate these two effects in our quantization condition
for rotating boson stars, J ≥ N, by introducing two new
parameters feN; eJg in the following way:

Jc;Kð1þ eJÞ
NðM1Þ þ NðM2Þ

> 1þ eN; ð15Þ

where Jc;K is the Keplerian estimate of the angular
momentum at the contact time, eN estimates either the
amount of Noether charge radiated during the merger
ðeN > 0Þ or the difference between the critical angular
momentum and the charge at the point of contact that
allows for blob emission ðeN < 0Þ. Finally, eJ accounts for
general relativistic corrections to the Keplerian angular
momentum calculation.
We use the above cases to estimate the value for the

parameters eJ, eN . To estimate eJ, we compute the
differences between the Keplerian estimate of the angular
momentum at contact time and the numerical value,

obtaining ∼25% in scenarios where we observe blob
formation: C012-C012 and C012-C018. In the low-mass
regime, where solitonic BSs are in the weak-field regime,
we expect that eJ → 0. Thus, we linearly interpolate eJ
between 0 and 0.25 forM0=2 ∈ ½Mmin;MC012� and take the
constant value eJ ¼ 0.25 up toM0 ¼ Mmax. Because of the
initial data constraint violation, we cannot estimate reliably
how much of the Noether charge is emitted before contact.
For the sake of argument, we take eN ¼ 0.01 in this case,
delineating a subset of the parameter space where the strict
form of the quantization condition is satisfied and where
rotating remnants may form. In addition, we require that the
remnant has surpassed the threshold mass estimate from
Ref. [78].
In the two cases where the blobs are observed, one finds

eN ¼ f−0.05;−0.02g for C012-C018 and C012-C012,
respectively. Thus, taking eN ¼ −0.05 would encompass
both scenarios where blobs are found and indicate the part of
the parameter space where one can expect blobs generically
and even possibly rotating remnants (more restrictive con-
dition). We sketch the configuration space for these mergers
in Fig. 6 in twoways: the left panel plots themass ratio versus
the total mass ðq;MÞ, whereas the right panel shows the
space spanned by individual masses ðM1mbλ;M2mbλÞ.
Solutions exist only for binaries constructed with stable
BSs, Mi < Mmax, with regions outside this indicated in
white. For binaries withM1 þM2 < Mmax, the formation of
a rotating BS appears possible for the binaries that do not
collapse to a BH and possess angular momentum satisfying
Eq. (15), although we have not observed such formation (red

FIG. 6. Scenario classification. The parameter space of solutions represented in two different ways: (left) mass ratio versus total mass
and (right) individual mass of one star versus the other. The outcomes of our simulations are consistent with Mmax being the simple
delineator for the BS/BH nature of the remnant. The blue region encloses configurations that satisfy the angular momentum requirement
of Eq. (15) (informed by our evolutions that produce blobs), and thus we expect either blob ejection or the formation of a rotating boson
star. The red hashed region is a subset of this region that we have not sampled, but where rotating BSs may form.
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hashed region).4 The set where we expect blob emission
based on the results of C012-C018 and C012-C012 cases
(blue region) has a red hashed region as its subset. Note that
lacking an understanding of the physics of the blob for-
mation, the blue region should serve only for illustrative
purposes. Both of these regions are determined approxi-
mately and require more simulations in order to understand
their precise extent.
One expects qualitatively similar behavior near

M0 ≈Mmax in the small λ regime (λ ≪ 1). In contrast,
when M0 → Mmin BSs behave as thick-walled Q-balls
(where “Q-balls” [82] refers to the flat-space limit of
solitonic BSs) [52], we can study the quantization condition
(15) in detail in this regime. We consider an equal-mass
(q ¼ 1) binary with N ≈ λM in which the objects collide at
Rc (for q ¼ 1 this happens when C < 0.17). Taking eJ ≈
eN ≈ 0 (in mb ¼ λ−1 units) and setting the angular velocity
to the Keplerian estimate, it can be shown with some
algebra that Eq. (15) becomes

C <
M2

4λ2
: ð16Þ

Thus, for sufficiently small λ (approximately an order of
magnitude smaller than the value in this work λ ¼ 0.25),
the quantization condition will be satisfied. This simple
expression does not change parametrically when a more
precise description of the Q-balls is used [52]. Although
rotating Q-ball solutions have been constructed [81], the
nonaxisymmetric instability (NAI) probably prevents one
from dynamically forming, based on the results of
Ref. [78]. Whether in those cases blobs form or the
nonaxisymmetric instability would kick in is an open
question.
To conclude, we cannot rule out the formation of a

rotating BS with the solitonic potential although none has
been formed. In any case, our parameter space analysis
indicates that the initial conditions would need significant
tuning, which may require more accurate initial data. Even
in those cases where the formation of a rotating BS might
be feasible, as suggested in paper I, the organization of the
bosonic field into a rotating star from the very nonlinear
merger may be too difficult, particularly because the
rotating BS necessarily has a toroidal energy density.5

