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It is a long-standing open question if a gravitomagnetic charge, the gravitational analogon to a
hypothetical magnetic charge in electrodynamics, exists in nature. It naturally occurs in certain exact
solutions to Einstein’s electrovacuum-field equations with cosmological constant. The charged NUT–de
Sitter metric is such a solution. It describes a black hole with electric and gravitomagnetic charges and a
cosmological constant. In this paper we will address the question how we can observe the gravitomagnetic
charge using gravitational lensing. For this purpose we first solve the equations of motion for lightlike
geodesics using Legendre’s canonical forms of the elliptic integrals and Jacobi’s elliptic functions. We fix a
stationary observer in the domain of outer communication and introduce an orthonormal tetrad. The
orthonormal tetrad relates the direction under which the observer detects a light ray to its latitude-longitude
coordinates on the observer’s celestial sphere. In this parametrization we rederive the angular radius of the
shadow, formulate a lens map, discuss the redshift, and the travel time. We also discuss relevant differences
with respect to spherically symmetric and static spacetimes and how we can use them to determine if an
astrophysical black hole has a gravitomagnetic charge.
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I. INTRODUCTION

The charged NUT–de Sitter metric belongs to the more
exotic solutions of Einstein’s electrovacuum-field equa-
tions with cosmological constant. It is axisymmetric and
stationary and belongs to the Plebański-Demiański family
of spacetimes of Petrov type D [1]. In addition to the
mass parameter m, the electric charge e and the cosmo-
logical constant Λ it contains two parameters n and C.
In analogy to a hypothetical magnetic monopole with
magnetic charge b the parameter n is usually referred to
as “gravitomagnetic charge.” The parameter C is called the
Manko-Ruiz parameter [2]. The spacetime is usually
interpreted to describe a black hole; however, unlike the
Reissner-Nordström–de Sitter metric it does not contain a
curvature singularity at r ¼ 0. The original Taub-NUT
spacetime was discovered in two steps. First the time-
dependent part of the spacetime was discovered by Taub in
1951 [3]. In 1963 Newman et al. [4] used the Newman-
Penrose formalism to derive three different metrics char-
acterized by geodesic rays which do not diverge or shear
but curl. One of these metrics they identified as a
generalization of the Schwarzschild metric, the so-called
NUT metric. Newman et al., and about one month later
Misner [5], also pointed out that Taub’s solution can be
interpreted as an extension of their spacetime. Misner [5]
was also the first who referred to the spacetime as “NUT

space.” In its original form the spacetime is asymptotically
flat in the sense that for r → ∞ the Riemann tensor
vanishes. However, the spacetime does not become asymp-
totically Minkowskian [5]. Misner also noted that either the
metric or the time coordinate t has a singularity at ϑ ¼ π
(for this historical reason the axial singularities are called
Misner strings). Bonnor [6] investigated the nature of this
singularity and came to the conclusion that it can be
interpreted as a semi-infinite massless rotating rod that
serves as a source of angular momentum (see also the work
of Sackfield [7]). He also pointed out that the strength of the
Misner string is directly related to the gravitomagnetic
charge n. The parameter C is also closely tied to the axial
singularities. It was introduced by Manko and Ruiz [2] and
can be used to control the number (one or two) and location
of the axial singularities. Analogously to the Schwarzschild
metric the NUT metric can also be generalized. According
to Griffiths and Podolský [8] the NUT metric with electric
charge was first discovered by Brill [9] (note that with a
sufficiently large electric charge e the charged NUT metric
can also be interpreted as a wormhole, see, e.g., Clément
et al. [10]) and the charged NUT–de Sitter metric was
discovered in 1972 by Ruban [11]. The charged NUT–de
Sitter metrics (whenever we use the plural we will refer to
the whole family of metrics with gravitomagnetic charge in
the following) are interesting from the physical perspective
because they represent exact solutions to Einstein’s electro-
vacuum-field equations with cosmological constant which
in addition to the mass parameter m also incorporate a*torben.frost@zarm.uni-bremen.de

PHYSICAL REVIEW D 105, 064064 (2022)

2470-0010=2022=105(6)=064064(36) 064064-1 © 2022 American Physical Society

https://orcid.org/0000-0002-2676-6798
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.105.064064&domain=pdf&date_stamp=2022-03-30
https://doi.org/10.1103/PhysRevD.105.064064
https://doi.org/10.1103/PhysRevD.105.064064
https://doi.org/10.1103/PhysRevD.105.064064
https://doi.org/10.1103/PhysRevD.105.064064


gravitomagnetic mass n (to maintain consistency through-
out the paper hereafter we will continue to refer to it as
gravitomagnetic charge). However, the presence of the
Misner strings leads to two undesirable aspects. First,
although the Misner strings are massless it is unclear if
geodesics can be continued through the axes. While many
authors advocate that the spacetime is geodesically incom-
plete, see, e.g., the work in [12–14], Clément et al. [15]
investigated this aspect for the NUT metric and came to the
conclusion that geodesics can be smoothly continued
through the Misner strings (we will see that for the spatial
coordinates this argument can also be transferred to all
charged NUT–de Sitter metrics). The second problematic
aspect of the NUT metric is that close to the Misner strings
it contains regions with closed timelike curves. Misner [5]
demonstrated that the axial singularities can be removed by
introducing a periodic time coordinate; however, this step
does not alleviate the problem but actually makes it worse.
Using the periodic time coordinate the spacetime contains
closed timelike curves everywhere, which is even less
desirable. The presence of closed timelike curves makes the
spacetime on the first view appear unphysical; however, the
presence of closed timelike curves is limited to a narrow
region around the Misner strings. Thus the NUT metric
may still serve as an approximate model for a spacetime
with gravitomagnetism as long as these regions are
excluded.
In astrophysical settings the gravitomagnetic charge is

expected to be very small [16,17]. Therefore, if we ever
want to have a chance to detect visible effects caused by the
gravitomagnetic charge we need gravitationally heavy
objects. Supermassive black holes (SMBHs) at the center
of galaxies are ideal candidates for such objects. Because
we are currently not able to send any probes to SMBHs we
have to rely on information carried to us by electromagnetic
or gravitational radiation. Present-day gravitational wave
detectors such as Laser Interferometer Gravitational Wave
Observatory (LIGO) [18], Virgo [19], and KAGRA [20] so
far only detected gravitational waves from stellar mass
binary black hole and neutron star mergers and thus even
with very high accuracy gravitational wave templates it is
very likely that imprints of the gravitomagnetic charge on
the detected gravitational wave signals are impossible to
resolve. On the other hand recent technological advances in
Very Large Baseline Interferometry (VLBI) lead to the
observation of the shadow of the supermassive black hole
in the galaxy M87 by the Event Horizon Telescope (EHT)
[21]. The EHT has an angular resolution of about 25 μas at
a wavelength of 1.3 mm [22]. This resolution is high
enough to demonstrate that M87 contains an object that
casts a shadow; however, the shape of the shadow is
strongly blurred by the surrounding accretion disk and
thus without further information its exact shape is difficult
to reconstruct from observations alone. Because the reso-
lution of ground-based VLBI is limited by the distribution

of radio telescopes on the surface of Earth we can only
enhance it by extending VLBI to space. Space VLBI
reaches back to the late 1970s. The most recent space
VLBI program used the Spektr-R satellite [23,24] as space-
borne station and was terminated in 2019. The antenna of
Spektr-R was able to observe at four wavelengths between
1 and 100 cm and thus did not operate in the millimeter/
submillimeter range required for VLBI observations of
supermassive black holes. Satellite missions attempting to
achieve observations at these wavelengths are currently in
their planning stage and will allow enhanced observations
of the shadow in M87 and, potentially, also the observation
of the centers of more distant galaxies. Therefore, from
today’s perspective observing light gravitationally lensed
by SMBHs promises the best chance to detect effects
caused by the presence of the gravitomagnetic charge n.
Gravitational lensing in the weak- and strong-field

regimes of the NUT metric has already been investigated
by several authors. Gravitational lensing in the NUT metric
was first investigated by Zimmerman and Shahir in 1989
[25]. They first showed that in the NUTmetric all geodesics
lie on spatial cones and then calculated the bending angle
up to the first nonvanishing order in n for light rays on these
cones. Up to first order in m their result was independently
reproduced by Lynden-Bell and Nouri-Zonoz [16]. In
addition Lynden-Bell and Nouri-Zonoz defined a simple
lens map. They determined area magnification and the axial
ratio of the image of a small circular source. In [26] Nouri-
Zonoz and Lynden-Bell present a more thorough analytical
approach to gravitational lensing in the NUT metric. After
first rederiving the light-bending formula on a cone the
authors proceed to define a different version of the lens
equation and the magnification factor. In addition, they
derive the geometric time delay and the Shapiro time delay
between two images of the same source. Both works
showed that the presence of a gravitomagnetic charge is
associated with a twist in the observed lensing pattern. In
[17] Rahvar and Nouri-Zonoz used these results to inves-
tigate gravitational microlensing in the NUT metric. While
in all previous works the deflection angle was calculated
using a simple expansion, Halla and Perlick [27] used a
different approach. Following the work of Werner [28] they
used the Gauss-Bonnet theorem to derive the deflection
angle. The strong-field deflection limit was first inves-
tigated by Wei et al. [29] for Kerr–NUT spacetimes. Using
numerical and analytical methods the authors constructed a
lens equation for light rays in and close to the equatorial
plane. In addition they derived the critical curves and the
caustic structure, and the magnification of the images near
the caustic points. Sharif and Iftikhar [30] investigated
strong gravitational lensing in the equatorial plane of
accelerating Kerr-NUT black holes. Finally, Grenzebach
et al. [31,32] investigated the photon region and the shadow
of Kerr-Newman-NUT black holes with cosmological
constant. While all these works investigated gravitational
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lensing in different NUT metrics, to the best of my
knowledge in the charged NUT–de Sitter metrics an exact
analytic lens map has not been constructed so far.
Therefore, the main aim of this paper is to use exact
analytical methods to investigate gravitational lensing for
arbitrary light rays in the charged NUT–de Sitter metrics.
Geodesic motion in the NUT metric was first investigated
by Zimmerman and Shahir [25]. After a thorough potential
analysis Zimmerman and Shahir derived the time integral
for radial timelike geodesics and investigated timelike
circular and elliptic bound orbits. In addition they derived
the deflection angle of light rays on spatial cones. The most
thorough investigation of geodesic motion was carried out
by Kagramanova et al. [14] using Weierstrass’ elliptic
function and Weierstrass’ ζ and σ functions. However, for
investigating gravitational lensing in the charged NUT–de
Sitter metrics these functions are rather impractical because
in the equations for the time coordinate derived in [14]
during the integration procedure the branches of the
logarithm have to be manually adjusted for each light
ray individually. This problem can be circumvented by
using the canonical forms of Legendre’s elliptic integrals
and Jacobi’s elliptic functions. In general relativity using
Legendre’s canonical forms of the elliptic integrals and
Jacobi’s elliptic functions for solving the equations of
motion has already a long tradition since the early
1920s. Forsyth [33], Morton [34], and Darwin [35] used
Jacobi’s elliptic functions to solve and discuss lightlike and
timelike geodesics in the Schwarzschild metric. More
recently Yang and Wang [36] and Gralla and Lupsasca
[37] extended these investigations to lightlike geodesics in
the Kerr metric. In particular, the approach of Gralla and
Lupsasca [37] can be easily transferred to lightlike geo-
desics in the charged NUT–de Sitter metrics. Therefore in
the first part of this paper we will derive the solutions to the
equations of motion in terms of Legendre’s elliptic integrals
and Jacobi’s elliptic functions following the approach of
Gralla and Lupsasca [37]. In the second part of the paper
we will investigate gravitational lensing in the charged
NUT–de Sitter metrics. Wewill construct an exact lens map
following Frost and Perlick [38] using the tetrad approach
of Grenzebach et al. [39]. Wewill use the tetrad approach to
calculate the shadow of the black hole, set up a lens
equation, and discuss the redshift and the travel time.
The remainder of this paper is structured as follows. In

Sec. II we will summarize the main properties of the
charged NUT–de Sitter metrics. In Sec. III we will discuss
and solve the equations of motion. In Sec. IV we will set up
the lens map and discuss lensing features in the charged
NUT–de Sitter metrics, namely, the angular radius of the
shadow, the lens equation, the redshift, and the travel time.
Wewill also comment on how the observed lensing features
can be used to measure the gravitomagnetic charge. In
Sec. V we will summarize our results and conclusions.
Throughout the paper we will use geometric units such that
c ¼ G ¼ 1. The metric signature is ð−;þ;þ;þÞ.

II. THE CHARGED NUT–de SITTER SPACETIME

The charged NUT–de Sitter metric belongs to the
Plebański-Demiański family of electrovacuum spacetimes
of Petrov type D [1] and is an exact solution of Einstein’s
electrovacuum-field equations with cosmological con-
stant. In Boyer-Lindquist-like coordinates its line element
reads [8]

gμνdxμdxν ¼ −
QðrÞ
ρðrÞ ðdtþ 2nðcos ϑþ CÞdφÞ2

þ ρðrÞ
QðrÞ dr

2 þ ρðrÞðdϑ2 þ sin2ϑdφ2Þ; ð1Þ

where

QðrÞ ¼ −
Λ
3
r4 þ r2ð1− 2Λn2Þ− 2mrþ e2 − n2ð1−Λn2Þ;

ð2Þ

and

ρðrÞ ¼ r2 þ n2: ð3Þ

The metric is axisymmetric and stationary and for Λ ¼ 0
asymptotically flat (note that here asymptotically flat
means that the Riemann tensor vanishes but the spacetime
is not asymptotically Minkowskian [5]). It contains five
parameters: the mass parameter m, the cosmological con-
stant Λ, the electric charge e, the gravitomagnetic charge n
and the so-called Manko-Ruiz parameter C (for more
information regarding the Manko-Ruiz parameter see
[2]). When we set n ¼ 0 the metric reduces to the
Reissner-Nordström–de Sitter family of spacetimes which
includes the Schwarzschild metric (Λ ¼ 0 and e ¼ 0), the
Schwarzschild–de Sitter metric (e ¼ 0) and the Reissner-
Nordström metric (Λ ¼ 0). For e ¼ 0 and Λ ¼ 0 the metric
reduces to the standard NUT metric. For e ¼ 0 it reduces to
the NUT–de Sitter metric and for Λ ¼ 0 it reduces to the
charged NUT metric.
In this article we choose ϑ and φ such that they represent

coordinates on the two-sphere S2 and cover the range ϑ ∈
½0; π� and φ ∈ ½0; 2πÞ. Although the spacetime is axisym-
metric it retains some degree of “spherical symmetry.” As
discussed in Newman et al. [4] forC ¼ −1 and in Halla and
Perlick [27] for arbitrary C the spacetime admits four
linearly independent Killing vector fields. Three of these
Killing vector fields generate isometries isomorphic to the
rotation group SOð3;RÞ and thus the metric is rotationally
symmetric with respect to any radial direction (for more
details see Halla and Perlick [27]). The Manko-Ruiz
parameter C can be removed from Eq. (1) using the
coordinate transformation t̃ ¼ tþ 2nCφ. Note that this
transformation is not valid globally because the φ coor-
dinate is periodic and the time coordinate t is not.
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(a) NUT metric: 0<n

(b) charged NUT metric: 0<n, 0<e<eC

(c) charged NUT metric: 0<n, e=eC

(d) NUT-de Sitter metric: 0<n

(e) charged NUT-de Sitter metric: 0<n, 0<e<eC

(f) charged NUT-de Sitter metric: 0<n, e=eC
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FIG. 1. Positions of the coordinate singularities in (a) the NUT metric, the charged NUTmetric with (b) 0 < e < eC ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ n2

p
, and

(c) e ¼ eC ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ n2

p
, (d) the NUT–de Sitter metric and the charged NUT–de Sitter metric with (e) 0 < e < eC and (f) e ¼ eC. Note

that the angular coordinates are suppressed and the cosmological horizon HC− at rC−, the region r < rC− and other singularities are
not shown.
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Therefore, charged NUT–de Sitter spacetimes with arbi-
trary C are locally isometric [31].
From the theoretical perspective the five parameters m,

