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We study late-time behaviors of massive scalar fields in general static and spherically symmetric
extremal black hole spacetimes in arbitrary dimensions. We show the existence of conserved
quantities on the extremal black hole horizons for specific mass squared and multipole modes of the
scalar fields. Those quantities on the horizon are called the Aretakis constants and are constructed
from the higher-order derivatives of the fields. Focusing on the region near the horizon at late times,
where it is well approximated by the near-horizon geometry, we show that the leading behaviors of
the fields are described by power-law tails. The late-time power-law tails lead to the Atetakis
instability: blowups of the transverse derivatives of the fields on the horizon. We further argue that
the Aretakis constants and instability correspond to, respectively, constants and blowups of
components of covariant derivatives of the fields at the late time in the parallelly propagated null
geodesic frame along the horizon. We finally discuss the relation between the Aretakis constants and
ladder operators constructed from the approximate spacetime conformal symmetry near the extremal

black hole horizons.
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I. INTRODUCTION

Extremal black holes have long played an important role
in various aspects. They have zero Hawking temperature
and are expected to bring us valuable insights into the black
hole thermodynamics [1-6] and the Hawking radiation
[7.8]. In the context of astrophysics, it is suggested that
many astrophysical black holes are nearly extremal [9-13],
and high energy phenomena around such black holes
are discussed, e.g., in [14-16]. For understanding the
nature of the extremal black holes, it is important to
investigate the dynamical properties of test fields and
particles around them.

Aretakis [17,18] has discussed late-time behaviors of
test massless scalar fields in four-dimensional extremal
Reissner-Nordstrom black holes. When generic initial
data are given on an initial hypersurface crossing the
horizon, he argued that the higher-order transverse
derivatives of the fields blow up polynomially in time,
not exponential, on the event horizon, while they decay
outside the horizon. This blowup on the horizon is
called the Aretakis instability. The occurrence of the
Aretakis instability is associated with the fact that
late-time behaviors of fields are described by power-
law tails [19-24], not the exponential decay in time.
The instability also occurs against vector, tensor, and
massive or charged scalar fields [19,25,26], and in other
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spacetimes such as extremal Kerr(-Newman) [25,27],
extremal Bafiados-Teitelboim-Zanelli [28], and two-dimen-

sional anti—de Sitter spacetimes (AdS,) [19,29,30],1 and in
higher dimensions [31]. The nonlinear evolution of the
Aretakis instability has been investigated in [32-34].
Related to the Aretakis instability, conserved quantities
along the horizons, which are constructed from the higher-
order radial derivatives of the fields, are studied [17,18].
These conserved quantities on the horizon are called the
Aretakis constants. When the Aretakis constants contain
(N 4 1)th- and lower order derivatives, (N -+ 2)th- and
higher-order derivatives on the horizon blow up at late
times, which is the Aretakis instability. The existence of
the Aretakis constants has been argued in various setups
[18,19,25,31]. In [19,22,35-37], it has been shown that
there exists one-to-one correspondence of the Aretakis
constants and the Newman-Penrose constants [38] in four-
dimensional extremal Reissner-Nordstrom black holes.

"It has been argued that in [19] the Aretakis instability in
global AdS, is just a coordinate effect, while in [29], the Aretakis
instability in the near-horizon geometry of extremal black holes is
not the coordinate effect. In [30], contrary to the claim in [19], it
has been shown that the late-time divergent behavior in global
AdS, has a geometrical meaning: blowups of some component of
covariant derivatives of fields in the parallelly propagated null
geodesic frame.

© 2022 American Physical Society
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The relation with asymptotic symmetries near degenerate
Killing horizons is suggested in [39,40]. For the AdS, case,
the relation with the spacetime conformal symmetry in
AdS, is pointed out [30,41].

This paper aims to obtain a deeper understanding of the
properties of the Aretakis constants and instability. We
consider the massive Klein-Gordon field in general static
and spherically symmetric extremal black holes in arbi-
trary dimensions. We investigate the existence of con-
served quantities, i.e., the Aretakis constants. We further
study late-time behaviors of the field near the black hole
horizon, namely, the Aretakis instability, in terms of the
near-horizon geometry [42]. We also discuss the geomet-
rical properties of the Aretakis constants and instability:
constants and blowups of components of covariant deriv-
atives of the fields at late times in the parallelly propagated
null geodesic frame along the horizons. We finally study
the construction of the Aretakis constants in terms
of approximate AdS, symmetry near the extremal black
hole horizons.

The behavior of test fields in the near-horizon
geometry can be reduced to scalar fields on AdS,. In
the pure AdS, case, it has been shown that the Aretakis
constants of the massive Klein-Gordon field can be
derived from ladder operators associated with the space-
time conformal symmetry [30,41]. We expect that the
Aretakis constants in the extremal black holes can be
derived from the ladder operators associated with the
approximate AdS, symmetry near the extremal black hole
horizons.

This paper is organized as follows. In Sec. I, we briefly
review the Aretakis constants and instability for the
massless Klein-Gordon field in four-dimensional extremal
Reissner-Nordstrom black holes based on [17-19]. After
that, we investigate whether there exist the same kind of
quantities for massive Klein-Gordon fields in general static
and spherically symmetric extremal black holes in arbitrary
dimensions. In Sec. III, we investigate late-time behaviors
of the field in the extremal black hole spacetimes. In
Sec. IV, we explain the Aretakis constants and instability
in the parallelly propagated null geodesic frame along the
horizon. In Sec. V, we discuss the Aretakis constants in
terms of ladder operators constructed from approximate
AdS, symmetries near the extremal black hole horizons. In
the final section, we summarize this paper. Appendixes
give detailed calculations and explicit examples for the
main text.

’In Appendix F in [41], the construction of the Aretakis
constants of the extremal Reissner-Nordstrom black holes from
the AdS, symmetry was discussed. However, the conserved
quantities on the black hole horizon for # > 1 discussed in [41]
vanish; thus, they are not the Aretakis constants for # > 1. In the
present paper, we provide more careful analysis and derive the
Aretakis constants from the approximate AdS, symmetry.

II. KLEIN-GORDON FIELDS AND THE ARETAKIS
CONSTANTS IN EXTREMAL BLACK HOLES

A. Aretakis constants of massless Klein-Gordon fields
in four-dimensional extremal Reissner-Nordstrom
black holes

We first briefly review conserved quantities on the event
horizon of four-dimensional extremal Reissner-Nordstrom
spacetimes based on [17-19]. In the ingoing Eddington-
Finkelstein coordinates (v, r,@, @), the four-dimensional
extremal Reissner-Nordstrom spacetime is described by

2
ds? — _<1 _ r_,.,) dv? + 2dvdr + r*dQ?, (2.1)
r

where dQ? = d6? + sin> @dp?. The event horizon is
located at r = ry. For later convenience, we perform a
coordinate transformation,

p=r—rg. (2.2)
Then, the line element (2.1) is rewritten as
e
ds* = —————dv> + 2dvdp + (ry + p)?dQ*.  (2.3)
(ra +p)

By definition of p, the event horizon is located at p = 0, and
the exterior region corresponds to p > 0.