C. Remnants: Scalar clouds, blobs, and kicks

Another interesting possibility is the formation of a
stable scalar cloud surrounding the remnant rotating BH.
A necessary condition for the scalar field to remain around
a spinning BH is the saturation of the superradiant con-
dition [83]. In particular, this condition is saturated when
the phase oscillation frequency of the scalar field ω is
synchronized with the angular frequency of the BH ΩH,
such that ΩH ¼ ω=m for some integer m. Synchronized
scalar clouds were not found originally from the mergers of
Proca stars [43], but more recent and detailed equal-mass
binary simulations of nonsolitonic bosonic stars showed
long-lived, scalar hair around a rotating horizon for a small
range of the initial angular momentum [59].
We examine the case C012-C022 to determine whether

any scalar field remains after the remnant has collapsed to a
BH. Visualizing the scalar field and its associated Noether
charged density reveals no significant remaining scalar
field (see the fourth column of the C012-C022 case of
Figs. 2 and 3). Furthermore, one sees the total Noether
charge drop quickly to zero after merger in Fig. 4 and the
bottom panel of Fig. 7.
To evaluate the possibility of formation of a synchron-

ized scalar cloud, we calculate the oscillation frequency of
the scalar field for a numerical comparison of the synchro-
nization condition ΩH ¼ ω=m. We note first that the final
BH has mass M ¼ 1.89=ðmbλÞ and angular momentum
Jz ¼ 1.92=ðmbλÞ2, leading to a dimensionless spin
a ¼ Jz=M2 ¼ 0.537. The radius and angular frequency
of the BH can be computed from expressions for Kerr-
Schild BHs as RH ¼ Mð1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − a2

p
Þ ≈ 3.5=ðmbλÞ and

ΩH ¼ a=ð2RHÞ ≈ 0.077mbλ. We Fourier transform the
scalar field at an arbitrary point outside the BH, but where
the scalar field is well above any numerical noise [roughly
a distance of 12=ðmbλÞ from the BH, as in the top panel
of Fig. 7]. We find a frequency ω ≈ 0.6mbλ which, with
the synchronization condition and the estimate of the BH
rotation ΩH, implies an azimuthal quantum number m ≥ 8.
Interestingly, as shown in the top panel of Fig. 7, the real
and, similarly, the imaginary (not shown) components of
the late-time scalar field configuration outside the BH
resemble the highm-number structure of a stationary cloud.
However, the amplitude of the scalar field is decreasing
fast, consistent with the decrease in both the Komar mass
and Noether charge, displayed in the bottom panel of the
same figure.
Previous studies suggest that initial data might need to be

fine tuned in order to form a stationary configuration,
unless such a configuration is a dynamical attractor, as in
the case of the superradiant instability [83]. It is worth
noticing that Ref. [59] found Proca clouds with m as high
as 6, but in the vector case the superradiant instability
develops much faster than in the scalar case at hand. In the
small mbM limit, the instability timescale of scalar fields is
longer than that of vectors by a factor ðmbMÞ−2 ≫ 1 [83].

4Because the maximal mass of rotating BSs is larger than that
for nonrotating BSs, a priori, even binaries with total mass
slightly higher than the maximum mass for static stars Mmax
could allow for the formation of a rotating remnant. Note,
however, that the effective mass of C012-C022 is slightly larger
than the static maximum mass Mmax and the configuration
collapses to a BH. Whether this also happens for q → 1 is an
open question.

5Rotating Proca stars instead have a spheroidal energy density
and yet none of these have been formed from a merger either [43].
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Furthermore, the instability is very suppressed for large
azimuthal number m. The imaginary part of the funda-
mental ðl; mÞ mode for a perturbation with spin s (s ¼ 0, 1
for scalars and vectors, respectively) depends on the factor

βls ¼ ½ðl−sÞ!ðlþsÞ!
ð2lÞ!ð2lþ1Þ!!�2 [83,84]. This dependence is responsible

for a suppression of the superradiant instability timescale
whenm ≫ 1. Indeed, for the most relevant l ¼ m ≫ 1, and
focusing only on the m dependence, the instability time-
scale reads