Λ, e, n, and C can take any arbitrary real value. Luckily the
symmetries of the spacetime and observational experience
allow us to reduce their range for our investigation of
gravitational lensing. First, astronomical observations show
that all objects in nature have a positive mass and thus we
choose m > 0. Second, cosmological observations indicate
that we live in an expanding Universe with positive cos-
mological constant allowing us to choose 0 ≤ Λ < ΛC.
Third, in Eq. (2) the electric charge e only enters as square
and since we only deal with light rays we can choose 0 ≤
e ≤ eC without loss of generality. Fourth and last, the
gravitomagnetic charge n can be restricted considering the
symmetries of the spacetime. When we set n → −n, C →
−C and perform the coordinate transformation ϑ → π − ϑ
the line element remains invariant. Consequently we can
limit the gravitomagnetic charge to 0 ≤ n < nC while the
Manko-Ruiz parameter C can take any real number. Here,
the three constants ΛC, eC, and nC are limiting values that
are determined by the nature of the desired spacetime. We
will come back to these parameters when we discuss the
singularities of the spacetime below. The charged NUT–de
Sitter metric offers several mathematical peculiarities that
may not be familiar to every reader. Thus in the following
we will provide a short summary of its physical properties
before we move on to discuss and solve the equations of
motion.
The charged NUT–de Sitter metric admits several

singularities. The line element Eq. (1) maintains its
structure independent of how we choose Λ and e.
Therefore, we will restrict our discussion to the NUT
metric whenever possible. We start by discussing the
singularities of the metric associated with the roots of
QðrÞ ¼ 0. In the charged NUT–de Sitter metric the
equation QðrÞ ¼ 0 can lead to up to four singularities.
In this paper we want the metric to represent black hole
spacetimes and thus we have to choose ΛC, eC and nC such
that all roots of the equation QðrÞ ¼ 0 are real. In this case
all roots are coordinate singularities that can be removed
using appropriate coordinate transformations. Figure 1
shows the horizon structures of the NUT metric [panel
(a)], of the charged NUT metric [panels (b) and (c)], of
the NUT–de Sitter metric [panel (d)] and of the charged
NUT–de Sitter metric [panels (e) and (f)]. In the NUT
metric Eq. (2) reduces to QðrÞ ¼ r2 − 2mr − n2. We can
immediately read that it has two roots at

r� ¼ m�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ n2

p
: ð4Þ

For consistency with Fig. 1 from now on we will label them
r− ¼ rH;i and rþ ¼ rH;o. For r < rH;i and rH;o < r the
vector fieldKt ¼ ∂t is timelike and the vector fieldKr ¼ ∂r
is spacelike. In these two domains the spacetime is

stationary (except for a narrow region close to the
Misner string as we will discuss below). The domain rH;o <
r is usually referred to as domain of outer communication
and will be of importance in Secs. III and IV. Between the
horizons ∂t is spacelike and ∂r is timelike. In this domain
the spacetime is nonstationary. When we add the electric
charge e the horizon rH;i shifts to larger r and the horizon
rH;o shifts to smaller r. When e ¼ eC both horizons
coincide at rH ¼ m. Adding the cosmological constant Λ
gives rise to two additional, cosmological horizons rC− and
rCþ. Both cosmological horizons limit the stationary
domains found in the NUT metric to rC− < r < rH;i and
rH;o < r < rCþ. The two domains r < rC− and rCþ < r are
nonstationary. The function ρðrÞ is always positive.
Consequently the charged NUT–de Sitter metric does
not possess a curvature singularity at r ¼ 0. This has an
important implication for the whole spacetime. Lightlike
and timelike geodesics are not blocked at r ¼ 0 and thus
the r coordinate covers the whole real axis (r ∈ ½−∞;∞�).
In addition to the horizons the NUT metric has one or

two conical singularities on the axes. The exact number
depends on the Manko-Ruiz parameter C. For C ¼ 1 the
singularity is located on the axis ϑ ¼ 0. For C ¼ −1 the
spacetime has a singularity on the axis ϑ ¼ π. For all other
choices of C the spacetime has singularities on both axes.
For a more detailed discussion of the conical singularities
see Jefremov and Perlick [40] and Halla and Perlick [27].
The allowed range of the time coordinate t depends on how
the NUT metric is interpreted. As discussed before depend-
ing on the choice of the Manko-Ruiz parameter C the NUT
metric has conical singularities (Misner strings) on one or
both axes [2]. As discussed by Bonnor [6] the Misner
strings can be interpreted as semi-infinite massless line
sources of angular momentum and give rise to the grav-
itomagnetic charge. Following the approach of Misner [5]
we can remove them by introducing a periodic time
coordinate. But, this comes at a high price. In Misner’s
interpretation the periodic time coordinate leads to closed
timelike curves in the whole spacetime. Closed timelike
curves violate causality and are thus physically not desir-
able. Therefore in this paper we choose to retain the Misner
strings and have t ∈ R. In this case the spacetime also
contains closed timelike curves whenever gφφ ≤ 0 [6];
however, these are confined to very narrow regions close
to the Misner strings.

III. EQUATIONS OF MOTION

For lightlike geodesics the charged NUT–de Sitter metric
admits four constants of motion. These are the Lagrangian
L ¼ 0, the energy of the light ray E, the angular momentum
about the z axis Lz and the Carter constant K. The
equations of motion are fully separable and read

dt
dλ

¼ ρðrÞ2
QðrÞ E − 2nðcosϑþ CÞLz þ 2nðcos ϑþ CÞE

sin2ϑ
; ð5Þ
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�
dr
dλ

�
2

¼ ρðrÞ2E2 −QðrÞK; ð6Þ

�
dϑ
dλ

�
2

¼ K −
ðLz þ 2nðcosϑþ CÞEÞ2

sin2 ϑ
; ð7Þ

dφ
dλ

¼ Lz þ 2nðcosϑþ CÞE
sin2 ϑ

: ð8Þ

The parameter λ is the Mino parameter [41]. It is defined up
to an affine transformation and is related to the affine
parameter s by

dλ
ds

¼ 1

ρðrÞ : ð9Þ

Equations (7) and (8) are independent of Λ and e and as a
consequence the conclusion of Clément et al. [15] that the
φ coordinate is continuous for lightlike geodesics crossing
the Misner strings is valid for all charged NUT–de Sitter
metrics. The charged NUT–de Sitter metric does not
possess an ergoregion and thus we are free to choose
the sign of E; however, to maintain comparability to Frost
and Perlick [38,42] we will choose E > 0. This implies that
for future-directed lightlike geodesics the Mino parameter λ
is increasing and for past-directed lightlike geodesics the
Mino parameter is decreasing. In the following we will first
briefly discuss the equations of motion. We will derive the
radius coordinate of the photon sphere and the angles of the

photon cones. We already have to note here that the latter
will only be valid for individual light rays. We will discuss
the turning points and solve the equations of motion for
arbitrary initial conditions ðxμi Þ ¼ ðxμðλiÞÞ ¼ ðti; ri; ϑi;φiÞ
following the procedures described in Gralla and Lupsasca
[37] and Frost and Perlick [38,42]. In Sec. IV we will then
use the obtained solutions to discuss gravitational lensing
in the charged NUT–de Sitter metrics. For this purpose we
only need the solutions to the equations of motion in the
domain of outer communication. Therefore we will limit
our discussion to lightlike geodesics with rH;o < rð<rCþÞ.

A. The r motion

1. Potential and photon sphere

We begin with discussing the r motion. Following [38]
we first rewrite Eq. (6) in terms of the potential VrðrÞ∶

1

ρðrÞ2K
�
dr
dλ

�
2

þ VrðrÞ ¼
E2

K
; ð10Þ

where

VrðrÞ ¼
QðrÞ
ρðrÞ2 : ð11Þ

Figure2 shows thepotentials for theNUTmetric (top left), the
charged NUT metric (top right), the NUT–de Sitter metric
(bottom left) and the charged NUT–de Sitter metric (bottom
right) between the outer black hole horizon rH;o and r ¼ 25m

FIG. 2. Potential VrðrÞ of the r motion in the NUT metric (top left), the charged NUT metric (top right), the NUT–de Sitter metric
(bottom left) and the charged NUT–de Sitter metric (bottom right) for e ¼ 3m=4, Λ ¼ 1=ð200m2Þ, and n ¼ m=2. The axes have the
same scale in all four plots. Note that due to spatial limitations we wrote rH instead of rH;o.
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(Λ ¼ 0) or r ¼ rCþ (0 < Λ < ΛC). We see that in the NUT
metric (top left) the potential starts at VrðrH;oÞ ¼ 0, has a
maximumatE2=K¼VrðrphÞ and then it falls off toVrðrÞ ¼ 0

for r → ∞. When we turn on the electric charge e and the
cosmological constant Λ the basic structure of the potential
remains the same and we only observe small changes. When
we turn on the electric charge e the maximum of VrðrÞ
increases (top right). Turning on the cosmological constant on
the other hand leads to a decrease of the maximum of VrðrÞ
(bottom). In addition, for 0 < Λ < ΛC we haveVrðrCþÞ ¼ 0
at the cosmological horizon rCþ.
At the maximum of VrðrÞ we have dr=dλ ¼

d2r=dλ2 ¼ 0. When we now combine these two constraints
we obtain the determining relation for the radius coordinate
of the photon sphere:

r3 −
3m

1− 4
3
Λn2

r2 þ 2e2 − 3n2ð1− 4
3
Λn2Þ

1− 4
3
Λn2

rþ mn2

1− 4
3
Λn2

¼ 0:

ð12Þ
In our Universe we can safely assume that the cosmological
constant Λ and the gravitomagnetic charge n are very small.
The consequence of this assumption is that the denominator
of the coefficients is always positive andwe can read from the
structure of Eq. (12) that one solution is always real and
negative. In addition we can either have a pair of complex
conjugate roots or two real roots. In the followingwe agree to
chooseΛ, e and n such that we always have two real positive
roots. We solve Eq. (12) using Cardano’s method. We then
label the three roots such that rph > rphþ > rph−. The first
root rph lies in thedomainofouter communication. In termsof
the mass parameter m and the gravitomagnetic charge n for
the NUT metric it is explicitly given in Jefremov and Perlick
[40] and for all NUT–de Sitter spacetimes it is also contained
as special case in the results of Grenzebach et al. [31].
Because VrðrphÞ has a maximum at rph this photon sphere is
unstable. An infinitesimal radial perturbation of these orbits
has the consequence that the light ray either falls into theblack
hole or escapes (across the cosmological horizon) to infinity.
The second photon sphere rphþ also lies at positive r and
corresponds to a minimum of VrðrÞ. Thus it is stable. The
third photon sphere rph− lies in the region r < 0 and is again
unstable. Figure 3 shows the radius coordinate of the photon
sphere rph as function of the gravitomagnetic charge n for the
NUT metric (black solid), the charged NUT metric (blue
dashed), the NUT–de Sitter metric (green dotted) and the
chargedNUT–de Sittermetric (red dashed-dotted). For e ¼ 0
and n ¼ 0 (Schwarzschild–de Sitter limit) the photon sphere
is located at the radius coordinate rph;S ¼ 3m. For e > 0 and
n ¼ 0 (Reissner-Nordström–de Sitter limit) the photon
sphere is located at the radius coordinate

rph;RN ¼ 3mþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9m2 − 8e2

p

2
: ð13Þ

When we now turn on the gravitomagnetic charge n the
photon sphere expands with increasing n. While this obser-
vation applies to all four spacetimes there are distinct
differences when we turn on the electric charge e and the
cosmological constantΛ.Whenwe turn on the electric charge
e (but still keepΛ ¼ 0) forn ¼ 0 the photon sphere is located
at rph;RN < rph;S.With increasing gravitomagnetic charge the
photon sphere expands and approaches the radius coordinate
rph of the photon sphere in the NUTmetric.When we turn on
the cosmological constant we observe something similar. For
n ¼ 0 the photon spheres are located at rph;RN < rph;S. When
we turn on the gravitomagnetic charge n both photon spheres
expand and the radius coordinate rph of the photon sphere in
the charged NUT–de Sitter metric approaches the radius
coordinate rph of the photon sphere rph in the NUT–de Sitter
metric. However, compared to the NUT metric and the
charged NUTmetric the photon spheres expandmore rapidly
with increasing gravitomagnetic charge n.

2. Types of motion

The potentials in Fig. 2 allow us to distinguish between
the six following different types of motion in the domain of
outer communication:
(1) E2=K > Vrðrph−Þ and K ¼ 0: These geodesics do

not have turning points in the domain of outer
communication. We have one pair of complex
conjugate purely imaginary double roots and label
them such that r1 ¼ r3 ¼ r̄2 ¼ r̄4 ¼ in. These geo-
desics are the principal null geodesics of the charged
NUT–de Sitter metrics.

FIG. 3. Radius coordinate of the photon sphere rphðnÞ as
function of the gravitomagnetic charge n for the NUT metric
(black solid), the charged NUT metric (blue dashed), the NUT–
de Sitter metric (green dotted) and the charged NUT–de Sitter
metric (red dashed-dotted). The electric charge and the cosmo-
logical constant are e ¼ 3m=4 and Λ ¼ 1=ð200m2Þ, respectively.
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(2) E2=K > Vrðrph−Þ and K > 0: These geodesics do
not have turning points in the domain of outer
communication. We have two pairs of complex
conjugate roots. We label them such that r1 ¼ r̄2 ¼
R1 þ iR2 and r3 ¼ r̄4 ¼ R3 þ iR4. We always
choose R1 < R3 and R2; R4 > 0.

(3) E2=K ¼ Vrðrph−Þ: These geodesics do not have
turning points in the domain of outer communica-
tion. Two roots are real and equal. The other two
roots are complex conjugate. We label the roots such
that r1 ¼ r2 ¼ rph− and r3 ¼ r̄4 ¼ R3 þ iR4. We
always choose R4 > 0.

(4) Vrðrph−Þ > E2=K > VrðrphÞ: These geodesics do
not have turning points in the domain of outer
communication. Two roots are real and two roots
are complex conjugate. We label the roots such that
r1 > r2 and r3 ¼ r̄4 ¼ R3 þ iR4. We always
choose R4 > 0.

(5) E2=K ¼ VrðrphÞ: These geodesics do not have turn-
ing points in the domain of outer communication but
four real roots. We label the roots such that
r1 ¼ r2 ¼ rph > r3 > r4. These geodesics asymp-
totically come from or go to the photon sphere.

(6) VrðrphÞ > E2=K: These geodesics have turning
points in the domain of outer communication. All
four roots are real. We label the roots such that
r1 > r2 > r3 > r4. For rH;o < r < rph these geo-
desics have a maximum at rmax ¼ r2. For rph < rð<
rCþÞ these geodesics have a minimum at rmin ¼ r1.