On the extremal Reissner-Nordstrom spacetime, we
consider the massless Klein-Gordon field ®(v,p, 8, )
obeying

V,Vid = 0. (2.4)
With the spherical symmetry of the spacetime, expanding
the field in the scalar harmonics S,(6, @) as

D = (v.9)S(0.9). (2.5)
where S, is a regular solution of
A+2(¢+1)]S, =0, (2.6)

with 2 =0,1,2, ..., and A is the Laplace operator on the
two-dimensional unit sphere, we obtain an equation for ¢,

8p<p28p¢f) + 2(1’1_1 + p)avap[(rH + p>¢t’]

— (¢4 1), = 0. (2.7)

Acting the ¢th-derivative operator with respect to p, 8§ ,
on Eq. (2.7) and evaluating it at the event horizon p = 0,

we obtain

0,00(ru + P)O,{(ru + p)be}]| g = 0. (2.8)
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We see that quantities defined by

a2 ()]

are independent of v, i.e., 3, HEN = 0. The quantities HXV
are conserved along the event horizon and called the
Aretakis constants [17-19]. According to [17,18], the
existence of the Aretakis constants implies the polynomial
growth of 8ﬁ(2f+2)¢f| ,—o in v at late times v — co. This is
called the Aretakis instability. The Aretakis instability
does not directly imply blowups of physical quantities.
In fact, the second-and higher-order, not the first-order,
transverse derivatives of the field on the horizon diverge
at the late time; therefore, the energy-momentum tensor
does not blow up. Note that the derivatives of the fields
lower than # decay on and outside the horizon at the late
time [17-19].

For the generic configuration of fields, which is
expressed as a superposition of multipole modes, the
first-order transverse derivative of the field on the horizon
approaches the Aretakis constant for £ = 0 in Eq. (2.9) at
late times. This implies that the radial-radial component of
the energy-momentum tensor of the field on the horizons
does not decay at late times. The Aretakis constant is
physically interpreted as “horizon hair” in the sense of the
energy density measured by an infalling observer at the
horizon [19]. In [43,44], the observability of the Aretakis
constants and instability have been argued.

. (2.9)

p=0

B. Aretakis constants of massive Klein-Gordon fields
in general static and spherically symmetric extremal
black holes in arbitrary dimensions

We shall show that there exist the Aretakis constants
for the massive Klein-Gordon field in general static and
spherically symmetric extremal black hole spacetime. We
now introduce a line element describing an n-dimensional
static and spherically symmetric black hole with a degen-
erate Killing horizon. In the Gaussian null coordinates
(v,p,0") around the Killing horizon p =0, the line
element reads as [42]

ds? = —p*(y + 6A(p))dv* + 2dvdp + (v + 8y (p))dQ2_,,

(2.10)

where 1y, yo are positive constants, 5A(p), dy(p) are
functions with  8A(0) =6y(0) =0, and dQ?_,=
Yapd0*dO® is the line element of the (n — 2)-dimensional
unit sphere, A,B =2,3,...n — 1. The constant y, is the
square of the areal radius at the Killing horizon. We assume

that 64 and 6y can be expanded as the Taylor series,

oA = i /’lipi,
i=1

& =>_rir'. (2.11)
i=1
where /; and y; are constants.’
We consider the massive Klein-Gordon field
[V, V¥ —12]® = 0. (2.14)
Expanding @ in the scalar harmonics S, as
D = s (v.p)S(0"), (2.15)
we obtain an equation for ¢,,
D,lp* (Ao + 62)(ro + 67) 0,0/
+2(v0 + 67)"120,0,[(ro + 67)'*/]
— (& +n=3)ps — 1 (ro +r)pe = 0.  (2.16)
The function S, is a regular solution of
A, +¢(¢+n=3)S, =0, (2.17)

where A” is the Laplace operator on the (n—2)-
dimensional unit sphere. As shown in Appendix A, there
exists a function Zy(p) such that

82’ [ZN{ap(ﬂz(/lo +62)(ro + 57)3/;(15/)

— N(N + Dyohotr = w?6yde}ll,—o =0, (2.18)
where N is a nonnegative integer. The explicit form of Z
depends on the function form of 64 and dy. We note that if
(4o + 64)(yo + 6y) = 1, e.g., Reissner-Nordstrom space-
time cases, Zy = 1. Acting the Nth-derivative operator Of,v
on Eq. (2.16) and evaluating it at the horizon p =0,
we obtain

’In the cases of the four-dimensional extremal Reissner-
Nordstrom-AdS black holes, the parameters are

1 6 2 4

M=
+ ! r% rHL2

A= ,
r%i L?

vo=ry. v1=2rg. (2.12)

where L and ry are the AdS curvature radius and the horizon
radius, respectively. In the n-dimensional extremal Reissner-
Nordstrom black hole cases, those are

(n—3)? P :_(n—Z)(n—3)2
20 rh '

Ao =

70:"%-1, Y1=2ry.

(2.13)
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20,05 [Zy(yo + 57)1/26;;{(}’0 +687) ¢ }] |p=o

M}aﬁ/(zwgf)

70
(2.19)

’

=yo{/t2—/10N(N+1)+
p=0

where we have used Eq. (2.18). We see that quantities
defined by

S\ 1/2 S\ 1/2
oot (1) P (1) o

are independent of v, ie., d,Hy =0, if and only if
u> =2AN(N +1) = £(¢+n—3)/y, or equivalently, the
nonnegative integer N is described by

’

p=0
(2.20)

N=A-1, (2.21)
where
1 2 ¢ -3 1
PP A Gl ) BRSPS
2 /10 j,()}/() 4

The quantities H are the Aretakis constants in the present
system.

For the massless Klein-Gordon field in the four-
dimensional extremal Reissner-Nordstrom spacetime, i.e.,
u? =0, n =4, Adyyo = 1, the nonnegative integer N corre-
sponds to #. For generic cases, A in Eq. (2.22) is not
necessarily an integer, and then there are no Aretakis
constants. In general, for given parameters £, N, 4y, 7o,
if we choose p?>=AN(N+1)=£(¢+n—-3)/yy, the
Aretakis constants exist for these specific parameters.

In particular, there are two interesting cases where
the Aretakis constants exist: (i) 4 =0 and Z =0 case.
Then, we can define the Aretakis constants with N = 0 in
arbitrary dimensions n. (i) # =0 and Agyy = (n —3)>.
Then, A = 1+ ¢/(n — 3), and the Aretakis constants with
N = ¢/(n — 3) exist in the case, where ¢ is proportional to
n — 3. Note that Agyy = (n — 3)? holds for n-dimensional
extremal Reissner-Nordstrom spacetimes.

