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We study late-time behaviors of massive scalar fields in general static and spherically symmetric
extremal black hole spacetimes in arbitrary dimensions. We show the existence of conserved
quantities on the extremal black hole horizons for specific mass squared and multipole modes of the
scalar fields. Those quantities on the horizon are called the Aretakis constants and are constructed
from the higher-order derivatives of the fields. Focusing on the region near the horizon at late times,
where it is well approximated by the near-horizon geometry, we show that the leading behaviors of
the fields are described by power-law tails. The late-time power-law tails lead to the Atetakis
instability: blowups of the transverse derivatives of the fields on the horizon. We further argue that
the Aretakis constants and instability correspond to, respectively, constants and blowups of
components of covariant derivatives of the fields at the late time in the parallelly propagated null
geodesic frame along the horizon. We finally discuss the relation between the Aretakis constants and
ladder operators constructed from the approximate spacetime conformal symmetry near the extremal
black hole horizons.
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I. INTRODUCTION

Extremal black holes have long played an important role
in various aspects. They have zero Hawking temperature
and are expected to bring us valuable insights into the black
hole thermodynamics [1–6] and the Hawking radiation
[7,8]. In the context of astrophysics, it is suggested that
many astrophysical black holes are nearly extremal [9–13],
and high energy phenomena around such black holes
are discussed, e.g., in [14–16]. For understanding the
nature of the extremal black holes, it is important to
investigate the dynamical properties of test fields and
particles around them.
Aretakis [17,18] has discussed late-time behaviors of

test massless scalar fields in four-dimensional extremal
Reissner-Nordström black holes. When generic initial
data are given on an initial hypersurface crossing the
horizon, he argued that the higher-order transverse
derivatives of the fields blow up polynomially in time,
not exponential, on the event horizon, while they decay
outside the horizon. This blowup on the horizon is
called the Aretakis instability. The occurrence of the
Aretakis instability is associated with the fact that
late-time behaviors of fields are described by power-
law tails [19–24], not the exponential decay in time.
The instability also occurs against vector, tensor, and
massive or charged scalar fields [19,25,26], and in other

spacetimes such as extremal Kerr(-Newman) [25,27],

extremal Bañados-Teitelboim-Zanelli [28], and two-dimen-

sional anti–de Sitter spacetimes (AdS2) [19,29,30],
1 and in

higher dimensions [31]. The nonlinear evolution of the
Aretakis instability has been investigated in [32–34].
Related to the Aretakis instability, conserved quantities

along the horizons, which are constructed from the higher-
order radial derivatives of the fields, are studied [17,18].
These conserved quantities on the horizon are called the
Aretakis constants. When the Aretakis constants contain
(N þ 1)th- and lower order derivatives, (N þ 2)th- and
higher-order derivatives on the horizon blow up at late
times, which is the Aretakis instability. The existence of
the Aretakis constants has been argued in various setups
[18,19,25,31]. In [19,22,35–37], it has been shown that
there exists one-to-one correspondence of the Aretakis
constants and the Newman-Penrose constants [38] in four-
dimensional extremal Reissner-Nordström black holes.

1It has been argued that in [19] the Aretakis instability in
global AdS2 is just a coordinate effect, while in [29], the Aretakis
instability in the near-horizon geometry of extremal black holes is
not the coordinate effect. In [30], contrary to the claim in [19], it
has been shown that the late-time divergent behavior in global
AdS2 has a geometrical meaning: blowups of some component of
covariant derivatives of fields in the parallelly propagated null
geodesic frame.
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The relation with asymptotic symmetries near degenerate
Killing horizons is suggested in [39,40]. For the AdS2 case,
the relation with the spacetime conformal symmetry in
AdS2 is pointed out [30,41].
This paper aims to obtain a deeper understanding of the

properties of the Aretakis constants and instability. We
consider the massive Klein-Gordon field in general static
and spherically symmetric extremal black holes in arbi-
trary dimensions. We investigate the existence of con-
served quantities, i.e., the Aretakis constants. We further
study late-time behaviors of the field near the black hole
horizon, namely, the Aretakis instability, in terms of the
near-horizon geometry [42]. We also discuss the geomet-
rical properties of the Aretakis constants and instability:
constants and blowups of components of covariant deriv-
atives of the fields at late times in the parallelly propagated
null geodesic frame along the horizons. We finally study
the construction of the Aretakis constants in terms
of approximate AdS2 symmetry near the extremal black
hole horizons.
The behavior of test fields in the near-horizon

geometry can be reduced to scalar fields on AdS2. In
the pure AdS2 case, it has been shown that the Aretakis
constants of the massive Klein-Gordon field can be
derived from ladder operators associated with the space-
time conformal symmetry [30,41]. We expect that the
Aretakis constants in the extremal black holes can be
derived from the ladder operators associated with the
approximate AdS2 symmetry near the extremal black hole
horizons.2

This paper is organized as follows. In Sec. II, we briefly
review the Aretakis constants and instability for the
massless Klein-Gordon field in four-dimensional extremal
Reissner-Nordström black holes based on [17–19]. After
that, we investigate whether there exist the same kind of
quantities for massive Klein-Gordon fields in general static
and spherically symmetric extremal black holes in arbitrary
dimensions. In Sec. III, we investigate late-time behaviors
of the field in the extremal black hole spacetimes. In
Sec. IV, we explain the Aretakis constants and instability
in the parallelly propagated null geodesic frame along the
horizon. In Sec. V, we discuss the Aretakis constants in
terms of ladder operators constructed from approximate
AdS2 symmetries near the extremal black hole horizons. In
the final section, we summarize this paper. Appendixes
give detailed calculations and explicit examples for the
main text.

II. KLEIN-GORDON FIELDS AND THE ARETAKIS
CONSTANTS IN EXTREMAL BLACK HOLES

A. Aretakis constants of massless Klein-Gordon fields
in four-dimensional extremal Reissner-Nordström

black holes

We first briefly review conserved quantities on the event
horizon of four-dimensional extremal Reissner-Nordström
spacetimes based on [17–19]. In the ingoing Eddington-
Finkelstein coordinates ðv; r; θ;φÞ, the four-dimensional
extremal Reissner-Nordström spacetime is described by

ds2 ¼ −
�
1 −

rH
r

�
2

dv2 þ 2dvdrþ r2dΩ2; ð2:1Þ

where dΩ2 ¼ dθ2 þ sin2 θdφ2. The event horizon is
located at r ¼ rH. For later convenience, we perform a
coordinate transformation,

ρ ¼ r − rH: ð2:2Þ

Then, the line element (2.1) is rewritten as

ds2 ¼ −
ρ2

ðrH þ ρÞ2 dv
2 þ 2dvdρþ ðrH þ ρÞ2dΩ2: ð2:3Þ

By definition of ρ, the event horizon is located at ρ ¼ 0, and
the exterior region corresponds to ρ > 0.
On the extremal Reissner-Nordström spacetime, we

consider the massless Klein-Gordon field Φðv; ρ; θ;φÞ
obeying

∇μ∇μΦ ¼ 0: ð2:4Þ

With the spherical symmetry of the spacetime, expanding
the field in the scalar harmonics Slðθ;φÞ as

Φ ¼ ϕlðv; ρÞSlðθ;φÞ; ð2:5Þ

where Sl is a regular solution of

½Δ̂þ lðlþ 1Þ�Sl ¼ 0; ð2:6Þ

with l ¼ 0; 1; 2;…, and Δ̂ is the Laplace operator on the
two-dimensional unit sphere, we obtain an equation for ϕl,

∂ρðρ2∂ρϕlÞ þ 2ðrH þ ρÞ∂v∂ρ½ðrH þ ρÞϕl�
− lðlþ 1Þϕl ¼ 0: ð2:7Þ

Acting the lth-derivative operator with respect to ρ, ∂l
ρ ,

on Eq. (2.7) and evaluating it at the event horizon ρ ¼ 0,
we obtain

∂v∂l
ρ ½ðrH þ ρÞ∂ρfðrH þ ρÞϕlg�jρ¼0

¼ 0: ð2:8Þ

2In Appendix F in [41], the construction of the Aretakis
constants of the extremal Reissner-Nordström black holes from
the AdS2 symmetry was discussed. However, the conserved
quantities on the black hole horizon for l ≥ 1 discussed in [41]
vanish; thus, they are not the Aretakis constants for l ≥ 1. In the
present paper, we provide more careful analysis and derive the
Aretakis constants from the approximate AdS2 symmetry.
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We see that quantities defined by

HRN
l ≔ ∂l

ρ

��
1þ ρ

rH

�
∂ρ

��
1þ ρ

rH

�
ϕl

������
ρ¼0

; ð2:9Þ

are independent of v, i.e., ∂vHRN
l ¼ 0. The quantitiesHRN

l
are conserved along the event horizon and called the
Aretakis constants [17–19]. According to [17,18], the
existence of the Aretakis constants implies the polynomial

growth of ∂kð≥lþ2Þ
ρ ϕljρ¼0 in v at late times v → ∞. This is

called the Aretakis instability. The Aretakis instability
does not directly imply blowups of physical quantities.
In fact, the second-and higher-order, not the first-order,
transverse derivatives of the field on the horizon diverge
at the late time; therefore, the energy-momentum tensor
does not blow up. Note that the derivatives of the fields
lower than l decay on and outside the horizon at the late
time [17–19].
For the generic configuration of fields, which is

expressed as a superposition of multipole modes, the
first-order transverse derivative of the field on the horizon
approaches the Aretakis constant for l ¼ 0 in Eq. (2.9) at
late times. This implies that the radial-radial component of
the energy-momentum tensor of the field on the horizons
does not decay at late times. The Aretakis constant is
physically interpreted as “horizon hair” in the sense of the
energy density measured by an infalling observer at the
horizon [19]. In [43,44], the observability of the Aretakis
constants and instability have been argued.

