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We study a generalization of the Holst action where we admit nonmetricity and torsion in manifolds with
timelike boundaries (both in the metric and tetrad formalism). We prove that its space of solutions is equal
to the one of the Palatini action. Therefore, we conclude that the metric sector is in fact identical to general
relativity (GR), which is defined by the Einstein-Hilbert action. We further prove that, despite defining the
same space of solutions, the Palatini and (the generalized) Holst Lagrangians are not cohomologically
equal. Thus, the presymplectic structure and charges provided by the covariant phase space method might
differ. However, using the relative bicomplex framework, we show the covariant phase spaces of both
theories are equivalent (and in fact equivalent to GR), as well as their charges, clarifying some open
problems regarding dual charges and their equivalence in different formulations.
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I. INTRODUCTION

The Holst action [1] plays a very significant role in the
study of the Hamiltonian formulation of general relativity
(GR) in terms of real Ashtekar variables. Although pro-
posed in a completely independent way, it has an interest-
ing historical precedent in the work of Hojman, Mukku,
and Sayed (HMS) [2]. These authors constructed an action,

that we denote SðmÞ
HMSðg; ∇̃Þ, based on the realization that the

metric Palatini action SðmÞ
PT ðg; ∇̃Þ for vacuum gravity, which

depends on a Lorentzian metric g and a general metric-
compatible connection ∇̃, could be modified, without
changing the field equations, by adding a parity-violating
term built with the help of the g-volume form and the
Riemann tensor determined by ∇̃.
Given a gravitational action such as SðmÞ

PT ðg; ∇̃Þ, it is
possible to build a new one in terms of a tetrad eI and a spin
connection ω̃I

J by taking g ¼ ηIJeI ⊗ eJ (here ηIJ denotes
the “internal” Minkowski metric) and writing the connec-
tion ∇̃ in terms of eI and ω̃I

J in an appropriate way. The ω̃IJ
are taken to be antisymmetric i.e., ω̃IJ ¼ −ω̃JI , a condition
equivalent to the metric compatibility of ∇̃. This is the spirit

of Cartan’s approach to GR (see [3] for an interesting
historical discussion). By proceeding in this way, one gets

the Palatini-Cartan action SðtÞ
PTðe; ω̃Þ, which has an impor-

tant advantage over SðmÞ
PT ðg; ∇̃Þ; it allows the coupling of

fermionic matter. When the previous procedure is imple-

mented for SðmÞ
HMSðg; ∇̃Þ, one gets the Holst action

SðtÞ
Holstðe; ω̃Þ, which is equal to SðtÞ

PTðe; ω̃Þ plus the so-called
“dual term”. As a consequence, the coupling constant that
multiplies the parity violating term of the HMS action is
closely related to the Immirzi parameter γ.
When matter fields are not present, the equations of

motion derived from the Palatini-Cartan and Holst actions
are completely equivalent. This implies that the presence
of the dual term does not change the Palatini space of
solutions in a significant way [4–14]. When gravity is
coupled to bosonic matter fields, the coupling terms are
independent of the connection and therefore the field
equations remain unchanged (see, for instance, [15]).
However, when coupled to fermionic matter fields, the
critical points of the Holst action are no longer equivalent to
those of the Cartan-Palatini action [16–22] due to the
presence of the dual term. This may have important
consequences. In particular, it is clear that the role of γ
in general relativity differs in a significant way from the one
of the θ parameter in QCD.
The introduction of a connection as a dynamical variable

adds several new geometric ingredients to the formulation
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of gravitational theories because, generically, connections
will have nonvanishing torsion and will not be metric
compatible. The interest in gravitational theories which
allow both for torsion and nonmetricity dates back to the
1970s when Hehl, Trautman, and their collaborators
developed Cartan’s theory of gravitation [23,24]. In their
approach, the field equations do not determine the con-
nection uniquely, and the condition ∇̃αgβγ ¼ 0 has to be
added. In [25], Sandberg studied from a variational point of
view the situation in which torsion is allowed and in which
the metric compatibility with the connection is not assumed
in general. Latter in the 1990s, Floreanini and Percacci [26]
considered a completely general GLð4Þ-invariant Palatini
formulation of GR in which the conditions of metricity and
torsionlessness are both obtained as dynamical equations
by adding appropriate terms to the action.
The study of the Holst action in the tetrad formalism with

torsion (but assuming metricity) was done in [27] in the
absence of boundaries. In the presence of boundaries,
significant work has been conducted to understand isolated
horizons [28–31] and general surface terms [32–34]. The
equivalence of the Holst action field theories coupled to
matter with torsion, nonmetricty, and boundaries, remains
an unexplored topic [20]. We will rely on the relative
bicomplex framework [35] although it is worth mentioning
that an alternative approach has been proposed in [36].
From a physical perspective, the presence of the dual

term may modify the conserved charges of GR. The
computation of these “dual charges” has been recently
considered in [12], where the authors relied on symplectic
and cohomological methods. They show that, without
dressing the standard presymplectic potential in a suitable
way, neither the Hamiltonian nor the Noether charges
written in tetrad variables match the corresponding metric
ones. As a consequence, the problem of figuring out which
approach is physically relevant to elucidate if the charges in
the metric and tetrad formalism are equivalent is still open.
In this paper we will study the Holst theory in all

generality, i.e., allowing for torsion and nonmetricity—in
both metric and tetrad variables—and in manifolds with
boundaries. The purpose of the present work is threefold:
(1) Study the solution spaces of the metric-HMS and

tetrad-HMS actions1 and compare them with the
ones obtained in other approaches. As we will see,
the presence of the parity breaking terms does not
change the solution spaces with respect to the ones
corresponding to the original Palatini models. In
[37], the metric-Palatini action was proved to give
GR on the metric sector, hence the metric sector of

the HMS theory is also necessarily GR. In [38], the
metric and tetrad formulations were proved to be
equivalent, so the same result holds for the tetrad
formulation.

(2) Study boundary terms for the different approaches.
We derive a new boundary Lagrangian that guaran-
tees the equivalence of the models considered. This
is done in metric-connection variables and we show
that, on translating the boundary term to tetrad-spin
connection variables, we recover the one given in
[39] (obtained by assuming nonmetricity).

(3) Study the charges in all the cases (including “dual
charges”) and show that the cohomological ap-
proach provided by the relative bicomplex frame-
work leads to their equivalence.

As mentioned before, this paper will strongly rely on the
relative bicomplex framework [35], which provides a clean,
consistent, and ambiguity-free procedure to obtain the
space of solutions, the presymplectic forms canonically
associated with the actions, and some relevant charges
within the covariant phase space (CPS) framework.
In the following we consider a four-dimensional space-

time manifold M diffeomorphic to Σ ×R, where Σ is a
three-dimensional manifold with boundary ∂Σ (possibly
empty). We will refer to ∂LM ≅ ∂Σ ×R as the lateral
boundary of M and restrict ourselves to the open set of
metrics making ∂LM time-like. Greek letters will denote
abstract indices for tensorial objects inM and barred Greek
indices will be used for tensors on ∂LM (quite often the
object itself will also carry a bar). The inclusion map will be
denoted as |∶ ∂LM ↪ M and its tangent map as |αᾱ.