C. Massive Klein-Gordon fields
in the near-horizon region

For later convenience, we shall see that the Klein-
Gordon equation (2.14) in the near-horizon region can

“We comment on the relation with previous works. The case
for four-dimensional, massless, and Ayy, = 1 was discussed in
[18]. The case in which a spherically symmetric scalar field has
specific mass squared 4?12, = N(N + 1) in the four-dimensional
extremal Reissner-Nordstrom spacetime of the radius ry was
made in [19]. The case of N =0 is included in the general
discussion [25,31].

be reduced to the problem of massive Klein-Gordon fields
in the two-dimensional anti—de Sitter spacetime (AdS,).
For the line element (2.10), performing a coordinate
transformation v = #/e,p = ¢p and taking a limit of
€ — 0, we obtain the near-horizon geometry [42],
ds* — —dop?dv? + 2dvdp + yodQ?_,.  (2.23)
We should note that the transformation v = ¥/e,p = €p
and taking the limit of ¢ — 0 correspond to zoom up of
the late time and the vicinity of the black hole horizon in
the original coordinates (v, p). The line element (2.23) is
invariant under the transformation (7,p) — (9/e€,€p). The
scaling symmetry appears near the degenerate Killing
horizons of the extremal black holes at the late time. In
fact, (7, p) part of the line element (2.23) is AdS,, which is
the two-dimensional maximally symmetric spacetime with
a negative curvature, and hence, the line element (2.23) has
the same symmetry as AdS,. In this paper, we say that the
extremal black hole (2.10) has the approximate AdS,
symmetry in the near-horizon region.
We rewrite Eq. (2.16) as

[zatap + 8p(/10p28p) - ﬂ2]¢f = 5[¢f]v (224)
where
) 2 f(f +n— 3)
Hi=pu +—, (225)
70
and

5lpe] = ;—0<—8v 2570,, + (9,57)6]

= 0,[p* (064 + A0Sy + 6457)0, ] + u*Sy s ).
(2.26)

We note that the first and second terms in the square bracket

of the left-hand side of Eq. (2.24) can be written by the
d’ Alembertian for AdS,,

28118/; + 8/)()“0p28/)) = I:|AdS2' (227)

Now, performing the coordinate transformation » = 7/,

p = €p, we can write Eq. (2.24) in the form,

[ledSZ — Pl = Ole), (2.28)

where [ ads, = 20305 + 05(20p*d;). We have used a

property [aqs, = 0 ads, because of the scaling symmetry

of AdS,. In the limit of ¢ — 0, we can obtain late-time
asymptotic behaviors of ¢, near the horizon.
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In the limit of ¢ — 0, Eq. (2.28) becomes

[ledSZ - i@*lp, = 0. (2.29)
This is exactly the massive Klein-Gordon equation with
mass squared fi> in AdS,. Hence, solutions of Eq. (2.28)
can be written in the form,

¢e(0.0) = ¢ (9.5) + Ole), (2.30)

AdS,

where ¢,">? (7, p) satisfies Eq. (2.29). Thus, ¢, is in good

AdS,

agreement with ¢, at the late time € — 0.

III. LATE-TIME BEHAVIORS OF THE
MASSIVE KLEIN-GORDON FIELD NEAR THE
EXTREMAL BLACK HOLE HORIZON AND
HORIZON INSTABILITY

We discuss late-time behaviors of the massive Klein-
Gordon field that satisfies Eq. (2.14) near the horizon in
terms of the near-horizon geometry. As shown in the
previous section, the study of this topic is reduced to the
analysis of the massive scalar fields in AdS,, i.e., Eq. (2.29).
Although there is a heuristic argument in [19], we revisit this
problem by analyzing the general normalizable solutions in
AdS,. We give the detailed calculations in Appendix B and
summarize the results in this section.

A. Specific mass squared case:
”2 =A,0N(N+ 1) —f(f+n —3)/}’0

We discuss the cases where the Aretakis constants exist.
Analysis in Appendix B implies that the late-time behavior
of the field near the horizon takes a power law of time,

¢ < v Aop02>—N—1
X | —=— .

= (3.1)

We notice that Eq. (3.1) implies that 8§(SN)¢K| ,—o all decay
at late times and )" ¢h,| ,_ is constant. In other words, the
Aretakis constants (2.20) take the form,

Hy =0 pyl,—o.  as v — 0. (3.2)
Equation (3.2) provides the prefactor of the leading

asymptotic behavior (3.1),

N! v /lopvz>‘N_1
~—————Hy| —=— . 33

This is consistent with the results of [17-23,31,45].

The late-time tails (3.3) also imply that 8];<ZN+2>¢K| =0
blow up polynomially in v, i.e.,

a]p(qbf |/J:0 =

(N +k)! ” L\N+I=k
R VT - v ,
2NTON + 1)1 M 2

as v > oo(k >N +2). (3.4)
This is the Aretakis instability. In the present case, the
divergent behaviors can only occur in the second-order or
higher derivatives.

B. General mass squared cases with i* > —1,/4

In this case, the Aretakis constants do not necessarily
exist in general. We assume that the effective mass
squared ji* in Eq. (2.25) satisfies ji?/dy > mg,, where
szF,z = —1/4 is the Breitenlohner-Freedman (BF) bound
in AdS, [46,47]. It is known that without this assumption,
exponentially growing unstable modes appear [46,47].
Analysis in terms of the near-horizon geometry in
Appendix B implies that the leading late-time behavior
is described by power-law tails,

r(Aa) v Aopr*\ A
sron™(3-40) 69

Oy~

where H, is a constant. This shows that for k > [A] + 1,
where | | denotes the integer part, kth derivatives of ¢, at
the horizon p = 0 blow up polynomially in v at the late
time, i.e.,

(A + k) 1\a-*
o=y (7))

(3.6)
This is consistent with the results in [19].

We notice that 9,¢,|,_, is divergent at the late time
if |A] = 0, or equivalently, the mass squared x? is in the
range,

2+f(f+n—3)<0
0 AoYo '

| =

—< (3.7)

1
4

NS

The blowup of the first-order derivative directly implies
that of the physical quantity at the horizon. Namely,
defining the energy-momentum tensor of the massive
Klein-Gordon field @ satisfying Eq. (2.14),

T = V,0V,0 1 0, [V, 0V® + 20]. (38)
we can see that the energy density measured by an infalling
observer at the horizon, 7 ,,, is divergent at the late time for
the mass squared y? in the range (3.7).

We note that the asymptotic structure of the spacetime
in the far region is not specified. If one considers an
n-dimensional asymptotically AdS extremal black hole,
slightly negative mass squared of a Klein-Gordon field
is allowed for the stable dynamical evolution in the

064062-5
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asymptotic region, i.e., u*/Ag>mgg, =—(n(n—2)+1)/4,
where mj , is the BF bound in AdS, [46,47]. The BF
bound in AdS, is effectively violated in the near-horizon
geometry if the massive Klein-Gordon field with £ =0
in n-dimensions has mass squared of mgp, < u?/Ay <
—1/4 = m}.,. This violation is discussed in the context of
the holographic superconductor [48]. While one may think
that physical quantities do not blow up without the
violation of the BF bound, our result shows that extremal
black holes suffer from blowup of components of the
energy-momentum tensor of the test field at the horizon if
the mass squared satisfies the inequality (3.7).

IV. ARETAKIS CONSTANTS AND INSTABILITY
IN THE PARALLELLY PROPAGATED NULL
GEODESIC FRAME

We discuss geometrical meanings of the Aretakis con-
stants (2.20) and instability (3.6) in terms of the parallelly
propagated null geodesic frame along the extremal black
hole horizons. We shall explicitly show that the Aretakis
constants and instability correspond to, respectively, con-
stants and blowups of some components of higher-order
covariant derivatives of the field at late times in that frame
along the horizons. This shows that a similar geometrical
interpretation as in the AdS, case [30] is possible for our
present setup.

