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6Université de Paris, CNRS, Astroparticule et Cosmologie, F-75013 Paris, France
7Laboratoire des 2 Infinis - Toulouse (L2IT-IN2P3), Université de Toulouse,
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The propagation of gravitational waves (GWs) at cosmological distances offers a new way to test the
gravitational interaction at the largest scales. Many modified theories of gravity, usually introduced to
explain the observed acceleration of the Universe, can be probed in an alternative and complementary
manner with respect to standard electromagnetic (EM) observations. In this paper we consider a
homogeneous and isotropic cosmology with extra spatial dimensions at large scales, which represents
a simple phenomenological prototype for extradimensional modified gravity cosmological models. By
assuming that gravity propagates through the higher-dimensional spacetime, while photons are constrained
to the usual four dimensions of general relativity, we derive from first principles the relation between the
luminosity distance measured by GW detectors and the one inferred by EM observations. We then use this
relation to constrain the number of cosmological extra dimensions with the binary neutron star event
GW170817 and the binary black hole merger GW190521. We further provide forecasts for the Laser
Interferometer Space Antenna (LISA) by simulating multimessenger observations of massive black hole
binary (MBHB) mergers. This paper extends and updates previous analyses which crucially neglected an
additional redshift dependency in the GW-EM luminosity distance relation which affects results obtained
from multimessenger GW events at high redshift, in particular constraints expected from LISA MBHBs.
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I. INTRODUCTION

The first observation of gravitational waves (GWs) from
binary black hole coalescences [1], the first observation of a
neutron star binary coalescence [2], and the identification
of an explicit electromagnetic (EM) counterpart [3] have
opened a new era of GWand multimessenger astronomy. In
the near future, with advanced LIGO and advanced Virgo
reaching their design sensitivity [4–6], and KAGRA1 and

LIGO-India2 joining the global network of second-gener-
ation ground-based detectors, we expect GW detections to
take place on an almost daily basis. Furthermore, in the
2030s the space-based interferometer LISA3 and third-
generation4 ground-based interferometers, such as the
Einstein Telescope5 and Cosmic Explorer,6 will be capable
of detecting large numbers of coalescing compact binaries
at cosmological redshifts, z ≫ 1. These developments will
open up excellent opportunities for constraining cosmo-
logical parameters and testing cosmological models beyond
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1Kamioka Gravitational Wave Detector, https://gwcenter.icrr

.u-tokyo.ac.jp/en/ [7].

2Laser Interferometer Gravitational-Wave Observatory, https://
www.ligo-india.in, (https://dcc.ligo.org/LIGO-M1100296/public).

3Laser Interferometer Space Antenna, https://lisa.nasa.gov.
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the standard framework of general relativity (GR). The
detection of GWs from a coalescing binary allows for a
direct measurement of its luminosity distance dGWL , just as
the observation of an EM counterpart leads to a direct
measurement of the source redshift. Assuming a specific
cosmological model of the Universe, information on the
redshift is used to infer the EM luminosity distance dEML . A
comparison of the observed (GW) and inferred (EM)
luminosity distances can then provide us with constraints
on the parameters of our cosmological model. Analogous to
standard candles, these sources are referred to as “standard
sirens” [8,9], and the first results constraining the Hubble
constant using GW sirens were reported in [10]. However,
the observation of an EM counterpart (a so-called “bright
siren”) is rare. Therefore, in recent times there has been
considerable work focusing on measurements of cosmo-
logical parameters using “dark sirens,”where the redshift of
the host galaxy is inferred statistically from galaxy surveys
or assumptions about the population [11].
In the Λ cold dark matter (ΛCDM) standard model of