II. THE GEOMETRIC ARENA

Given a connection ∇̃, we define its torsion, Riemann,
and Ricci tensors as

T̃orαμνðdϕÞα ≔ −½∇̃μ; ∇̃ν�ϕ;
R̃iemα

βμνZβ ≔ ð½∇̃μ; ∇̃ν� þ T̃orβμν∇̃βÞZα;

R̃icβν ≔ R̃iemμ
βμν:

If we endowM with a connection ∇̃ and a metric g, we can
define the nonmetricity tensor, the ðg; ∇̃Þ-scalar curvature,
the ðg; ∇̃Þ-extrinsic curvature of ∂LM, and its trace

M̃αβγ ≔ ∇̃αgβγ; R̃ ≔ gαβR̃icαβ;

K̃ᾱ β̄ ≔
1

2
|αᾱ|

β
β̄
ð∇̃ανβ þ gαγ∇̃βν

γÞ; K̃ ≔ ḡᾱ β̄K̃ᾱ β̄;

where ḡ ≔ |�g is the metric induced on ∂LM, να the
outward unit vector normal to ∂LM, and νβ ≔ gβγνγ .
Notice that R̃ and K̃ᾱ β̄ are generalizations of the g-scalar

1The action SðmÞ
HMSðg; ∇̃Þ proposed by HMS [2] was defined

in terms of a metric-compatible connection with torsion. None-
theless, we will refer to its generalization with both nonmetricity
and torsion also as the HMS action SðmÞ

HMSðg; ∇̃Þ and its tetrad
counterpart as SðtÞ

HMSðe; ω̃Þ.

J. FERNANDO BARBERO G. et al. PHYS. REV. D 105, 064066 (2022)

064066-2



R
∘
and g-extrinsic curvature K

∘
defined by the g-Levi-Civita

(LC) connection ∇∘ .
Given two connections ∇ and ∇̃, their difference is a

(2,1)-tensor Q≡ ∇̃ −∇. For a (1,1)-tensor Sβγ we have

ð∇̃α −∇αÞSβγ ¼ Qβ
αμSμγ −Qμ

αγSβμ;

and analogously for higher order objects. It is easy to check
that the following equality holds

Qαβγ ¼
1

2
ðT̃orαβγ − Torαβγ − T̃orβγα

þ Torβγα þ T̃orγαβ − TorγαβÞ

þ 1

2
ðM̃αβγ −Mαβγ − M̃βγα

þMβγα − M̃γαβ þMγαβÞ: ð2:1Þ

From the definition of Q, we have the following relations
between geometric objects associated with ∇̃ and ∇
R̃iemα

βμν ¼ ∇μQα
νβ þQα

μσQσ
νβ − ðμ ↔ νÞ þ Riemα

βμν

þ TorσμνQα
σβ; ð2:2Þ

T̃orγαβ ¼ Torγαβ þQγ
αβ −Qγ

βα; ð2:3Þ

R̃icβν ¼ Ricβν þ∇αQα
νβ þQα

ασQσ
νβ −∇νQα

αβ

−Qα
νσQσ

αβ þ TorσανQα
σβ; ð2:4Þ

M̃αβγ ¼ Mαβγ −Qβαγ −Qγαβ; ð2:5Þ

R̃ ¼ Rþ∇αðQαβ
β −Qβ

βαÞ þQα
ασQσβ

β −QαβσQσαβ

þ TorσαβQασβ; ð2:6Þ

K̃ᾱ β̄ ¼ Kᾱ β̄ þ
1

2
|αᾱ|

β
β̄
ðQαβμ −QμαβÞνμ; ð2:7Þ

K̃ ¼ K þ 1

2
ðQβ

βμ −Qμβ
βÞνμ: ð2:8Þ

By fixing a fiducial connection, usually the g-Levi-Civita

one ∇∘ , we can establish a bijection between connections ∇̃
and (2,1)-tensors Q. Working with the vector space of
tensors is usually easier than working with the affine space
of connections. This is why, in the following, we will use
the variables ðg;QÞ instead of the equivalent ones ðg; ∇̃Þ.
In order to describe the solution space and the presym-

plectic form, we will use the CPS algorithm [35], which
essentially consists in introducing a pair of bulk and
boundary Lagrangians, compute their variations, extract
the equations of motion and symplectic potentials, and
get the presymplectic form on the space of solutions.

The power of this method lies in its cohomological nature,
which renders it ambiguity free; we can pick any repre-
sentative Lagrangians and symplectic potentials to describe
the solution spaces and compute the presymplectic form.

III. METRIC-HMS WITHOUT BOUNDARY

A. The action

We consider actions of the form

S ¼
Z
M
L −

Z
∂LM

l̄;

defined in terms of a locally constructed bulk Lagrangian L
and a locally constructed boundary Lagrangian l̄. In this
section we assume ∂LM ¼ ∅, so the second integral
vanishes. In the next section we will consider the case
∂LM ≠ ∅. The metric-GR, metric-Palatini, and metric-
HMS actions are respectively defined by the Lagrangians

LðmÞ
EH ðgÞ≔ðR∘ −2ΛÞvol; g∈F ðmÞ

GR ≔fgj|�g is timelikeg;
LðmÞ
PT ðg;QÞ≔ðR̃−2ΛÞvol; ðg;QÞ∈F ðmÞ

PT ≔F ðmÞ
GR ×T2

1;

LðmÞ
HMSðg;QÞ≔LðmÞ

PT ðg;QÞ− 1

2γ
volαβμνR̃iemαβμνvol;

ðg;QÞ∈F ðmÞ
HMS≔F ðmÞ

PT ;

where, to ease the notation, we denote vol ≔ volg the
g-volume form. Using (2.2), (2.6), and the first Bianchi
identity, it is possible to split the HMS Lagrangian into the
standard GR term, some coupling terms and an exact form,

LðmÞ
HMSðg;QÞ ¼ LðmÞ

EH ðgÞ þ L̂ðmÞ
P-CPðg;QÞ − 1

γ
L̂ðmÞ
H-CPðg;QÞ

þ dðιA⃗−C⃗þq⃗=γvolÞ; ð3:1Þ

where

L̂ðmÞ
P-CPðg;QÞ≔ ðCλAλ−QαβλQλαβÞvol;

L̂ðmÞ
H-CPðg;QÞ≔ volαβμνQαμσQσ

νβvol;

Aα ≔ gβγQα
βγ;

Bβ ≔Qμ
βμ;

Cγ ≔Qμ
μγ;

qμ ≔ volμαβνQαβν:

ð3:2Þ

B. Variations

The variation of each Lagrangian is given by (see
[37,38])
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dLðmÞ
EH ¼ ðEðmÞ

EH Þαβdgαβ þ dΘðmÞ
EH ;

dL̂ðmÞ
P-CP ¼ ðEðmÞ

P-CPÞαβdgαβ þ ðEðmÞ
P-CPÞαβσdQα

βσ;

dL̂ðmÞ
H-CP ¼ ðEðmÞ

H-CPÞαβdgαβ þ ðEðmÞ
H-CPÞαβσdQα

βσ;

where

ðEðmÞ
EH Þαβ ≔−

�
R
∘
ic

αβ
−
1

2
ðR∘ − 2ΛÞgαβ

�
vol;