We introduce vector fields in the extremal black hole
spacetime (2.10),

“ _ H _
&y 9u=0,. ey d,==0

_ A4
(0)~H H P e/(lA>aM = ga agA. (41)

At the horizon p = 0, these satisfy
e’(to)v e’ =0, e’(‘O)V e’(“l) =0, el(lo)vue@) —0.

newu =0, el(A)e(B)ﬂ =0as;

)6(1)”:—1, e(O)E(A)”:O, e(l)e(A)M:O' (42)

Here, A,B =2.3,....,n — 1. The vectors 670), e’(‘l), e’(’A) are
parallelly transported along a null geodesic e’(’o) at the
horizon p = 0. The frame formed by them is called
the parallelly propagated null geodesic frame along the

horizon.
We find the relation,

(_1)%?{)‘3% " -e?{)Vﬂ] Vi, - 'vﬂr¢f|p:0 - 8L¢f|p:0’
(4.3)

where i is a nonnegative integer. For the specific cases
W =2ANN+1)=£(+n-3)/yy, in which the
Aretakis constants exist, combining Eqs. (3.2) and (4.3),
the relation,

(_1)N+1 v

enen) ~Hy,

(4.4)

o el(lllv)ﬂvl’lv'/z e VVN+1¢f‘

p=0

holds at the late time v — oco. The Aretakis constants
correspond to the late-time behavior of the component
of (N + 1)th-order covariant derivatives of the field at the
late time in the parallelly propagated null geodesic frame
along the horizon.

Equation (4.3) also shows that the divergent behavior
(3.6) for k = |A| + 1 corresponds to that of (|A| + 1)th-
order covariant derivatives at the late time in that frame
along the horizon,

(_1)\_Aj+le”1 vy,

(l)e(l) .~e(%§ﬁ’lvy]vu2 ...VZ/LAJ+I¢K| ~ 7.

p=0
(4.5)

In the same manner, it can be shown that the (| A| + 2)th-
and higher-order covariant derivatives are also unbounded.’
The Aretakis instability corresponds to blowups of com-
ponents of the covariant derivatives of the fields at the late
time in the parallelly propagated null geodesic frame along
the horizons.

V. ARETAKIS CONSTANTS FROM LADDER
OPERATORS ASSOCIATED WITH
APPROXIMATE SPACETIME
CONFORMAL SYMMETRIES

According to [30,41], the Aretakis constants in AdS, can
be derived by using ladder operators, called mass ladder
operators [30,41,49], constructed from the spacetime con-
formal symmetry. Since AdS, structure approximately
appear in the vicinity of extremal black hole horizons,
we expect that the Aretakis constants (2.20) can also be
derived similarly as [30,41]. From this point of view, we
construct the Aretakis constants in the extremal black holes
(2.10) in this section.

>Other components of the (lA] + 1)th-order covariant deriv-
atives at the horizon are bounded: we have a relation,

—j v Vp Vj
(_1)LAJ+1 Je((l)) . "6(6)6(61

RINIE
va‘,‘vu,ﬂ e vl/wq¢f|p:0 = ajlaﬁ[? " J¢f|/;:07

o
eIV,
(4.6)

for a positive integer j. We note that components including e’(‘ 4)

vanish. The right-hand side vanishes or decays at the late time

because 8},AH1_’ ¢¢|,—o are constant or decay. Hence, the above

relation shows that all of the components with respect to
e’(‘(;)---e’(lg)e’('f)* ! ---e?ﬁ““j are bounded. Likewise, all of the
components of the lower order covariant derivatives are bounded.
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A. Mass ladder operators in AdS,

We first review the mass ladder operator in AdS,
[30,41,49]. The mass ladder operator can be defined in
spacetimes with a spacetime conformal symmetry, e.g., the
AdS spacetime. In the Eddington-Finkelstein coordinates
(v,p), which cover the future Poincaré horizon of AdS,
located at p = 0, the line element is given by

ds* = —gp*dv* + 2dvdp, (5.1)
where 1, is a positive constant. The constant 1, is
associated with the absolute value of the scalar curvature
of AdSz: RAdSZ = —2/10.

We define the mass ladder operators in AdS,, which act
on scalar fields, as

k
Dy =L, — EVMC", k eR, (5.2)
where {# is a closed conformal Killing vector in AdS,,

which satisfies the closed conformal Killing equation,

1
vyé’y = Evgggguv' (53)

For this operator, we have a commutation relation,

[Oags,» Di] = =240kDy + (V,8#)[Daas, — Aok(k + 1)],
(5.4)

where Clags, :=208,0,+ 0, (4op*0,) is defined in Eq. (2.27).
This commutation relation can be written in the form,
Dy 5[Oags, = k(k +1)] = [Oags, —k(k = 1)]Dr.~ (5.5)
Acting Eq. (5.5) on the massive Klein-Gordon field ¢
with mass squared m? = k(k+ 1), we find that D¢
satisfies the massive Klein-Gordon equation with mass
squared m? = k(k — 1). The mass ladder operators map a
solution of the massive Klein-Gordon equation to that of the
Klein-Gordon equation with different mass squared.

AdS, admits three independent closed conformal Killing
vectors, but in this paper, we focus on the specific one,

2
=120, + (/1— +2vp + /10112,02) d,. (5.6)
0

For this closed conformal Killing vector, the mass ladder
operator in Eq. (5.2) becomes

2
D, = v%0, + </1 +2up + lovzp2> 0, — kv(2 + Ayvp).
0

(5.7)

B. Aretakis constants in AdS, from the spacetime
conformal symmetry

We explain that the Aretakis constants in AdS, can be
constructed from the mass ladder operators (5.7) based
on [30,41]. Let us consider massive Klein-Gordon
fields ¢(v,p) with mass squared m? = A)N(N + 1)
(N =0,1,2,...) satisfying

[Cags, = AN (N +1)]¢p = 0. (5.8)
We note here again that 4, is positive and real. In AdS,,
quantities defined by

HYS = |, (5.9)

are independent of v on the horizon p = 0. The quantities
desz are called the Aretakis constants in AdS, [19,30,41].
First, we consider the massless case N = 0. Then, the
Klein-Gordon equation (5.8) can be written as

20,0,¢ = —/10/)(28p + p@%)d). (5.10)
Evaluating this at the horizon p =0, we can see
amgdsz = 0. Thus, the Aretakis constant in AdS, is
derived for N = O case.

Next, we consider N > 1 cases. Using the commutation
relations (5.4), we can show

D_Dy -+ Dy_5[Oags, — N(N + 1)]¢

= Opas, D1 D> - Dy, (5.11)
Since the left-hand side vanishes due to the massive Klein-
Gordon equation for ¢, this yields
DAdSZD1D2'“DN¢ :O (512)
It follows that DD, - - - Dy ¢ satisfies the massless Klein-
Gordon equation. Thus, solutions of the massive Klein-
Gordon equation with the mass squared m*> = J)N(N + 1)
in AdS, can be mapped into that of the massless Klein-
Gordon equation. Note that this is not the case for other

parametrization of mass squared. As in the massless case,
Eq. (5.12) can be rewritten as

280(9!,D1D2 e DN¢ = —/10,0(26/, + p@%)DlDz e DN¢
(5.13)
This is the same form as Eq. (5.10). Thus, there exist

conserved quantities along the future Poincaré horizon,
which are defined by

Qxdsz i=0,DD, - - 'DN¢|,,:0- (5.14)
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It has been shown that (15/2)Y Q3" coincide with the
Aretakis constants Hy">* in Eq. (5.9) [30,41].