cosmology, the late-time cosmic acceleration is explained
by a nonzero but very small cosmological constant (Λ) that
opposes the self-attraction of pressureless CDM and causes
this accelerated expansion. Notwithstanding the broad
success of the ΛCDM paradigm, it leaves several signifi-
cant unresolved tensions between the values of certain
cosmological parameters (not least the Hubble constant
itself) inferred from different datasets and cosmological
probes [12,13]. The adoption of ΛCDM fundamentally
demands the inclusion of cold dark matter and a cosmo-
logical constant. However the physical origin of these two
largest contributions to the energy content of the late-time
Universe remains a mystery. Therefore it is both highly
relevant and timely to study alternative explanations for the
cosmic late-time acceleration. In that regard, several pro-
posals have been investigated—including exotic fluids
[14], modified gravity [15], extended gravity theories
[16], and higher-dimensional theories [17–19].
We consider the latter theories and further assume that

the standard matter is confined to a 3D spatial brane,
while gravity propagates in all dimensions. This leads to a
predicted deviation from GR at large length scales and a
possible “gravitational leakage” at cosmological distances,
providing an additional damping of the GWamplitude as it
propagates in the higher-dimensional Universe. A com-
parison between the luminosity distances measured by GW
detectors and inferred from EM observations, respectively,
allows us to constrain this analogous damping of the GWs
and consequently to probe the gravitational leakage. This
method was used to constrain other theories of modified
gravity undergoing gravitational leakage; see e.g. [20–26].
Modifications to the signals attenuation with luminosity

distance due to higher dimensions have also been studied in
[27], where—given a prior on H0—constraints on D, the
number of spacetime dimensions, were derived using the

observations of GW170817 in both GWs and EM. The
results found thatD ¼ 4.02þ0.07

−0.10 , using the SH0ES prior for
H0, and D ≈ 3.98þ0.07

−0.09 , using the Planck prior—in both
cases 68% credible regions. A further analysis by the LIGO
and Virgo Collaborations found consistent results [28].
Given the proximity of GW170817, however, these con-
straints on D apply only at very low redshift, z < 0.01.
Note moreover that at low redshift one can also use another
complementary way to test higher-dimension models, by
counting the number of GW detections and looking at their
distribution in SNR [29,30]. This method has the advantage
of not requiring any EM counterpart; however, it requires a
large number of low-redshift GW sources and it assumes a
specific spatial distribution for them.
The effects of gravitational leakage, and the feasibility of

using it to place constraints on higher-dimensional models,
were further studied in [31–33], in the context of future
observations of high-redshift sirens by LISA—thus exploit-
ing the capability of LISA to probe modified gravity on
large cosmological scales. This paper considered the same
phenomenological models explored in [27] and also the
particular case of the Dvali-Gabadadze-Porrati model. It
was found that the extent to which LISA will be able to
place limits on the number of spacetime dimensions and
other cosmological parameters characterizing modified
gravity will strongly depend on the actual number and
redshift distribution of sources, together with the uncer-
tainty on the GW measurements. In the most optimistic
scenarios, however, it was found that LISA has the potential
to constrain the number of spacetime dimensions to about
1% and the scale beyond which gravity is modified to better
than about 10%.
In this paper we study the consequences of higher-

dimensional theories with noncompact extra dimensions,
rederiving the phenomenological implications from first
theoretical principles, revisiting the constraints that may be
obtained from observations of GW170817, and forecasting
the capability of LISA to constrain these theories from
future high-redshift observations GW standard sirens with
an associated EM counterpart. This paper is organized as
follows: in Sec. II we introduce the equations for GW
propagating in higher dimensions and derive the relation
between the luminosity distance of a cosmological source
as measured by GW and EM observations, showing that a
new additional redshift dependence, not considered in
previous literature, must be taken into account. In
Sec. III we outline the Bayesian representation we use
to develop the inference method in our models. In Sec. IV
we apply the Bayesian approach taking as input the LIGO-
Virgo measurement of GW170817, updating the current
constraints derived from this event. In Sec. V we present
new forecasts for LISA by applying the Bayesian approach
to the merger of massive black hole binaries (MBHBs) and
by showing how the new redshift factor in the luminosity
distance relation affects expected results at high redshift.
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Our main conclusions are then presented and summarized
in Sec. VI.