ðEðmÞ
P-CPÞαβ ≔

1

2

�
Qγα

σQσ
γ
β −CσQσαβ

þ 1

2
gαβðCσAσ −Qγτ

σQσ
γτÞ þ ðα↔ βÞ

�
vol;

ðEðmÞ
H-CPÞαβ ≔

1

2
volμνηξðδβξðQμ

ασQσην −Qμν
σQση

αÞ
þ δαηQμξσQσβ

ν þ gαβQμησQσ
ξν þ ðα↔ βÞÞvol;

ðEðmÞ
P-CPÞαβσ ≔ ðδβαAσ þ gβσCα −Qσ

α
β −Qβσ

αÞvol;
ðEðmÞ

H-CPÞαβσ ≔ volξμβνðgξαQσ
νμ − δσξQνμαÞvol;

ΘðmÞ
EH ≔ ιW⃗vol; with

Wα ≔ ðgαμgβλ − gαλgβμÞ∇λdgβμ:

Notice that since the coupling terms have no derivatives,
they do not contribute to the symplectic potentials.
Gathering everything together we obtain

dLðmÞ
HMS ¼ ðEðmÞ

EH þ EðmÞ
P-CP −

1

γ
EðmÞ

H-CPÞαβ
zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{EðmÞ

dgαβ

þ ðEðmÞ
P-CP −

1

γ
EðmÞ
H-CPÞαβσ

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{EðmÞ

dQα
βσ þ dΘðmÞ

HMS;

where the following representative has been chosen as the
symplectic potential (see [37,38])

ΘðmÞ
HMS ≔ ΘðmÞ

PT þ 1

γ
dιq⃗vol ¼ ΘðmÞ

EH þ dðιA⃗−C⃗þq⃗=γvolÞ: ð3:3Þ

C. Space of solutions

The goal of this section is to solve the algebraic equation
of motion EðmÞ ¼ 0 for Q. By plugging this solution into

EðmÞ ¼ 0, we will recover the Einstein equations EðmÞ
EH ¼ 0.

This will prove that the space of solutions of LðmÞ
HMS and L

ðmÞ
PT

are the same.

1. Irreducible decomposition of the torsion

In order to solve the first equation of motion, we will use
the irreducible decomposition of the torsion and the

metricity. An irreducible decomposition breaks a tensor
into simpler objects with the same symmetries. Some of
the terms are always built out of traces while the rest are
traceless. For the torsion, which is antisymmetric in the last
two indices, one obtains

T̃orαβσ ¼ τ̃αβσ þ Ãα
βσ þ t̃αβσ: ð3:4Þ

The first term is a combination of the trace T̃β ≔ T̃orαβα,
the second term is the completely antisymmetric part of
T̃or, and the last one is the remainder components of the
tensor,

τ̃αβσ ≔
1

3
ðT̃βδ

α
σ − T̃σδ

α
βÞ; Ãα

βσ ≔ gαμT̃or½μβσ�;

t̃αβσ ≔ T̃orαβσ − τ̃αβσ − Ãα
βσ: ð3:5Þ

It is easy to check that τ̃; Ã; t̃ are all antisymmetric in the
last two indices. Besides, Ã; t̃ are traceless and t̃ satisfies
the cyclic identity

t̃αβσ þ t̃σαβ þ t̃βσα ¼ 0 → t̃½αβσ� ¼ 0: ð3:6Þ

Finally, since the dimension of the manifoldM is 4 and Ã is
essentially a 3-form, we can define its dual 1-form

d̃μ ≔ 4Ãαβσvolαβσμ;

Notice that we have the relation d̃μ ¼ −8qμ [see Eq. (3.2)].
We have obtained a decomposition of any 3-tensor anti-
symmetric in its two last indices given by (3.5). Conversely,
we have that this decomposition completely characterizes
the tensor:
Remark 3.7. The irreducible decomposition of a

3-tensor antisymmetric in its last two indices is given by
two 1-forms ðTβ; dβÞ and a 3-tensor tαβσ satisfying

tαβσ ¼−tασβ; tαασ ¼ 0; tαβσþ tσαβþ tβσα ¼ 0: ð3:7Þ

To prove that, notice that a 3-tensor with this symmetry
has n nðn−1Þ

2
components (equal to 24 when n ¼ 4) and the

number of independent components of ðTβ; dβ; tαβσÞ is

nþ nþ 1

3
nðn2 − nÞ;

which is also equal to 24 when n ¼ 4. This proves, as
intended, that ðT̃β; d̃β; t̃αβσÞ is the irreducible decomposi-
tion of T̃orαβσ .

2. Irreducible decomposition of the nonmetricity

The nonmetricity, which is symmetric in the last two
indices, has two traces ãα ≔ M̃αβ

β and b̃β ≔ M̃α
βα. Its

irreducible decomposition can be expressed as
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M̃αβσ ¼ð1Þ M̃αβσþ ð2ÞM̃αβσ þ S̃αβσ þ m̃αβσ; ð3:8Þ

where

ð1ÞM̃αβσ ≔
1

4
ãαgβσ;

ð2ÞM̃αβσ ≔
1

36
ðgβσδμα − 2gαβδ

μ
σ − 2gασδ

μ
βÞðãμ − 4b̃μÞ;

S̃αβσ ¼ M̃ðαβσÞ −
1

18
ðgαβδμσ þ gσαδ

μ
β þ gβσδ

μ
αÞðãμ þ 2b̃μÞ;

m̃αβσ ≔ M̃αβσ −ð1Þ M̃αβσ −ð2Þ M̃αβσ − S̃αβσ:

All these tensors are symmetric in the last two indices and S̃
and m̃ are traceless. Moreover, we have also the cyclicity
condition analogous to (3.6)

m̃αβσ þ m̃σαβ þ m̃βσα ¼ 0 → m̃ðαβσÞ ¼ 0:

We have obtained a decomposition of any 3-tensor sym-
metric in its last two indices given by (3.8). Conversely, we
have that this decomposition completely characterizes the
tensor:
Remark 3.10. The irreducible decomposition of a

3-tensor symmetric in its last two indices is given by
two 1-forms ðaβ; bβÞ, a completely symmetric and traceless
3-tensor Sαβσ, and a 3-tensor mαβσ satisfying

m̃αβσ ¼ m̃ασβ; m̃α
ασ ¼ 0 ¼ m̃αβ

β;

m̃αβσ þ m̃σαβ þ m̃βσα ¼ 0: ð3:9Þ

To prove that, notice that a 3-tensor with this symmetry
has n nðnþ1Þ

2
components, 40 for n ¼ 4, and ðaβ; bβ;

Sαβσ; mαβσÞ has

nþ nþ 1

6
nðn − 1Þðnþ 4Þ þ 1

3
nðn2 − 4Þ

components, also 40 for n ¼ 4. Therefore, ðãβ; b̃β;
S̃αβσ; m̃αβσÞ is the irreducible decomposition of M̃αβσ .