B. Aretakis constants of massive Klein-Gordon fields
in general static and spherically symmetric extremal

black holes in arbitrary dimensions

We shall show that there exist the Aretakis constants
for the massive Klein-Gordon field in general static and
spherically symmetric extremal black hole spacetime. We
now introduce a line element describing an n-dimensional
static and spherically symmetric black hole with a degen-
erate Killing horizon. In the Gaussian null coordinates
ðv; ρ; θAÞ around the Killing horizon ρ ¼ 0, the line
element reads as [42]

ds2 ¼ −ρ2ðλ0 þ δλðρÞÞdv2 þ 2dvdρþ ðγ0 þ δγðρÞÞdΩ2
n−2;

ð2:10Þ

where λ0, γ0 are positive constants, δλðρÞ, δγðρÞ are
functions with δλð0Þ ¼ δγð0Þ ¼ 0, and dΩ2

n−2 ¼
γABdθAdθB is the line element of the (n − 2)-dimensional
unit sphere, A; B ¼ 2; 3;…n − 1. The constant γ0 is the
square of the areal radius at the Killing horizon. We assume
that δλ and δγ can be expanded as the Taylor series,

δλ ¼
X∞
i¼1

λiρ
i;

δγ ¼
X∞
i¼1

γiρ
i; ð2:11Þ

where λi and γi are constants.3

We consider the massive Klein-Gordon field

½∇μ∇μ − μ2�Φ ¼ 0: ð2:14Þ

Expanding Φ in the scalar harmonics Sl as

Φ ¼ ϕlðv; ρÞSlðθAÞ; ð2:15Þ

we obtain an equation for ϕl,

∂ρ½ρ2ðλ0 þ δλÞðγ0 þ δγÞ∂ρϕl�
þ 2ðγ0 þ δγÞ1=2∂v∂ρ½ðγ0 þ δγÞ1=2ϕl�
− lðlþ n − 3Þϕl − μ2ðγ0 þ δγÞϕl ¼ 0: ð2:16Þ

The function Sl is a regular solution of

½Δ̂n þ lðlþ n − 3Þ�Sl ¼ 0; ð2:17Þ

where Δ̂n is the Laplace operator on the (n − 2)-
dimensional unit sphere. As shown in Appendix A, there
exists a function ZNðρÞ such that

∂N
ρ ½ZNf∂ρðρ2ðλ0 þ δλÞðγ0 þ δγÞ∂ρϕlÞ
−NðN þ 1Þγ0λ0ϕl − μ2δγϕlg�jρ¼0 ¼ 0; ð2:18Þ

where N is a nonnegative integer. The explicit form of ZN
depends on the function form of δλ and δγ. We note that if
ðλ0 þ δλÞðγ0 þ δγÞ ¼ 1, e.g., Reissner-Nordström space-
time cases, ZN ¼ 1. Acting the Nth-derivative operator ∂N

ρ

on Eq. (2.16) and evaluating it at the horizon ρ ¼ 0,
we obtain

3In the cases of the four-dimensional extremal Reissner-
Nordström-AdS black holes, the parameters are

λ0¼
1

r2H
þ 6

L2
; λ1¼−

2

r3H
−

4

rHL2
; γ0¼ r2H; γ1¼2rH; ð2:12Þ

where L and rH are the AdS curvature radius and the horizon
radius, respectively. In the n-dimensional extremal Reissner-
Nordström black hole cases, those are

λ0¼
ðn−3Þ2

r2H
; λ1¼−

ðn−2Þðn−3Þ2
r3H

; γ0¼ r2H; γ1¼2rH:

ð2:13Þ
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2∂v∂N
ρ ½ZNðγ0 þ δγÞ1=2∂ρfðγ0 þ δγÞ1=2ϕlg�jρ¼0

¼ γ0

�
μ2 − λ0NðN þ 1Þ þ lðlþ n− 3Þ

γ0

�
∂N
ρ ðZNϕlÞ

����
ρ¼0

;

ð2:19Þ

where we have used Eq. (2.18). We see that quantities
defined by

HN ≔ ∂N
ρ

�
ZN

�
1þ δγ

γ0

�
1=2∂ρ

��
1þ δγ

γ0

�
1=2

ϕl

������
ρ¼0

;

ð2:20Þ
are independent of v, i.e., ∂vHN ¼ 0, if and only if
μ2 ¼ λ0NðN þ 1Þ − lðlþ n − 3Þ=γ0 or equivalently, the
nonnegative integer N is described by

N ¼ Δ − 1; ð2:21Þ
where

Δ ≔
1

2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2

λ0
þ lðlþ n − 3Þ

λ0γ0
þ 1

4

s
: ð2:22Þ

The quantities HN are the Aretakis constants in the present
system.4

For the massless Klein-Gordon field in the four-
dimensional extremal Reissner-Nordström spacetime, i.e.,
μ2 ¼ 0, n ¼ 4, λ0γ0 ¼ 1, the nonnegative integer N corre-
sponds to l. For generic cases, Δ in Eq. (2.22) is not
necessarily an integer, and then there are no Aretakis
constants. In general, for given parameters l; N; λ0; γ0,
if we choose μ2 ¼ λ0NðN þ 1Þ − lðlþ n − 3Þ=γ0, the
Aretakis constants exist for these specific parameters.
In particular, there are two interesting cases where

the Aretakis constants exist: (i) μ ¼ 0 and l ¼ 0 case.
Then, we can define the Aretakis constants with N ¼ 0 in
arbitrary dimensions n. (ii) μ ¼ 0 and λ0γ0 ¼ ðn − 3Þ2.
Then, Δ ¼ 1þ l=ðn − 3Þ, and the Aretakis constants with
N ¼ l=ðn − 3Þ exist in the case, where l is proportional to
n − 3. Note that λ0γ0 ¼ ðn − 3Þ2 holds for n-dimensional
extremal Reissner-Nordström spacetimes.

C. Massive Klein-Gordon fields
in the near-horizon region

For later convenience, we shall see that the Klein-
Gordon equation (2.14) in the near-horizon region can

be reduced to the problem of massive Klein-Gordon fields
in the two-dimensional anti–de Sitter spacetime (AdS2).
For the line element (2.10), performing a coordinate
transformation v ¼ ṽ=ϵ; ρ ¼ ϵρ̃ and taking a limit of
ϵ → 0, we obtain the near-horizon geometry [42],

ds2 → −λ0ρ̃2dṽ2 þ 2dṽdρ̃þ γ0dΩ2
n−2: ð2:23Þ

We should note that the transformation v ¼ ṽ=ϵ; ρ ¼ ϵρ̃
and taking the limit of ϵ → 0 correspond to zoom up of
the late time and the vicinity of the black hole horizon in
the original coordinates ðv; ρÞ. The line element (2.23) is
invariant under the transformation ðṽ; ρ̃Þ → ðṽ=ϵ; ϵρ̃Þ. The
scaling symmetry appears near the degenerate Killing
horizons of the extremal black holes at the late time. In
fact, ðṽ; ρ̃Þ part of the line element (2.23) is AdS2, which is
the two-dimensional maximally symmetric spacetime with
a negative curvature, and hence, the line element (2.23) has
the same symmetry as AdS2. In this paper, we say that the
extremal black hole (2.10) has the approximate AdS2
symmetry in the near-horizon region.
We rewrite Eq. (2.16) as

½2∂v∂ρ þ ∂ρðλ0ρ2∂ρÞ − μ̄2�ϕl ¼ δ½ϕl�; ð2:24Þ

where

μ̄2 ≔ μ2 þ lðlþ n − 3Þ
γ0

; ð2:25Þ

and

δ½ϕl� ¼
1

γ0
ð−∂v½2δγ∂ρϕl þ ð∂ρδγÞϕl�

− ∂ρ½ρ2ðγ0δλþ λ0δγ þ δλδγÞ∂ρϕl� þ μ2δγϕlÞ:
ð2:26Þ

We note that the first and second terms in the square bracket
of the left-hand side of Eq. (2.24) can be written by the
d’Alembertian for AdS2,

2∂v∂ρ þ ∂ρðλ0ρ2∂ρÞ≕□AdS2 : ð2:27Þ

Now, performing the coordinate transformation v ¼ ṽ=ϵ;
ρ ¼ ϵρ̃, we can write Eq. (2.24) in the form,

½□̃AdS2 − μ̄2�ϕl ¼ OðϵÞ; ð2:28Þ

where □̃AdS2 ¼ 2∂ ṽ∂ ρ̃ þ ∂ ρ̃ðλ0ρ̃2∂ ρ̃Þ. We have used a
property □AdS2 → □̃AdS2 because of the scaling symmetry
of AdS2. In the limit of ϵ → 0, we can obtain late-time
asymptotic behaviors of ϕl near the horizon.