3. Calculating rðλÞ
Case 1: We have E2=K > Vrðrph−Þ and K ¼ 0. We will

see in Sec. III B that these geodesics are the principal null
geodesics of the charged NUT–de Sitter metrics. In Eq. (6)
we first set K ¼ 0 and get

�
dr
dλ

�
2

¼ ρðrÞ2E2: ð14Þ

Equation (14) can be solved in terms of elementary
functions. We first separate variables and integrate. Then
we solve for r. With iri ¼ sgnðdr=dλjr¼riÞ the solution
reads

rðλÞ ¼ n tan

�
arctan

�
ri
n

�
þ irinEðλ − λiÞ

�
: ð15Þ

Case 2: Lightlike geodesics with E2=K > Vrðrph−Þ and
K > 0 have no turning points in the domain of outer
communication. Here we first define two new constants of
motion [37,43]:

S ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðR2 − R4Þ2 þ ðR1 − R3Þ2

q
; ð16Þ

and

S̄ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðR2 þ R4Þ2 þ ðR1 − R3Þ2

q
; ð17Þ

and substitute

r ¼ R1 − R2

g0 − tan χ
1þ g0 tan χ

; ð18Þ

where

g0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4R2

2 − ðS − S̄Þ2
ðSþ S̄Þ2 − 4R2

2

s
ð19Þ

to put Eq. (6) in the Legendre form Eq. (B9). Now we
follow the steps described in Appendix B and obtain the
solution rðλÞ in terms of Jacobi’s elliptic sc function

rðλÞ ¼ R1 − R2

×
g0 − sc

�
iri

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 þ Λ

3
K

q
SþS̄
2
ðλ− λiÞ þ λri;k1 ; k1

�

1þ g0sc

�
iri

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 þ Λ

3
K

q
SþS̄
2
ðλ− λiÞ þ λri;k1 ; k1

� ;

ð20Þ

where λri;k1 , the initial condition χi and the square of the
elliptic modulus k1 are given by

λri;k1 ¼ FLðχi; k1Þ; ð21Þ

χi ¼ arctan

�
ri − R1

R2

�
þ arctanðg0Þ; ð22Þ

and

k1 ¼
4SS̄

ðSþ S̄Þ2 : ð23Þ

Case 3: Lightlike geodesics with E2=K ¼ Vrðrph−Þ have
two equal roots at r1 ¼ r2 ¼ rph−. We first express the
right-hand side of Eq. (6) in terms of the roots. Then we
separate variables and integrate from rðλiÞ ¼ ri to rðλÞ and
obtain

λ − λi ¼
iriffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E2 þ Λ
3
K

q Z
rðλÞ

ri

dr0

ðr0 − r1Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðR3 − r0Þ2 þ R2

4

p :

ð24Þ

The integral on the right-hand side of Eq. (24) has the form
of Eq. (A3). Now we follow the steps described in
Appendix A 1 a and integrate. Then we insert Eq. (A3),
solve for r and obtain
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rðλÞ ¼ r1 þ
ðR3 − r1Þ2 þ R2

4

R3 − r1 þ R4 sinh

�
arsinh

�
r1−R3

R4
þ ðR3−r1Þ2þR2

4

R4ðri−r1Þ

�
− iri

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðE2 þ Λ

3
KÞððR3 − r1Þ2 þ R2

4Þ
q

ðλ − λiÞ
� : ð25Þ

Case 4: Lightlike geodesics with Vrðrph−Þ > E2=K >
VrðrphÞ have no turning points in the domain of outer
communication. Two of the roots are real. Using the two
real roots r1 and r2 and the real and imaginary parts R3 and
R4 of the complex conjugate roots r3 and r4 we first define
two new constants of motion R and R∶

R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðR3 − r1Þ2 þ R2

4

q
; ð26Þ

R̄ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðR3 − r2Þ2 þ R2

4

q
: ð27Þ

Then we use the transformation [37,44]

r ¼ r1R̄ − r2Rþ ðr1R̄þ r2RÞ cos χ
R̄ − Rþ ðR̄þ RÞ cos χ ð28Þ

to put Eq. (6) into the Legendre form Eq. (B9). Then we
follow the steps described in Appendix B to obtain rðλÞ in
terms of Jacobi’s elliptic cn function:

rðλÞ ¼
r1R̄ − r2Rþ ðr1R̄þ r2RÞcnðiri

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðE2 þ Λ

3
KÞRR̄

q
ðλ − λiÞ þ λri;k2 ; k2Þ

R̄ − Rþ ðR̄þ RÞcnðiri
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðE2 þ Λ

3
KÞRR̄

q
ðλ − λiÞ þ λri;k2 ; k2Þ

; ð29Þ

where λri;k2 , the initial condition χi and the square of the
elliptic modulus k2 are given by

λri;k2 ¼ FLðχi; k2Þ; ð30Þ

χi ¼ arccos

�ðri − r2ÞR − ðri − r1ÞR̄
ðri − r2ÞRþ ðri − r1ÞR̄

�
; ð31Þ

and

k2 ¼
ðRþ R̄Þ2 − ðr1 − r2Þ2

4RR̄
: ð32Þ

Case 5: Lightlike geodesics with E2=K ¼ VrðrphÞ have
two equal roots at r1 ¼ r2 ¼ rph > r3 > r4. These are
either lightlike geodesics trapped on the photon sphere r ¼
rph or lightlike geodesics asymptotically coming from or
going to the photon sphere. In the former case the solution
to Eq. (6) is rðλÞ ¼ rph. In the latter case we first rewrite the
right-hand side of Eq. (6) in terms of the roots

�
dr
dλ

�
2

¼
�
E2 þ Λ

3
K

�
ðr − rphÞ2ðr − r3Þðr − r4Þ: ð33Þ

Now we substitute

r ¼ r3 þ
3a3;r

12y − a2;r
; ð34Þ

where

a2;r ¼ 6

�
E2 þ Λ

3
K

�
r23 þ 2n2E2 − ð1 − 2Λn2ÞK; ð35Þ

a3;r ¼ 4

�
E2 þ Λ

3
K

�
r33 þ 2ð2n2E2 − ð1 − 2Λn2ÞKÞr3

þ 2mK; ð36Þ

and obtain

�
dy
dλ

�
2

¼ 4ðy − yphÞ2ðy − y1Þ: ð37Þ

yph and y1 are related to the radius coordinate of the photon
sphere rph and the root r4 by Eq. (34), respectively. It is
easy to show that y1 < yph and y1 < y. Now we have to
distinguish between lightlike geodesics between outer
black hole horizon rH;o and photon sphere rph and lightlike
geodesics between photon sphere rph and infinity (Λ ¼ 0)
or cosmological horizon rCþ (0 < Λ < ΛC). In the former
case we have yph < y and in the latter case we have y < yph.
Now we separate variables and integrate from yðλiÞ ¼ yi to
yðλÞ and obtain

λ − λi ¼ −
iri
2

Z
yðλÞ

yi

dy0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðy0 − yphÞ2ðy0 − y1Þ

q : ð38Þ
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For rH;o < r < rph we rewrite the right-hand side of Eq. (38) in terms of the integral I6 given by Eq. (A6) in Appendix A 1 b.
Now we follow the steps described in Appendix A 1 b and obtain the right-hand side of Eq. (A6). After inserting I6 in
Eq. (38) we solve for r and obtain

rðλÞ ¼ r3 −
ðrph − r3Þðr3 − r4Þ

rph − r3 − ðrph − r4Þcoth2
�
arcoth

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðri−r4Þðrph−r3Þ
ðri−r3Þðrph−r4Þ

q �
þ iri

ffiffiffiffiffi
ar

p ðλ − λiÞ
� ; ð39Þ

where

ar ¼
ð2ðE2 þ Λ

3
KÞr33 þ ð2n2E2 − ð1 − 2Λn2ÞKÞr3 þmKÞðrph − r4Þ

2ðrph − r3Þðr3 − r4Þ
: ð40Þ

Analogously for rph < rð< rCþÞ we rewrite the right-hand side of Eq. (38) in terms of the integral I8 given by Eq. (A8) in
Appendix A 1 b. Again we integrate following the steps described in Appendix A 1 b and obtain the right-hand side of
Eq. (A8). After inserting I8 in Eq. (38) we solve for r and obtain

rðλÞ ¼ r3 −
ðrph − r3Þðr3 − r4Þ

rph − r3 − ðrph − r4Þtanh2
�
artanh

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðri−r4Þðrph−r3Þ
ðri−r3Þðrph−r4Þ

q �
− iri

ffiffiffiffiffi
ar

p ðλ − λiÞ
� : ð41Þ

Case 6: Lightlike geodesics with VrðrphÞ > E2=K have
turning points in the domain of outer communication. We
have to distinguish between lightlike geodesics between
outer black hole horizon rH;o and photon sphere rph and
lightlike geodesics between photon sphere rph and infinity
(Λ ¼ 0) or the cosmological horizon rCþ (0 < Λ < ΛC).
We start with solving Eq. (6) for lightlike geodesics in the
domain rH;o < r < rph. Here we first substitute [37,44]

r ¼ r1 −
ðr1 − r2Þðr1 − r3Þ

r1 − r3 − ðr2 − r3Þ sin2 χ
ð42Þ

to put Eq. (6) into the Legendre form Eq. (B9). Then we
follow the steps described in Appendix B to obtain rðλÞ in
terms of Jacobi’s elliptic sn function:

rðλÞ ¼ r1 −
ðr1 − r2Þðr1 − r3Þ

r1 − r3 − ðr2 − r3Þsn2
�

iri
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðE2 þ Λ

3
KÞðr1 − r3Þðr2 − r4Þ

q
ðλi − λÞ þ λri;k3 ; k3

� ; ð43Þ

where λri;k3 , the initial condition χi and the square of the
elliptic modulus k3 are given by

λri;k3 ¼ FLðχi; k3Þ; ð44Þ

χi ¼ arcsin

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr2 − riÞðr1 − r3Þ
ðr1 − riÞðr2 − r3Þ

s !
; ð45Þ

and

k3 ¼
ðr2 − r3Þðr1 − r4Þ
ðr1 − r3Þðr2 − r4Þ

: ð46Þ

Analogously for rph < rð< rCþÞ we first substitute [37,44]

r ¼ r2 þ
ðr1 − r2Þðr2 − r4Þ

r2 − r4 − ðr1 − r4Þ sin2 χ
ð47Þ

to put Eq. (6) into the Legendre form Eq. (B9). Then we
again follow the steps described in Appendix B and obtain
rðλÞ in terms of Jacobi’s elliptic sn function:
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rðλÞ ¼ r2 þ
ðr1 − r2Þðr2 − r4Þ

r2 − r4 − ðr1 − r4Þsn2
�

iri
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðE2 þ Λ

3
KÞðr1 − r3Þðr2 − r4Þ

q
ðλ − λiÞ þ λri;k3 ; k3

� : ð48Þ

Here λri;k3 and k3 are given by Eq. (44) and Eq. (46),
respectively, and the initial condition χi reads

χi ¼ arcsin

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðri − r1Þðr2 − r4Þ
ðri − r2Þðr1 − r4Þ

s !
: ð49Þ

B. The ϑ motion

For discussing the ϑ motion we first rewrite Eq. (7) in
terms of x ¼ cosϑ∶�

dx
dλ

�
2

¼ ð1 − x2ÞK − ðLz þ 2nðxþ CÞEÞ2: ð50Þ

From the structure of Eq. (50) we can immediately read that
for K ¼ 0 the right-hand side has to vanish. This simulta-
neously implies that we have dφ=dλ ¼ 0 and thus these are
the principal null geodesics of the charged NUT–de Sitter
metrics. Similarly it is very easy to show that for very
specific combinations of the constants of motion the right-
hand side of Eq. (50) vanishes. In both cases the lightlike
geodesics lie on cones of constant ϑ that have to fulfill
the constraints dx=dλ ¼ d2x=dλ2 ¼ 0. From the second

constraint we now immediately obtain the angle of the
cones in terms of the constants of motion. It reads

ϑph ¼ arccos

�
−
2nEð2nECþ LzÞ

4n2E2 þ K

�
: ð51Þ

Under the premise that we have K ≠ 0 we can use both
constraints to rewrite the Carter constant K in terms of E
and Lz∶

K ¼ ð2nECþ LzÞ2 − 4n2E2: ð52Þ

In analogy to the charged C–de Sitter metrics discussed in
Frost and Perlick [38] and Frost [42] we will call these
cones individual photon cones. However, we have to
emphasize that contrary to the charged C–de Sitter metrics
in which all geodesics tangential to the photon cone remain
on the photon cone, in the charged NUT–de Sitter metrics
this is only the case for very specific lightlike geodesics. In
both cases, the principal null geodesics and the geodesics
on the photon cones, the solution to Eq. (7) is easy to
obtain. It reads ϑðλÞ ¼ ϑi. All other geodesics oscillate
between the two turning points,

xmin ¼ cos ϑmin ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
KðK þ 4n2E2 − ð2nECþ LzÞ2Þ

p
− 2nEð2nECþ LzÞ

K þ 4n2E2
; ð53Þ

xmax ¼ cosϑmax ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
KðK þ 4n2E2 − ð2nECþ LzÞ2Þ

p
þ 2nEð2nECþ LzÞ

K þ 4n2E2
: ð54Þ

As we can see xmin ≠ −xmax and thus the ϑ motion is not symmetric with respect to the plane ϑ ¼ π=2. For these geodesics
we can rewrite Eq. (50) in terms of an elementary integral that can be easily calculated. After the integration we solve for ϑ
and obtain as solution to Eq. (7)

ϑðλÞ ¼ arccos

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
KðK þ 4n2E2 − ð2nECþ LzÞ2ÞÞ

p
K þ 4n2E2

sin ðaϑ − iϑi
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K þ 4n2E2

p
ðλ − λiÞÞ −

2nEð2nECþ LzÞ
K þ 4n2E2

�
; ð55Þ

where

aϑ ¼ arcsin

�ðK þ 4n2E2Þ cosϑi þ 2nEð2nECþ LzÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
KðK þ 4n2E2 − ð2nECþ LzÞ2Þ

p �
;

ð56Þ
and iϑi ¼ sgnðdϑ=dλjϑ¼ϑi

Þ. Structurally this solution is the
same as Eq. (32) in Kagramanova et al. [14] and it can
be easily rewritten in the form of Eq. (3.12) in Clément
et al. [15].

C. The φ motion

For properly discussing the φ motion in the charged
NUT–de Sitter metrics we have to consider several pecu-
liarities. As stated in Zimmerman and Shahir [25] and in
Halla and Perlick [27], all lightlike geodesics are contained
in cones. These cones can point in arbitrary directions and
therefore lightlike geodesics can orbit any axis in space.
This has the consequence that not all geodesics perform a
full 2π orbit about the z axis. When the cones point away
from the z axis and the axis is not enclosed by the cone the
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φ motion reverses and the geodesic changes direction. In
addition it has long been an open question if the Misner
strings are transparent or opaque. When they are opaque all
lightlike geodesics terminate at the Misner strings and
cannot be continued. In this case the Misner strings cast a
shadow. However, Clément et al. [15] demonstrated that for
lightlike geodesics crossing the Misner strings the φmotion
is continuous. This strongly advocates that it is transparent.
Therefore, in this paper we will assume that the Misner
strings are transparent and do not cast a shadow.
When wewant to integrate Eq. (8) we have to distinguish

the same three types of motion as in Sec. III B for ϑ. We
start with the principal null geodesics. Principal null
geodesics have K ¼ 0 and the right-hand side of Eq. (8)
vanishes. Therefore the solution to Eq. (8) simply reads
φðλÞ ¼ φi. In the second case we have K ¼ ð2nECþ
LzÞ2 − 4n2E2. These are geodesics moving on individual
photon cones. Here, the right-hand side of Eq. (8) is
constant and after a simple integration the solution reads

φðλÞ ¼ φi þ
ðLz þ 2nðcosϑph þ CÞEÞðλ − λiÞ

sin2ϑph
: ð57Þ

All other geodesics oscillate between the turning points
ϑmin and ϑmax of the ϑmotion. Here, we proceed as follows.
We first replace x ¼ cosϑ on the right-hand side of Eq. (8):

dφ
dλ

¼ Lz þ 2nðxþ CÞE
1 − x2

: ð58Þ

Now we perform a partial fraction decomposition,

1

1 − x2
¼ 1

2

�
1

1 − x
þ 1

1þ x

�
; ð59Þ

and rewrite Eq. (58) as

dφ
dλ

¼ Lz þ 2nEð1þ CÞ
2ð1 − xÞ þ Lz − 2nEð1 − CÞ

2ð1þ xÞ : ð60Þ

Now we resubstitute x ¼ cosϑ and insert Eq. (55) in
Eq. (60). Then we integrate over λ. The solution to
Eq. (8) now reads [see also Eq. (43) in Kagramanova et al.
[14] and Eq. (3.16) in Clément et al. [15] for alternative
formulations]

φðλÞ ¼ φi þ iϑi

�
arctan

�
cϑ;1

�
tan

�
λ̃ðλiÞ
2

�
− cϑ;2

��
− arctan

�
cϑ;1

�
tan

�
λ̃ðλÞ
2

�
− cϑ;2

��

þ arctan

�
cϑ;3

�
tan

�
λ̃ðλÞ
2

�
þ cϑ;4

��
− arctan

�
cϑ;3

�
tan

�
λ̃ðλiÞ
2

�
þ cϑ;4

���
; ð61Þ

where cϑ;1, cϑ;2, cϑ;3, cϑ;4 and λ̃ðλÞ are given by

cϑ;1 ¼
K þ 4n2E2 þ 2nEð2nECþ LzÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K þ 4n2E2

p
ð2nEð1þ CÞ þ LzÞ

; cϑ;2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
KðK þ 4n2E2 − ð2nECþ LzÞ2Þ

p
K þ 4n2E2 þ 2nEð2nECþ LzÞ

; ð62Þ

cϑ;3 ¼
K þ 4n2E2 − 2nEð2nECþ LzÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K þ 4n2E2

p
ð2nEð1 − CÞ − LzÞ

; cϑ;4 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
KðK þ 4n2E2 − ð2nECþ LzÞ2Þ

p
K þ 4n2E2 − 2nEð2nECþ LzÞ

; ð63Þ

λ̃ðλÞ ¼ arcsin

�ðK þ 4n2E2Þ cosϑi þ 2nEð2nECþ LzÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
KðK þ 4n2E2 − ð2nECþ LzÞ2Þ

p �
− iϑi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K þ 4n2E2

p
ðλ − λiÞ: ð64Þ

Note that for the explicit calculation of φðλÞ the
multivaluedness of the arctan has to be appropriately
considered.