3. Expressing the equation of motion in terms
of the irreducible decompositions

Once we have decomposed the torsion and nonmetricity,
we rewrite the equations of motion in terms of these
irreducible components. Plugging Eqs. (3.4) and (3.8) into
the expression (2.1) of Q in terms of the torsion and
nonmetricity (recall that the torsion and the nonmetricity of
the LC connection are zero) leads to

Qα
βσ ¼

1

3
ðT̃αgβσ − T̃σδ

α
βÞ

þ 1

36
ðð2b̃σ − 5ãσÞδαβ þ ð2b̃β − 5ãβÞδασ

þ ð7ãα − 10b̃αÞgβσÞ

þ 1

2
Ãα

βσ −
1

2
S̃α

βσ − t̃βσα þ m̃α
βσ: ð3:10Þ

Meanwhile, plugging this expression into EðmÞ (we do
not write the volume to ease the notation) leads to

Eαβσ ≔
1

vol
ðEðmÞÞαβσ ¼ 1

vol
ðEðmÞ

P-CP −
1

γ
EðmÞ
H-CPÞαβσ

¼
�
2

3
T̃σ þ 4

9
ãσ −

7

9
b̃σ
�
gαβ −

�
2

3
T̃α þ 2

9
ãα þ 1

9
b̃α
�
gσβ −

1

18
ðãβ − 4b̃βÞgσα − Ãαβσ þ S̃αβσ − t̃βσα þ m̃αβσ

−
1

2γ

�
2

3
ð2T̃μ þ ãμ − b̃μÞδσνδαρ þ ðÃσ

μν þ t̃σμνÞδαρ − ðÃα
μν þ t̃αμν − 2m̃νμ

αÞδσρ
�
volρβμν: ð3:11Þ

Since there are three free indices, these are 64 equations
(not all of them independent) in the variables ðT̃β; d̃β;
t̃αβσ; ãβ; b̃β; S̃αβσ; m̃αβσÞ which, as we mentioned before,
have 64 independent components in total.

4. Solving for T̃;d̃;ã;b̃

Consider the following system of equations

Eα
ασ ¼ 0 2T̃σþ 3

2
ãσ −3b̃σ − 1

8γ d̃
σ ¼ 0;

Eσβ
β ¼ 0 ≡ 2T̃σþ 1

2
ãσþ b̃σ − 1

8γ d̃
σ ¼ 0;

volαβσμEαβσ ¼ 0 γ
4
d̃μþ4T̃μþ2ãμ−2b̃μ ¼ 0;

ð3:12Þ

wherewehaveused that volαβσμt̃αβσ ¼ 0,which follows from
(3.6). The solutions to this system of linear equations are

ãσ ¼−8Uσ; b̃σ ¼−2Uσ; T̃σ ¼3Uσ; d̃σ ¼0; ð3:13Þ
for an arbitrary vector field Uσ on M.

5. Solving for S̃

Plugging the solutions (3.14) into (3.11) leads to

Eαβσ ¼ S̃αβσ − t̃βσα þ m̃αβσ

−
1

2γ
fvolαβμνt̃σμν − volσβμνðt̃αμν − 2m̃νμ

αÞg: ð3:14Þ
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By completely symmetrising this expression, all terms
vanish except for the first one, so

S̃αβσ ¼ 0: ð3:15Þ
6. Solving for m̃

Plugging (3.15) into (3.14), symmetrizing in ðα; σÞ,
using the cyclicity of m̃, and imposing it to be zero leads to

m̃αβσ þ 1

γ
ðvolαβμνm̃μνσ þ volασμνm̃μνβÞ ¼ 0; ð3:16Þ

or equivalently

m̃αβσ ¼ Mαβσ
μνκm̃μνκ; where

Mαβσ
μνκ ≔ −

1

γ
ðvolαβμνδσκ þ volασμνδ

β
κÞ: ð3:17Þ

Applying this equation recursively leads to

m̃αβσ ¼ Mαβσ
μνκm̃μνκ ¼ Mαβσ

μνκMμνκ
ξρτm̃ξρτ

¼ð3.11Þ − 9

γ2
m̃αβσ → m̃αβσ ¼ 0: ð3:18Þ

7. Solving for t̃

Plugging the solutions (3.15) and (3.18) into (3.14) and
imposing it to be zero leads to

t̃αβσ ¼ T αβσ
μνκ t̃μνκ; where

T αβσ
μνκ ≔

1

2γ
ðvolαβμνδσκ − volασμνδ

β
κÞ: ð3:19Þ

Applying this equation recursively leads to

t̃αβσ ¼ T αβσ
μνκ t̃μνκ ¼ T αβσ

μνκT μνκ
ξρτ t̃ξρτ

¼ð3.8Þ − 1

γ2
t̃αβσ → t̃αβσ ¼ 0: ð3:20Þ

8. Final space of solutions

By solving the equation of motion EðmÞ ¼ 0, we have
obtained for the independent variables ðT̃β; d̃β; t̃αβσ;
ãβ; b̃β; S̃αβσ; m̃αβσÞ the following necessary conditions,

ãσ ¼ −8Uσ; b̃σ ¼ −2Uσ; T̃σ ¼ 3Uσ;

d̃σ ¼ 0; t̃αβσ ¼ S̃αβγ ¼ m̃αβγ ¼ 0; ð3:21Þ

for an arbitrary Uσ. Plugging these into (3.11) shows they
are also sufficient, so the first equation of motion is
completely solved. Moreover, if we insert (3.21) into
(3.10), the expression of Q over the space of solutions
is given by

Qα
βσ ¼ δασUβ: ð3:22Þ

Substituting back this result into the other equation of
motion, it is straightforward to check that it vanishes, hence
only the Einstein equations remain,

0 ¼ EðmÞ ≔ EðmÞ
EH þ EðmÞ

P-CP −
1

γ
EðmÞ

H-CP ¼ð3.24ÞEðmÞ
EH :

This means that ðg;QÞ is a solution for metric-HMS action
if and only if Qα

βσ ¼ δασUβ and g satisfies the Einstein
equations

SolðmÞ
HMS ¼ fðgαβ; δαγUβÞjg ∈ SolðmÞ

GR ; Uβ arbitraryg
¼½37� SolðmÞ

PT : ð3:23Þ

This result proves that the metric sector of the metric-HMS
theory is equivalent to the metric-EH theory as explained in
[37,38]. We have the following on shell identities,

R̃iemα
βμν ¼R

∘
iemα

βμνþgαβðdUÞμν;
R̃icβν¼R

∘
icβνþðdUÞβν; R̃¼R

∘
;

K̃αβ̄ ¼K
∘
ᾱ β̄− 1

2
ðU∧ νÞᾱ β̄; K̃¼K

∘
;

M̃αβγ ¼−2gβγUα; ˜Torγαβ ¼ δγβUα−δγαUβ;

L̂ðmÞ
P-CP¼ 0; L̂ðmÞ

H-CP¼ 0:

ð3:24Þ

D. Presymplectic form

Taking the d-exterior derivative of (3.3) we obtain

dΘðmÞ
HMS ¼ dΘðmÞ

PT ¼ dΘðmÞ
EH :

Thus, the metric-HMS presymplectic form dHMS
ðmÞ defined

over the space of solutions SolðmÞ
HMS is the same as the one of

metric-Palatini dHMS
ðmÞ which, in turn, has the same func-

tional form as the metric-EH presymplectic form dEH
ðmÞ (see

[37,38]). In fact, if we define the projection πðmÞðg;QÞ ¼ g,
the presymplectic forms canonically associated with the
three actions can be related as