τ ¼ ω−1
I ∼m2mðmbMÞ−4m−5þ2s; ð17Þ

which quickly becomes extremely large as m increases.
Note that the fastest growing superradiantly unstable mode
in the scalar case (l ¼ m ¼ 1) has an instability timescale at
least τ ∼ 105M for a nearly extremal BH. This is already
much longer than the timescale of our simulations, and it
becomes much longer for m ≫ 1 modes and moderately
spinning BHs. This discussion strongly suggests that it is
unlikely that an m ¼ 8 superradiant cloud could form
dynamically over the limited timescale of our simulations.
It might be possible that mergers leading to smaller

oscillation frequencies of the remnant scalar field or with
higher initial angular momentum (so that the final BH is
rapidly rotating) are more likely to produce clouds. Either
of these conditions would lead to a smaller required m, but
may limit the parameter space of cloud-generating solu-
tions. Clearly, more work is needed to answer this question.
We now consider the ejection of scalar blobs. As

previously explained, the case C012-C018 is the only
one with contact angular momentum close to that of the
first quantized spinning BS configuration (namely, Jz ≳ N)
that does not collapse to a BH. Instead, whether the
spheroidal energy density formed in the merger somehow
prevents the configuration from relaxing to the toroidal
shape of the rotating BS or not, the system relaxes instead
to a nonrotating BS. To do so, the system must shed its
angular momentum.
In this case, the excess angular momentum is emitted

in the form of a blob of scalar field that is ejected from
the remnant soon after the merger (see the bottom row of
Figs. 2 and 3). This blob travels outward on the grid, and
its passage across the spherical surface [i.e., around
ðt − tcÞ=M0 ≈ 100] at which the system mass and angular
momentum are computed disrupts the assumptions of the
calculation, seen as nonmonotonicity in the global quan-
tities shown in Fig. 4.
Using the values before and after the drop in mass, we

can estimate the blob’s mass as Mblob ≈ 0.12. Despite the
blob containing only a small fraction of the total mass, it
carries a significant fraction of the total angular momentum
due to its large velocity vblob ≈ 0.5 directed nearly tangen-
tially away from the remnant and its distance from the
center of mass when ejected, L ≈ 7. Indeed, using the same
simple estimate for the angular momentum as in paper I, we
obtain Jz ≈MblobvblobL ≈ 0.4, which is roughly equal to
the sharp decrease of angular momentum observed in the
middle panel of Fig. 4. On the timescale of our simulation,
the blob appears bounded. In fact, the blob satisfies the
stability condition (inmb ¼ λ−1 units) λMblob < Nblob, with
Nblob ≈ 0.05=ðmbλÞ2 (see Ref. [52] and references therein
for a discussion of the stability regimes of solitonic BSs).
In addition to the unequal-mass case C012-C018 pre-

sented here, the ejection of the condensed scalar field was
observed in two equal-mass BS binary simulations, one in
Ref. [39] and the other in paper I. In those two cases, the
symmetry of the binary resulted in two identical blobs

FIG. 7. Details of the late-time behavior of case C012-C022.
Top: snapshot of the real part of the scalar field at the latest time.
Some scalar field remains around the BH (whose apparent
horizon is represented by the black sphere located at the center
of the plot) with a large m configuration. The amplitude of the
scalar field decays quickly during the timescale of our simu-
lations and does not reach the stationary state expected for a
single-mode synchronized scalar cloud. Bottom: Noether charge
and Komar mass (formulated only in terms of the stress-energy
tensor and hence measures only the scalar energy and not that of
the BH) as a function of time for the same case. After the sudden
drop at the merger, both quantities decay exponentially as the
scalar field falls into the BH.
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propagating along opposite directions. That three different
studies found blob ejection suggests that such ejection
might be typical in solitonic BS binaries under certain
conditions.
The ejection of the blobs has important implications for

the astrophysics of BS mergers should such systems (or
similar systems such as axion stars) actually exist in nature.
In contrast to the equal-mass case that ejects two blobs in
opposite directions, the ejection of a single blob generates a
kick on the remnant. For binaries with large enough mass
ratios, the kick can be large; large even compared to the
superkicks of binary BHs (which are as large as a few ×
103 km=s [85–88]) and larger than the typical escape
velocities of galaxies and of globular clusters [which are
of Oð102–103Þ and Oð10Þ km=s, respectively]. For exam-
ple, the linear momentum of the blob shown in the C012-
C018 simulation is roughly Mblobvblob ≈ 0.06=ðmbλÞ,
which, by linear-momentum conservation, implies that
the remnant with mass Mr ¼ 1.17=ðmbλÞ recoils with a
velocity vr ≈ 0.05 ∼ 1.4 × 104 km=s. In practice, since the
ejected scalar blobs have a sizable mass and relativistic
speed, they induce remnant kicks much more efficiently
than GW emission in asymmetric binary BH systems
[85–88]. These large kicks would have important impli-
cations for the merger rate of BS binaries in the Universe,
as they largely exceed the escape velocity from bound
structures (e.g., nuclear star clusters [89] and galaxies [90]).
As a result, the rate of successive generations of mergers
(which is particularly important for supermassive objects,
see, e.g., Ref. [91]) may be suppressed relative to the BH
case. Moreover, “stray” BSs moving at high speeds may be
present in the intergalactic medium as a result of ejections
from the host galaxies.
Finally, one might be tempted to associate this disruption

and blob ejection with the nonaxisymmetric instability
present in some rotating BSs [79]. However, a recent study
shows that the NAI should be quenched for the solitonic
potential for sufficiently compact BSs [78], which suggests
that the NAI is not the cause of blob ejection.