C. The Aretakis constants in the extremal
black holes from the approximate spacetime
conformal symmetry

We apply the previous manner to the case for the
Aretakis constants (2.9) in the extremal black hole space-
times (2.10). As seen in Sec. IIC, the Klein-Gordon
equation (2.16) in the vicinity of the extremal black hole
horizons can effectively be described by the massive Klein-
Gordon field in AdS, as

where [lpgs, and S[¢p,] are defined in Eq. (2.27) and
Eq. (2.26), respectively. For the case p?> = JgN(N + 1) —
£(€+n-3)/yy, where the Aretakis constants exist,
Eq. (5.15) becomes

[Dags, = NN + 1)]p, = d[ds]. (5.16)

Hereafter, we consider this equation.
For later convenience, we note that 5[¢,| can be written
in the form,

9)6lgs] = 9,Pxn + Olp), (5.17)
[DAds2 - M2 - M} e = 5[¢f]v (5'15)
70 where
|
(NI
voPn(v) = =0 2870 ,¢¢ + (8,07)b¢)| o = ; ARSI [P (rod4 + 2oy + 6487)]| _ Gvea-i()
. N
+u ;m%@v—i(”)’ (5.18)
where y; is given in Eq. (2.11). Here, we have defined
Gy-j(v) : 2 3 (o +81)'20,{(ro + 1) }] (5.19)

~doroj(N = j+1)

The derivation of Eq. (5.17) is in Appendix C. Note that
for the case y¢0A+ 4ydy +0Aéy =0, e.g., the four-
dimensional extremal Reissner-Nordstrom spacetime,
the second line of the right-hand side in Eq. (5.18)
vanishes.

Using the commutation relations (5.4) on Eq. (5.16), we
can rewrite the left-hand side to

D_iDy---Dy_5[Ogs, = N(N + 1)]¢,
= Upas,D1Dy - - Dy, (5.20)

2
~Ay = v*DoDy -+ Dy_ 1 Dy_55[¢/] + (g) v*0,D1D; -+ Dy_ 1Dy 58[¢pe] + -+ + (_

2\ N-1 2\ N
+ <) VN 18] + <) Py.
Ao Ao

With this relation, Eq. (5.21) is written as
Oags,D1D; - - Dy = =0, Ay + O(p). (5.24)

Furthermore, using the explicit form of [,qs, in Eq. (2.27),
this equation can be rewritten as

p=0

|

where D, is the differential operator whose form is

Eq. (5.7). This is equivalent to the relation (5.11). Using

Eq. (5.20), Eq. (5.16) is rewritten as
Uads,D1Dy -+ Dygpy = D_ 1Dy - - - Dy _50[¢].  (5.21)

As shown in Appendix D, the right-hand side of Eq. (5.21)
has the relation,

D_Dy - Dy_d[¢ps] = =0,Ay + Op), (5.22)
where
9\ N-2
> Uza;)v “2Dy_28(¢p,]
Ao
(5.23)
| 1
20, [aleDz Dy + EAN:|
= —200,[p?8,(D1D5 - - Dyg,)] + O(p).  (5.25)

Because the first term of the right-hand side of Eq. (5.25) is
also O(p), at the horizon p = 0 Eq. (5.25) shows
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8,9y =0, (5.26)

where

1
On = 0,D1D5 - Dnelpg +5Ay.  (5.27)

2
It follows from Eq. (5.26) that Qp are independent of » at
the black hole horizon p = 0. Hence, Q) are conserved
along the horizon in the arbitrary dimensional extremal
black holes (2.10). As shown below, we show that the
leading late-time contribution of Qp is the first term
of Eq. (5.27), and (/2)" Qy asymptotes to the Aretakis
constant (2.20) [see also Eq. (3.2)]. This implies that
(20/2)NQy coincides with the Aretakis constant (2.20)
everywhere in the horizon p = 0.° The quantities
(A/2)N0,D\D; - - - Dydps|,—p. Which correspond to the
Aretakis constants in AdS, constructed from the AdS,
conformal symmetry, asymptote to the Aretakis constants
(2.20) at the late time. This is the relation between the
Aretakis constants of the extremal black boles and the
approximate ladder operators constructed from the approxi-
mate spacetime conformal symmetry.’

D. Late-time expressions for the quantities Qy
Finally, we discuss late-time expressions for the quan-

tities Qp in Eq. (5.27). We expect that Q, approach Qﬁdsz
in Eq. (5.14) in v — oo because the AdS structure is a good
approximation to the neighborhood of extremal black holes
at late times as seen in Sec. II C. This is also expected from
the fact that the Aretakis constants in the present system are
expressed by those in AdS, at the late time as seen in
Eq. (3.2). To check that, we investigate properties of Q for
the coordinate transformation (v, p) — (7/€, €p). For the
transformation, we have the relations,

0, = €0y, 0, - 1o,

5 Dy, — €_lbk, (5.28)

where D, =320;+(2/dg+20p+20*p*) 05— k(244 Tp).
We first focus on 9,DD; - - - Dygs|,—o in Qy. As seen
in Sec. IIC, ¢,(v/e, €p) can be expanded in € as

The explicit calculation can also show this result. The explicit
examples of the cases for N = 1, 2 are given in Appendix E.

As shown in [30], in the case of AdS,, the same quantity as
Eq. (5.14) constructed from the closed conformal Killing vector,
which is null at the horizon is proportional to the multiplication of
the positive power of p and the Aretakis constant, and then it
vanishes at the horizon. Thus, in the case of extremal black holes,
we expect that the similar conserved quantity vanishes if the
corresponding approximate conformal Killing vector is null at the
horizon. This is the reason why the discussion in [41] does not
work as mentioned in footnote 2. In this paper, we focus on the
approximate conformal Killing vector, whose form is given in
Eq. (5.6), and this is spacelike at the horizon, and the corre-
sponding conserved quantities do not vanish.

b (V€. ep) = 2" (D/e.ep) + Ofe),  (5.29)

where ¢?dsz satisfies the massive Klein-Gordon equation in
AdS,. Using the relation (5.28), Eq. (5.29) implies
0,D\Dy - -- Do, — e NV + 0(e)).  (5.30)

Next, noticing [¢,] = O(¢), we see from Eq. (5.17) that
Py = O(e™"), and hence,

Ay = O(e7V), (5.31)
from Eq. (5.23). Equation (5.26) thus shows
D508 + O(e)] = 0. (5.32)

Hence, Qy behave as Q"> + O(e) for the transformation
(v,p) = (9/e,ep). We can indeed see that Qy approach
Q?,dsz at the late time € — 0.