ð3:25Þ

IV. METRIC-HMS WITH BOUNDARY

A. The action

In this section we consider a manifold with nonempty
boundary. The action over the space of fields F ðmÞ

HMS ≔
fðg;QÞj|�g Lorentziang is given by
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SðmÞ
HMS ≔

Z
M
LðmÞ
HMS −

Z
∂LM

l̄ðmÞ
HMS;

with the same bulk Lagrangian (3.1) and a boundary
Lagrangian

LðmÞ
HMS ≔ LðmÞ

PT −
1

2γ
volαβμνR̃iemαβμνvol;

l̄ðmÞ
HMS ≔ l̄ðmÞ

PT þ 1

γ
|�ιq⃗vol; ð4:1Þ

where we recall that qμ ¼ volμαβνQαβν. The first term of the
boundary Lagrangian is the generalized Hawking-Gibbons-
York term introduced by Obukhov in [40] (see also [37])

l̄ðmÞ
PT ðg;QÞ ≔ −2K̃volḡ; l̄ðmÞ

GHYðgÞ ≔ −2K
∘
volḡ;

while the second term is a new one introduced to cancel the
exact terms coming from the variation of the bulk
Lagrangian. It is interesting to note that, using Eq. (2.8),
the HMS boundary term can be written as

l̄ðmÞ
HMSðg;QÞ ¼ l̄ðmÞ

GHYðgÞ þ |�ιA⃗−C⃗þq⃗=γvol;

which, in view of Eq. (3.1), shows why this is a natural
choice of boundary Lagrangian.

B. Variations

From the computations of the previous section, we
obtain the same result in the bulk

dLðmÞ
HMS ¼ ðEðmÞÞαβdgαβ þ ðEðmÞÞαβσdQα

βσ

þ dðΘðmÞ
EH þ dðιA⃗−C⃗þq⃗=γvolÞÞ:

Now, following the CPS algorithm [35], we compute on the
lateral boundary

dl̄ðmÞ
HMS − |�ΘðmÞ

HMS

¼ dl̄ðmÞ
GHY þ d|�ιA⃗−C⃗þq⃗=γvol− |�ΘðmÞ

EH − |�dðιA⃗−C⃗þq⃗=γvolÞ
¼ dl̄ðmÞ

GHY − |�ΘðmÞ
EH ¼ b̄ᾱ β̄ðmÞdḡᾱ β̄ − dθ̄ðmÞ

HMS;

where in the last equality we have the usual quantities of
EH (see for instance [38])

b̄ᾱ β̄ðmÞðgÞ ¼ ðK∘ ᾱ β̄
− K

∘
ḡᾱ β̄Þvolḡ;

θ̄ðmÞ
HMS ≔ θ̄ðmÞ

EH ¼ ιV̄volḡ;

V̄ ᾱ ¼ −|αᾱνβdgαβ: ð4:2Þ

C. Space of solutions

Although the manifold we are considering has a boun-
dary term, the boundary equations only involve the metric,
and hence we recover the same result (3.23). This implies
that the boundary only plays a role in the metric sector of

the solution space SolðmÞ
EH (discussed in detail in [38], where

both Dirichlet and Neumann boundary conditions were
considered). The same techniques used here apply if one
considers other boundary terms to impose different boun-
dary conditions.

D. Presymplectic form

We have seen that θ̄ðmÞ
HMS ¼ θ̄ðmÞ

PT ¼ θ̄ðmÞ
EH . This together

with (3.3) leads once again to (3.25).

V. TETRAD-HMS WITH BOUNDARY

A. The action

The tetrad-HMS action is defined as SðtÞ
HMS ≔ SðmÞ

HMS ∘
ΦHMS where

ΦHMSðe; ω̃Þ ≔ ΦPTðe; ω̃Þ
¼½37� ðηIJeIμeJν ; Eβ

Ke
J
αðω̃μ

K
J − ω

∘
μ
K
JÞÞ

¼ ðgμν; Qβ
μαÞ:

As usual, eIα are the tetrad 1-forms, Eα
I the dual cotetrad

vector fields, ηIJ the internal Lorentz metric, ω̃IJ is the
generic 1-form connection (no symmetries in the internal

indices), and ω
∘ IJ is the Levi-Civita 1-form connection

associated with the metric gμν ¼ ηIJeIμeJν .
ΦHMS is almost a change of variables from tetrads and

spin connections ðe; ω̃Þ ∈ F ðtÞ
HMS to metrics and 3-tensors

ðg;QÞ ∈ F ðmÞ
HMS: it is surjective but not injective. In fact,

ΦHMSðe; ω̃Þ
¼ ΦHMSðe0; ω̃0Þ

↔ ∃ localΨ ∈ SOð1;3Þ
���� e

0
I ¼ ΨI

JeJ
ω̃0J
I ¼ ΨI

Kω̃K
LΨJ

L þΨI
KdΨJ

K

:

ð5:1Þ

Moreover, it is not too hard to check that dΦHMS is
surjective.
Remark 5.2. Naively, one might think that the fact that

ΦHMS is almost a change of variables implies that the
results derived in the metric formalism can be easily
transferred into the tetrad formalism. However, this is
not the case since dΦHMS involves derivatives of deIα

(due to the variation of ω
∘
μ
K
I ≔ eKα∇

∘
μEα

I ). These derivatives
will appear in the computation of the symplectic potentials
and charges.
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From the aforementioned definition of the tetrad-HMS
action, we choose the following representatives as the
tetrad-HMS Lagrangians

LðtÞ
HMSðe; ω̃Þ ≔ LðmÞ

HMS ∘ ΦHMSðe; ω̃Þ;
l̄ðtÞ
HMSðe; ω̃Þ ≔ l̄ðmÞ

HMS ∘ ΦHMSðe; ω̃Þ: ð5:2Þ

In this case, it is not really useful to write the Lagrangian
as the sum of the EH-term and some coupling terms
[in analogy with (3.1)]. It is better to split the 1-form
connection in its antisymmetric and symmetric parts in its
internal indices,

ω̃IJ ¼ ω̂IJ þ SIJ;

and consider the equivalent variables ðe; ω̂; SÞ. Following
[37,38], one obtains the following explicit expressions for
these Lagrangians

LðtÞ
HMSðe; ω̂; SÞ ¼

1

2
HIJKL

�
F̂IJ −

Λ
6
eI ∧ eJ þ SIM ∧ SMJ

�

∧ eK ∧ eL;

l̄ðtÞ
HMSðe; ω̂Þ ¼ −

1

2
HIJKLð2NIdNJ − ¯̂ω IJÞ ∧ ēK ∧ ēL

−
1

γ
dēI ∧ ēI;

where HIJKL ¼ εIJKL þ 1
γ ðδKI δLJ − δLI δ

K
J Þ, F̂IJ ¼ dω̂IJ þ

ω̂IK ∧ ω̂K
J, ēI ≔ |�eI , ¯̂ω IJ ≔ |�ω̂IJ, and NI ¼ ναeIα.