D. The time coordinate t

Equation (5) has two terms that separately depend on r
and ϑ. In the following we will demonstrate how to
calculate both components. For this purpose we first
integrate Eq. (5) over λ and rewrite it as follows:

tðλÞ ¼ ti þ trðλÞ þ tϑðλÞ; ð65Þ

where the r-dependent integral reads

trðλÞ ¼
Z

λ

λi

ρðrðλ0ÞÞ2Edλ0
Qðrðλ0ÞÞ ; ð66Þ

and the ϑ-dependent integral reads

tϑðλÞ¼−2n
Z

λ

λi

ðcosϑðλ0ÞþCÞðLzþ2nðcosϑðλ0ÞþCÞEÞdλ0
1−cos2ϑðλ0Þ :

ð67Þ
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1. Calculating tϑðλÞ
We start with evaluating the integral on the right-hand

side of tϑðλÞ in Eq. (67). We have to distinguish the same
three different types of motion as in Sec. III B for the ϑ
motion. For K ¼ 0 the right-hand side of Eq. (67) vanishes
and we have tϑðλÞ ¼ 0. For lightlike geodesics on indi-
vidual photon cones we have K ¼ ð2nECþ LzÞ2 − 4n2E2

and thus the right-hand side of Eq. (67) is constant. We
integrate over λ and get

tϑðλÞ¼−2nðcosϑphþCÞðLzþ2nðcosϑphþCÞEÞðλ−λiÞ
sin2ϑph

:

ð68Þ
In all remaining cases the lightlike geodesics oscillate
between the turning points ϑmin and ϑmax. Here we first
substitute x ¼ cosϑ and perform a partial fraction decom-
position using Eq. (59). We restructure and integrate the
constant term. Now tϑðλÞ reads

tϑðλÞ ¼ 4n2Eðλ − λiÞ þ n

�
ð1 − CÞðLz − 2nEð1 − CÞÞ

Z
λ

λi

dλ0

1þ xðλ0Þ − ð1þ CÞðLz þ 2nEð1þ CÞÞ
Z

λ

λi

dλ0

1 − xðλ0Þ
�
: ð69Þ

Now we insert xðλÞ ¼ cos ϑðλÞ and calculate the remaining two integrals. After integration tϑðλÞ reads

tϑðλÞ ¼ 4n2Eðλ − λiÞ þ iϑi2n

�
ð1 − CÞ

�
arctan

�
cϑ;3

�
tan

�
λ̃ðλÞ
2

�
þ cϑ;4

��
− arctan

�
cϑ;3

�
tan

�
λ̃ðλiÞ
2

�
þ cϑ;4

���

þð1þ CÞ
�
arctan

�
cϑ;1

�
tan

�
λ̃ðλÞ
2

�
− cϑ;2

��
− arctan

�
cϑ;1

�
tan

�
λ̃ðλiÞ
2

�
− cϑ;2

����
; ð70Þ

where the coefficients cϑ;1, cϑ;2, cϑ;3 and cϑ;4 are given by
Eqs. (62) and (63) and λ̃ðλÞ is given by Eq. (64). Note
that for the explicit calculation of tϑðλÞ the multivalued-
ness of the arctan has to be appropriately considered. In
addition we note that structurally Eq. (70) is the same as
Eq. (45) in Kagramanova et al. [14] and Eq. (4.23) in
Clément et al. [15].

2. Calculating trðλÞ
Now we turn to the r-dependent part of the time

coordinate trðλÞ. Here we have to distinguish the same
six types of motion as for the r motion. We start by
separating variables in Eq. (6). Then we rewrite Eq. (66) as
integral over r. Now it reads

trðλÞ ¼
Z

…rðλÞ

ri…

ρðr0Þ2Edr0
Qðr0Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρðr0Þ2E2 −Qðr0ÞK

p : ð71Þ

Here, the dots in the limits shall indicate that we have to
split the integral at the turning points and the sign of the
root in the denominator has to be chosen according to the
direction of the r motion. In addition for explicitly
integrating Eq. (71) for each type of motion we have to
distinguish four different cases. These are rH;i < rH;o for
the NUT metric and the charged NUT metric, rH;i ¼ rH;o ¼
rH for the extremally charged NUT metric, rC− < rH;i <
rH;o < rCþ for the NUT–de Sitter metric and the charged
NUT–de Sitter metric and rC− < rH;i ¼ rH;o ¼ rH < rCþ
for the extremally charged NUT–de Sitter metric. Due to the
sheer number of integrals we cannot explicitly demonstrate
how to calculate eachof themhere.Weonly provide the exact

equations for the time coordinate in all four cases for the
principal null geodesics. For all other types of motion we
only briefly describe the steps of the integration procedure.
We proceed in the same order as in Sec. III A.
Case 1: We start with the principal null geodesics

with E2=K > Vrðrph−Þ and K ¼ 0. In this case Eq. (71)
reduces to

trðλÞ ¼ iri

Z
rðλÞ

ri

ρðr0Þdr0
Qðr0Þ : ð72Þ

Now we restructure ρðr0Þ=Qðr0Þ such that only terms with
r0 in the nominator or the denominator remain. Then we
perform a partial fraction decomposition and integrate. The
resulting expressions for trðλÞ are given in terms of simple
elementary functions. In the case of the NUT metric and the
charged NUT metric with rH;i < rH;o trðλÞ reads

trðλÞ ¼ iri

�
rðλÞ − ri þ

r2H;o þ n2

rH;o − rH;i
ln

�
rðλÞ − rH;o
ri − rH;o

�

þ r2H;i þ n2

rH;o − rH;i
ln

�
ri − rH;i
rðλÞ − rH;i

��
; ð73Þ

while for the extremally charged NUT metric with rH;i ¼
rH;o ¼ rH it reads

trðλÞ ¼ iri

�
rðλÞ − ri þ 2rH ln

�
rðλÞ − rH
ri − rH

�

þ ðr2H þ n2Þ
�

1

ri − rH
−

1

rðλÞ − rH

��
: ð74Þ
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Analogously in the case of the NUT–de Sitter and the charged NUT–de Sitter metrics with rC− < rH;i < rH;o < rCþ we
obtain for trðλÞ

trðλÞ ¼ iri
3

Λ

� ðr2Cþ þ n2Þ lnð rCþ−ri
rCþ−rðλÞÞ

ðrCþ − rH;oÞðrCþ − rH;iÞðrCþ − rC−Þ
þ

ðr2H;o þ n2Þ lnðrðλÞ−rH;ori−rH;o
Þ

ðrCþ − rH;oÞðrH;o − rH;iÞðrH;o − rC−Þ

þ
ðr2H;i þ n2Þ lnð ri−rH;i

rðλÞ−rH;iÞ
ðrCþ − rH;iÞðrH;o − rH;iÞðrH;i − rC−Þ

þ
ðr2C− þ n2Þ lnðrðλÞ−rC−ri−rC−

Þ
ðrCþ − rC−ÞðrH;o − rC−ÞðrH;i − rC−Þ

�
: ð75Þ

Finally for the extremally charged NUT–de Sitter metric with rC− < rH;i ¼ rH;o ¼ rH < rCþ trðλÞ becomes

trðλÞ ¼ iri
3

Λ

� ðr2Cþ þ n2Þ lnð rCþ−ri
rCþ−rðλÞÞ

ðrCþ − rHÞ2ðrCþ − rC−Þ
þ ðr2Cþ − r2C−Þðr2H − n2Þ þ 2rHðrCþðr2C− þ n2Þ − rC−ðr2Cþ þ n2ÞÞ

ðrCþ − rC−ÞðrCþ − rHÞ2ðrH − rC−Þ2
ln

�
rðλÞ − rH
ri − rH

�

þ r2H þ n2

ðrCþ − rHÞðrH − rC−Þ
�

1

ri − rH
−

1

rðλÞ − rH

�
þ r2C− þ n2

ðrCþ − rC−ÞðrH − rC−Þ2
ln
�
rðλÞ − rC−
ri − rC−

��
: ð76Þ

Case 2: These are geodesics with E2=K > Vrðrph−Þ
and K > 0. They do not have turning points in the
domain of outer communication. We perform a partial
fraction decomposition of ρðr0Þ2=Qðr0Þ and rewrite the
right-hand side of Eq. (66) in terms of the elliptic
integrals tr;1ðri; rÞ and tr;2ðri; rÞ given by Eqs. (A15)
and (A16) in Appendix A 2 a. Now we substitute using
Eq. (18) to rewrite the integrals in terms of Legendre’s
elliptic integral of the first kind and the two nonstandard
elliptic integrals GLðχi; χ; k1; nkÞ and HLðχi; χ; k1; nkÞ
given by Eqs. (A21) and (A22). We rewrite the latter
in terms of elementary functions and Legendre’s elliptic
integrals of the first, second and third kind using
Eqs. (A23)–(A25).
Case 3: These are geodesics with E2=K ¼ Vrðrph−Þ.

They have a double root at rph− and do not have turning
points in the domain of outer communication. We first
perform a partial fraction decomposition of ρðr0Þ2=Qðr0Þ.
Then we perform a second partial fraction decomposition
and restructure the right-hand side of Eq. (71) such that it
only contains the elementary integrals I1 − I5 given by
Eqs. (A1)–(A5) in Appendix A 1 a.
Case 4: These are geodesics with Vrðrph−Þ > E2=K >

VrðrphÞ. These geodesics have two real roots but no turning
points in the domain of outer communication. Again we
perform a partial fraction decomposition of ρðr0Þ2=Qðr0Þ.
Then we use Eq. (28) to rewrite the right-hand side
of Eq. (71) in terms of Legendre’s elliptic integral
of the first kind and the two nonstandard elliptic integrals
ILðχi; χ; k2; nkÞ and JLðχi; χ; k2; nkÞ. We rewrite
ILðχi; χ; k2; nkÞ and JLðχi; χ; k2; nkÞ as Eqs. (A29), (A30),
and (A32) as described in Appendix A 2 b.
Case 5: These are geodesics with E2=K ¼ VrðrphÞ. They

either asymptotically come from or asymptotically go to the
photon sphere at rph. Here we have to distinguish three

cases. In the first case we have rðλÞ ¼ rph. These are
lightlike geodesics trapped on the photon sphere. Here, the
right-hand side of Eq. (66) is constant. After a simple
integration with respect to the Mino parameter trðλÞ now
reads

trðλÞ ¼
ρðrphÞ2Eðλ − λiÞ

QðrphÞ
: ð77Þ

The other two cases only differ with respect to one term
and an overall sign. In the first case we have rH;o<r<rph
and in the second case we have rph < rð< rCþÞ.
Again we first perform a partial fraction decomposition
of ρðr0Þ2=Qðr0Þ. We substitute using Eq. (34) and sub-
sequently perform a partial fraction decomposi-
tion with respect to y. Now we sort all terms such that
only integrals given by I6 − I9 [Eqs. (A6)–(A9) in
Appendix A 1 b] remain. Here, the main difference
between rH;o < r < rph and rph < rð< rCþÞ is that the
term containing 1=ðy − yphÞ is given by I6 [Eq. (A6)] for
the former and by I8 [Eq. (A8)] for the latter.
Case 6: These geodesics are characterized by

VrðrphÞ > E2=K and can have a turning point. For
lightlike geodesics with rH;o < r < rph this turning
point is always a maximum at rmax ¼ r2 and for rph <
rð< rCþÞ this turning point is always a minimum at
rmin ¼ r1. Again we perform a partial fraction decom-
position of ρðr0Þ2=Qðr0Þ. We substitute using Eq. (42) for
rH;o < r < rph and Eq. (47) for rph < rð< rCþÞ. Now we
sort all terms and rewrite them as Legendre’s elliptic
integrals of the first and third kind as well as the
nonstandard elliptic integral MLðχi; χ; k3; nkÞ. For the
latter we now evoke Eq. (A34) in Appendix A 2 c to
rewrite it in terms of elementary functions and
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Legendre’s elliptic integrals of the first, second and
third kind.