VI. SUMMARY AND DISCUSSION

In this paper, we have investigated late-time behaviors of
massive Klein-Gordon fields in general static and spheri-
cally symmetric extremal black hole spacetimes in arbitrary
dimensions. We have shown that there exist conserved
quantities along the extremal black hole horizons, which
are the Aretakis constants, if the quantity,

1 W C(f+n-3) 1
A=—g /g2 227 4 0 6.1

is an integer larger than or equal to unity, where 2, 7, and n
are the mass squared and multipole number of the scalar
fields, and the number of spacetime dimensions, respec-
tively. In Eq. (6.1), the constants 4, and y, are quantities
associated with the near-horizon geometry, which is
described by AdS, x $"? with the effective AdS, radius

Ao /2 and the horizon area radius y(l)/ 2. For example, the
Aretakis constants exist for a massless scalar field in the
arbitrary dimensional extremal Reissner-Nordstrom space-
time, and a scalar field with # =0 and specific mass
squared p> = A)N(N + 1) for nonnegative integers N in
general static and spherically symmetric extremal black
holes in arbitrary dimensions. We have also derived late-
time behaviors of the fields near the horizon, i.e., power-
law tails, in terms of the near-horizon geometry. The
late-time power-law tails lead to the Aretakis instability:
the polynomial growth of the higher-order transverse
derivatives of the fields on the horizon at the late time.
We have checked that our results are consistent with the
previous works [17-23,25,30,31,45].

We have also discussed geometrical meanings of the
Aretakis constants and instability. We have demonstrated
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that the Aretakis constants and instability correspond to,
respectively, constants and blowups of components of
covariant derivatives of the field at late times in the
parallelly propagated null geodesic frame along the hori-
zons. Furthermore, we have derived the Aretakis constants
by the mass ladder operators constructed from approximate
AdS, symmetry [30,41,49].

If the effective mass squared fi> defined in Eq. (2.25)
satisfies  j1?/dg < mgp,, where mp, =—1/4 is the
Breitenlohner-Freedman (BF) bound in AdS, [46,47],
exponentially growing unstable modes appear. This BF-
bound violation is discussed in the context of the holo-
graphic superconductor [48]. While one may think that
physical quantities do not blow up without the violation
of the BF bound, if the effective mass squared is in
the range,

=2

mip 52‘—0 <0, (6.2)

0p¢¢|,—o is divergent at the late time. Our analysis shows
that the blowup of the first-order derivative implies that of
the component of the energy-momentum tensor measured
by the parallelly propagated null geodesic frame along
extremal black hole horizons.

Our analysis on the late-time tails is based on the near-
horizon-geometry approximation of the field equation
discussed in Sec. II C. If we take into account the effect
of subleading terms, we need to discuss the late-time
behavior of the fields from the initial value problem.
From this point of view, the late-time power-law tails
are discussed for massless scalar fields near the horizon of
the four-dimensional extremal Reissner-Nordstrom black
holes in [19,22,45], and their results are consistent with the
discussion from the near-horizon-geometry approximation.
It is interesting to extend the analysis to our general setup,”
but we leave this for future work.

Zn{0,p* (Ao + 64) (vo + 67)0,p,] — N(N +

s(1+s+1i
:Z( s! :

i,j.$
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APPENDIX A: EXPLICIT FORMS OF Zy(p)

Defining a function,

N .
= Z Cﬁ’ip’, (A1)
i=0
we can choose the coefficients C% ; such that
0 [Zn{0,(p* (Ao + 84) (vo + 67)0,¢be)
— N(N + D) oropr — 8yde})l,—o = 0. (A2)
for arbitrary ¢,.” Expanding (1o + 84)(yo + 8y) as
(4o +64)(ro + 0r) = Z Clp'. (A3)

the coefficients C% ; can be explicitly written in terms of Cj-y
with j < i. Note that C}/ = 2oy, and we can set Cio=1.

We also expand ¢, as the Taylor series around p = 0,

1)/107045/ - /4257 ¢f}

o N(N +1) W

/1 1 S A

yCﬁja/}qﬁ Op e — }“07/0 E ( s Cﬁ]aﬂgb‘ pl+ E CZ ]7/1
J.s :

2.1
be=D_ 50, p (A4)
After some calculation, we obtain
Oijreri’ (AS)

where y; is defined in Eq. (2.11). Acting 62’ on this equation and evaluating it at p = 0, we obtain coefficients before p" .
Then, Eq. (A2) becomes

8In the case of the massless scalar fields near the horizon of the four-dimensional extremal Reissner-Nordstrom black holes, the
behaviors of the fields can be mapped into those near the infinity in the asymptotically flat spacetime using the discrete conformal
isometry of the metric [19-22,35,50]. Although there does not exist the global conformal isometry in our generic setup, the behaviors of
the fields near the horizon still can be mapped into those near the infinity in the asymptotically flat spacetime using the conformal
transformation, which maps the near horizon region into the asymptotically flat region. Thus, the same technique as [20-22,51] can be
used in our setup.

"We note that ¢, in this section is not necessarily a solution of the Klein-Gordon equation.
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N N—i .
(N—i=j)(1+N-)) c N— NIN+1) o, v
— % Op = ’ -4 7C O /
22 i)y ’ 0“2 HIRGE ™
N N-i Vo
-y == R ”4)‘ (A6)
i—1 1:0
Because this holds for arbitrary 8,’,45] p—o With j =0,1,...,N, we have
. c
doroN(N +1)C% ;=D (N= ) (N+1+i-j)C'C%, - ZZCNJ 7
i=0
:’107/0( ])(N—'—]_]Cﬁ]—'—z N+1+l_ ) Mcﬁjz 2ZCﬁ] ivi- (A7)
i=1
We here have used Céy = Ado¥o in the second line of the right-hand side. We thus obtain
1 d i
C%. = N-i)(N+1 - ”CZ—Z C%._vi). A8
= =T (LN D+ 14 = 0CT Z it (8)

j=1

This shows that the coefficients C%; are expressed by
Cf,.o = 1, the Taylor expansion coefficients of the metric,
and the mass squared x*. For example, we find

2
K71
CZ, =-— , (A9)
M 22070
for N =1 and
CZ _ 3C/117 B ﬂzyl
> 4070
3CHy, — 2 + 42
ng — _ﬂz 1 }/] ,U y] +2 OyOyQ ; (A]O)
' 24(Ao70)
for N =

APPENDIX B: LATE-TERM POWER-LAW TAILS
IN TERMS OF THE NEAR-HORIZON
GEOMETRY

In this appendix, we discuss late-time behaviors of the
massive Klein-Gordon field satisfying Eq. (2.16) in terms
of the near-horizon geometry. As shown in Sec. II C, the
late-time behavior of Eq. (2.16) is described by the massive
Klein-Gordon equation on AdS,,

[Caas, = #°J¢(v.p) =0, (B1)
where > = p? + (¢ +n—3)/y,. This is equivalent to
Eq. (2.29). We analyze Eq. (B1) by imposing normalizable
boundary conditions and derive Egs. (3.3) and (3.5).

For simplicity, we assume the analyticity of ¢ at the
horizon p = 0.