4We comment on the relation with previous works. The case
for four-dimensional, massless, and λ0γ0 ¼ 1 was discussed in
[18]. The case in which a spherically symmetric scalar field has
specific mass squared μ2r2H ¼ NðN þ 1Þ in the four-dimensional
extremal Reissner-Nordström spacetime of the radius rH was
made in [19]. The case of N ¼ 0 is included in the general
discussion [25,31].
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In the limit of ϵ → 0, Eq. (2.28) becomes

½□̃AdS2 − μ̄2�ϕl ¼ 0: ð2:29Þ

This is exactly the massive Klein-Gordon equation with
mass squared μ̄2 in AdS2. Hence, solutions of Eq. (2.28)
can be written in the form,

ϕlðṽ; ρ̃Þ ¼ ϕAdS2
l ðṽ; ρ̃Þ þOðϵÞ; ð2:30Þ

where ϕAdS2
l ðṽ; ρ̃Þ satisfies Eq. (2.29). Thus, ϕl is in good

agreement with ϕAdS2
l at the late time ϵ → 0.

III. LATE-TIME BEHAVIORS OF THE
MASSIVE KLEIN-GORDON FIELD NEAR THE
EXTREMAL BLACK HOLE HORIZON AND

HORIZON INSTABILITY

We discuss late-time behaviors of the massive Klein-
Gordon field that satisfies Eq. (2.14) near the horizon in
terms of the near-horizon geometry. As shown in the
previous section, the study of this topic is reduced to the
analysis of the massive scalar fields in AdS2, i.e., Eq. (2.29).
Although there is a heuristic argument in [19], we revisit this
problem by analyzing the general normalizable solutions in
AdS2. We give the detailed calculations in Appendix B and
summarize the results in this section.

A. Specific mass squared case:
μ2 = λ0NðN + 1Þ−lðl+ n− 3Þ=γ0

We discuss the cases where the Aretakis constants exist.
Analysis in Appendix B implies that the late-time behavior
of the field near the horizon takes a power law of time,

ϕl ∝
�
−
v
2
−
λ0ρv2

4

�−N−1
: ð3:1Þ

We notice that Eq. (3.1) implies that ∂kð≤NÞ
ρ ϕljρ¼0 all decay

at late times and ∂Nþ1
ρ ϕljρ¼0 is constant. In other words, the

Aretakis constants (2.20) take the form,

HN ≃ ∂Nþ1
ρ ϕljρ¼0; as v → ∞: ð3:2Þ

Equation (3.2) provides the prefactor of the leading
asymptotic behavior (3.1),

ϕl ≃
N!

λNþ1
0 ð2N þ 1Þ!HN

�
−
v
2
−
λ0ρv2

4

�−N−1
: ð3:3Þ

This is consistent with the results of [17–23,31,45].
The late-time tails (3.3) also imply that ∂kð≥Nþ2Þ

ρ ϕljρ¼0

blow up polynomially in v, i.e.,

∂k
ρϕljρ¼0 ≃

ðN þ kÞ!
2k−N−1ð2N þ 1Þ!HN

�
−

1

λ0

�
Nþ1−k

vk−N−1;

as v → ∞ðk ≥ N þ 2Þ: ð3:4Þ

This is the Aretakis instability. In the present case, the
divergent behaviors can only occur in the second-order or
higher derivatives.

B. General mass squared cases with μ̄2 ≥ − λ0=4
In this case, the Aretakis constants do not necessarily

exist in general. We assume that the effective mass
squared μ̄2 in Eq. (2.25) satisfies μ̄2=λ0 ≥ m2

BF;2, where
m2

BF;2 ¼ −1=4 is the Breitenlohner-Freedman (BF) bound
in AdS2 [46,47]. It is known that without this assumption,
exponentially growing unstable modes appear [46,47].
Analysis in terms of the near-horizon geometry in
Appendix B implies that the leading late-time behavior
is described by power-law tails,

ϕl ≃
ΓðΔÞ

λΔ0 Γð2ΔÞ
HΔ

�
−
v
2
−
λ0ρv2

4

�−Δ
; ð3:5Þ

where HΔ is a constant. This shows that for k ≥ bΔc þ 1,
where bc denotes the integer part, kth derivatives of ϕl at
the horizon ρ ¼ 0 blow up polynomially in v at the late
time, i.e.,

∂k
ρϕljρ¼0 ≃

ΓðΔþ kÞ
2k−ΔΓð2ΔÞHΔ

�
−

1

λ0

�
Δ−k

vk−Δ: ð3:6Þ

This is consistent with the results in [19].
We notice that ∂ρϕljρ¼0 is divergent at the late time

if bΔc ¼ 0, or equivalently, the mass squared μ2 is in the
range,

−
1

4
≤
μ2

λ0
þ lðlþ n − 3Þ

λ0γ0
< 0: ð3:7Þ

The blowup of the first-order derivative directly implies
that of the physical quantity at the horizon. Namely,
defining the energy-momentum tensor of the massive
Klein-Gordon field Φ satisfying Eq. (2.14),

Tμν ¼ ∇μΦ∇νΦ −
1

2
gμν½∇σΦ∇σΦþ μ2Φ�; ð3:8Þ

we can see that the energy density measured by an infalling
observer at the horizon, Tρρ, is divergent at the late time for
the mass squared μ2 in the range (3.7).
We note that the asymptotic structure of the spacetime

in the far region is not specified. If one considers an
n-dimensional asymptotically AdS extremal black hole,
slightly negative mass squared of a Klein-Gordon field
is allowed for the stable dynamical evolution in the
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asymptotic region, i.e., μ2=λ0≥m2
BF;n¼−ðnðn−2Þþ1Þ=4,

where m2
BF;n is the BF bound in AdSn [46,47]. The BF

bound in AdS2 is effectively violated in the near-horizon
geometry if the massive Klein-Gordon field with l ¼ 0

in n-dimensions has mass squared of m2
BF;n ≤ μ2=λ0 <

−1=4 ¼ m2
BF;2. This violation is discussed in the context of

the holographic superconductor [48]. While one may think
that physical quantities do not blow up without the
violation of the BF bound, our result shows that extremal
black holes suffer from blowup of components of the
energy-momentum tensor of the test field at the horizon if
the mass squared satisfies the inequality (3.7).

IV. ARETAKIS CONSTANTS AND INSTABILITY
IN THE PARALLELLY PROPAGATED NULL

GEODESIC FRAME

We discuss geometrical meanings of the Aretakis con-
stants (2.20) and instability (3.6) in terms of the parallelly
propagated null geodesic frame along the extremal black
hole horizons. We shall explicitly show that the Aretakis
constants and instability correspond to, respectively, con-
stants and blowups of some components of higher-order
covariant derivatives of the field at late times in that frame
along the horizons. This shows that a similar geometrical
interpretation as in the AdS2 case [30] is possible for our
present setup.
We introduce vector fields in the extremal black hole

spacetime (2.10),

eμð0Þ∂μ¼∂v; eμð1Þ∂μ¼−∂ρ; eμðAÞ∂μ¼
ffiffiffiffiffiffiffiffiffiffi
gθ

AθA
q

∂θA : ð4:1Þ

At the horizon ρ ¼ 0, these satisfy

eμð0Þ∇μeνð0Þ ¼0; eμð0Þ∇μeνð1Þ ¼0; eμð0Þ∇μeνðAÞ ¼0.

eμð0Þeð0Þμ¼0; eμð1Þeð1Þμ¼0; eμðAÞeðBÞμ¼δAB;

eμð0Þeð1Þμ¼−1; eμð0ÞeðAÞμ¼0; eμð1ÞeðAÞμ¼0: ð4:2Þ

Here, A;B ¼ 2; 3;…; n − 1. The vectors eμð0Þ; e
μ
ð1Þ; e

μ
ðAÞ are

parallelly transported along a null geodesic eμð0Þ at the

horizon ρ ¼ 0. The frame formed by them is called
the parallelly propagated null geodesic frame along the
horizon.
We find the relation,

ð−1Þieμ1ð1Þeμ2ð1Þ � � � eμið1Þ∇μ1∇μ2 � � �∇μiϕljρ¼0
¼ ∂i

ρϕljρ¼0
;

ð4:3Þ

where i is a nonnegative integer. For the specific cases
μ2 ¼ λ0NðN þ 1Þ − lðlþ n − 3Þ=γ0, in which the
Aretakis constants exist, combining Eqs. (3.2) and (4.3),
the relation,

ð−1ÞNþ1eν1ð1Þe
ν2
ð1Þ � � � eνNþ1

ð1Þ ∇ν1∇ν2 � � �∇νNþ1
ϕljρ¼0

≃HN;

ð4:4Þ

holds at the late time v → ∞. The Aretakis constants
correspond to the late-time behavior of the component
of (N þ 1)th-order covariant derivatives of the field at the
late time in the parallelly propagated null geodesic frame
along the horizon.
Equation (4.3) also shows that the divergent behavior

(3.6) for k ¼ bΔc þ 1 corresponds to that of ðbΔc þ 1Þth-
order covariant derivatives at the late time in that frame
along the horizon,

ð−1ÞbΔcþ1eν1ð1Þe
ν2
ð1Þ � � � e

νbΔcþ1

ð1Þ ∇ν1∇ν2 � � �∇νbΔcþ1
ϕljρ¼0

∼ v:

ð4:5Þ

In the same manner, it can be shown that the ðbΔc þ 2Þth-
and higher-order covariant derivatives are also unbounded.5

The Aretakis instability corresponds to blowups of com-
ponents of the covariant derivatives of the fields at the late
time in the parallelly propagated null geodesic frame along
the horizons.