Notice that if we set S ¼ 0 we recover the Holst
Lagrangian on the bulk

LðtÞ
HMS ¼ LðtÞ

Holst þ
1

2
HIJKLSIM ∧ SMJ ∧ eK ∧ eL;

while the boundary term is the one defined in [39]
(although in that reference it is derived by working from
the beginning with a Lorentz connection i.e., S ¼ 0).
Notice in particular that the tetrad-HMS action can be
interpreted as the generalization of the Holst action for
GLð4Þ connections.

B. Variations

Computing the variations, one easily obtains

dLðtÞ
HMS ¼ EðtÞ

L ∧ deL þ EðtÞ
KL ∧ dω̂KL

þ EðtÞ
JM ∧ dSJM þ dΘðtÞ

HMS;

dl̄ðtÞ
HMS − |�ΘðtÞ

HMS ¼ b̄ðtÞI ∧ dēI − dθ̄ðtÞHMS;

where the Euler-Lagrange equations are

EðtÞ
L ≔ HIJKL

�
F̂IJ þ SIM ∧ SMJ −

Λ
3
eI ∧ eJ

�
∧ eK;

EðtÞ
KL ≔ −

1

2
D̂ðHIJKLeI ∧ eJÞ;

EðtÞ
JM ≔

1

2
ðHIKLJδ

R
M þHIKLMδ

R
J ÞSRI ∧ eK ∧ eL;

b̄ðtÞI ≔ ϵIJKLð2NKdNL − ¯̂ω KLÞ ∧ ēJ

þ 2ϵMJKLNLðιĒJdēKÞ ∧ ēMNI −
2

γ
D̂ēI; ð5:3Þ

where D̂αI ¼ dαI þ ω̂I
J ∧ αJ. We take the symplectic

potentials

ΘðtÞ
HMS ≔

1

2
HIJKLeI ∧ eJ ∧ dω̂KL;

θ̄ðtÞHMS ≔ ϵIJKLēI ∧ ēJ ∧ NKdNL −
1

γ
ēI ∧ dēI: ð5:4Þ

C. Space of solutions

One way to obtain the space of solutions is to prove that
dΦPT is surjective. Then, because

dðe;ω̃ÞS
ðtÞ
HMS ¼ dðe;ω̃ÞðSðmÞ

HMS ∘ ΦPTÞ
¼ dΦPTðe;ω̃ÞS

ðmÞ
HMS ∘ dðe;ω̃ÞΦPT; ð5:5Þ

we have

SolðtÞHMS ¼ð5.6ÞΦ−1
PTSol

ðmÞ
HMS ¼ð3.25ÞΦ−1

PTSol
ðmÞ
PT ¼½37� SolðtÞPT: ð5:6Þ

Although it is not too hard to prove that dΦPT is surjective,
here we will use the techniques of Sec. III C to solve

EðtÞ
JM ¼ 0. To that purpose let us first expand SIJ ¼ SMIJeM

with SMIJ ¼ SMJI to rewrite the third equation in (5.3) in
the form

ϵKLNPHIKLðMSNJÞI ¼ 0;

which is equivalent to

−2SIðMIδJÞP þ 2SðMJÞP −
1

γ
SNLðMϵJÞNLP ¼ 0: ð5:7Þ

We use now the irreducible decomposition (3.8) (notice that
we are allowed to do that despite the different “nature of the
indices”) to write

SIJK ¼ ð1ÞSIJK þ ð2ÞSIJK þ ΣIJK þ σIJK; ð5:8Þ

with
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ð1ÞSIJK ≔
1

4
AIηJK;

ð2ÞSIJK ≔
1

36
ðηJKδLI − 2ηIJδ

L
K − 2ηIKδ

L
J ÞðAL − 4BLÞ;

ΣIJK ¼ SðIJKÞ −
1

18
ðηIJδLK þ ηKIδ

L
J þ ηJKδ

L
I ÞðAL þ 2BLÞ;

σIJK ≔ SIJK − ð1ÞSIJK − ð2ÞSIJK −ΣIJK; ð5:9Þ

where all these tensors are symmetric in the last two
indices, ΣðIJKÞ ¼ ΣIJK , ΣIJK and σIJK are traceless and,
finally, σIJK þ σKIJ þ σJKI ¼ 0. We now solve (5.8) in
steps. First, by contracting it with δJP we get

SMI
I − 4SIMI ¼ 0 ↔ AM − 4BM ¼ 0:

By symmetrizing (5.8) in the indices MJP we find

SðJMPÞ−SIðMIηJPÞ ¼ 0↔ΣJMPþ
1

6
ðAðJ−4BðJÞηMPÞ ¼ 0:

We then conclude that ð2ÞSIJK ¼ 0 and ΣIJK ¼ 0, so that
SIJK ¼ 1

4
AIηJK þ σIJK and (5.8) becomes

σPJM ¼ N PJM
TUVσTUV;

N PJM
TUV ≔

1

2γ
ðδUMϵTJVP þ δUJ ϵ

T
M
V
PÞ:

Now,

σPJM ¼ N PJM
TUVσTUV ¼ N PJM

TUVN TUV
ABCσABC

¼ −
3

γ2
σPJM;

as a consequence of the tracelessness of σIJK and its
cyclicity. We then conclude σPJM ¼ 0 for all γ ∈ R, and
the general solution for SIJ has the form

SIJ ¼ ηIJUKeK;

with UK arbitrary. Plugging this solution into EðtÞ
KL ¼ 0 of

(5.3) removes the dependence in S and the system becomes
the ones studied in [13,41], where we found the solution

ω̂IJ ¼ ω
∘
IJ. Finally, once we plug the solutions for S and ω̃,

eI has to satisfy the Einstein equation coming from EðtÞ
L .

D. Presymplectic form

From (5.4) and [37,38], we have

ΘðtÞ
HMS ¼ ΘðtÞ

PT þ
1

γ
eI ∧ eJ ∧ dω̂IJ;

θ̄ðtÞHMS ¼ θ̄ðtÞPT −
1

γ
ēI ∧ dēI: ð5:10Þ

Alternatively, defining the contorsion CIJ ≔ ω̂IJ − ω
∘ IJ, we

can write

ΘðtÞ
HMS ¼ ΘðtÞ

PT þ
1

γ
eI ∧ eJ ∧ dCIJ þ 1

γ
eI ∧ eJ ∧ dω

∘ IJ

¼ ΘðtÞ
PT þ

1

γ
eI ∧ eJ ∧ dCIJ −

1

γ
dðeI ∧ deIÞ:

The last equality follows from the expression of ω
∘
in terms

of D
∘
and the fact that D

∘
eI ¼ 0 (since the connection is the

LC one, there is no torsion). Gathering the previous
equations and using the relative bicomplex framework
[35], we obtain

ðΘðtÞ
HMS; θ̄

ðtÞ
HMSÞ ¼ ðΘðtÞ

PT; θ̄
ðtÞ
PTÞ þ

1

γ
ðeI ∧ eJ ∧ dCIJ; 0Þ

−
1

γ
dðeI ∧ deI; 0Þ: ð5:11Þ

Notice that, off shell, the HMS and Palatini symplectic
potentials are not equal in the relative cohomology due do
the term involving dCIJ. Moreover, we see that the relative
cohomology class of the HMS symplectic potentials
depends on γ while in the Palatini case, of course, it does
not. However, C ¼ 0 on shell and we obtain, as in the
metric case, the expected equivalence over the space of
solutions and the independence of γ.