1. Specific mass squared case: > =1)N(N +1)

We first discuss the specific mass squared case ji> =
AoN(N + 1) for a nonnegative integer N, in which the
Aretakis constants in AdS, exist [19,30,41]. We expand ¢
in terms of 1/v as

6=3(;) ue)

where u; are functions of wp. Substituting this into
Eg. (B1), we obtain an equation for each u;,

(B2)

Uﬂ(2+j«07}p)u;/ +2(] —]%/I()Up)bt; —j.()N(N+ 1)14} = 07
(B3)

where the prime denotes the derivative with respect to vp.
We further expand u;(vp) in Eq. (B3) as

i (2 + /lovp) Z ¢julorp)’

k=0

(B4)

where c; ;. are constants. Equation (B3) yields a recursion
relation for ¢,

(k=j+N+1)(k=j—=N)c;,

==2(k+ 1)(k=j+ 1)cjrp (BS)
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For j = 0, the left-hand side vanishes when k = N. Hence,
we have a sequence of ¢ for 0 < k < N, while ¢g; =0
for N+ 1 <k However, this sequence forms a finite
polynomial in vp, and the field is divergent ¢ ~ p"
the AdS boundary p = 0. Since we are interested in the
solution satisfying normalizable boundary conditions, we
consider ¢y = 0 for all k.

For 1 < j < N, the left- and right-hand sides of Eq. (B5)
vanish when k= j+ N and k= j—1, respectively.
The former and latter imply c;, =0 for j+ N+ 1<k
and for 0 <k < j— 1, respectively. Therefore, we have
a single sequence of c¢;; for j<k<j+ N, which
corresponds to non-normalizable solutions ¢ ~ p" at the
AdS boundary p =oco. We thus impose c¢;; =0 for
J<k<j+ N

For N 4+ 1 < j, the left-hand side of Eq. (B5) vanishes
when k= j— N —1 and k = j + N, while the right-hand
side does when k = j — 1. The vanishing of the left- and
right-hand sides at k = j — N — 1 and k = j — 1 imply that
cjx=0 for j—N<k<j—1 when 1 <N. Note that
cjj-1 and c;; can be left arbitrary when N = 0 because
both sides of Eq. (BS) vanish at k = j — 1. The vanishing
of the left-hand side at k = j + N means that ¢;; = 0 for
j+ N+ 1 < k. Therefore, we have two sequences for
0<k<j—-N-1 and j<k<j+N. The former
sequence yields the solution that satisfies the normalizable
condition, while the latter does not. We thus impose
cix=0for N+1<j<k

To summarize, we have the following solution satisfying
the normalizable boundary condition'":

® S N+1+s 1 N+1+s
¢ = ZZCN+1+H<< > (m) (Zovp)*.

: (B7)

“For 0 < j <N, general solutions of Eq. (B3) are given by

vp j/2 . .
(B6)

where ¢p, ¢y are constants, and P{;,, Q}'\, are, respectively, the
Legendre functions of the first kind and second kind. The
sequence of ¢;; for j <k < j+ N corresponds to the solution

of PJ;. However, the solutions of Q; are not analytic functions of
p at p = 0 and therefore, cannot be expressed by Eq. (B4). For the
solutions of @}, we have confirmed that d)u; is divergent at
p = 0 for any v. In particular, for j = 0, the value of the field u, is
divergent at the horizon. In this paper, we focus on the field ¢
described by the analytic function at p = 0.

On a null hypersurface v = vy, choosing ¢y 1, appropri-
ately, ¢ in Eq. (B7) can be any function of p on v = v,,. This
implies that ¢ in Eq. (B7) is a general solution which satisfies the
normalizable boundary condition.

In particular, the leading contribution at the late time
v — oo is described by the mode with k =5 =0,

N! ads, [V AgprP\ TN
o HY =5 - . (B8
¢ AN+ < 2 4 (B8)

Here, we have chosen ¢y as

! AN
() 6 ®

CN+1.0 =
so that 9 ¢| p—0 = 7'-[Ads2 which is the Aretakis constant in
AdS,. Th1s is consistent with the result in [19].

2. General mass squared cases with > > —1,/4

We parametrize the mass squared as ji> = AyA(A — 1)
with A > 1/2 so that ji* is greater than or equal to —1/4,
which is the Breitenlohner-Freedman bound in AdS,. The
case where A is an integer is included in the previous
subsection with N = A — 1. In this subsection, we assume
that A is not an integer. We expand ¢ as

© J+b
1=>(3) watn. m10)
j=0
where u;,,, are functions of vp and b=A-|A], where

| A] denotes the integer part of A.'> For later convenience,
we introduce an integer N =A —b—1=|A] — 1. Note
that NV > —1 because A > 1/2. When 1/2 < A < 1, the
mass squared i* and b satisfy —Aq/4 <ji? <O,
1/2<b <1, and N becomes —1.

Substituting Eq. (B10) into Eq. (B1), we obtain an
equation for u;.,

vp(2 4 Aovp)uy, +2(1 = j = b+ dgvp)u’y,,

— AN +1+b)N +b)ujy;, =0. (B11)

The general solutions are

Uisp = CpinFy\(N +14+b,-N =b;1 — j—b;—Ayvp/2)
+cm (— ’10%)]%2& (N +1+j+2b,
=N+ ji1+j+b;=Ayvp/2), (B12)

where cpy, cp, are constants and ,F; is the Gaussian

hypergeometric function. The asymptotic behaviors near
the AdS boundary p = oo take the form [52],

If we set b = 0 for the noninteger A case, the solution in
Eq. (B10) can describe only non-normalizable modes.

064062-12



ARETAKIS CONSTANTS AND INSTABILITY IN GENERAL ...

PHYS. REV. D 105, 064062 (2022)

TN +1+b) [cpI(1 —j—b)
Y T T+ 1+ b) {F(J\/—#l—j)
cr(=1)7PT(1 + j+ b)] (Aovp\V+0
LN + 1+ j+2b) ]( 2 )
N+l+b))

+O(p (B13)

This implies that the field ¢ satisfies the normalizable
boundary conditions in two cases: (i) j >N +1 and
cpp =0, and (i) j < N + 1 and

jpt TV 4 14+ 26)0(1 = j = b) |
TN +1-)0(1+j+b) "
(B14)

Cr, = (_1)

However, in the case (ii), the term of ¢y, is not analytic at
p = 0 due to the presence of the factor with the fractional
power, p/*?, of which the derivatives of u i+ With respect to
p is divergent at p = O for any ». Since we are considering
the analytic solution, we discard the case (ii).

To obtain further perspective of the case (i), we expand
Uiy, Where j > N +1, as

Jj+b X
Ujrp = <2—|-/1011p> > ciuldop)t.  (B1S)

k=0

Substituting this into Eq. (B11), we obtain a recursion
relation for Cjks

(k=j4+N+1)(k=j—=N =2b)c;

= 2k + 1) (k= j—=b+ 1)¢jpur- (B16)

We notice that the right-hand side of Eq. (B16) does never
vanish as long as ¢, # 0. Because of j >N +1 in
the current case, the left-hand side vanishes only when
k=j—N—1ifb# 1/2and alsowhenk = j+ N + 1if
b = 1/2.In any case, there is a single finite sequence of ¢;
for 0 < k < N. This forms a finite polynomial in Ayvp and
gives rise to ¢ satisfying the normalizable boundary
condition at the AdS boundary p = oco. This solution should
be proportional to the first term in Eq. (B12) because the
same boundary conditions are satisfied.

To summarize, we have the general solutions satisfying
the normalizable condition,"

BFor the same reason as mentioned in footnote 11, Eq. (B17)
is a general solution satisfying the normalizable boundary
condition.