V. ARETAKIS CONSTANTS FROM LADDER
OPERATORS ASSOCIATED WITH

APPROXIMATE SPACETIME
CONFORMAL SYMMETRIES

According to [30,41], the Aretakis constants in AdS2 can
be derived by using ladder operators, called mass ladder
operators [30,41,49], constructed from the spacetime con-
formal symmetry. Since AdS2 structure approximately
appear in the vicinity of extremal black hole horizons,
we expect that the Aretakis constants (2.20) can also be
derived similarly as [30,41]. From this point of view, we
construct the Aretakis constants in the extremal black holes
(2.10) in this section.

5Other components of the ðbΔc þ 1Þth-order covariant deriv-
atives at the horizon are bounded: we have a relation,

ð−1ÞbΔcþ1−jeν1ð0Þ � � � e
νp
ð0Þe

νjþ1

ð1Þ � � � eνbΔcþ1−j
ð1Þ ∇ν1 � � �

×∇νj∇νjþ1
� � �∇νbΔcþ1

ϕljρ¼0
¼ ∂j

v∂bΔcþ1−j
ρ ϕljρ¼0; ð4:6Þ

for a positive integer j. We note that components including eμðAÞ
vanish. The right-hand side vanishes or decays at the late time
because ∂bΔcþ1−j

ρ ϕljρ¼0 are constant or decay. Hence, the above
relation shows that all of the components with respect to
eμ1ð0Þ � � � e

μp
ð0Þe

μpþ1

ð1Þ � � � eμbΔcþ1−j
ð1Þ are bounded. Likewise, all of the

components of the lower order covariant derivatives are bounded.
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A. Mass ladder operators in AdS2

We first review the mass ladder operator in AdS2
[30,41,49]. The mass ladder operator can be defined in
spacetimes with a spacetime conformal symmetry, e.g., the
AdS spacetime. In the Eddington-Finkelstein coordinates
ðv; ρÞ, which cover the future Poincaré horizon of AdS2
located at ρ ¼ 0, the line element is given by

ds2 ¼ −λ0ρ2dv2 þ 2dvdρ; ð5:1Þ

where λ0 is a positive constant. The constant λ0 is
associated with the absolute value of the scalar curvature
of AdS2: RAdS2 ¼ −2λ0.
We define the mass ladder operators in AdS2, which act

on scalar fields, as

Dk ≔ Lζ −
k
2
∇μζ

μ; k ∈ R; ð5:2Þ

where ζμ is a closed conformal Killing vector in AdS2,
which satisfies the closed conformal Killing equation,

∇μζν ¼
1

2
∇σζ

σgμν: ð5:3Þ

For this operator, we have a commutation relation,

½□AdS2 ; Dk� ¼ −2λ0kDk þ ð∇μζ
μÞ½□AdS2 − λ0kðkþ 1Þ�;

ð5:4Þ

where□AdS2 ≔2∂v∂ρþ∂ρðλ0ρ2∂ρÞ is defined in Eq. (2.27).
This commutation relation can be written in the form,

Dk−2½□AdS2 − kðkþ 1Þ� ¼ ½□AdS2 − kðk − 1Þ�Dk: ð5:5Þ

Acting Eq. (5.5) on the massive Klein-Gordon field ϕ
with mass squared m2 ¼ kðkþ 1Þ, we find that Dkϕ
satisfies the massive Klein-Gordon equation with mass
squared m2 ¼ kðk − 1Þ. The mass ladder operators map a
solution of the massive Klein-Gordon equation to that of the
Klein-Gordon equation with different mass squared.
AdS2 admits three independent closed conformal Killing

vectors, but in this paper, we focus on the specific one,

ζ ¼ v2∂v þ
�
2

λ0
þ 2vρþ λ0v2ρ2

�
∂ρ: ð5:6Þ

For this closed conformal Killing vector, the mass ladder
operator in Eq. (5.2) becomes

Dk ¼ v2∂v þ
�
2

λ0
þ 2vρþ λ0v2ρ2

�
∂ρ − kvð2þ λ0vρÞ:

ð5:7Þ

B. Aretakis constants in AdS2 from the spacetime
conformal symmetry

We explain that the Aretakis constants in AdS2 can be
constructed from the mass ladder operators (5.7) based
on [30,41]. Let us consider massive Klein-Gordon
fields ϕðv; ρÞ with mass squared m2 ¼ λ0NðN þ 1Þ
ðN ¼ 0; 1; 2;…Þ satisfying

½□AdS2 − λ0NðN þ 1Þ�ϕ ¼ 0: ð5:8Þ

We note here again that λ0 is positive and real. In AdS2,
quantities defined by

HAdS2
N ¼ ∂Nþ1

ρ ϕjρ¼0; ð5:9Þ

are independent of v on the horizon ρ ¼ 0. The quantities
HAdS2

N are called the Aretakis constants in AdS2 [19,30,41].
First, we consider the massless case N ¼ 0. Then, the
Klein-Gordon equation (5.8) can be written as

2∂v∂ρϕ ¼ −λ0ρð2∂ρ þ ρ∂2
ρÞϕ: ð5:10Þ

Evaluating this at the horizon ρ ¼ 0, we can see
∂vH

AdS2
0 ¼ 0. Thus, the Aretakis constant in AdS2 is

derived for N ¼ 0 case.
Next, we consider N ≥ 1 cases. Using the commutation

relations (5.4), we can show

D−1D0 � � �DN−2½□AdS2 − λ0NðN þ 1Þ�ϕ
¼ □AdS2D1D2 � � �DNϕ: ð5:11Þ

Since the left-hand side vanishes due to the massive Klein-
Gordon equation for ϕ, this yields

□AdS2D1D2 � � �DNϕ ¼ 0: ð5:12Þ

It follows that D1D2 � � �DNϕ satisfies the massless Klein-
Gordon equation. Thus, solutions of the massive Klein-
Gordon equation with the mass squared m2 ¼ λ0NðN þ 1Þ
in AdS2 can be mapped into that of the massless Klein-
Gordon equation. Note that this is not the case for other
parametrization of mass squared. As in the massless case,
Eq. (5.12) can be rewritten as

2∂v∂ρD1D2 � � �DNϕ ¼ −λ0ρð2∂ρ þ ρ∂2
ρÞD1D2 � � �DNϕ:

ð5:13Þ

This is the same form as Eq. (5.10). Thus, there exist
conserved quantities along the future Poincaré horizon,
which are defined by

QAdS2
N ≔ ∂ρD1D2 � � �DNϕjρ¼0

: ð5:14Þ
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It has been shown that ðλ0=2ÞNQAdS2
N coincide with the

Aretakis constants HAdS2
N in Eq. (5.9) [30,41].

C. The Aretakis constants in the extremal
black holes from the approximate spacetime

conformal symmetry

We apply the previous manner to the case for the
Aretakis constants (2.9) in the extremal black hole space-
times (2.10). As seen in Sec. II C, the Klein-Gordon
equation (2.16) in the vicinity of the extremal black hole
horizons can effectively be described by the massive Klein-
Gordon field in AdS2 as�

□AdS2 − μ2 −
lðlþ n − 3Þ

γ0

�
ϕl ¼ δ½ϕl�; ð5:15Þ

where □AdS2 and δ½ϕl� are defined in Eq. (2.27) and
Eq. (2.26), respectively. For the case μ2 ¼ λ0NðN þ 1Þ−
lðlþ n − 3Þ=γ0, where the Aretakis constants exist,
Eq. (5.15) becomes

½□AdS2 − λ0NðN þ 1Þ�ϕl ¼ δ½ϕl�: ð5:16Þ

Hereafter, we consider this equation.
For later convenience, we note that δ½ϕl� can be written

in the form,

∂N
ρ δ½ϕl� ¼ ∂vPN þOðρÞ; ð5:17Þ

where

γ0PNðvÞ ¼ −∂N
ρ ½2δγ∂ρϕl þ ð∂ρδγÞϕl�jρ¼0

−
XNþ1

i¼0

ðN þ 1Þ!
i!ðN þ 1 − iÞ! ∂

i
ρ½ρ2ðγ0δλþ λ0δγ þ δλδγÞ�

���
ρ¼0

GNþ2−iðvÞ

þ μ2
XN
i¼0

N!