D. Collision of boson and antiboson stars

The use of BSs as a model of compact objects allows
easily for the study of antistars [92]. Here, the scalar field
represents its own antiparticle simply by changing the sign
of its phase oscillation, ω → −ω (this transformation also
switches the sign of the Noether charge associated with the
BS). The case C003-C022A represents a BS with a small
“antimatter star” in a merging binary. The evolutions of
C003-C022A and C003-C022 differ only once the stars
make contact, at which point the antistar annihilates. In
particular, the interaction of the oppositely oscillating
complex field annihilates such that the remaining field
lacks the harmonic oscillation in time and the Noether
charge density vanishes. Therefore, this scalar field inter-
action breaks the coherence of the BS solution, the

dispersive nature of the scalar field dominates over the
attraction of gravity, and the unbound scalar field is
radiated to infinity.
The small difference between the final and initial mass of

case C003-C022A, ΔM ≈ 0.09, accounts roughly for twice
the value of the lightest BS,M ¼ 0.0463. This suggests that
other energies, such as that of GW radiation and binding
energy, change little or are otherwise very small. This
simple calculation is also consistent with the lightest star
being completely annihilated during the merger. It is
interesting and a sign of the stability of the solutions under
a large perturbation that the remnant still settles into a stable
BS, even after the annihilation of a significant fraction of its
Noether charge.

IV. GRAVITATIONAL WAVE SIGNAL

We now turn our attention to the analysis of the
gravitational radiation produced by unequal-mass BS
binaries.

A. Late inspiral and merger

Some of the most relevant ðl; mÞ modes of the gravita-
tional radiation represented by the strain, together with the
angular frequency of the (2,2) mode, are displayed in
Fig. 8. A simple inspection of these profiles already
confirms that the dominant mode during the inspiral is
always the l ¼ m ¼ 2 for our wide range of mass ratios. As
expected, mass ratios closer to unity (i.e., such as the C012-
C018 case), when the mass quadrupole moment is stronger,
displays a larger predominance of the l ¼ m ¼ 2mode. On
the other hand, for large mass ratios (i.e., such as the C003-
C022 case), the importance of the higher-order modes
increases. It is interesting to note that after the merger the
amplitudes of the various modes are of the same order,
without one clearly dominating over the others.
Furthermore, as the mass ratio increases, the effects of

tidal deformations on the waveform become less relevant.
This can be understood as follows. A generic quadrupole-
moment tensor QðiÞ

ab of the ith object affects the GW phase
starting at second post-Newtonian order. The extra 1=r3

dependence of the tidally induced quadrupole moment [see
Eq. (12)] implies that tidal effects enter the GW phase
starting at the fifth post-Newtonian order, with a phase
correction [76,77]

δϕtidal ¼ −
117

8

ð1þ qÞ2
q

Λ
M5

0

v5; ð18Þ

where v ¼ ðπM0fÞ1=3 is the orbital velocity, f is the GW
frequency, and Λ ¼ 1

26
ðð1þ 12=qÞλ1 þ ð1þ 12qÞλ2Þ is the

weighted tidal deformability.When q ¼ 1,Λ ¼ ðλ1 þ λ2Þ=2
is simply the average of the two tidal deformability param-
eters. However, in the large mass-ratio limit [93], we can
write the correction as
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δϕtidal ¼ −k1
�
3

8
v5qþ…

�
− k2

�
9

2
v5

1

q3
þ…

�
; ð19Þ

wherewe include for eachof the tidal terms k1 andk2 only the
leading-order term in the q ≫ 1 expansion. The above
equation shows that the tidal deformability of the primary
is much more important than that of the secondary, which is
suppressed by a relative factor ∼q−4. Thus, the net contri-
bution of the tidal deformability in the GW phase, compared
to the point-particle phase, depends on two competing
effects: on the one hand, less compact BSs have a large
tidal Love number (see Table I), but, on the other hand, for
binaries with very disparate mass stars the tidal Love number
of the secondary is negligible. The quantity Λ=M5

0, which
provides a measure of the relevance of the tidal contribution
compared to the leading-order point-particle phase, is pre-
sented in Table IV. For the binary systems under consid-
eration, the suppressing effect of large mass ratios more
than compensates for the large tidal Love number of the

secondary, and hence the quantity Λ=M5
0 is larger for the

smallest mass-ratio system in the catalog.
Let us now consider the waveform’s higher modes. We

can characterize the effect of the mass ratio on the higher
modes by examining the ratio between some relevant
modes hl;m and the dominant h2;2 mode. The top panel
of Fig. 9 displays this ratio for the two extremely unequal

FIG. 8. GWs in the coalescence. Different modes l ¼ m of the strain as a function of time, together with the frequency of the dominant
mode l ¼ m ¼ 2. Clearly, the l ¼ m ¼ 2 mode is always much larger than the others, even for the largest mass ratio. The vertical gray
lines show the merger time.