IV. GRAVITATIONAL LENSING

A. Orthonormal tetrad and the angles
on the observer’s celestial sphere

The ultimate goal of theoretical predictions is to be
verified by observations. In astronomy these observations
are performed using telescopes on Earth’s surface or in
orbits around Earth. For astronomical observations it is a
common standard to take the target of the observation as the
center of the image and then divide the sky using a
coordinate grid whose angular coordinates are measured
from the target. Therefore, it will make our results much
easier comparable to astronomical observations when we
adapt this approach to our theoretical predictions. For
achieving this goal we first introduce a stationary observer
at coordinates ðxμOÞ ¼ ðtO; rO; ϑO;φOÞ in the domain of
outer communication between photon sphere and infinity
or cosmological horizon for the (charged) NUT metric and
the (charged) NUT–de Sitter metric, respectively. Here, the
symmetries of the spacetimes allow us to set tO ¼ 0 and
φO ¼ 0. Now we choose the black hole as the target of our
observation. In the next step we introduce an orthonormal
tetrad e0, e1, e2, and e3 as illustrated in Fig. 4 following the
approach of Grenzebach et al. [39]:

e0 ¼
ffiffiffiffiffiffiffiffiffiffi
ρðrÞ
QðrÞ

s
∂t

����
ðxμOÞ

; ð78Þ

e1 ¼
1ffiffiffiffiffiffiffiffiffi
ρðrÞp ∂ϑ

����
ðxμOÞ

; ð79Þ

e2 ¼ −
∂φ − 2nðcosϑþ CÞ∂tffiffiffiffiffiffiffiffiffi

ρðrÞp
sinϑ

����
ðxμOÞ

; ð80Þ

e3 ¼ −

ffiffiffiffiffiffiffiffiffiffi
QðrÞ
ρðrÞ

s
∂r

����
ðxμOÞ

; ð81Þ

where e0 is the four-velocity vector of the observer. Now
we introduce latitude and longitude coordinates Σ and Ψ
such that the latitude Σ is measured from e3 and the
longitude Ψ is measured from e1 in the direction of e2. In
the next step we have to relate the three constants of
motion E, Lz and K to the angular coordinates on the
observer’s celestial sphere. For this purpose let us
consider the tangent vector of a light ray in Mino
parametrization:

dη
dλ

¼ dt
dλ

∂t þ
dr
dλ

∂r þ
dϑ
dλ

∂ϑ þ
dφ
dλ

∂φ: ð82Þ

At the position of the observer we can also write the
tangent vector of the light ray in terms of the orthonormal
tetrad and the angles Σ and Ψ on the observer’s celestial
sphere as

dη
dλ

¼ σð−e0 þ sinΣ cosΨe1 þ sinΣ sinΨe2 þ cosΣe3Þ;
ð83Þ

where σ is a normalization constant. In Mino para-
metrization the normalization constant σ is given by

σ ¼ g

�
dη
dλ

; e0

�
: ð84Þ

The Mino parameter is defined up to an affine trans-
formation and therefore we can choose σ ¼ −ρðrOÞ
without loss of generality. We insert σ and Eqs. (78)–
(81) in Eq. (83) and compare coefficients with Eq. (82)
evaluated at the position of the observer. Solving for E,
Lz and K now leads to the following relations between
the constants of motion E, Lz and K and the angles Σ
and Ψ on the observer’s celestial sphere:

E ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
QðrOÞ
ρðrOÞ

s
; ð85Þ

Lz ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
ρðrOÞ

p
sinϑO sinΣ sinΨ

− 2nðcosϑO þCÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
QðrOÞ
ρðrOÞ

s
; ð86Þ

K ¼ ρðrOÞsin2Σ: ð87Þ

e3

e1

e2

Σ
Ψ

Light Ray

Tangent

Black Hole

Observer at xO

FIG. 4. Illustration of the lens-observer geometry and the
orthonormal tetrad vectors e1, e2 and e3. The observer is located
at xO ¼ ðxμOÞ. A light ray is detected coming from the latitude Σ
and the longitude Ψ on the observer’s celestial sphere.
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B. The shadow

When we consider gravitational lensing in a black hole
spacetime one of the most easily accessible features is the
shadow of the black hole. Although the shadow is a very
idealized concept it is very characteristic and therefore in this
section we calculate the angular radius of the shadow on the
celestial sphere of an observer in the spacetime of a charged
NUT–de Sitter black hole. For this purpose let us consider
the same observer as in Sec. IVA fixed at coordinates ðxμOÞ.
As illustrated in Fig. 5 we distribute light sources every-
where except between the black hole and the observer. The
light sources are now associated with brightness on the
observer’s celestial sphere while the void is associated with
darkness on the observer’s celestial sphere. This dark area is
the shadow of the black hole. The boundary between
brightness and darkness exactly marks the direction of light
rays asymptotically coming from the photon sphere.
These light rays have exactly the same constants of motion
as light rays on the photon sphere. In addition light rays
asymptotically coming from the photon sphere have
dr=dλjr¼rph ¼ 0. We now use this fact and the relations
Eqs. (85) and (87) between the constants of motion E andK
and the celestial latitude Σ to evaluate Eq. (6) at r ¼ rph. We
solve for Σ ¼ Σph and obtain for the angular radius of the
shadow of a charged NUT–de Sitter black hole

Σph ¼ arcsin

 
ρðrphÞ
ρðrOÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
QðrOÞ
QðrphÞ

s !
: ð88Þ

Note that this equation is structurally the same for all
charged NUT–de Sitter metrics. The obtained result is
already contained as special case in the results of
Grenzebach et al. [31]; however, to our knowledge an
explicit equation has not been derived yet. For n → 0 Σph

reduces to the angular radius of the shadow of the Reissner-
Nordström–de Sitter family of spacetimes:

Σph;RNdS ¼ arcsin

 
rph
rO

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q̃ðrOÞ
Q̃ðrphÞ

s !
; ð89Þ

where Q̃ðrÞ ¼ QðrÞ=r2. In particular it reduces to Synge’s
formula [45] for the SchwarzschildmetricwhenΛ → 0, e →
0 and n → 0. Although the charged NUT–de Sitter metric is
only stationary and axisymmetric it is not surprising that the
shadow is circular because of the metric’s SOð3;RÞ sym-
metry. Figure 6 shows plots of the angular radius of the
shadow Σph as function of the gravitomagnetic charge n for
the NUT metric (top left), the charged NUT metric with
e ¼ 3m=4 (top right), the NUT–de Sitter metric with Λ ¼
1=ð200m2Þ (bottom left) and the charged NUT–de Sitter
metric with Λ ¼ 1=ð200m2Þ and e ¼ 3m=4 (bottom right)
for rO ¼ 4m (black solid), rO ¼ 6m (blue dashed), rO ¼
8m (green dotted) and rO ¼ 10m (red dashed-dotted). With
increasing distance of the observer from the black hole Σph

decreases. In addition with increasing gravitomagnetic
charge n the photon sphere expands and the angular radius
of the shadow increases. For rph → rO we have Σph → π=2
and the shadow covers half of the observer’s sky. For rH;o <
rO < rph (not shown) the complement of the shadow,
usually also referred to as escape cone, shrinks while rO
approaches the outer black hole horizon rH;o. When we turn
on the electric charge e (top right) the angular radius of the
shadow shrinks slightly because in the presence of the
electric charge rph is slightly smaller. As a consequence Σph

approaches π=2 for larger n. Something similar happens
whenwe turn on the cosmological constantΛ. We can see in
the bottom panels that for Λ > 0 the angular radius of the
shadow Σph also slightly decreases. With increasing n the
photon sphere expands and rph approaches rO slightly faster
than for the NUT metric and the charged NUT metric.
As a consequence Σph approaches π=2 for slightly smaller
gravitomagnetic charges n. However, unlike for the
Schwarzschild–de Sitter and the Reissner-Nordström–de

Σph

Σph
rO

rph

Telescope/
 Observer

FIG. 5. Illustration of the construction of the shadow of a black hole. The black circle marks the region behind the horizon of the black
hole. The yellow circle marks the photon sphere, the yellow stars are light sources and the yellow lines symbolize lightlike geodesics
asymptotically coming from the photon sphere.
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Sitter metrics, for which the radius coordinate rph of the
photon sphere is independent of the cosmological constant,
we cannot only attribute these effects to Eq. (88) but also
have to consider the effect of the cosmological constant on
the radius coordinate of the photon sphere rph itself [as
determined from Eq. (12)]. As discussed in Sec. III A 1
when we turn on the cosmological constant Λ the photon
sphere expands much faster for increasing n compared to
Λ ¼ 0 and this effect gets stronger the larger the gravito-
magnetic charge n. This leads to the observed fact that Σph

approaches π=2 already for smaller n.
In this paper we only considered stationary observers.

So the immediate question arises how the shadow would
look like for an observer moving at a constant velocity v.
Here, we can draw insight by having a look at the
reasoning of Penrose [46] on the appearance of a moving
sphere to a resting observer. For a resting observer a

moving sphere always appears to be circular independent
of how it moves relative to the observer. Now we can
always find a coordinate system in which the observer is
moving relative to the resting sphere. In the new coor-
dinate system the sphere is at rest while the observer
moves. Therefore, both a resting observer and a moving
observer see a sphere as a circle on their skies. We can
now immediately transfer this reasoning to the shadow.
The photon sphere takes the role of the sphere and the
shadow is seen by a distant observer as a circle of
darkness. The angular radius of the shadow on the
celestial sphere of the moving observer can then be
calculated from the angular radius of the shadow on the
celestial sphere of the resting observer by applying the
aberration formula. Because the aberration formula maps
circles on circles the shadow is circular for both the resting
and the moving observers.

FIG. 6. Angular radius of the shadow Σph for observers at radii rO ¼ 4m (black), rO ¼ 6m (blue dashed), rO ¼ 8m (green dotted) and
rO ¼ 10m (red dashed-dotted) for the NUT metric (top left), the charged NUT metric with e ¼ 3m=4 (top right), the NUT–de Sitter
metric with Λ ¼ 1=ð200m2Þ (bottom left), and the charged NUT–de Sitter metric with Λ ¼ 1=ð200m2Þ, e ¼ 3m=4 (bottom right).
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How can we now use our insights to measure the
gravitomagnetic charge from observations of the shadow?
As discussed above the gravitomagnetic charge n affects
the size of the shadow. Even if the gravitomagnetic charge
is only very small it will lead to a larger angular radius Σph

of the shadow compared to a spacetime without gravito-
magnetic charge. However, as we can read from Eqs. (88)
and (89) as long as we have vanishing spin the shadow is
always circular independent of the presence of the grav-
itomagnetic charge. To make things worse also observers
around black holes potentially described by the charged
C–de Sitter metrics, which describe charged accelerating
black holes with a cosmological constant, see a circular
shadow [38,42]. While it is true that the angular radius
of the shadow in the C–de Sitter metrics decreases
with increasing acceleration parameter as the observer
approaches the acceleration horizon, in reality we can
expect both, the acceleration parameter and the gravito-
magnetic charge and also their effects on the shadow to be
very small. Therefore even if we only consider the
Plebański-Demiański class we have a degeneracy between
12 spacetimes that can potentially describe black holes with
circular shadows in nature. Because we do not a priori
know the distance between Earth and an observed astro-
physical black hole we cannot lift this degeneracy using
observations of the shadow alone. Mars et al. [47] showed
that for Kerr-Newman black holes and observers that are
not located on the axis of symmetry this degeneracy is
lifted. They also concluded that for Kerr-Newman-NUT
black holes the only parameter that cannot be determined
from observations of the shadow alone is the gravitomag-
netic charge n. However, in this paper we do not consider
the spin and therefore we need additional observables that
help us to distinguish between the shadows in different
spacetimes and to potentially measure the gravitomagnetic
charge n.

C. The lens equation

We now move on to define the lens map. The most
general version of a general relativistic lens map was first
introduced by Frittelli and Newman [48] and later adapted
to spherically symmetric spacetimes by Perlick [49]. Only
recently the approach of Perlick was adapted to axisym-
metric spacetimes in Frost and Perlick [38] and Frost [42].
We now apply their approach to the charged NUT–de Sitter
metrics. For this purpose we proceed as follows.
We first distribute light sources on a two-sphere S2L at

the radius coordinate rL. We place the stationary observer
with coordinates ðxμOÞ at a radius coordinate rph < rO <
rLð<rCþÞ and construct its past light cone. We follow all
lightlike geodesics on this cone back into the past. Some of
these geodesics will intersect with the two-sphere S2L while
others will intersect with the outer black hole horizon rH;o
and end up in the black hole. The geodesics that intersect
with the two-sphere S2L now constitute a map from the

celestial coordinates Σ and Ψ on the celestial sphere of the
observer to the angular coordinates ϑLðΣ;ΨÞ and φLðΣ;ΨÞ
on the two-sphere of light sources S2L∶

ðΣ;ΨÞ → ðϑLðΣ;ΨÞ;φLðΣ;ΨÞÞ: ð90Þ

This is our lens equation. For the calculation of the lens
map we now employ the solutions for ϑðλÞ and φðλÞ
calculated in Secs. III B and III C. We express the constants
of motion in Eqs. (55), (56), and (61)–(64) by Eqs. (85)–
(87). Now we choose λO ¼ 0 and thus the only thing left to
do is to eliminate the unknown λL < λO. We can calculate it
from the radius coordinates of the observer rO and the
radius coordinate rL at which the light ray intersects with
the two sphere S2L. For this purpose we separate variables in
Eq. (6) and integrate. Now we have to distinguish two
different types of lightlike geodesics. The first type of
lightlike geodesics has a turning point at the radius
coordinate rmin ¼ r1. In this case λL becomes

λL ¼
Z

rmin

rO

−
Z

rL

rmin

ffiffiffiffiffiffiffiffiffiffiffiffi
ρðrOÞ

p
dr0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ρðr0Þ2QðrOÞ −Qðr0ÞρðrOÞ2 sin2 Σ
p :

ð91Þ

FIG. 7. A simple illustration of the lens map. The black sphere
in the center represents the black hole. The white dot and the gray
area surrounding it are the observer and its celestial sphere at
xO ¼ ðxμOÞ. The colored area represents a patch on the two-sphere
of light sources S2L with coordinate radius rL. The two-sphere S2L
is colored using the convention in Bohn et al. [51]. Extended to
the whole sphere we color it as follows: 0 ≤ ϑL ≤ π=2 and
0 ≤ φL < π: green, π=2 < ϑL ≤ π and 0 ≤ φL < π: blue,
0 ≤ ϑL ≤ π=2 and π ≤ φL < 2π: red, π=2 < ϑL ≤ π and
π ≤ φL < 2π: yellow. The colored lines represent lightlike
geodesics emitted by light sources on each patch of the
two-sphere S2L.

TORBEN C. FROST PHYS. REV. D 105, 064064 (2022)

064064-18



The second type of lightlike geodesics does not have a
turning point and is propagating in the radial direction
outward. In this case λL reads

λL ¼ −
Z

rL

rO

ffiffiffiffiffiffiffiffiffiffiffiffi
ρðrOÞ

p
dr0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ρðr0Þ2QðrOÞ −Qðr0ÞρðrOÞ2 sin2 Σ
p : ð92Þ

For the calculation of the lens map we now rewrite λL in
terms of Legendre’s elliptic integral of the first kind or
when possible in terms of elementary functions. We
calculate ϑLðΣ;ΨÞ and φLðΣ;ΨÞ as described in
Secs. III B and III C. For a fast and efficient calculation

of the lens equation and the travel time in Sec. IV E their
evaluation was implemented in the programming language
JULIA [50]. For the visual representation we follow the color
conventions of Bohn et al. [51] illustrated in Fig. 7 with a
small modification which will be described below.
Figure 8 shows the lens map for an observer located at

rO ¼ 8m and ϑO ¼ π=2 and a sphere of light sources S2L at
the radius coordinate rL ¼ 9m for the Schwarzschild metric
(top left), the NUT metric with n ¼ m=100 (top right),
n ¼ m=10 (bottom left) and n ¼ m=2 (bottom right). The
Misner string is located at ϑ ¼ 0 (C ¼ 1). The observer
looks in the direction of the black hole. The black circle in
the center is the shadow of the black hole. In the