ðN − iÞ! γiGN−iðvÞ; ð5:18Þ

where γi is given in Eq. (2.11). Here, we have defined

GN−jðvÞ ≔
2

λ0γ0jð2N − jþ 1Þ ∂
N−j
ρ ½ðγ0 þ δγÞ1=2∂ρfðγ0 þ δγÞ1=2ϕlg�

���
ρ¼0

: ð5:19Þ

The derivation of Eq. (5.17) is in Appendix C. Note that
for the case γ0δλþ λ0δγ þ δλδγ ¼ 0, e.g., the four-
dimensional extremal Reissner-Nordström spacetime,
the second line of the right-hand side in Eq. (5.18)
vanishes.
Using the commutation relations (5.4) on Eq. (5.16), we

can rewrite the left-hand side to

D−1D0 � � �DN−2½□AdS2 − λ0NðN þ 1Þ�ϕl

¼ □AdS2D1D2 � � �DNϕl; ð5:20Þ

where Dk is the differential operator whose form is
Eq. (5.7). This is equivalent to the relation (5.11). Using
Eq. (5.20), Eq. (5.16) is rewritten as

□AdS2D1D2 � � �DNϕl ¼ D−1D0 � � �DN−2δ½ϕl�: ð5:21Þ
As shown in Appendix D, the right-hand side of Eq. (5.21)
has the relation,

D−1D0 � � �DN−2δ½ϕl� ¼ −∂vΛN þOðρÞ; ð5:22Þ
where

−ΛN ¼ v2D0D1 � � �DN−1DN−2δ½ϕl� þ
�
2

λ0

�
v2∂ρD1D2 � � �DN−1DN−2δ½ϕl� þ � � � þ

�
2

λ0

�
N−2

v2∂N−2
ρ DN−2δ½ϕl�

þ
�
2

λ0

�
N−1

v2∂N−1
ρ δ½ϕl� þ

�
2

λ0

�
N
PN: ð5:23Þ

With this relation, Eq. (5.21) is written as

□AdS2D1D2 � � �DNϕl ¼ −∂vΛN þOðρÞ: ð5:24Þ

Furthermore, using the explicit form of□AdS2 in Eq. (2.27),
this equation can be rewritten as

2∂v

�
∂ρD1D2 � � �DNϕl þ

1

2
ΛN

�
¼ −λ0∂ρ½ρ2∂ρðD1D2 � � �DNϕlÞ� þOðρÞ: ð5:25Þ

Because the first term of the right-hand side of Eq. (5.25) is
also OðρÞ, at the horizon ρ ¼ 0 Eq. (5.25) shows
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∂vQN ¼ 0; ð5:26Þ

where

QN ≔ ∂ρD1D2 � � �DNϕljρ¼0 þ
1

2
ΛN: ð5:27Þ

It follows from Eq. (5.26) that QN are independent of v at
the black hole horizon ρ ¼ 0. Hence, QN are conserved
along the horizon in the arbitrary dimensional extremal
black holes (2.10). As shown below, we show that the
leading late-time contribution of QN is the first term
of Eq. (5.27), and ðλ0=2ÞNQN asymptotes to the Aretakis
constant (2.20) [see also Eq. (3.2)]. This implies that
ðλ0=2ÞNQN coincides with the Aretakis constant (2.20)
everywhere in the horizon ρ ¼ 0.6 The quantities
ðλ0=2ÞN∂ρD1D2 � � �DNϕljρ¼0, which correspond to the
Aretakis constants in AdS2 constructed from the AdS2
conformal symmetry, asymptote to the Aretakis constants
(2.20) at the late time. This is the relation between the
Aretakis constants of the extremal black boles and the
approximate ladder operators constructed from the approxi-
mate spacetime conformal symmetry.7

D. Late-time expressions for the quantities QN

Finally, we discuss late-time expressions for the quan-
tities QN in Eq. (5.27). We expect that QN approach QAdS2

N
in Eq. (5.14) in v → ∞ because the AdS structure is a good
approximation to the neighborhood of extremal black holes
at late times as seen in Sec. II C. This is also expected from
the fact that the Aretakis constants in the present system are
expressed by those in AdS2 at the late time as seen in
Eq. (3.2). To check that, we investigate properties ofQN for
the coordinate transformation ðv; ρÞ → ðṽ=ϵ; ϵρ̃Þ. For the
transformation, we have the relations,

∂v → ϵ∂ ṽ; ∂ρ → ϵ−1∂ ρ̃; Dk → ϵ−1D̃k; ð5:28Þ

where D̃k¼ ṽ2∂ ṽþð2=λ0þ2ṽρ̃þλ0ṽ2ρ̃2Þ∂ ρ̃−kṽð2þλ0ṽρ̃Þ.
We first focus on ∂ρD1D2 � � �DNϕljρ¼0 in QN . As seen

in Sec. II C, ϕlðṽ=ϵ; ϵρ̃Þ can be expanded in ϵ as

ϕlðṽ=ϵ; ϵρ̃Þ ¼ ϕAdS2
l ðṽ=ϵ; ϵρ̃Þ þOðϵÞ; ð5:29Þ

where ϕAdS2
l satisfies the massive Klein-Gordon equation in

AdS2. Using the relation (5.28), Eq. (5.29) implies

∂ρD1D2 � � �DNϕljρ¼0 → ϵ−N−1ðQAdS2
N þOðϵÞÞ: ð5:30Þ

Next, noticing δ½ϕl� ¼ OðϵÞ, we see from Eq. (5.17) that
PN ¼ Oðϵ−NÞ, and hence,

ΛN ¼ Oðϵ−NÞ; ð5:31Þ

from Eq. (5.23). Equation (5.26) thus shows

∂ ṽ½QAdS2
N þOðϵÞ� ¼ 0: ð5:32Þ

Hence, QN behave as QAdS2
N þOðϵÞ for the transformation

ðv; ρÞ → ðṽ=ϵ; ϵρ̃Þ. We can indeed see that QN approach
QAdS2

N at the late time ϵ → 0.

VI. SUMMARY AND DISCUSSION

In this paper, we have investigated late-time behaviors of
massive Klein-Gordon fields in general static and spheri-
cally symmetric extremal black hole spacetimes in arbitrary
dimensions. We have shown that there exist conserved
quantities along the extremal black hole horizons, which
are the Aretakis constants, if the quantity,

Δ ¼ 1

2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2

λ0
þ lðlþ n − 3Þ

λ0γ0
þ 1

4

s
; ð6:1Þ

is an integer larger than or equal to unity, where μ2, l, and n
are the mass squared and multipole number of the scalar
fields, and the number of spacetime dimensions, respec-
tively. In Eq. (6.1), the constants λ0 and γ0 are quantities
associated with the near-horizon geometry, which is
described by AdS2 × Sn−2 with the effective AdS2 radius
λ−1=20 and the horizon area radius γ1=20 . For example, the
Aretakis constants exist for a massless scalar field in the
arbitrary dimensional extremal Reissner-Nordström space-
time, and a scalar field with l ¼ 0 and specific mass
squared μ2 ¼ λ0NðN þ 1Þ for nonnegative integers N in
general static and spherically symmetric extremal black
holes in arbitrary dimensions. We have also derived late-
time behaviors of the fields near the horizon, i.e., power-
law tails, in terms of the near-horizon geometry. The
late-time power-law tails lead to the Aretakis instability:
the polynomial growth of the higher-order transverse
derivatives of the fields on the horizon at the late time.
We have checked that our results are consistent with the
previous works [17–23,25,30,31,45].
We have also discussed geometrical meanings of the

Aretakis constants and instability. We have demonstrated

6The explicit calculation can also show this result. The explicit
examples of the cases for N ¼ 1, 2 are given in Appendix E.