TABLE IV. Tidal properties of unequal binary BS models
considered in our simulations. For each binary studied here,
the weighted tidal deformability Λ is shown. Despite the large
tidal Love numbers in the most unequal-mass binaries, the binary
deformability increases as q → 1.

Binaries q k1 k2 Λ=M5
0

C003-C022A 23.2 20 136494 0.75
C003-C022 23.2 20 136494 0.75
C006-C022 8.6 20 8420 0.99
C012-C022 2.9 20 332 0.94
C012-C018 2.1 41 332 1.79
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cases, C012-C018 with q ¼ 2.1 (dashed lines) and
C003-C022 with q ¼ 23.2 (solid lines). The panel shows
clearly that h3;3 is much larger for the more unequal case,
while the h4;4 case is less clear. A more quantitative
comparison can be performed by averaging the ratios
hl;m=h2;2 over the last few orbits, corresponding roughly
to the range of orbital frequenciesM0ωGW ∈ ð0.05; 0.1Þ. In
this way, we are then excluding both the early inspiral,
contaminated with significant constraint violations, and the
postmerger phase. The bottom panel of Fig. 9 displays
these ratios as a function of the mass ratio. The mode h3;3

increases relative to the dominant one by almost a factor 1.7
when passing from q ¼ 2 to q ¼ 23, while h4;4 barely
changes. Even for our largest mass ratio, the amplitude of
the h3;3 mode is at most 25% of the dominant one h2;2.

B. Postmerger

We analyze the postmerger frequencies of the gravita-
tional signal of the remnant, showing the power spectral
density of the dominant l ¼ m ¼ 2mode in the top panel of
Fig. 10. In the bottom panel of Fig. 10, we display the
frequency of the dominant mode for all the cases studied in
this paper and paper I, together with the fundamental mode
for isolated BS stars as a function of the compactness of the
remnant.
An analysis from paper I indicates a correspondence

between the frequency of the first peak with the quasinor-
mal mode (QNM) of isolated BSs. We scrutinize this

FIG. 9. GWs in the inspiral stage. Top: ratio between the
l ¼ m ≥ 2 modes of the strain and the dominant l ¼ m ¼ 2 for
the two most extreme cases C012-C018 (q ¼ 2.1, dashed lines)
and C003-C022 (q ¼ 23.2, solid lines). Bottom: the ratios
averaged over the last few orbits for all the mass ratios studied.
Notice that the l ¼ m ¼ 3 mode increases by a factor 1.7 in this
range of mass ratios, while the l ¼ m ¼ 4 mode barely increases
with mass ratio.

FIG. 10. GWs in the postmerger stage. Top: power spectral
density of the main mode (i.e., l ¼ m ¼ 2) of the strain for the
postmerger. Bottom: frequencies of the first peak of the l¼m¼2
mode for all the cases represented as a function of the compact-
ness of the remnant CN ≡Mr=RN (filled circles). Reliable results
from the equal-mass mergers of paper I are shown with filled
squares. The dashed line corresponds to the lowest QNM
frequencies ωQNM of isolated BSs. The fact that the frequencies
of the merger remnants are in good agreement with those of
isolated BSs provides further evidence that the remnants have
settled to stable BSs. Notice that we have also included the cases
that collapse to rotating BHs (those with CN ≥ 0.5).
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hypothesis further by considering the postmerger behavior
of all configurations from both papers as well as the QNM
of isolated solitonic BSs with C ¼ f0.06; 0.12; 0.18; 0.22g
calculated in paper I. We fit the spectral lines with a
Lorentzian function, i.e.,

h̃2;2ðωÞ ∼ ωI

ðω2
I þ ðω − ωRÞ2Þ

ð20Þ

to determine the peak frequency of the main mode ωR and
the inverse decay time ωI. In line with the discussion on the
relaxation of the remnant from Sec. III B, one can construct
quadratic fits for ωRðMrÞ;ωIðMrÞ, where Mr ¼ MðNrÞ
[Eq. (9)],