VI. CHARGES IN THE METRIC FORMALISM

A. The HMS and Palatini Lagrangian pairs
are not equal in relative cohomology

The space of solutions and the symplectic structure of
metric-HMS is the same as in metric-Palatini. However,
the Lagrangians are not the same at all. In fact, they are
not even in the same relative cohomological class so, in
principle, the associated charges computed with the CPS
algorithm may differ. Indeed, from our previous compu-
tations we have that

dðLðmÞ
HMS − LðmÞ

PT Þ

¼ −
1

γ
ðEðmÞ

H-CPÞαβdgαβ −
1

γ
ðEðmÞ

H-CPÞαβσdβσ þ
1

γ
dðdιq⃗volÞ

dðl̄ðmÞ
HMS − l̄ðmÞ

PT Þ − |�ðΘðmÞ
HMS − ΘðmÞ

PT Þ ¼ 0;

giving nontrivial equations of motion. This shows that the
HMS Lagrangians and Palatini Lagrangians are not in the
same relative cohomology class.
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B. Definition of ξ-charges

In this subsection we quickly summarize the definition of
ξ-charges (we follow the notations, definitions, and results
of [35]). Consider a pair of Lagrangians ðL; l̄Þ over the
space of fields F ¼ fϕ tensor fieldg defining a good
action principle. This means that we have

dL ¼ E ⩓ dϕþ dΘ; dl̄ − |�Θ ¼ b̄ ⩓ dϕ − dθ̄:

Given some vector field ξα tangent to ∂LM, we define the
ξ-currents and the ξ-charge associated with a Lagrangian
pair ðL; l̄Þ as

where is
the interior product of F , dϕðXξÞ ¼ Lξϕ, and
{∶ ðΣ; ∂ΣÞ ↪ ðM; ∂LMÞ is a Cauchy embedding. The
ξ-charges depend on the embedding off shell but are
independent on shell. Moreover, in general they also
depend on the Lagrangians chosen within the cohomo-
logical class. However, if we only allow Diff-invariant
representatives, the charge does not depend on the choice.
Finally, Lemma III.54 of [35] shows that

ð6:1Þ

If we have, as we do in our case, diffeomorphism-invariant representatives ðΘ; θ̄Þ, the last integral is zero. Meanwhile, if we
restrict ourselves to the space of solutions then the first integral vanishes. Thus, we have that XξjSol is a
Hamiltonian vector field with Hamiltonian (Qξ is said to be integrable).

C. HMS vs Palatini vs GR ξ-charges

Let us prove that the HMS and Palatini ξ-charges coincide and that they are both equal to the ξ-charges of GR after
pulling back to the metric sector.
From (3.3), (4.2), and [37], we have

ðΘðmÞ
HMS; θ̄

ðmÞ
HMSÞ ¼ ðΘðmÞ

PT ; θ̄ðmÞ
PT Þ þ 1

γ
dðιq⃗vol; 0Þ ¼ ðΘðmÞ

GR ; θ̄
ðmÞ
GR Þ þ dðιA⃗−C⃗þq⃗=γvol; 0Þ; ð6:2Þ

and

ðLðmÞ
HMS; l̄

ðmÞ
HMSÞ ¼ ðLðmÞ

PT ; l̄ðmÞ
PT Þ − 1

γ
ðL̂ðmÞ

H-CP; 0Þ þ
1

γ
dðιq⃗vol; 0Þ

¼ ðLðmÞ
EH ; l̄

ðmÞ
GHYÞ þ

�
L̂ðmÞ
P-CP −

1

γ
L̂ðmÞ
H-CP; 0

�
þ dðιA⃗−C⃗þq⃗=γvol; 0Þ: ð6:3Þ

Then, we have

To get the last line we have used the relative Stokes’
theorem together with ∂ðΣ; ∂ΣÞ ¼ ∅ and the fact
that over 0-forms in the space of fields,
the last equality follows because ιA⃗−C⃗þq⃗=γvol does not

depend on any background object (over such objects
). Finally, [see (3.24)], we use that the coupling

Lagrangians are zero on shell to prove the equality of the
charges.

J. FERNANDO BARBERO G. et al. PHYS. REV. D 105, 064066 (2022)

064066-10



Notice that we have written Q̃GR;{
ξ;ðmÞ, instead of simply

QGR;{
ξ;ðmÞ, to remind the reader that, although they have the

same functional expression, they live in different spaces.

The former lives in the Palatini/HMS space F ðmÞ
PT ð¼F ðmÞ

HMSÞ
while the latter lives in the GR space F ðmÞ

GR (they are equal
after pullback/projection).

Since does not

depend on γ, we obtain QHMS
ξ;ðmÞ ¼ QPT

ξ;ðmÞ ¼ Q̃PT
ξ;ðmÞ and all

the charges are equivalent (the particular expression is
given in [38] [III.4] ). Moreover, from (6.1) it follows that
these charges are the Hamiltonian of Xξ

ð6:4Þ

VII. CHARGES IN THE TETRAD FORMALISM

A. HMS and Palatini Lagrangian pairs are
NOT equal in relative cohomology

We have seen that ðLðmÞ
HMS; l̄

ðmÞ
HMSÞ and ðLðmÞ

PT ; l̄ðmÞ
PT Þ are

different in the relative cohomology but, as mentioned on
Remark 5.2, this does not imply that the tetrad counterparts

ðLðtÞ
HMS; l̄

ðtÞ
HMSÞ and ðLðtÞ

PT; l̄
ðtÞ
PTÞ are different in relative coho-

mology. However, proceeding as in Sec. VI A allows us to
show that they are different in the relative cohomology aswell.

B. HMS vs Palatini vs GR ξ-charges

Let us prove that the HMS and Palatini ξ-charges are
equal and that they are both equal, after pulling back to the
metric sector, to the ξ-charges of GR.
To this end first notice that

ω̃IJ ¼ ω
∘
IJ þ CIJ þ SIJ;

The Lagrangian pairs of the three theories are related by

ðLðtÞ
HMS; l̄

ðtÞ
HMSÞ¼ ðLðtÞ

PT; l̄
ðtÞ
PTÞþ

1

γ
ðeI ∧ eJ ∧ ðCIM ∧CM

JþSIM ∧ SMJÞ;0Þþ
1

γ
dðeI ∧ eJ ∧CIJ;0Þ

¼ ðLðtÞ
EH; l̄

ðtÞ
HGYÞþ

1

2
ðHIJKLeI ∧ eJ ∧ ðCK

M ∧CMLþSKM ∧ SMLÞ;0Þþ1

2
dðHIJKLeI ∧ eJ ∧CKL;0Þ; ð7:1Þ

while their symplectic potentials are related by

ðΘðtÞ
HMS; θ̄

ðtÞ
HMSÞ ¼ ðΘðtÞ

PT; θ̄
ðtÞ
PTÞ þ

1

γ
ðeI ∧ eJ ∧ dCIJ;0Þ−

1

γ
dðeI ∧ deI;0Þ

¼ ðΘðtÞ
GR; θ̄

ðtÞ
GRÞ þ

1

2
ðHIJKLeI ∧ eJ ∧ dCKL;0Þ− 1

γ
dðeI ∧ deI;0Þ: ð7:2Þ

Using again the relative Stokes’ theorem, the fact that there are no background objects and the relative Cartan’s magic
formula, we get

On shell, CIJ ¼ 0 and SIJ is proportional to the identity ηIJ.
Thus, on shell, the previous expression vanishes and we
have once again the equivalence of the charges (the
particular expression is given in [38] [IV.8] ) and the fact
that these charges are the Hamiltonian of Xξ.
Once again, we have reached the expected equivalence

between the metric and tetrad formalism. However, it is
interesting to note that in the tetrad formalism we have an

additional symmetry which is absent in the metric formal-
ism. To introduce it, we need to take a small detour and
speak about Kosmann derivatives, d-symmetries, and gen-
eral charges.