7As shown in [30], in the case of AdS2, the same quantity as
Eq. (5.14) constructed from the closed conformal Killing vector,
which is null at the horizon is proportional to the multiplication of
the positive power of ρ and the Aretakis constant, and then it
vanishes at the horizon. Thus, in the case of extremal black holes,
we expect that the similar conserved quantity vanishes if the
corresponding approximate conformal Killing vector is null at the
horizon. This is the reason why the discussion in [41] does not
work as mentioned in footnote 2. In this paper, we focus on the
approximate conformal Killing vector, whose form is given in
Eq. (5.6), and this is spacelike at the horizon, and the corre-
sponding conserved quantities do not vanish.
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that the Aretakis constants and instability correspond to,
respectively, constants and blowups of components of
covariant derivatives of the field at late times in the
parallelly propagated null geodesic frame along the hori-
zons. Furthermore, we have derived the Aretakis constants
by the mass ladder operators constructed from approximate
AdS2 symmetry [30,41,49].
If the effective mass squared μ̄2 defined in Eq. (2.25)

satisfies μ̄2=λ0 < m2
BF;2, where m2

BF;2 ¼ −1=4 is the
Breitenlohner-Freedman (BF) bound in AdS2 [46,47],
exponentially growing unstable modes appear. This BF-
bound violation is discussed in the context of the holo-
graphic superconductor [48]. While one may think that
physical quantities do not blow up without the violation
of the BF bound, if the effective mass squared is in
the range,

m2
BF;2 ≤

μ̄2

λ0
< 0; ð6:2Þ

∂ρϕljρ¼0 is divergent at the late time. Our analysis shows
that the blowup of the first-order derivative implies that of
the component of the energy-momentum tensor measured
by the parallelly propagated null geodesic frame along
extremal black hole horizons.
Our analysis on the late-time tails is based on the near-

horizon-geometry approximation of the field equation
discussed in Sec. II C. If we take into account the effect
of subleading terms, we need to discuss the late-time
behavior of the fields from the initial value problem.
From this point of view, the late-time power-law tails
are discussed for massless scalar fields near the horizon of
the four-dimensional extremal Reissner-Nordström black
holes in [19,22,45], and their results are consistent with the
discussion from the near-horizon-geometry approximation.
It is interesting to extend the analysis to our general setup,8

but we leave this for future work.
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APPENDIX A: EXPLICIT FORMS OF ZNðρÞ
Defining a function,

ZNðρÞ ¼
XN
i¼0

CZ
N;iρ

i; ðA1Þ

we can choose the coefficients CZ
N;i such that

∂N
ρ ½ZNf∂ρðρ2ðλ0 þ δλÞðγ0 þ δγÞ∂ρϕlÞ
−NðN þ 1Þλ0γ0ϕl − μ2δγϕlg�jρ¼0 ¼ 0; ðA2Þ

for arbitrary ϕl.
9 Expanding ðλ0 þ δλÞðγ0 þ δγÞ as

ðλ0 þ δλÞðγ0 þ δγÞ ¼
X∞
i¼0

Cλγ
i ρ

i; ðA3Þ

the coefficients CZ
N;i can be explicitly written in terms of C

λγ
j

with j ≤ i. Note that Cλγ
0 ¼ λ0γ0, and we can set CZ

N;0 ¼ 1.
We also expand ϕl as the Taylor series around ρ ¼ 0,

ϕl ¼
X∞
s¼0

1

s!
∂s
ρϕ

���
ρ¼0

ρs: ðA4Þ

After some calculation, we obtain

ZNf∂ρ½ρ2ðλ0 þ δλÞðγ0 þ δγÞ∂ρϕl� − NðN þ 1Þλ0γ0ϕl − μ2δγϕlg

¼
X
i;j;s

sð1þ sþ iÞ
s!

Cλγ
i C

Z
N;j∂s

ρϕ
���
ρ¼0

ρiþjþs − λ0γ0
X
j;s

NðN þ 1Þ
s!

CZ
N;j∂s

ρϕ
���
ρ¼0

ρjþs −
X
j;s;i

μ2

s!
CZ
N;jγi∂s

ρϕ
���
ρ¼0

ρjþsþi; ðA5Þ

where γi is defined in Eq. (2.11). Acting ∂N
ρ on this equation and evaluating it at ρ ¼ 0, we obtain coefficients before ρN .

Then, Eq. (A2) becomes

8In the case of the massless scalar fields near the horizon of the four-dimensional extremal Reissner-Nordström black holes, the
behaviors of the fields can be mapped into those near the infinity in the asymptotically flat spacetime using the discrete conformal
isometry of the metric [19–22,35,50]. Although there does not exist the global conformal isometry in our generic setup, the behaviors of
the fields near the horizon still can be mapped into those near the infinity in the asymptotically flat spacetime using the conformal
transformation, which maps the near horizon region into the asymptotically flat region. Thus, the same technique as [20–22,51] can be
used in our setup.

9We note that ϕl in this section is not necessarily a solution of the Klein-Gordon equation.
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XN
i¼0

XN−i

j¼0

ðN − i − jÞð1þ N − jÞ
ðN − i − jÞ! Cλγ

i C
Z
N;j∂N−i−j

ρ ϕ
���
ρ¼0

− λ0γ0
XN
j¼0

NðN þ 1Þ
ðN − jÞ! CZ

N;j∂N−j
ρ ϕ

���
ρ¼0

−
XN
i¼1

XN−i

j¼0

μ2

ðN − j − iÞ!C
Z
N;jγi∂N−j−i

ρ ϕ
���
ρ¼0

¼ 0: ðA6Þ

Because this holds for arbitrary ∂j
ρϕjρ¼0 with j ¼ 0; 1;…; N, we have

λ0γ0NðN þ 1ÞCZ
N;j ¼

Xj

i¼0

ðN − jÞðN þ 1þ i − jÞCλγ
i C

Z
N;j−i − μ2

Xj

i¼1

CZ
N;j−iγi

¼ λ0γ0ðN − jÞðN þ 1 − jÞCZ
N;j þ

Xj

i¼1

ðN − jÞðN þ 1þ i − jÞCλγ
i C

Z
N;j−i − μ2

Xj

i¼1

CZ
N;j−iγi: ðA7Þ

We here have used Cλγ
0 ¼ λ0γ0 in the second line of the right-hand side. We thus obtain

CZ
N;i ¼

1

λ0γ0ið2N − iþ 1Þ
�Xi

j¼1

ðN − iÞðN þ 1þ j − iÞCλγ
j C

Z
N;i−j − μ2

Xi

j¼1

CZ
N;i−jγj

�
: ðA8Þ

This shows that the coefficients CZ
N;i are expressed by

CZ
N;0 ¼ 1, the Taylor expansion coefficients of the metric,

and the mass squared μ2. For example, we find

CZ
1;1 ¼ −

μ2γ1
2λ0γ0

; ðA9Þ

for N ¼ 1 and

CZ
2;1 ¼

3Cλγ
1 − μ2γ1
4λ0γ0

;

CZ
2;2 ¼ −μ2

3Cλγ
1 γ1 − μ2γ21 þ 4λ0γ0γ2

24ðλ0γ0Þ2
; ðA10Þ

for N ¼ 2.

APPENDIX B: LATE-TERM POWER-LAW TAILS
IN TERMS OF THE NEAR-HORIZON

GEOMETRY

In this appendix, we discuss late-time behaviors of the
massive Klein-Gordon field satisfying Eq. (2.16) in terms
of the near-horizon geometry. As shown in Sec. II C, the
late-time behavior of Eq. (2.16) is described by the massive
Klein-Gordon equation on AdS2,

½□AdS2 − μ̄2�ϕðv; ρÞ ¼ 0; ðB1Þ

where μ̄2 ¼ μ2 þ lðlþ n − 3Þ=γ0. This is equivalent to
Eq. (2.29). We analyze Eq. (B1) by imposing normalizable
boundary conditions and derive Eqs. (3.3) and (3.5).

For simplicity, we assume the analyticity of ϕ at the
horizon ρ ¼ 0.

1. Specific mass squared case: μ̄2 = λ0NðN + 1Þ
We first discuss the specific mass squared case μ̄2 ¼

λ0NðN þ 1Þ for a nonnegative integer N, in which the
Aretakis constants in AdS2 exist [19,30,41]. We expand ϕ
in terms of 1=v as

ϕ ¼
X∞
j¼0

�
1

v

�
j
ujðvρÞ; ðB2Þ

where uj are functions of vρ. Substituting this into
Eq. (B1), we obtain an equation for each uj,

vρð2þ λ0vρÞu00j þ 2ð1− jþ λ0vρÞu0j − λ0NðNþ 1Þuj ¼ 0;

ðB3Þ

where the prime denotes the derivative with respect to vρ.
We further expand ujðvρÞ in Eq. (B3) as

uj ¼
�

1

2þ λ0vρ

�
jX∞
k¼0

cj;kðλ0vρÞk; ðB4Þ

where cj;k are constants. Equation (B3) yields a recursion
relation for cj;k,

ðk − jþ N þ 1Þðk − j − NÞcj;k
¼ −2ðkþ 1Þðk − jþ 1Þcj;kþ1: ðB5Þ
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For j ¼ 0, the left-hand side vanishes when k ¼ N. Hence,
we have a sequence of c0;k for 0 ≤ k ≤ N, while c0;k ¼ 0

for N þ 1 ≤ k. However, this sequence forms a finite
polynomial in vρ, and the field is divergent ϕ ∼ ρN at
the AdS boundary ρ ¼ ∞. Since we are interested in the
solution satisfying normalizable boundary conditions, we
consider c0;k ¼ 0 for all k.
For 1 ≤ j ≤ N, the left- and right-hand sides of Eq. (B5)

vanish when k ¼ jþ N and k ¼ j − 1, respectively.
The former and latter imply cj;k ¼ 0 for jþ N þ 1 ≤ k
and for 0 ≤ k ≤ j − 1, respectively. Therefore, we have
a single sequence of cj;k for j ≤ k ≤ jþ N, which
corresponds to non-normalizable solutions ϕ ∼ ρN at the
AdS boundary ρ ¼ ∞. We thus impose cj;k ¼ 0 for
j ≤ k ≤ jþ N.10