MrωR ≈ 0.05þ 0.3Mr − 0.13ðMrÞ2; ð21Þ

MrωI ≈ 0.013þ 0.007Mr; ð22Þ

for isolated scenarios from paper I. As shown in Fig. 11
(left panel), excluding the C018-C018 case from paper I
where the postmerger behavior is not reliable, real parts of
the postmerger main mode frequencies agree well with the
isolated solitonic BS QNM fit.
However, in the case of the imaginary frequency (see

Fig. 11, right panel) all remnants produced in the binary
coalescence have an offset with respect to the isolated
QNMs. We notice that the three configurations in which
blobs do not form have lower imaginary frequencies (longer
decay times) compared to the isolated configurations. In
contrast, in the case of blob formation, frequencies are higher
(shorter decay times) than expected from the isolatedQNMs.
Note the three cases with mbλMr ≈ 1.07–1.1 that have

almost identical real frequencies but vastly different imagi-
nary components. Understanding this peculiar behavior lies
beyond the scope of this paper. We speculate that the excess
angular momentum requires longer decay times in contrast
to the isolated configurations, except in the case of blob
formation that removes the excess (rotational) energy more
efficiently than in the isolated case, thus shortening the
decay time.
We have also compared the fits with the tabulated BH

QNMs [94]. The BH remnant from paper I, i.e., the C022-
C022 case (a ¼ 0.698), has tabulated value ðMrωR;
MrωIÞ¼ ð0.532;−0.081Þ, while we find ð0.469;−0.083Þ,
which is close to the time-domain fit from paper I where
ð0.5;−0.07Þ. For the C022-C012 case (a ¼ 0.5), we find
the tabulated value ð0.464;−0.086Þ, while the fit gives
ð0.475;−0.061Þ. This mild discrepancy between the fit
and the predicted ones for BHs may originate from the
numerical precision of the ADM mass/angular momentum
extraction and the fit, the presence of some remnant scalar
surrounding the BH, or the fact that the frequency estimate
depends on the choice of the postmerger time. Nonetheless,
the overall agreement corroborates the conclusion that the
remnant is a BH.

C. Solitonic BSs in the LIGO/Virgo band

In this subsection, we quantify the difference between
the GW signal expected from BS binaries and from binary
BHs, focusing on the LIGO/Virgo band. In particular,
we assess whether analyzing LIGO/Virgo data with binary
BH templates can lead to missed detections or to biases
on the estimate of the parameters of the source, under the
assumption that the latter consists of a BS binary.

FIG. 11. QNMs and postmerger spectrum. (Left) Real and (right) imaginary parts of the frequencies of the first peak of the l ¼ m ¼ 2
mode with respect to remnant mass Mr for binaries that form a remnant BS, with the equal-mass binaries of paper I (filled) and the
unequal-mass binaries studied here (open). Binaries that eject a blob are denoted with squares, while circles denote those that do not.
The frequencies of the QNMs of the four isolated BSs used for initial data are marked with stars, and the curves (solid) represent the fits
to the real and imaginary components of these QNM frequencies from Eqs. (21) and (22).
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As a preliminary test of this, we consider the BS binary
waveforms extracted from the unequal-mass simulations of
this paper, focusing on the l ¼ m ¼ 2mode alone. Actually,
each of these simulations can be taken to represent a binary of
any total mass, as long as frequencies and strain amplitudes
are properly rescaled; i.e., each simulation actually corre-
sponds to a one-parameter family of systems with varying
binary mass M, but with fixed dimensionless product
mbM=ℏ. We choose, therefore, to vary M in a range likely
to yield observable effects in the LIGO/Virgo frequency
band; i.e.,we chooseM in the interval ½Mmin; 100�M⊙, where
Mmin is such that the smaller progenitor is always heavier
than∼3 M⊙. For eachBSwaveformobtained in thisway,we
rescale the (2,2)-mode strain amplitude to correspond to a
fiducial luminosity distance of 400 Mpc. (We recall that
choosing a slightly different distance will simply rescale
strains and signal-to-noise ratios by a linear factor, at leading
order.) We then compare the BS signal obtained to
SEOBNRv4 BH binary waveforms [95], as implemented
in the PYCBC PYTHON package [96]. The component masses
and luminosity distance of the BH binary waveform are
chosen to match those of the BS binary, the component BH
spins are set to zero, and the initial phase andmerger time are
chosen so as to minimize the “difference” of the two signals.
In particular, we minimize the signal-to-noise ratio of the
difference of the two signals,

ρðΔÞ ¼
�
4

Z jΔ̃ðfÞj2
SnðfÞ

df

�
1=2

; ð23Þ

withΔðtÞ≡ hBSðtÞ − hBHðtÞ the residual, i.e., the difference
between BS and BH signals (computed for optimal detector
orientation and sky position) and with a tilde denoting a
Fourier transform. The (single-sided) power spectral density
of the noise Sn is chosen to be that of a single LIGO detector.
More precisely, we consider both the case in which Sn
corresponds to the Livingston detector in O3b [3], or to the
zero-detuning, high laser power design sensitivity curve [97].
Accounting for the second LIGO interferometer and for
Virgo will further increase the signal-to-noise ratio, roughly
by a factor≲ ffiffiffi