FIG. 8. Lens maps for light rays emitted by light sources located on the two-sphere S2L at the radius coordinate rL ¼ 9m and detected
by an observer located at rO ¼ 8m, ϑO ¼ π=2 in the Schwarzschild metric (top left) and in the NUT metric with n ¼ m=100 (top right),
n ¼ m=10 (bottom left), and n ¼ m=2 (bottom right). The Misner string is located at ϑ ¼ 0 (C ¼ 1).
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Schwarzschild metric the lens map is rotationally sym-
metric. The rings around the center represent images of
different orders. Here, we say that an image is of order nim
when the absolute value of the covered angle ΔφL fulfills
the relation ðnim − 1Þπ < jΔφLj < nimπ. The outer,
strongly colored ring represents images of first order, while
the second, fainter colored ring represents images of second
order. Closer to the shadow we can also see images of third
and, when we zoom in, images of fourth order. The borders
between the images of different orders are the critical
curves. Patches with the same color represent images from
light sources on the same quadrant on the sphere of light
sources. In our representation we slightly deviate from the
representation of Bohn et al. [51] as we represent images of
odd order by stronger colors than images of even order.
When we now turn on the gravitomagnetic charge n the
patches on the observer’s sky start to become twisted and
the formerly separated areas in the rings with images of first
and second order connect. This effect becomes stronger the
larger the gravitomagnetic charge n. The pattern of the lens
map is symmetric under rotations by π. The images of first
and second order from the same quadrant on the two-sphere
S2L are separated by sharp lines. The geodesics exactly on
these lines cross the axes at least once (here we have to note
that these geodesics can only cross one axis, either ϑ ¼ 0 or
ϑ ¼ π). In the lower two panels we also observe odd order
images close to the shadow at Ψ ¼ 0 (red) and Ψ ¼ π
(blue). A closer investigation reveals that formally these are
images of first order. The associated lightlike geodesics
move on cones not enclosing the axes and thus along these
geodesics the direction of the φ motion reverses.
Considering the observed lensing pattern it is now an
interesting question how the critical curves of the NUT
metric look. In Fig. 9 we show an enlarged view of the lens
map between Ψ ¼ π and Ψ ¼ 9π=8 for the NUT metric
with n ¼ m=2 with 16 times higher Ψ resolution than for
Fig. 8. The sharp boundaries still remain and therefore we
can exclude with high certainty that they are artifacts of too-
scarce point sampling. However, although these lines
separate images of first and second order it is rather
unlikely that they are part of the critical curves for three
reasons. First of all, although not clearly visible in the top
right panel of Fig. 8 they form as soon as we turn on the
gravitomagnetic charge n. As discussed above for the
Schwarzschild metric the critical curves are circles and
a priori there seems to be no reason why this should
suddenly change. Second, the NUT metric maintains an
SOð3;RÞ symmetry which also strongly suggests that the
critical curves are likely to be circles. Third, if we have a
closer look images of first and second order and images of
third and fourth order seem to be clearly separated by
circles indicating that this boundary is a critical curve.
Settling this question would require a more detailed
analysis of the geodesic motion in the NUT metric or
exactly deriving the determining relation for the critical

curves. Both are beyond the scope of this paper and will be
part of future work. Figure 10 shows the lens maps of the
Reissner-Nordström metric (top left), the charged NUT
metric (top right), the Schwarzschild–de Sitter metric
(middle left), the NUT–de Sitter metric (middle right),
the Reissner-Nordström–de Sitter metric (bottom left) and
the charged NUT–de Sitter metric (bottom right) with
Λ ¼ 1=ð200m2Þ, e ¼ 3m=4 and n ¼ m=2 in the respective
cases for an observer at rO ¼ 8m and ϑO ¼ π=2 and light
sources distributed on the two-sphere S2L with radius
coordinate rL ¼ 9m. The Misner string is located at ϑ ¼ 0
(C ¼ 1). As soon as we turn on the electric charge e and the
cosmological constant Λ the shadow shrinks; however, the
overall pattern of the lens map remains the same.
The twist observed in Figs. 8 and 10 has already been

observed by Lynden-Bell and Nouri-Zonoz [16,26] in the
weak-field limit. When we observe a circular shadow this is
one of two recognizable characteristics indicating the
presence of the gravitomagnetic charge n. This twist can
potentially be observed when we observe multiple images
from light sources at approximately the same distance from
the black hole, e.g., in a star cluster or a galaxy cluster.
Identifying enough images and their positions on the sky
will allow us to construct a partial lens map and potentially
infer the magnitude of the twist. From the determined
magnitude of the twist we can then draw conclusions on the
magnitude of the gravitomagnetic charge n. Although this
partial lens map may allow us to draw conclusions on the
presence and potentially the magnitude of the gravitomag-
netic charge n it will not allow us to lift the degeneracy with

FIG. 9. Enlarged view of the lens map in Fig. 8 (bottom right)
between Ψ ¼ π and Ψ ¼ 9π=8 for light rays emitted by light
sources located on the two-sphere S2L at the radius coordinate
rL ¼ 9m and detected by an observer located at rO ¼ 8m,
ϑO ¼ π=2 in the NUT metric with n ¼ m=2. The Misner string
is located at ϑ ¼ 0 (C ¼ 1).
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FIG. 10. Lens maps for light rays emitted by light sources located on the two-sphere S2L at the radius coordinate rL ¼ 9m and detected
by an observer located at rO ¼ 8m, ϑO ¼ π=2, in the Reissner-Nordström metric (top left), the charged NUT metric (top right), the
Schwarzschild–de Sitter metric (middle left), the NUT–de Sitter metric (middle right), the Reissner-Nordström–de Sitter metric (bottom
left), and the charged NUT–de Sitter metric (bottom right). The cosmological constant Λ, the electric charge e and the gravitomagnetic
charge n are Λ ¼ 1=ð200m2Þ, e ¼ 3m=4, and n ¼ m=2, respectively. The Misner string is located at ϑ ¼ 0 (C ¼ 1).
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respect to the cosmological constant Λ, the electric charge
e, rO and rL.

D. Redshift

The redshift factor z measures the relative energy shift
that a light ray experiences on its way from the light source
by which it was emitted to the observer by whom it is
detected. It is one of the few observables that is directly
accessible to observations and can be determined by
comparing the measured frequencies of known emission
lines in the emission spectrum of, e.g., a star, to their
unshifted frequencies from, e.g., laboratory measurements.
In our case the observer as well as the light source are
stationary and since we do not consider spinning black
holes both move on t lines. For this emitter-observer
constellation the redshift factor z is thoroughly derived,

e.g., in the book of Straumann [52], pp. 45. In terms of the
metric coefficients it reads

z ¼
ffiffiffiffiffiffiffiffiffiffi
gttjxO
gttjxL

s
− 1: ð93Þ

Now we insert the metric coefficient gtt ¼ −QðrÞ=ρðrÞ and
get z in terms of the spacetime coordinates:

z ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρðrLÞQðrOÞ
ρðrOÞQðrLÞ

s
− 1: ð94Þ

For the charged NUT–de Sitter spacetimes z only depends
on the radius coordinates rO of the observer and rL of the
light source and the four parameters m, Λ, e and n.
Figure 11 shows the redshift factor z for observers at

FIG. 11. Redshift for observers at radii rO ¼ 4m (black), rO ¼ 6m (blue dashed), rO ¼ 8m (green dotted), and rO ¼ 10m (red dashed-
dotted) and a light source at rL ¼ 9m for the NUT metric (top left), the charged NUT metric with e ¼ 3m=4 (top right), the
NUT–de Sitter metric with Λ ¼ 1=ð200m2Þ (bottom left) and the charged NUT–de Sitter metric with Λ ¼ 1=ð200m2Þ, e ¼ 3m=4
(bottom right).
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radius coordinates rO ¼ 4m, rO ¼ 6m, rO ¼ 8m, and rO ¼
10m and a light source at the radius coordinate rL ¼ 9m as
function of the gravitomagnetic charge n for the NUT
metric (top left), the charged NUT metric (top right), the
NUT–de Sitter metric (bottom left) and the charged NUT–
de Sitter metric (bottom right). The cosmological constant
and the electric charge are Λ ¼ 1=ð200m2Þ and e ¼ 3m=4,
respectively. For n ¼ 0 the redshift factor z reduces to the
redshift factors in the Schwarzschild metric (top left), the
Reissner-Nordström metric (top right), the Schwarzschild–
de Sitter metric (bottom left) and the Reissner-Nordström–
de Sitter metric (bottom right), respectively.
For rO < rL we mainly have blueshifts while for rL <

rO we mainly have redshifts. When we now turn on the
gravitomagnetic charge n in the former case with growing
gravitomagnetic charge the outer black hole horizon
approaches the observer rH;o → rO and thus light rays
emitted by the light source are infinitely blueshifted leading
to z → −1. In the latter case with growing gravitomagnetic
charge n the outer black hole horizon approaches the light
source rH;o → rL and thus light rays emitted by this source
become infinitely redshifted and we have z → ∞.
When we now turn on the electric charge e for small

n ≈ 0 the blueshifts and the redshifts slightly decrease. The
outer black hole horizon is originally located at a smaller
radius coordinate and thus we have z → −1 and z → ∞ for
slightly larger gravitomagnetic charges n, respectively.
Turning on the cosmological constant Λ has a similar
effect. The outer black hole horizon is originally located at
a slightly larger radius coordinate rH;o and expands faster
with increasing n. Therefore we have z → −1 and z → ∞
for much smaller gravitomagnetic charges n.
For observations it is rather unfortunate that in addition

to the four parameters m, Λ, e and n the redshift factor z
only depends on the radius coordinates of the observer rO
and of the light source rL. While the redshift factor z is also

affected by the gravitomagnetic charge n this information is
useless as long as we do not a priori know the distances
between observer and black hole and light source and black
hole. Therefore, similar to the angular radius of the shadow,
we have a degeneracy between the redshift factors in
spherically symmetric spacetimes and the charged NUT–
de Sitter metrics for different cosmological constants Λ,
electric charges e, gravitomagnetic charges n, rO, and rL.
However, combined with information about the angular
radius of the shadow Σph, from the lens equation and travel-
time differences (these will be discussed in the next section)
there is a chance that we can lift this degeneracy and
determine Λ, e, and n.

E. Travel time

The travel time T measures in terms of the time
coordinate t the time a light ray needs to travel from the
light source by which it was emitted to an observer by
whom it is detected. For a light ray that is emitted at the
time coordinate tL and detected by an observer at the time
coordinate tO it reads

T ¼ tO − tL: ð95Þ

The travel time is not directly measurable; however, in the
case that we can identify multiple images of the same light
source, e.g., a quasar (see Fohlmeister et al. [53] or
Koptelova et al. [54]) we can record light curves for each
image and compare their variability. When we are able to
identify similar structures we can now determine the time
delay between the images.
We now want to construct travel-time maps for the

charged NUT–de Sitter spacetimes. For this purpose we
now insert Eqs. (85)–(87) in Eq. (65) and rewrite it with the
help of Eq. (6) as (remember that we set tO ¼ 0)

TðΣ;ΨÞ ¼
Z

…rL

rO…

ffiffiffiffiffiffiffiffiffiffiffiffiffi
QðrOÞ

p
ρðr0Þ2dr0

Qðr0Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρðr0Þ2QðrOÞ −Qðr0ÞρðrOÞ2sin2Σ

p

− 2n
Z

λL

0

ðcosϑðλ0Þ þ CÞ

� ffiffiffiffiffiffiffiffiffiffiffiffi
ρðrOÞ

p
sin ϑO sinΣ sinΨþ 2nðcosϑðλ0Þ − cos ϑOÞ

ffiffiffiffiffiffiffiffiffi
QðrOÞ
ρðrOÞ

q �
dλ0

1 − cos2ϑðλ0Þ : ð96Þ

The dots in the limits of the integral of the first term
shall indicate that we have to split the integral at the turning
point. For observers between photon sphere and infinity
(Λ ¼ 0) or the cosmological horizon (0 < Λ < ΛC) this is
always a minimum. In the same term the sign of the root has
to be chosen such that it agrees with the direction of the r
motion along the geodesic. We now rewrite the term in
terms of elementary functions and Legendre’s elliptic
integrals of the first, second and third kind as described

in Sec. III D 2. Analogously we integrate the second term
on the right-hand side following the steps described in
Sec. III D 1.
For a fast and efficient evaluation the calculation of the

travel time was implemented in JULIA using the same set of
program routines as for the lens equation.
Figure 12 shows the travel time in the Schwarzschild

metric (top left) and the NUT metric with a Misner string at
ϑ ¼ 0 (C ¼ 1) and n ¼ m=100 (top right), n ¼ m=10
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FIG. 12. Travel-time maps for light rays emitted by light sources located on the two-sphere S2L at the radius coordinate rL ¼ 9m and
detected by an observer located at rO ¼ 8m and ϑO ¼ π=2 in the Schwarzschild metric (top left) and the NUT metric with n ¼ m=100
(top right), n ¼ m=10 (middle left) and n ¼ m=2 (middle right) and two observers located at ϑO ¼ π=4 (bottom left) and ϑO ¼ 3π=4
(bottom right) in the NUT metric with n ¼ m=2. The Misner string is located at ϑ ¼ 0 (C ¼ 1).
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(middle left) and n ¼ m=2 (middle right) for an observer
located at rO ¼ 8m and ϑO ¼ π=2. In addition it also shows
travel-time maps for observers located at rO ¼ 8m and
ϑO ¼ π=4 (bottom left) and ϑO ¼ 3π=4 (bottom right) in
the NUT spacetime with n ¼ m=2. The light sources are
located on the two-sphere S2L at the radius coordinate
rL ¼ 9m. The travel time increases towards the shadow as
the light ray makes more and more turns around the black
hole. For the Schwarzschild metric (top left) the travel time
is rotationally symmetric under arbitrary rotations about the
axis Σ ¼ 0. For n ¼ m=100 (top right) the travel time
shows still a high degree of apparent rotational symmetry.
When we look closer, however, we can recognize an
apparent sharp discontinuity at Ψ ¼ π. When we increase
the gravitomagnetic charge n this discontinuity becomes
more and more pronounced. When we start at the dis-
continuity and go in clockwise direction along a constant
latitude Σ the travel time decreases. In the travel-time maps
this decrease forms the shape of a spiral. In addition with
increasing n a second discontinuity starts to become visible
on the right-hand side of Ψ ¼ 0 close to the shadow. When
we zoom in on the middle right panel of Fig. 12 we
recognize that the first discontinuity consists of very narrow
steps and thus from this map alone it is unclear if this is a
real sharp discontinuity or if the travel time simply shows a
very steep increase. In all three panels these discontinuities
appear exactly for lightlike geodesics crossing the Misner
string. Figure 13 shows an enlarged view of the disconti-
nuity close to Ψ ¼ π between Ψ ¼ π and Ψ ¼ 9π=8 for
n ¼ m=2 with a 16 times higher Ψ resolution than in the

middle right panel of Fig. 12. The figure clearly shows that
the travel time has a real discontinuity for lightlike geo-
desics crossing the Misner string. From the observer’s
perspective lightlike geodesics passing to the left of the
Misner string have a shorter travel time than light rays
passing to the right of the Misner string. When the observer
moves to lower spacetime latitudes ϑ the discontinuity of
the travel time close to Ψ ¼ π stretches out to higher
latitudes Σ on the observer’s celestial sphere while the
discontinuity close to Ψ ¼ 0 is confined to a much more
narrow region close to the shadow. In addition compared to
an observer at ϑO ¼ π=2 for the observer at ϑO ¼ π=4 they
appear closer to Ψ ¼ π and Ψ ¼ 0, respectively. For an
observer at ϑO ¼ 3π=4 the situation is reversed. The
discontinuity at Ψ ¼ π becomes more confined to the
shadow while the discontinuity at Ψ ¼ 0 can already be
observed at higher latitudes Σ. In addition both disconti-
nuities can be found at longitudes Ψ further away from
Ψ ¼ π and Ψ ¼ 0, respectively.
Figures 14–16 show the travel-time maps for observers

in the Reissner-Nordström metric (Fig. 14, top left), the
Schwarzschild–de Sitter metric (Fig. 15, top left), the
Reissner-Nordström–de Sitter metric (Fig. 16, top left),
the charged NUT metric (Fig. 14, top right and bottom
row), the NUT–de Sitter metric (Fig. 15, top right and
bottom row) and the charged NUT–de Sitter metric
(Fig. 16, top right and bottom row) for observers located
at the radius coordinate rO ¼ 8m and the spacetime
latitudes ϑO ¼ π=4 (only for n > 0), ϑO ¼ π=2 and ϑO ¼
3π=4 (only for n > 0). The two-sphere S2L is located at the
radius coordinate rL ¼ 9m. The electric charge and the
cosmological constant are e ¼ 3m=4 and Λ ¼ 1=ð200m2Þ,
respectively. When we turn on the electric charge e
(Fig. 14) the shadow shrinks and the travel time shows
roughly the same pattern just shifted to lower latitudes.
When we turn on the cosmological constant (Figs. 15 and
16) the area of the shadow shrinks while we observe an
overall increase of the travel time. However, like after
turning on the electric charge except for some minor details
the overall patterns on the travel-time maps remain
the same.
The travel time just provided us with a second unique

pattern that indicates the presence of a gravitomagnetic
charge. When a black hole has a gravitomagnetic
charge and when it is described by one of the charged
NUT–de Sitter metrics we will observe a discontinuity
whenever light rays cross the Misner strings. While the
Misner strings are very likely only mathematical idealiza-
tions of a real physical effect and thus in reality it is more
likely that we will observe a transition from shorter to
longer travel times (or vice versa) this effect may still be
observable.
As stated above we cannot observe absolute travel times

of light rays but only travel-time differences. Considering
the uniqueness of the discontinuity the best chance to

FIG. 13. Enlarged view of the travel-time map in Fig. 12
(middle right) between Ψ ¼ π and Ψ ¼ 9π=8 for light rays
emitted by light sources located on the two-sphere S2L at the
radius coordinate rL ¼ 9m and detected by an observer located at
rO ¼ 8m, ϑO ¼ π=2 in the NUT metric with n ¼ m=2. The
Misner string is located at ϑ ¼ 0 (C ¼ 1).