0 S
1\ NV+1+b+s
= Z CN+1+b+sk<v>

K k=l

(B17)

N+1+b+s .
) G

=0
(2 + AO Up

Using this form of solutions rather than the form in the
hypergeometric function in Eq. (B12), we can estimate the
leading contribution at the late time v — oo is described by
the s = k = 0 mode in Eq. (B17),

1 N+1+b

~ S . B18
¢ CN+1+b.0 <211+/101J2p> ( )
Note that the power N/ + 1+ b = A > 1/2. Defining a

constant H /stz by

N+1+b
(N +14b) <_4) #S: (B19)

NHHOTTON 2 426) \ 7o

Eq. (B18) is rewritten as

¢~

F(N + 1 + b) HAdSZ <_£

_10/)1}2) -N-1-b
AN QN 42 +42b) 8 '

2 4
(B20)

This equation corresponds to Eq. (B8) and coincides with it
in the limit of b — 0. This is consistent with [19].

APPENDIX C: DERIVATION OF EQ. (5.17)
Acting 9) on Eq. (2.26), we obtain

08}{}16[4)/] = _81;82][2578/)¢f + (8/)5},)¢f] |p:0
— NP (y00A + ASy + 6257)0, | =0
+ 120 (8yde)l o + Olp), (C1)

near p = 0. Using the Leibniz rule for some functions F;
and F,,

a;;(flj:Z) =

Eq. (C1) is rewritten as
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N+1
N +1)!
100N 610,] = —0,082870,0 + (B,31) ], o — 3 ot )
i=0
w2 M o] o)
W2 =it e, T Ow):

iNN+1—i)"

6i 2(]/06/1 + /1057/ + 6/16]/)]82]+2_i¢f 0
p:

(C3)

Here, from the ith-order derivatives of Eq. (2.16) with respect to p, we notice that 8},¢f| »—o has the following relation:

0,G: = Dbl o (C4)
We have here defined
2 Nei
_i(v) = 9y (yo + 6y)'?0,{(yo + 6y)"/? : C5
gN ](7)) /1070](2]\7 _ ] + ]) 14 [(yO ]/) P {(yO 7/) ¢f}] 0 ( )
which corresponds to G ;(v) in Eq. (5.19). With the relation (C4), Eq. (C3) can be rewritten as
9 olpe] = 0,Py + Olp), (Co6)
where
. L O (RS D LN
YoPn(v) = -0, [25}’8p¢f + (8,05}/)(]5/} ‘pzo - ;map[p (Y004 + AoSy + 6A5y)] p:OgN+2_,-(U)
N
N!
2 Gy (D). C7
+ﬂ ;<N_i)!ylgN—l(U) ( )
APPENDIX D: PROOF OF EQ. (5.22) I\t
S . s =0t (1) o o).
In this appendix, we introduce symbolic forms, Ao

Sy_2 = Dy_s6[dh/],

On-3 = Dy_36y-2,

O = Diby1,
8 = Dby,
(3_1 - D_150. (Dl)

Here, we have set 6y_; = 8[|, where §[¢,] is defined in
Eq. (2.26). In this notation, the left-hand side of Eq. (5.22)
is &6_ 1-

The function 6_; is explicitly calculated to

2
6_ = 0,(v°6) + /1—3;)50 +O(p). (D2)
0

We shall prove the following relation with mathematical
induction:

where W; = W, (v, p) is some function. For i = 0, it is clear
that the relation (D3) holds because of Eq. (D2) with
Wy = v8,. We now assume that the relation (D3) holds for
i = j. We calculate

1 2 1 . 1
8,/,+ (31 :%(Kﬂf 5j+1 + 1)281)8//)+ 5j+1 —2J’l)8/l;+ 5j+1

+ 200, (90,8511) + 40205 (020,,.1)

- ,10]',,23[/;“ (ﬂ5j+1 ) (D4)

This is rewritten as
. . 7
s =0,(0%05""5,.) +/Toai’+25j+l +O(p), (D5)

with the aid of relations,

8" (pF) = (j+ DAF + O(p)

N PPF) =i+ 1)) F+0(p).,  (D6)

064062-14



ARETAKIS CONSTANTS AND INSTABILITY IN GENERAL ... PHYS. REV. D 105, 064062 (2022)

where F = F(v,p) is an analytic function. Then, it  Itcan be seen that the relation (D3) also holds fori = j + 1.
follows that Thus, we have shown the relation (D3).
When i = N — 1 in the relation (D3), we have

. H 1
6 = 0,W; + 219,715, + O(p)

2\Ji+2 .
=0,Wi + (/1—) 05?61+ O(p). (D7) 2\V
0 o_1 =0,Wy_i + </1_0> 0,0¢s] +O(p), (DY)
where we have defined
+1
Wi =W, + (&) " 02(3//;“51. N (D8)  where we have used Sy_; = 5[¢,]. Using the recursion
Ao (D8), we can explicitly obtain

2\ V-1
Wy =Wyao+ <> V) oy

Ao

2\ N-2 2\ N-1
= Wy_3+ (g) 11282\"251\,_2 + (g) 7}2(9/1;/_151\1_1
— 26+ (2) 20,6, + () 2oz 2\ 216 D10
= 0709 + %U p]+ % v [,2“—""" % v0o, N—1> ( )

where we have used W, = v2§,. Furthermore, using Py in Eq. (5.18), the relation (D9) is rewritten as

2\ N-2 2\ N-1 I\ N
5—1 = 8b |:U250 + -+ </1—) 1)282]_251\/_2 + (7) U285_15[¢f] + (/1—> PN:| + O(/)) (Dll)
0 0 0

APPENDIX E: EXPLICIT CALCULATIONS OF THE ARETAKIS CONSTANTS
1. Aretakis constant for N=1
This corresponds to the case > = 24y — £(£ +n —3)/y,. The quantity Q, in Eq. (5.27) is explicitly calculated to
br

7 3 — 4 4doror2 — #11
001 = bl g+ 0|+ LI (EN)

2 2&0]/0 =0 4/10}’% p=0‘

We have here used Eq. (2.16) with N = 1 at p = 0. The right-hand side of this equation coincides with that of Eq. (2.20)
with N = 1. Thus, (y,/2)Q; is the Aretakis constant H;.

2. Aretakis constant for N =2
This corresponds to the case > = 64y — £(£ +n —3)/y,. The quantity Q, in Eq. (5.27) is explicitly calculated to

AO 2 ) 8)“0 —’Ll2 3 o
<3> Q= 0pbel g + < 2into Y1 +2—/10/11 05s
270570 — 12004 + p* 5 1225 — pi? 9%y — 42
AL )0
( 127272 it 3o7s Y2+ 4270 Y141 ) 0,0,
. [3 92 — 4> 3

(34 — u?)r1 + 3r0hs
= 74 T Ay — 2.2
70 73+ 6io7 Y172 + 2oro 172 2472, Wi\ be

p=0

p=0

(E2)

p=0

We have used the first-order derivative of Eq. (2.16) with respect to p and » at p = 0. The right-hand side of Eq. (E2)
coincides with that of Eq. (2.20) with N = 2. Thus, (4(/2)?Q, is nothing but the Aretakis constant H,.
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