3
p

(with the≲ due to the fact that the source can
only be optimally placed relative to one detector at a time and
that Virgo is less sensitive than LIGO in O3b).
Two examples of BS binary waveforms, qualitatively

representative of the two possible postmerger scenarios
(i.e., BH or BS remnant) are shown in Fig. 12, where they
are compared to the “most similar” BH binary waveforms
identified with this procedure.
The signal-to-noise ratio ρðhBHÞ of the BH binary

waveform best matching each BS signal is shown in the
top panel of Fig. 13, as a function of M and for both the
O3b and design LIGO configurations. The signal-to-noise
ratio is computed by using the aforementioned SEOBNRv4
waveforms, which (unlike our short BS signals) include
inspiral, merger, and ringdown. In the bottom panel, we

show instead the residual signal-to-noise ratio ρðΔÞ, mini-
mized over initial phase and merger time for all the
simulations that we have at our disposal.
This residual signal-to-noise ratio is computed by

comparing BH and BS waveforms that are both cut below
the minimum frequency at which constraint violations are
significant in our simulations, in order to avoid biasing the
comparison. In this way, the residual signal-to-noise ratio
includes differences between BH and BS waveforms that
occur in the postmerger phase and also in the late inspiral,
thus including at least some contribution from tidal effects,
while keeping the impact of initial constraint violations

FIG. 12. Comparison between (2,2)-mode BS waveforms
produced from our simulations and BH binary SEOBNRv4
templates, for a system leading to a BS (q ¼ 8.6, M ¼
28 M⊙; top) or a BH (q ¼ 2.9, M ¼ 30 M⊙; bottom). The
template’s initial phase and merger time are chosen to minimize
the residual signal-to-noise ratio. Both systems are optimally
oriented at a luminosity distance of 400 Mpc, and the BH
component masses and spins are set equal to the BS component
masses and to zero, respectively.
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subleading.6 We then normalize ρðΔÞ by the full inspiral-
merger-ringdown BH signal-to-noise ratio ρðhBHÞ, since

we have no access to the full inspiral-merger-ringdown BS
waveforms. As can be seen, ρðΔÞ=ρðhBHÞ is always very
large and grows with M, as expected because for massive
binaries only the merger signal is in the band of terrestrial
interferometers (i.e., for those binaries the BS-BH
differences in the postmerger have a larger relative impact).
Also note that ρðΔÞ=ρðhBHÞ is smallest (although still quite
significant) in the case where the remnant is a BH
(q ¼ 2.9). Again, this is expected: The collision of two
nonrotating BHs with q ¼ 2.9 leads to a rotating remnant
with a ≈ 0.52 [98], close to the value of the BH spin
produced by the BS binary in our simulation (a ≈ 0.5). As
such, the differences in the merger ringdown, where most
of the in-band power resides (at least for moderately high
masses), are small (cf., e.g., Fig. 12).
As a rough rule of thumb, residual signal-to-noise ratios

ρðΔÞ ≲ 8=
ffiffiffi
3

p
∼ 5 may allow for claiming a BS binary

detection (as opposed to a BH binary one), provided that an
accurate determination of the component masses and spins
is available (e.g., thanks to a long inspiral). In the absence
of a sufficiently long detected inspiral, large residual signal-
to-noise ratios may merely lead to biases in the estimation
of the parameters of the source (i.e., one could mistake a BS
postmerger signal for a BH ringdown with remnant mass
different from the actual one and/or nonzero spin), or even
missed detections. As can be seen from Fig. 13, this second
possibility seems the most likely at high masses, for which
most of the inspiral is out of band and BH templates miss
most of the signal’s power for binaries producing a BS
remnant. Whether this leads to a bias on the recovered
parameters or just a missed detection should be ascertained
by considering templates with varying BH progenitor spins.
However, given the long duration of the BS postmerger
signal (cf., e.g., Fig. 12), it seems unlikely that it can be
detected by any one BH template; i.e., we expect mainly
missed detections at high M, at least for second-generation
detectors and for systems that lead to a BS remnant. For
systems that instead lead to BH formation (e.g., the q ¼ 2.9
case in Fig. 13), using BH templates may simply produce a
bias on the parameter estimation.
The situation will be more favorable for third-generation

interferometers [99] such as the Einstein Telescope or
Cosmic Explorer, which will observe many more inspiral
cycles. Not only will this allow for a better measurement of
progenitormasses and spins (whichwill reduce degeneracies
when comparing the postmerger signal to BH templates), but
it may also allow for measuring the tidal Love number in the
late inspiral [61,100,101]. This will provide additional hints
on theBSversusBHnature of the system.Wewill explore the
discovery space of these detectors and, at the same time,
refine our analysis in future work.