GRAVITATIONAL LENSING IN THE CHARGED NUT … PHYS. REV. D 105, 064064 (2022)

064064-25



observe it would be the use of quadruply lensed stars or
quasars. When we observe lensed images of these sources
more or less forming a cross around the lens (see, e.g., Suyu
et al. [55]) we can determine travel-time differences
between the images. In the case they are at roughly the

same distance from the black hole and have roughly the
same angular distance from each other (like, e.g., for HE
0435-1223 in Fig. 1 of Suyu et al. [55]) the observed
discontinuity in the travel time will lead to a high travel-
time difference between the images with the smallest

FIG. 14. Travel-time maps for light rays emitted by light sources located on the two-sphere S2L at the radius coordinate rL ¼ 9m and
detected by an observer located at rO ¼ 8m and ϑO ¼ π=2 in the Reissner-Nordström metric (top left), ϑO ¼ π=4 (top right), ϑO ¼ π=2
(bottom left), and ϑO ¼ 3π=4 (bottom right) in the charged NUT metric with n ¼ m=2. The electric charge is e ¼ 3m=4. The Misner
string is located at ϑ ¼ 0 (C ¼ 1).
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angular distances to the discontinuity while the travel-time
difference between the other images will be much smaller.
The travel-time difference may allow to distinguish black
holes with gravitomagnetic charge n from black holes
without gravitomagnetic charge but it does not allow to lift
the degeneracy with respect to Λ, e, rO, and rL.

Unfortunately so far we did not observe quadruply
imaged stars lensed by black holes. Indeed, so far light
sources multiply imaged by black holes were not observed
at all and thus we will have to wait until the next
generations of telescopes become available that have a
resolution that is high enough to address this challenge.

FIG. 15. Travel-time maps for light rays emitted by light sources located on the two-sphere S2L at the radius coordinate rL ¼ 9m and
detected by an observer located at rO ¼ 8m and ϑO ¼ π=2 in the Schwarzschild–de Sitter metric (top left), ϑO ¼ π=4 (top right),
ϑO ¼ π=2 (bottom left), and ϑO ¼ 3π=4 (bottom right) in the NUT–de Sitter metric with n ¼ m=2. The cosmological constant is
Λ ¼ 1=ð200m2Þ. The Misner string is located at ϑ ¼ 0 (C ¼ 1).
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V. SUMMARY AND CONCLUSIONS

In this paper we first discussed and solved the equations
of motion in the domain of outer communication of the
charged NUT–de Sitter metrics using Legendre’s canonical
forms of the elliptic integrals and Jacobi’s elliptic functions.
While for ϑ and φ our results are not particularly new we
believe that our representation makes them easily acces-
sible without any further rescalings; see, e.g., Kagramanova
et al. [14], or conventions using Killing vector fields, see,
e.g., Clément et al. [15]. It is true that we can also use
Weierstrass’ elliptic ℘ function and Weierstrass’ ζ and σ

functions to solve the equations of motion for r and t; see
Kagramanova et al. [14]. However, using Legendre's
canonical form of the elliptic integrals has the clear
advantage that we do not have to consider and manually
adjust the branches of the ln that occur in the equations for t
in Kagramanova et al. [14]. Along the way we also derived
and discussed the properties of the photon sphere and the
individual photon cones. The radius coordinate of the
photon sphere in the NUT metric was already well known
for quite some time; see Jefremov and Perlick [40]. For the
charged NUT–de Sitter metrics it is also included as special

FIG. 16. Travel-time maps for light rays emitted by light sources located on the two-sphere S2L at the radius coordinate rL ¼ 9m and
detected by an observer located at rO ¼ 8m and ϑO ¼ π=2 in the Reissner-Nordström–de Sitter metric (top left), ϑO ¼ π=4 (top right),
ϑO ¼ π=2 (bottom left), and ϑO ¼ 3π=4 (bottom right) in the charged NUT–de Sitter metric with n ¼ m=2. The cosmological constant
and the electric charge are Λ ¼ 1=ð200m2Þ and e ¼ 3m=4, respectively. The Misner string is located at ϑ ¼ 0 (C ¼ 1).
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case in the results of Grenzebach et al. [31]. However, we
believe that the approach to derive it using the potential
VrðrÞmakes it particularly easy to access and to understand
the related classification of the different types of lightlike
geodesic motion.
In the second part of the paper we employed the derived

solutions to the equations of motion to thoroughly inves-
tigate gravitational lensing in the charged NUT–de Sitter
spacetimes. For this purpose we introduced a stationary
observer at the radius coordinate rO and a two-sphere S2L of
light sources at the radius coordinate rL, both measured in
units of m, in the domain of outer communication between
photon sphere and infinity (Λ ¼ 0) or the cosmological
horizon (0 < Λ < ΛC). We introduced an orthonormal
tetrad to parametrize the constants of motion using lat-
itude-longitude coordinates on the observer’s celestial
sphere following the approach of Grenzebach et al. [39].
In this parametrization we derived the angular radius of the
shadow, set up a lens equation, defined the redshift, and the
travel time.
For the charged NUT–de Sitter metrics we found that the

shadow is always circular. Although the charged NUT–
de Sitter metrics are only axisymmetric this result is not
really surprising because the spatial component of the
metrics maintains a rotational SOð3;RÞ symmetry. The
angular radius of the shadow is a function of the gravito-
magnetic charge n and, for a fixed rO, grows when we
increase the gravitomagnetic charge. Unfortunately, as long
as we do not know rO,Λ and e, for the latter two the shadow
shrinks compared to theNUTmetric as soon aswe turn them
on, we have a degeneracy with respect toΛ, e, n and also rO.
As first main result of this paper we wrote down an exact

lens equation for the charged NUT–de Sitter metrics. Here,
we have to stress that we did not derive it using numerical
ray tracing but the exact analytic solutions to the equations
of motion. The lens map shows images up to fourth order.
We found that unlike in static and spherically symmetric
spacetimes the images of first and second orders from the
same quadrant on the two-sphere S2L connect and are
twisted. In addition we found two regions with images
of first order. The first region appears relatively far away
from the shadow while the second region appears very
close to the shadow. In the second region the direction of
the φ motion reverses and thus lightlike geodesics do not
perform a full orbit about the axes ϑ ¼ 0 or ϑ ¼ π. The
images of first and second order are separated by very
clean-cut lines which mark lightlike geodesics crossing the
axes. We found that for these geodesics all three spatial
coordinates are regular confirming the results of Clément
et al. [15]. In addition we found that when we turn on the
cosmological constant Λ and the electric charge e the lens
map maintains its basic structure.
We also discussed the potential location of the critical

curves. We argued that it is unlikely that the boundaries
between images of different orders from the same region on

the two-sphere S2L are part of the critical curves because
they immediately occur when we turn on the gravitomag-
netic charge. We came to the conclusion that it is very likely
that the critical curves still form circles because (i) the
spacetime maintains the spatial rotational symmetry of
the static and spherically symmetric spacetimes and (ii) the
boundary between images of first and second order and
images of third and fourth order are still circles. However,
for confirming our claims and for finding the exact position
of the critical curves we need a much more detailed and
thorough investigation of lightlike geodesic motion in the
charged NUT–de Sitter metrics, in particular the Jacobian
of the lens equation, which was beyond the scope of
this paper.
We also derived the redshift and plotted it as function of

n for observer constellations rO < rL and rL < rO. For the
former we mainly observed blueshifts while for the latter
we mainly observed redshifts. We found that for these
observers the observed blueshift and the observed redshift
of light rays emitted by a light source located at rL increase
with growing gravitomagnetic charge n, respectively.
Adding the electric charge has only a very small effect
while adding the cosmological constant Λ shifts the limits
z → −1 and z → ∞ to much lower n.
As the second main result of this paper we derived the

travel time TðΣ;ΨÞ and plotted it as a function of Σ and Ψ
on the observer’s celestial sphere. When we compared the
travel-time maps of the charged NUT–de Sitter metrics to
their spherically symmetric and static counterparts two very
distinct differences immediately caught our eye. First, for
the charged NUT–de Sitter metrics the travel time shows a
discontinuity when light rays cross the Misner string at
least once (in our case we have C ¼ 1 and thus it is located
at ϑ ¼ 0). In addition, when we go from the first crossing in
clockwise direction along a constant latitude Σ the travel
time decreases, resulting in a spiral pattern. In addition we
found that turning on the electric charge e did not
significantly affect the travel time. However, in the pres-
ence of a positive cosmological constant the travel time gets
significantly longer.
From the astrophysical point of view it is unfortunate

that the shadow and the redshift factor z are degenerate with
respect to Λ, e, n, rO, and rL (the latter is only true for the
redshift factor z). However, the lens equation and the travel
time very beautifully demonstrate that the presence of a
gravitomagnetic charge is always connected with a twist in
the lens map and a discontinuity in the travel time. The
former was already observed in the weak-field limit by
Nouri-Zonoz and Lynden-Bell [16,26] and our results
confirm it for the exact lens map. The discontinuity in
the travel time, and as a consequence of the time coor-
dinate, confirms Misner’s conclusion that the time coor-
dinate has a singularity at the Misner string [5].
The twist and the discontinuity of the travel time are

unique features caused by the gravitomagnetic charge n and
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therefore if they are observed for a black hole they will be
strong indicators for the presence of a gravitomagnetic
charge. In addition the strength of the twist and the
discontinuity will also allow to draw conclusions on the
magnitude of the gravitomagnetic charge n. However, for
lifting the degeneracy with respect to the cosmological
constant Λ, the electric charge e, the distances between
observer and black hole and light source and black hole, rO
and rL, we have to combine observations of the angular
radius of the shadow, the redshift, the positions of multiple
images of the same light source on the observer’s celestial
sphere and the travel-time differences between these images.
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APPENDIX A: ELEMENTARY AND
ELLIPTIC INTEGRALS

While integrating the equations of motion for r in
Sec. III A and the time coordinate t in Sec. III D we
encountered several elementary and elliptic integrals. In
this appendix we will demonstrate how to calculate them.

1. Elementary Integrals

We start with the elementary integrals required to
calculate the solutions for rðλÞ in Sec. III A 3 and the r-
dependent part trðλÞ of the time coordinate t in Sec. III D 2
for cases 3 and 5.

a. r motion and time coordinate t: Case 3

In Secs. III A 3 and III D 2 we encountered in total five
different elementary integrals associated with the geodesic
motion of light rays with E2=K ¼ Vrðrph−Þ. These geo-
desics have a double root at r1 ¼ r2 ¼ rph− and a pair of
complex conjugate roots at r3 ¼ r̄4 ¼ R3 þ iR4. The first
two integrals I1 and I2 are given by Eqs. (A1) and (A2) and
are easy to calculate:

I1 ¼
Z

rdrffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðR3 − rÞ2 þ R2

4

p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðR3 − rÞ2 þ R2

4

q

þ R3arsinh

�
r − R3

R4

�
; ðA1Þ

I2 ¼
Z

drffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðR3 − rÞ2 þ R2

4

p ¼ arsinh

�
r − R3

R4

�
: ðA2Þ

The other three integrals I3, I4 and I5 are given by
Eqs. (A3)–(A5). In I3 and I4 we always have a < r.
Here a can take the values r1, rC−, rH;i or rH;o. In I5 on
the other hand we only have a ¼ rCþ and thus r < a. Now
we substitute x ¼ r − a in I3 and I4 and x ¼ a − r in I5 and
integrate. After integration and resubstitution I3, I4 and I5
read

I3 ¼
Z

dr

ðr − aÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðR3 − rÞ2 þ R2

4

p ¼ −
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðR3 − aÞ2 þ R2
4

p
× arsinh

�ða − R3Þðr − aÞ þ ðR3 − aÞ2 þ R2
4

ðr − aÞR4

�
; ðA3Þ

I4 ¼
Z

dr

ðr − aÞ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðR3 − rÞ2 þ R2

4

p
¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðR3 − rÞ2 þ R2

4

p
ððR3 − aÞ2 þ R2

4Þðr − aÞ þ
a − R3

ððR3 − aÞ2 þ R2
4Þ

3
2

× arsinh

�ða − R3Þðr − aÞ þ ðR3 − aÞ2 þ R2
4

ðr − aÞR4

�
; ðA4Þ

I5 ¼
Z

dr

ða − rÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðR3 − rÞ2 þ R2

4

p ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðR3 − aÞ2 þ R2

4

p
× arsinh

�ðR3 − aÞ2 þ R2
4 − ða − R3Þða − rÞ

ða − rÞR4

�
: ðA5Þ

b. r motion and time coordinate t: Case 5

In addition to the five integrals discussed in the last
subsection of this appendix in Sec. III A 3 and Sec. III D 2
we also encountered four elementary integrals associated
with lightlike geodesics asymptotically coming from or
going to the photon sphere. In their most general form these
integrals are given by I6 − I9 [Eqs. (A6)–(A9)]. In I6 and I7
we always have y > a, where a is either yph, yC−, yCþ or
a2;r=12. yph, yC− and yCþ are related to rph, rC− and rCþ via
Eq. (34), respectively. Now we substitute z ¼ y − a and
integrate. After integration and resubstitution I6 and I7 read

I6 ¼
Z

dy
ðy − aÞ ffiffiffiffiffiffiffiffiffiffiffiffi

y − y1
p ¼ −

2ffiffiffiffiffiffiffiffiffiffiffiffiffi
a − y1

p arcoth

� ffiffiffiffiffiffiffiffiffiffiffiffiffi
y − y1
a − y1

r �
;

ðA6Þ

I7 ¼
Z

dy
ðy − aÞ2 ffiffiffiffiffiffiffiffiffiffiffiffi

y − y1
p ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffi
y − y1

p
ða − y1Þðy − aÞ

þ 1

ða − y1Þ32
arcoth

� ffiffiffiffiffiffiffiffiffiffiffiffiffi
y − y1
a − y1

r �
: ðA7Þ

In I8 and I9 we always have y < a, where a is either yph,
yH;i or yH;o. yph, yH;i, and yH;o are related to rph, rH;i and rH;o
via Eq. (34), respectively. Now we substitute z ¼ y − y1
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and integrate. After integration and resubstitution I8 and I9
read

I8 ¼
Z

dy
ða − yÞ ffiffiffiffiffiffiffiffiffiffiffiffi

y − y1
p ¼ 2ffiffiffiffiffiffiffiffiffiffiffiffiffi

a − y1
p artanh

� ffiffiffiffiffiffiffiffiffiffiffiffiffi
y − y1
a − y1

r �
;

ðA8Þ

I9 ¼
Z

dy
ða − yÞ2 ffiffiffiffiffiffiffiffiffiffiffiffi

y − y1
p ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
y − y1

p
ða − y1Þða − yÞ

þ 1

ða − y1Þ32
artanh

� ffiffiffiffiffiffiffiffiffiffiffiffiffi
y − y1
a − y1

r �
: ðA9Þ

2. Elliptic Integrals

In Sec. III D 2 we encountered several general elliptic
integrals. The main purpose of this section is to demon-
strate how to rewrite them in terms of elementary functions
and Legendre’s canonical forms of the elliptic integrals of
the first, second and third kind. Let us start by defining
Legendre’s elliptic integrals of the first, second and third
kind. In their canonical form they read

FLðχ; kÞ ¼
Z

χ

0

dχ0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − k sin2 χ0

p ; ðA10Þ

ELðχ; kÞ ¼
Z

χ

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − k sin2 χ0

q
dχ0; ðA11Þ

ΠLðχ; k; niÞ ¼
Z

χ

0

dχ0

ð1 − ni sin2 χ0Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − k sin2 χ0

p ; ðA12Þ

where χ is called the argument of the elliptic functions, k is
the square of the elliptic modulus and ni ∈ R is an arbitrary
parameter. In the case χ ¼ π=2 we refer to them as
complete elliptic integrals. For the complete elliptic inte-
grals one commonly omits χ in the arguments and writes
the complete elliptic integral of the first kind as KLðkÞ. The
integrand of Eq. (A12) becomes singular whenever we
integrate over a horizon. We can alleviate this problem by
rewriting it as [56]