C. Kosmann ξ-charges

In the metric formalism, g-Killing vector fields
ξ ∈ XðMÞ satisfy Lξg ¼ 0. If the metric is written in terms
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of tetrads as g ¼ ηIJeI ⊗ eJ, the condition Lξg ¼ 0 is
equivalent to requiring that LξeI ¼ −λ̂IJeJ for some λ̂IJ

antisymmetric but nonzero in general. This observation
leads to the introduction of the Kosmann derivative
KξeI ≔ LξeI þ λ̂IJeJ, choosing λ̂IJ so that it vanishes
for every Killing vector field. The Kosmann derivative
has been used, among other things, to study black hole
entropy [42] (see also [43] for a more geometric
discussion).
In the bicomplex formalism, this construction can be

defined as follows: consider a λ̂-dependent vector field Zλ̂

given by and such that

ð7:3Þ

for every Killing vector field ξ. By demanding that (7.3)
holds, we can get the explicit form of λ̂IJ in the following
way

λ̂IK ¼ λ̂½IK� ¼ ηJ½K λ̂I�J ¼ eJαEα½K λ̂I�J ¼ −Eα½KðLξeI�Þα
¼ −Eα½Kð∇∘ ξ⃗e

I�
α þ eI�β∇

∘
αξ

βÞ

¼ ξβe½Iα∇
∘
βEαK� − EαKEβI∇∘ ½αξβ�

¼ {ξω
∘ IK −

1

2
EαKEβIðdξÞαβ;

where ∇∘ is the Levi-Civita connection. With the previous
choice of λ̂IJ, we have

which indeed vanishes if ξ is a Killing of the metric.

Now we have to prove that Zλ̂ is a symmetry and
compute the associated charges.

D. Definition of X-charges

A d-symmetry is a vector field X over F such that
is exact when no boundary is considered. If we assume that
the base manifold has a nonempty boundary, then we have
to rely on the concept of relative d-symmetry (or
d-symmetry for short) introduced in [35]; a vector field
X over F such that is relative exact. That means
that there exists some ðSX; s̄XÞ such that

Now we can define the X-currents and X-charge

The charge Q{
X is independent of the chosen representa-

tives. Moreover, restricting ourselves to the space of
solutions we see that it does not depend on the embedding
and it is the Hamiltonian of X. Finally, a comment is in
order; if we apply these definitions to Xξ, we recover the
ones given in Sec. VI B (although notice that those are
defined even if Xξ is not a d-symmetry).

E. Definition of λ-charges

Now we have to prove that Zλ̂ is a d-symmetry. In fact,
we are going to prove something stronger, that Zλ is
a d-symmetry for every scalar field λIJ antisymmetric in its
internal indices. Let us define the vector field Zλ over

F ðtÞ
PT by

From (5.1) and (5.2), it is clear that Zλ is a d-symmetry of ðLðtÞ
HMS; l̄

ðtÞ
HMSÞ and we can take ðSZλ

; s̄Zλ
Þ ¼ ð0; 0Þ. We now

compute the Zλ-currents to obtain

These expressions can be rewritten in a relative form as
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ðJZλ
; |̄Zλ

Þ ¼ 1

2
dðHIJKLλ

KLeI ∧ eJ; 0Þ
− ðHIJKLλ

KLCI
R ∧ eR ∧ eJ; 0Þ

þ 1

2
ð0; εIJKLð2NINRλ

RJ − λIJÞēK ∧ ēLÞ:

Finally, notice that the last term is zero as a consequence
of ϵ½IJKLNR�NIλJRēK ∧ ēL ¼ 0.

We end by computing the Zλ-charge (λ-charge for short)
as the integral of the Zλ-currents

QHMS;{
λ ≔

Z
ðΣ;∂ΣÞ

ðJZλ
; |̄Zλ

Þ¼−
Z
Σ
HIJKLλ

KLCI
R ∧ eR ∧ eJ;

which is zero on shell (since over the space of solutions

CIJ ≔ ω̂IJ − ω
∘ IJ vanishes). Moreover, from (7.2) and the

relative Stokes’ theorem, we have

We see that the λ-charges do not coincide off shell in GR,
Palatini, and HMS. However, as expected since there is no
metric counterpart, they all vanish on shell.

VIII. CONCLUSIONS AND COMMENTS

In this paper we have studied in full detail the relation
between the metric-HMS and tetrad-HMS formulations for
general relativity on manifolds with or without boundary.
First we have proven that the spaces of solutions of the
metric-HMS action and the metric-Palatini action are the
same. Then we have studied the correspondence between
the solution spaces in the metric and tetrad formalisms.
Although the simple relationship between them can be
justified on general grounds by relying on the properties of
the transformation ΦHMS and its tangent map (in particular,
by the fact that both are onto), we have checked this
explicitly by solving the relevant sector of the field
equations. In order to do this, we have used the irreducible
decompositions of the tensors involved. We would like to
insist on several facts:
(a) We have done this in full generality, i.e., by taking

from the start completely general connections with
torsion and nonmetricity. In particular, in the tetrad
formalism we have the Holst action plus another term
that depends on the symmetric part of the connection.
To the best of our knowledge, this has not been
considered before.

(b) We have derived a new boundary Lagrangian to
recover GR also at the boundary, and used the trans-
formation ΦHMS to find its tetrad counterpart. The
latter coincides with the boundary Lagrangian pro-
posed in [39] by Bodendorfer and Neiman (although
they only work with Lorentz connections).

(c) As expected, the equivalence of the solution spaces
extends to the case of manifolds with boundaries.

As far as the (pre)symplectic forms are concerned the
situation is very simple in the metric case as the symplectic
potential corresponding to the different formulations
(Einstein-Hilbert, Palatini, and HMS) differ by a d-exact
term. In fact, they coincide both off shell and on shell. The
tetrad case is more complicated. This is to be expected on
general grounds because the transformation ΦHMS involves
derivatives. As we have shown, the HMS and Palatini
symplectic potentials are not equal on the relative coho-
mology; they are different off shell but coincide on shell as
a consequence of the dynamical vanishing of the con-
tortion CIJ.
Finally, regarding the charges we have shown that they

also differ off shell, but coincide on shell (again as a
consequence of the fact that CIJ ¼ 0). A similar analysis
has been performed for the λ-charges (which include the
Kosmann charges) proving that, in fact, they all vanish.
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