For N þ 1 ≤ j, the left-hand side of Eq. (B5) vanishes
when k ¼ j − N − 1 and k ¼ jþ N, while the right-hand
side does when k ¼ j − 1. The vanishing of the left- and
right-hand sides at k ¼ j − N − 1 and k ¼ j − 1 imply that
cj;k ¼ 0 for j − N ≤ k ≤ j − 1 when 1 ≤ N. Note that
cj;j−1 and cj;j can be left arbitrary when N ¼ 0 because
both sides of Eq. (B5) vanish at k ¼ j − 1. The vanishing
of the left-hand side at k ¼ jþ N means that cj;k ¼ 0 for
jþ N þ 1 ≤ k. Therefore, we have two sequences for
0 ≤ k ≤ j − N − 1 and j ≤ k ≤ jþ N. The former
sequence yields the solution that satisfies the normalizable
condition, while the latter does not. We thus impose
cj;k ¼ 0 for N þ 1 ≤ j ≤ k.
To summarize, we have the following solution satisfying

the normalizable boundary condition11:

ϕ ¼
X∞
s¼0

Xs

k¼0

cNþ1þs;k

�
1

v

�
Nþ1þs

�
1

2þ λ0vρ

�
Nþ1þs

ðλ0vρÞk:

ðB7Þ

In particular, the leading contribution at the late time
v → ∞ is described by the mode with k ¼ s ¼ 0,

ϕ ≃
N!

λNþ1
0 ð2N þ 1Þ!H

AdS2
N

�
−
v
2
−
λ0ρv2

4

�−N−1
: ðB8Þ

Here, we have chosen cNþ1;0 as

cNþ1;0 ¼
N!

ð2N þ 1Þ!
�
−

4

λ0

�
Nþ1

HAdS2
N ; ðB9Þ

so that ∂N
ρ ϕjρ¼0 ¼ HAdS2

N , which is the Aretakis constant in
AdS2. This is consistent with the result in [19].

2. General mass squared cases with μ̄2 ≥ − λ0=4
We parametrize the mass squared as μ̄2 ¼ λ0ΔðΔ − 1Þ

with Δ ≥ 1=2 so that μ̄2 is greater than or equal to −λ0=4,
which is the Breitenlohner-Freedman bound in AdS2. The
case where Δ is an integer is included in the previous
subsection with N ¼ Δ − 1. In this subsection, we assume
that Δ is not an integer. We expand ϕ as

ϕ ¼
X∞
j¼0

�
1

v

�
jþb

ujþbðvρÞ; ðB10Þ

where ujþb are functions of vρ and b ¼ Δ − bΔc, where
bΔc denotes the integer part of Δ.12 For later convenience,
we introduce an integer N ¼ Δ − b − 1 ¼ bΔc − 1. Note
that N ≥ −1 because Δ ≥ 1=2. When 1=2 ≤ Δ < 1, the
mass squared μ̄2 and b satisfy −λ0=4 ≤ μ̄2 < 0,
1=2 ≤ b < 1, and N becomes −1.
Substituting Eq. (B10) into Eq. (B1), we obtain an

equation for ujþb,

vρð2þ λ0vρÞu00jþb þ 2ð1 − j − bþ λ0vρÞu0jþb

− λ0ðN þ 1þ bÞðN þ bÞujþb ¼ 0: ðB11Þ

The general solutions are

ujþb ¼ cF12F1ðN þ 1þ b;−N − b; 1 − j − b;−λ0vρ=2Þ

þ cF2

�
−
λ0vρ
2

�
jþb

2F1ðN þ 1þ jþ 2b;

−N þ j; 1þ jþ b;−λ0vρ=2Þ; ðB12Þ

where cF1, cF2 are constants and 2F1 is the Gaussian
hypergeometric function. The asymptotic behaviors near
the AdS boundary ρ ¼ ∞ take the form [52],

10For 0 ≤ j ≤ N, general solutions of Eq. (B3) are given by

uj ¼
�

vρ
2þ λ0vρ

�
j=2

ðcPPj
Nð1þ λ0vρÞ þ cQQ

j
Nð1þ λ0vρÞÞ;

ðB6Þ

where cP, cQ are constants, and Pj
N , Q

j
N are, respectively, the

Legendre functions of the first kind and second kind. The
sequence of cj;k for j ≤ k ≤ jþ N corresponds to the solution
of Pj

N . However, the solutions of Q
j
N are not analytic functions of

ρ at ρ ¼ 0 and therefore, cannot be expressed by Eq. (B4). For the
solutions of Qj

N , we have confirmed that ∂j
ρuj is divergent at

ρ ¼ 0 for any v. In particular, for j ¼ 0, the value of the field u0 is
divergent at the horizon. In this paper, we focus on the field ϕ
described by the analytic function at ρ ¼ 0.

11On a null hypersurface v ¼ v0, choosing cNþ1þs;k appropri-
ately, ϕ in Eq. (B7) can be any function of ρ on v ¼ v0. This
implies that ϕ in Eq. (B7) is a general solution which satisfies the
normalizable boundary condition.

12If we set b ¼ 0 for the noninteger Δ case, the solution in
Eq. (B10) can describe only non-normalizable modes.
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ujþb ¼
Γð2N þ 1þ bÞ
ΓðN þ 1þ bÞ

�
cF1Γð1 − j − bÞ
ΓðN þ 1 − jÞ

þ cF2ð−1ÞjþbΓð1þ jþ bÞ
ΓðN þ 1þ jþ 2bÞ

��
λ0vρ
2

�
Nþb

þOðρ−ðNþ1þbÞÞ: ðB13Þ

This implies that the field ϕ satisfies the normalizable
boundary conditions in two cases: (i) j ≥ N þ 1 and
cF2 ¼ 0, and (ii) j < N þ 1 and

cF2
¼ ð−1Þjþbþ1

ΓðN þ 1þ jþ 2bÞΓð1 − j − bÞ
ΓðN þ 1 − jÞΓð1þ jþ bÞ cF1:

ðB14Þ

However, in the case (ii), the term of cF2 is not analytic at
ρ ¼ 0 due to the presence of the factor with the fractional
power, ρjþb, of which the derivatives of ujþb with respect to
ρ is divergent at ρ ¼ 0 for any v. Since we are considering
the analytic solution, we discard the case (ii).
To obtain further perspective of the case (i), we expand

ujþb, where j ≥ N þ 1, as

ujþb ¼
�

1

2þ λ0vρ

�
jþb X∞

k¼0

cj;kðλ0vρÞk: ðB15Þ

Substituting this into Eq. (B11), we obtain a recursion
relation for cj;k,

ðk − jþN þ 1Þðk − j −N − 2bÞcj;k
¼ −2ðkþ 1Þðk − j − bþ 1Þcj;kþ1: ðB16Þ

We notice that the right-hand side of Eq. (B16) does never
vanish as long as cj;kþ1 ≠ 0. Because of j ≥ N þ 1 in
the current case, the left-hand side vanishes only when
k ¼ j −N − 1 if b ≠ 1=2 and also when k ¼ jþN þ 1 if
b ¼ 1=2. In any case, there is a single finite sequence of cj;k
for 0 ≤ k ≤ N . This forms a finite polynomial in λ0vρ and
gives rise to ϕ satisfying the normalizable boundary
condition at the AdS boundary ρ ¼ ∞. This solution should
be proportional to the first term in Eq. (B12) because the
same boundary conditions are satisfied.
To summarize, we have the general solutions satisfying

the normalizable condition,13

ϕ ¼
X∞
s¼0

Xs

k¼0

cNþ1þbþs;k

�
1

v

�
Nþ1þbþs

×

�
1

2þ λ0vρ

�
Nþ1þbþs

ðλ0vρÞk: ðB17Þ

Using this form of solutions rather than the form in the
hypergeometric function in Eq. (B12), we can estimate the
leading contribution at the late time v → ∞ is described by
the s ¼ k ¼ 0 mode in Eq. (B17),

ϕ ≃ cNþ1þb;0

�
1

2vþ λ0v2ρ

�
Nþ1þb

: ðB18Þ

Note that the power N þ 1þ b ¼ Δ ≥ 1=2. Defining a
constant HAdS2

Δ by

cNþ1þb;0¼
ΓðN þ1þbÞ

Γð2N þ2þ2bÞ
�
−
4

λ0

�
Nþ1þb

HAdS2
Δ ; ðB19Þ

Eq. (B18) is rewritten as

ϕ ≃
ΓðN þ 1þ bÞ

λNþ1þb
0 Γð2N þ 2þ 2bÞH

AdS2
Δ

�
−
v
2
−
λ0ρv2

4

�−N−1−b
:

ðB20Þ

This equation corresponds to Eq. (B8) and coincides with it
in the limit of b → 0. This is consistent with [19].