ΠLðχ; k; niÞ ¼ FLðχ; kÞ − ΠL

�
χ; k;

k
ni

�

þ 1

2p
ln

�
cos χ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ksin2χ

p
þ p sin χ

j cos χ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ksin2χ

p
− p sin χj

�
;

ðA13Þ
where

p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðni − 1Þðni − kÞ

ni

s
: ðA14Þ

While integrating the radial part of the time coordinate trðλÞ
in Sec. III D 2 we also encountered in total five elliptic

integrals that do not immediately take one of Legendre’s
canonical forms given by Eqs. (A10)–(A12). In the
following we demonstrate how to rewrite them as elemen-
tary functions and Legendre’s elliptic integrals of the first,
second and third kind.

a. Time coordinate t: Case 2

In this case we have two pairs of complex conjugate
roots. Employing the notation from Sec. III A 2 we write
them as r1 ¼ r̄2 ¼ R1 þ iR2 and r3 ¼ r̄4 ¼ R3 þ iR4,
where R1 < R3, 0 < R2, and 0 < R4. In this notation the
integrals take the following two general forms:

tr;1ðri; rÞ ¼
Z

r

ri

r0mkdr0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ððR1 − r0Þ2 þ R2

2ÞððR3 − r0Þ2 þ R2
4Þ

p ;

ðA15Þ

tr;2ðri; rÞ

¼
Z

r

ri

dr0

ðr0 − rhÞmk
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ððR1 − r0Þ2 þR2

2ÞððR3 − r0Þ2 þR2
4Þ

p ;

ðA16Þ

where in our case rh always corresponds to the radius
coordinate of one of the horizons. Applying the coordinate
transformation Eq. (18) and defining two new constants of
motion following Byrd and Friedman [43]

n1 ¼
R2 þ g0R1

R1 − g0R2

and n2 ¼
R2 þ g0ðR1 − rhÞ
R1 − g0R2 − rh

ðA17Þ

then transforms the integrals Eqs. (A15) and (A16) to

tr;1ðri; rÞ ¼
2ðR1 − g0R2Þmk

ðSþ S̄Þgmk
0

Xmk

j¼0

mk!n
mk−j
1 ðg0 − n1Þj
ðmk − jÞ!j!

×
Z

χ

χi

dχ0

ð1þ g0 tan χ0Þj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − k1sin2χ0

p ; ðA18Þ

tr;2ðri; rÞ ¼
2

ðSþ S̄ÞðR2 þ g0ðR1 − rhÞÞmk

×
Xmk

j¼0

mk!g
mk−j
0 ðn2 − g0Þj
ðmk − jÞ!j!

×
Z

χ

χi

dχ0

ð1þ n2 tan χ0Þj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − k1sin2χ0

p ; ðA19Þ

where S, S̄, and g0 are defined by Eqs. (16), (17), and (19),
respectively, the square of the elliptic modulus k1 is given
by Eq. (23) and χi and χ are related to ri and r by Eq. (22),
respectively. Equations (A18) and (A19) contain elliptic
integrals that do not immediately take one of Legendre’s
canonical forms. Thus they have to be calculated

GRAVITATIONAL LENSING IN THE CHARGED NUT … PHYS. REV. D 105, 064064 (2022)

064064-31



separately. In our case we always have either mk ¼ 0,
mk ¼ 1 or mk ¼ 2. For mk ¼ 0 Eqs. (A18) and (A19)
reduce to the same term containing two elliptic integrals
of the first kind. It is related to the Mino para-
meter λ by

λ − λi ¼
iri2ðFLðχ; k1Þ − FLðχi; k1ÞÞ

ðSþ S̄Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 þ Λ

3
K

q : ðA20Þ

For mk ¼ 1 and mk ¼ 2 Eqs. (A18) and (A19) contain two
elliptic integrals not immediately taking one of Legendre’s
canonical forms. The two integrals have j ¼ 1 and j ¼ 2
and read in their most general form

GLðχi; χ; k1; nkÞ ¼
Z

χ

χi

dχ0

ð1þ nk tan χ0Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − k1 sin2 χ0

p ;

ðA21Þ

and

HLðχi; χ; k1; nkÞ ¼
Z

χ

χi

dχ0

ð1þ nk tan χ0Þ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − k1 sin2 χ0

p ;

ðA22Þ

where nk ¼ g0 or nk ¼ n2. For brevity we will now drop χi
in the argument. Following Gralla and Lupsasca [37] we
can now rewrite GLðχ; k1; nkÞ andHLðχ; k1; nkÞ in terms of
elementary functions and Legendre’s elliptic integrals of
the first, second and third kind

GLðχ; k1; nkÞ ¼
FLðχ; k1Þ þ n2kΠLðχ; k1; 1þ n2kÞ

1þ n2k

þ nkG̃Lðχ; k1; nkÞ
2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ n2kÞð1 − k1 þ n2kÞ

q ; ðA23Þ

HLðχ; k1; nkÞ ¼
FLðχ; k1Þ
ð1þ n2kÞ2

þ n2k
ð1þ n2kÞð1 − k1 þ n2kÞ

�
nk þ

sin χ − nk cos χ
cos χ þ nk sin χ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − k1sin2χ

q
− ELðχ; k1Þ

�

þ 2ð1 − k1 þ n2kÞ − n2kk1
ð1þ n2kÞð1 − k1 þ n2kÞ

 
n2kΠLðχ; k1; 1þ n2kÞ

1þ n2k
þ nkG̃Lðχ; k1; nkÞ
2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ n2kÞð1 − k1 þ n2kÞ

q
!
; ðA24Þ

where

G̃Lðχ; k1; nkÞ ¼ ln

0
BBB@
���������

�
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þn2k

1−k1þn2k

r ��
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þn2k

1−k1þn2k

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − k1sin2χ

p �
�
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þn2k

1−k1þn2k

r ��
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þn2k

1−k1þn2k

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − k1sin2χ

p �
���������

1
CCCA: ðA25Þ

In addition, because we always have 0 < n2k, we evoke
Eq. (A13) to avoid the divergence of ΠLðχ; k1; 1þ n2kÞ.

b. Time coordinate t: Case 4

In Sec. III D 2 we also encountered the two elliptic
integrals ILðχi; χ; k2; nkÞ and JLðχi; χ; k2; nkÞ that do not
immediately take one of Legendre’s canonical forms [k2 is
the square of the elliptic modulus given by Eq. (32) and χi
and χ are related to ri and r by Eq. (31), respectively]. We
will now demonstrate how to rewrite them in terms of
elementary functions and Legendre’s elliptic integrals of
the first, second and third kind. For this purpose let us first
write them down in their general forms:

ILðχi; χ; k2; nkÞ ¼
Z

χ

χi

dχ0

ð1þ nk cos χ0Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − k2 sin2 χ0

p ;

ðA26Þ

JLðχi; χ; k2; nkÞ ¼
Z

χ

χi

dχ0

ð1þ nk cos χ0Þ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − k2 sin2 χ0

p :

ðA27Þ
We start by integrating ILðχi; χ; k2; nkÞ. For this purpose we
first omit, for brevity, χi in the argument and then expand
by 1 − nk cos χ0∶

ILðχ;k2;nkÞ ¼
Z

χ

0

dχ0

ð1þnk cosχ0Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1− k2sin2χ0

p
¼ 1

1−n2k

 Z
χ

0

dχ0�
1− n2k

n2k−1
sin2χ0

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1− k2sin2χ0

p

−nk
Z

χ

0

cosχ0dχ0�
1− n2k

n2k−1
sin2χ0

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1− k2sin2χ0

p
!
:

ðA28Þ
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Now we rewrite the first term as Legendre’s elliptic integral
of the third kind. The second term is an elementary integral.
Its calculation involves several case-by-case analyses
which are too long to be reproduced here. After the
integration ILðχ; k2; nkÞ becomes [38] [see also
Eqs. (B61), (B62) and (B65) in Gralla and Lupsasca
[37] for an alternative formulation]

ILðχ; k2; nkÞ ¼
ΠL

�
χ; k2;

n2k
n2k−1

�
1 − n2k

þ nkĨLðχ; k2; nkÞ
2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn2k − 1Þðn2kð1 − k2Þ þ k2Þ

q ; ðA29Þ

where

ĨLðχ; k2; nkÞ ¼ ln

0
BBB@

sin χ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2kð1−k2Þþk2

n2k−1

r
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − k2 sin2 χ

p
��� sin χ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n2kð1−k2Þþk2
n2k−1

r
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − k2 sin2 χ

p ���

1
CCCA:

ðA30Þ

For JLðχi; χ; k2; nkÞ we proceed analogously. We first omit
χi in the argument and then expand by ð1 − nk cos χ0Þ2 and
write the third term as Legendre’s elliptic integral of the
third kind:

JLðχ; k2; nkÞ ¼
Z

χ

0

dχ0

ð1þ nk cos χ0Þ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − k2sin2χ0

p ¼ 2

ðn2k − 1Þ2
 Z

χ

0

dχ0�
1 − n2k

n2k−1
sin2χ0

�
2 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − k2sin2χ0
p

−nk
Z

χ

0

cos χ0dχ0�
1 − n2k

n2k−1
sin2χ0

�
2 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − k2sin2χ0
p

!
þ
ΠL

�
χ; k2;

n2k
n2k−1

�
n2k − 1

: ðA31Þ

The first term is again an elliptic integral. It is given by Eq. (A34) in Sec. A 2 c and its evaluation will be discussed there.
The second term is, again, an elementary integral. Together their evaluation requires several case-by-case analyses. After the
integration and simplifying all terms JLðχ; k2; nkÞ reads [see also Eqs. (B61)–(B65) in Gralla and Lupsasca [37] for an
alternative formulation]

JLðχ; k2; nkÞ ¼
n3k sin χ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − k2sin2χ

p
ðn2k − 1Þðn2kð1 − k2Þ þ k2Þð1þ nk cos χÞ

−
nkðn2kð1 − 2k2Þ þ 2k2ÞĨLðχ; k2; nkÞ
2ððn2k − 1Þðn2kð1 − k2Þ þ k2ÞÞ32

þ FLðχ; k2Þ
n2k − 1

−
n2kELðχ; k2Þ

ðn2k − 1Þðn2kð1 − k2Þ þ k2Þ
þ
ðn2kð1 − 2k2Þ þ 2k2ÞΠL

�
χ; k2;

n2k
n2k−1

�
ðn2k − 1Þ2ðn2kð1 − k2Þ þ k2Þ

: ðA32Þ

Note that in ILðχ; k2; nkÞ and JLðχ; k2; nkÞ we always have
n2k=ðn2k − 1Þ > 1 and thus we again evoke Eq. (A13) to
avoid the divergence of ΠLðχ; k2; n2k=ðn2k − 1ÞÞ.

c. Time coordinate t: Case 6

In Sec. III D 2 and Appendix A 2 b we encountered the
elliptic integral MLðχi; χ; ki; nkÞ in two different forms
[ki ¼ k2 or ki ¼ k3 is the square of the elliptic modulus
given by Eqs. (32) or (46) and χi and χ are related to ri and
r by Eqs. (31), (45) or (49), respectively]. In its explicit
form it reads

MLðχi; χ; ki; nkÞ ¼
Z

χ

χi

dχ0

ð1 − nk sin2 χ0Þ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ki sin2 χ0

p :

ðA33Þ

We can now rewrite this integral in terms of elementary
functions and Legendre’s elliptic integrals of the first, second
and third kind (again we omit the first argument χi):

MLðχ; ki; nkÞ ¼
Z

χ

0

dχ0

ð1 − nksin2χ0Þ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − kisin2χ0

p
¼ n2k sinð2χÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − kisin2χ

p
4ðnk − kiÞðnk − 1Þð1 − nksin2χÞ

þ FLðχ; kiÞ
2ðnk − 1Þ −

nkELðχ; kiÞ
2ðnk − kiÞðnk − 1Þ

þ nkðnk − 2Þ − ð2nk − 3Þki
2ðnk − kiÞðnk − 1Þ ΠLðχ; ki; nkÞ:

ðA34Þ
Note that for the integral in Sec. A 2 b we have to replace
nk → n2k=ðn2k − 1Þ. For lightlike geodesics with turning
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points at rmin ¼ r1 and rmax ¼ r2 we always chose the
coordinate transformations Eq. (42) and Eq. (47) such that
Legendre’s elliptic integral of the third kind does not diverge.
Therefore, in these two cases we can use Eq. (A34) directly.

APPENDIX B: ELLIPTIC FUNCTIONS

In this appendix we demonstrate how to solve the
differential equation associated with the equation of motion
for r given by Eq. (6) for case 2, case 4 and case 6 in
Sec. III A 3 using Jacobi’s elliptic functions. Before we turn
to explicitly solving the differential equation we will give a
brief introduction to Jacobi’s elliptic functions and their
properties. For a thorough introduction we refer the
interested reader to the book of Hancock [44].
The theory of elliptic functions after Jacobi defines three

elementary elliptic functions. These are Jacobi’s sn, cn and
dn functions. Starting from the sine and the cosine they are
defined by

snðλ; kÞ ¼ sin amλ ¼ sin χ; ðB1Þ

cnðλ; kÞ ¼ cos amλ ¼ cos χ; ðB2Þ

dnðλ; kÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − k sin2 amλ

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − k sin2 χ

q
; ðB3Þ

where for now λ is an arbitrary independent variable, k is
the square of the elliptic modulus and χ ¼ amλ is called the
amplitude of λ. In addition one can also define six
associated elliptic functions. In this paper we only need
one, Jacobi’s elliptic sc function. It is defined by

scðλ; kÞ ¼ snðλ; kÞ
cnðλ; kÞ : ðB4Þ

Jacobi’s elliptic functions are periodic with respect to the
complete elliptic integral of the first kind KLðkÞ and fulfill
the following periodicity relations:

snðλ� 4KLðkÞ; kÞ ¼ snðλ; kÞ; ðB5Þ

cnðλ� 4KLðkÞ; kÞ ¼ cnðλ; kÞ; ðB6Þ

dnðλ� 2KLðkÞ; kÞ ¼ dnðλ; kÞ; ðB7Þ

scðλ� 2KLðkÞ; kÞ ¼ scðλ; kÞ: ðB8Þ

Jacobi’s elliptic functions have the characteristic that they
solve the differential equation

�
dχ
dλ

�
2

¼ að1 − k sin2 χÞ: ðB9Þ

Although Eq. (6) does not immediately take the Legendre
form of Eq. (B9), using an appropriate coordinate trans-
formation z ¼ fðsin χÞ, z ¼ fðcos χÞ or z ¼ fðtan χÞ we
can transform any differential equation of the form

�
dz
dλ

�
2

¼ a4z4 þ a3z3 þ a2z2 þ a1zþ a0 ðB10Þ

into the form of Eq. (B9). Now we separate variables and
integrate:

Z
λ

λi

dλ0 ¼ iχiffiffiffi
a

p
Z

χ

χi

dχ0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − k sin2 χ0

p ; ðB11Þ

where 1=
ffiffiffi
a

p ¼ c=
ffiffiffiffiffi
a4

p
, iχi ¼ sgnðdχ=dλjχ¼χi

Þ and c is a
new constant that is specific to the chosen coordinate
transformation. We can now rewrite this equation as

λ̃ ¼ iχi

ffiffiffiffiffi
a4

p
c

ðλ − λiÞ þ FLðχi; kÞ ¼
Z

χ

0

dχ0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − k sin2 χ0

p :

ðB12Þ

With χ ¼ amλ̃ we can now write the solution zðλÞ to
Eq. (B9) in terms of Jacobi’s elliptic sn, cn, and sc
functions.
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