V. CONCLUSIONS

The coalescence of BSs allows us to study not only the
binary dynamics of one of the most viable and better

FIG. 13. Inspiral-merger-ringdown BH binary SEOBNRv4
signal-to-noise ratio ρðhBHÞ (top) and residual signal-to-noise
ratio ρðΔÞ between BS and BH waveforms (bottom), as functions
of the total binary mass. The residual signal-to-noise ratio is
minimized over initial phase and merger time and then normal-
ized by ρðhBHÞ, for the BS waveforms extracted from our
unequal-mass simulations. Both the BS and BH binaries are
optimally oriented at a luminosity distance of 400 Mpc, and the
BH component masses and spins are set, respectively, to the BS
component masses and to zero. For both signals and templates,
only the (2,2) mode is included. The signal-to-noise ratios are
computed with the O3b single-detector sensitivity (solid lines)
and with the single-detector design LIGO sensitivity in the zero-
detuning, high laser power configuration (dashed lines).

6Improvements in the initial data would change the residual
signal-to-noise ratio only marginally at high masses, while at low
masses they would allow for simulating a longer portion of the
inspiral phase. Our residual signal-to-noise ratios should then be
regarded as lower bounds.

GRAVITATIONAL WAVES AND KICKS FROM THE MERGER OF … PHYS. REV. D 105, 064067 (2022)

064067-19



motivated models of ECOs, but also the two-body problem
in general relativity for large mass ratios. The soft depend-
ence of the BS radius with its mass, at least for the solitonic
potential used here, facilitates the numerical simulations of
binaries with very different compactness, as compared to
the more challenging case of asymmetric BH binaries.
Taking advantage of this feature of solitonic BSs, we have
studied numerically the coalescence of unequal-mass
binaries with mass ratios ranging between 2 and 23. The
analysis of our simulations, which extends the equal-mass
binaries considered in paper I (i.e., Ref. [40]), confirms
many of the findings obtained in that previous study.
The fate of these binary mergers is either a nonrotating

BS or a Kerr BH, as confirmed not only by global quantities
and by the structure of the solution, but also by the
gravitational QNMs of the remnant. As in paper I, we
once again find no evidence that any of these binaries form
a rotating BS or a scalar cloud synchronized in its rotation
about a spinning BH. The asymmetry introduced by the
unequal mass of the constituent stars perhaps makes the
formation of either of these remnants less likely. An
analysis of the parameter space indicates the need to refine
the initial configurations to assess whether a rotating
remnant can be formed.
For a certain range of the initial angular momentum, the

remnant undergoes a process similar to a tidal disruption in
NSs, and a blob of scalar field is ejected. This process has
already been observed in the equal-mass binaries of paper I,
although the symmetry in that case induced the ejection of
two blobs in opposite directions instead of a single blob
observed here. The ejection of a single blob produces a
large recoil of the remnant. In our C012-C018 case, the
estimate of the recoil velocity is more than 104 km=s, larger
than the superkicks of binary BHs and large enough to have
significant implications for the expected dynamics of BSs
in the Universe. Because recent studies suggest that rotating
solitonic BSs should be stable against the nonaxisymmetric
instability [78], the ejection of the scalar blob is not likely a
result of such an instability.
We also evolve an unequal-mass binary with one of the

stars transformed to an antistar. This antistar completely
annihilates upon contact, dispersing scalar field to infinity.
The remaining scalar field settles to a lower mass, static BS
in a clear demonstration of the stability of these solutions
under a strong perturbation.
Regarding the GWs emitted during the coalescence, we

have found results comparable to those of binary BHs: the
l ¼ m ¼ 2mode of the strain is always dominant, although
higher-order modes become more relevant as the mass ratio
increases. We have estimated how the ratio of the modes
depends on the mass ratio during the last few orbits of the
coalescence.

We have also analyzed the prospect of detecting
differences between binary BS and binary BH gravitational
signals with ground interferometers. We have found that,
while the merger portion of the signal is significantly
different between the two classes of sources (at least if the
final merger remnant is a BS), distinguishing between the
two might be difficult with second-generation detectors due
to degeneracies between merger and inspiral parameters.
However, this task will ease considerably with third-
generation interferometers, such as Cosmic Explorer or
the Einstein Telescope.
Many interesting questions remain to be addressed,

especially regarding the final state of the remnant.
Evolutions of solitonic BSs have yet to produce either a
spinning BS or a synchronized scalar cloud. More accurate
and longer simulations together with improved initial data
may shed light on such questions, or perhaps some a priori
analysis will indicate whether and under what conditions
such end states will result.
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