APPENDIX C: DERIVATION OF EQ. (5.17)

Acting ∂N
ρ on Eq. (2.26), we obtain

γ0∂N
ρ δ½ϕl� ¼ −∂v∂N

ρ ½2δγ∂ρϕl þ ð∂ρδγÞϕl�jρ¼0

− ∂Nþ1
ρ ½ρ2ðγ0δλþ λ0δγ þ δλδγÞ∂ρϕl�jρ¼0

þ μ2∂N
ρ ðδγϕlÞjρ¼0

þOðρÞ; ðC1Þ

near ρ ¼ 0. Using the Leibniz rule for some functions F 1

and F 2,

∂j
ρðF 1F 2Þ ¼

Xj

i¼0

j!
i!ðj − iÞ! ð∂

i
ρF 1Þð∂j−i

ρ F 2Þ; ðC2Þ

Eq. (C1) is rewritten as

13For the same reason as mentioned in footnote 11, Eq. (B17)
is a general solution satisfying the normalizable boundary
condition.
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γ0∂N
ρ δ½ϕl� ¼ −∂v∂N

ρ ½2δγ∂ρϕl þ ð∂ρδγÞϕl�jρ¼0
−
XNþ1

i¼0

ðN þ 1Þ!
i!ðN þ 1 − iÞ! ∂

i
ρ½ρ2ðγ0δλþ λ0δγ þ δλδγÞ�∂Nþ2−i

ρ ϕl

���
ρ¼0

þ μ2
XN
i¼0

N!

ðN − iÞ! γi∂
N−i
ρ ϕl

���
ρ¼0

þOðρÞ: ðC3Þ

Here, from the ith-order derivatives of Eq. (2.16) with respect to ρ, we notice that ∂i
ρϕljρ¼0 has the following relation:

∂vGi ¼ ∂i
ρϕljρ¼0

: ðC4Þ

We have here defined

GN−jðvÞ ≔
2

λ0γ0jð2N − jþ 1Þ ∂
N−j
ρ ½ðγ0 þ δγÞ1=2∂ρfðγ0 þ δγÞ1=2ϕlg�

���
ρ¼0

; ðC5Þ

which corresponds to GjðvÞ in Eq. (5.19). With the relation (C4), Eq. (C3) can be rewritten as

∂N
ρ δ½ϕl� ¼ ∂vPN þOðρÞ; ðC6Þ

where

γ0PNðvÞ ¼ −∂N
ρ ½2δγ∂ρϕl þ ð∂ρδγÞϕl�

���
ρ¼0

−
XNþ1

i¼0

ðN þ 1Þ!
i!ðN þ 1 − iÞ! ∂

i
ρ½ρ2ðγ0δλþ λ0δγ þ δλδγÞ�

���
ρ¼0

GNþ2−iðvÞ

þ μ2
XN
i¼0

N!

ðN − iÞ! γiGN−iðvÞ: ðC7Þ

APPENDIX D: PROOF OF EQ. (5.22)

In this appendix, we introduce symbolic forms,

δN−2 ¼ DN−2δ½ϕl�;
δN−3 ¼ DN−3δN−2;

..

.

δk ¼ Dkδkþ1;

..

.

δ0 ¼ D0δ1;

δ−1 ¼ D−1δ0: ðD1Þ

Here, we have set δN−1 ¼ δ½ϕl�, where δ½ϕl� is defined in
Eq. (2.26). In this notation, the left-hand side of Eq. (5.22)
is δ−1.
The function δ−1 is explicitly calculated to

δ−1 ¼ ∂vðv2δ0Þ þ
2

λ0
∂ρδ0 þOðρÞ: ðD2Þ

We shall prove the following relation with mathematical
induction:

δ−1 ¼ ∂vWi þ
�
2

λ0

�
iþ1∂iþ1

ρ δi þOðρÞ; ðD3Þ

whereWi ¼ Wiðv; ρÞ is some function. For i ¼ 0, it is clear
that the relation (D3) holds because of Eq. (D2) with
W0 ¼ v2δ0. We now assume that the relation (D3) holds for
i ¼ j. We calculate

∂jþ1
ρ δj ¼

2

λ0
∂jþ2
ρ δjþ1 þ v2∂v∂jþ1

ρ δjþ1 − 2jv∂jþ1
ρ δjþ1

þ 2v∂jþ1
ρ ðρ∂ρδjþ1Þ þ λ0v2∂jþ1

ρ ðρ2∂ρδjþ1Þ
− λ0jv2∂jþ1

ρ ðρδjþ1Þ: ðD4Þ

This is rewritten as

∂jþ1
ρ δj ¼ ∂vðv2∂jþ1

ρ δjþ1Þ þ
2

λ0
∂jþ2
ρ δjþ1 þOðρÞ; ðD5Þ

with the aid of relations,

∂jþ1
ρ ðρF Þ ¼ ðjþ 1Þ∂j

ρF þOðρÞ
∂jþ1
ρ ðρ2F Þ ¼ jðjþ 1Þ∂j−1

ρ F þOðρÞ; ðD6Þ
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where F ¼ F ðv; ρÞ is an analytic function. Then, it
follows that

δ−1 ¼ ∂vWj þ 2jþ1∂jþ1
ρ δj þOðρÞ

¼ ∂vWjþ1 þ
�
2

λ0

�
jþ2∂jþ2

ρ δjþ1 þOðρÞ; ðD7Þ

where we have defined

Wjþ1 ¼ Wj þ
�
2

λ0

�
jþ1

v2∂jþ1
ρ δjþ1: ðD8Þ

It can be seen that the relation (D3) also holds for i ¼ jþ 1.
Thus, we have shown the relation (D3).
When i ¼ N − 1 in the relation (D3), we have

δ−1 ¼ ∂vWN−1 þ
�
2

λ0

�
N∂N

ρ δ½ϕl� þOðρÞ; ðD9Þ

where we have used δN−1 ¼ δ½ϕl�. Using the recursion
(D8), we can explicitly obtain

WN−1 ¼ WN−2 þ
�
2

λ0

�
N−1

v2∂N−1
ρ δN−1

¼ WN−3 þ
�
2

λ0

�
N−2

v2∂N−2
ρ δN−2 þ

�
2

λ0

�
N−1

v2∂N−1
ρ δN−1

¼ v2δ0 þ
�
2

λ0

�
v2∂ρδ1 þ

�
2

λ0

�
2

v2∂2
ρδ2 þ � � � þ

�
2

λ0

�
N−1

v2∂N−1
ρ δN−1; ðD10Þ

where we have used W0 ¼ v2δ0. Furthermore, using PN in Eq. (5.18), the relation (D9) is rewritten as

δ−1 ¼ ∂v

�
v2δ0 þ � � � þ

�
2

λ0

�
N−2

v2∂N−2
ρ δN−2 þ

�
2

λ0

�
N−1

v2∂N−1
ρ δ½ϕl� þ

�
2

λ0

�
N
PN

�
þOðρÞ: ðD11Þ

APPENDIX E: EXPLICIT CALCULATIONS OF THE ARETAKIS CONSTANTS

1. Aretakis constant for N = 1

This corresponds to the case μ2 ¼ 2λ0 − lðlþ n − 3Þ=γ0. The quantity Q1 in Eq. (5.27) is explicitly calculated to

γ0
2
Q1 ¼ ∂2

ρϕljρ¼0
þ 3λ0 − μ2

2λ0γ0
γ1∂ρϕl

���
ρ¼0

þ 4λ0γ0γ2 − μ2γ21
4λ0γ

2
0

ϕl

���
ρ¼0

: ðE1Þ

We have here used Eq. (2.16) with N ¼ 1 at ρ ¼ 0. The right-hand side of this equation coincides with that of Eq. (2.20)
with N ¼ 1. Thus, ðγ0=2ÞQ1 is the Aretakis constant H1.

2. Aretakis constant for N = 2

This corresponds to the case μ2 ¼ 6λ0 − lðlþ n − 3Þ=γ0. The quantity Q2 in Eq. (5.27) is explicitly calculated to

�
λ0
2

�
2

Q2 ¼ ∂3
ρϕljρ¼0

þ
�
8λ0 − μ2

2λ0γ0
γ1 þ

3

2λ0
λ1

�
∂2
ρϕl

����
ρ¼0

þ
�
27λ20γ0 − 12λ0μ

2 þ μ4

12λ20γ
2
0

γ21 þ
12λ20 − μ2

3λ0γ0
γ2 þ

9λ0 − μ2

4λ20γ0
γ1λ1

�
∂ρϕl

����
ρ¼0

þ
�
3

γ0
γ3 þ

9λ0 − 4μ2

6λ0γ
2
0

γ1γ2 þ
3

2λ0γ0
λ1γ2 −

ð3λ0 − μ2Þγ1 þ 3γ0λ1
24λ20γ

3
0

μ2γ21

�
ϕl

����
ρ¼0

: ðE2Þ

We have used the first-order derivative of Eq. (2.16) with respect to ρ and v at ρ ¼ 0. The right-hand side of Eq. (E2)
coincides with that of Eq. (2.20) with N ¼ 2. Thus, ðλ0=2Þ2Q2 is nothing but the Aretakis constant H2.
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