II. GRAVITATIONAL WAVE PROPAGATION
IN A HIGHER-DIMENSIONAL UNIVERSE:

DERIVATION OF THE LUMINOSITY
DISTANCE RELATION

In this section we discuss how GWs propagate in a
D-dimensional universe, with D ¼ N þ 1 representing the
number of spacetime dimensions. By explicitly solving the
GW propagation equation in a D-dimensional cosmologi-
cal universe, we derive the dependency of the GW
amplitude over the observed luminosity distance and its
relation with the four-dimensional luminosity distance
measured by EM observations. In what follows we show
that the relation between the GW and EM luminosity
distances has an additional redshift dependency which
has so far been neglected in the literature. As we show
in the next sections of the paper, taking into account this
new redshift factor is fundamental to obtain correct con-
straints on the actual number of spacetime dimensions,
especially at cosmological distances.
Let us start by considering a binary system emitting GWs

in a standard D ¼ 4 Minkowski spacetime. At the lowest
(Newtonian) order, far away from the source (the so-called
wave zone [34]) the gravitational waveform is given by

h×ðtsÞ ¼
4

r3
ðGMcÞ5=3ðπfsÞ2=3 cos θ sinΦðtsÞ; ð1Þ

where h× is the ×ðcrossÞ-polarization of the GW. There
exists a similar expression for the þðplusÞ-polarization (for
simplicity, here we only consider one polarization mode).
In Eq. (1) r3 is the three-dimensional radial coordinate
distance7 and the other quantities have their usual meaning:
ts, fs, Mc, θ, and Φ denote the time and frequency at the
source, the chirp mass, the inclination angle, and the GW
phase, respectively. Equation (1) represents the standard
GR waveform describing GWs as seen by an observer at
noncosmological distances. In what follows we will always
assume that at noncosmological distances (say ≲100 kpc)
the Universe is four-dimensional and that GW generation
and propagation are well described by the usual expressions
derived in GR. This assumption is necessary in order to
satisfy constraints from current tests of GR, such as Solar
System experiments for example [35,36]. We will consider
higher dimensions only at cosmological distances, implic-
itly assuming that a transition from four to D dimensions
should happen at some specific scale. In what follows we
need thus to take into account cosmological and higher-
dimensional effects simultaneously.

Let us first review how the waveform (1) is observed
at cosmological distances. In standard four dimensions,
to account for cosmology, i.e. for the expansion of the
Universe, one must simply replaceMc and r3, respectively,

with Mcz and dð4ÞL , the so-called redshifted chirp mass
and the standard four-dimensional luminosity distance,
given by

dð4ÞL ¼ a0ð1þ zÞr3; ð2Þ

where a0 is the value of the scale factor today (usually set
equal to 1) and z is the cosmological redshift. Moreover one
must now take into account that time and frequency at
the observer, namely to and fo, are different from time and
frequency at the source, ts and fs, due to the cosmological
redshift. All this implies that at cosmological distances, in a
four-dimensional universe, GWs are characterized by the
lowest-order waveform (see e.g. [34])

h×ðtoÞ ¼
4

dð4ÞL

ðGMczÞ5=3ðπfoÞ2=3 cos θ sinΦðtoÞ: ð3Þ

We now want to understand how this expression reads in a
general D-dimensional universe.
Let us start again by assuming that far away from the

source the spacetime becomes effectively D-dimensional,
where D ¼ N þ 1 is a number greater than 4. The
(gravitational) wave equation in this spacetime can again
be derived from the Einstein field equations, yielding
simply

□hμν ¼ 0; ð4Þ

where we assumed to be in vacuum and imposed the
usual Lorenz gauge. Note, however, that the Greek indices
now run from 0 up to D − 1, as we are considering a
D-dimensional spacetime. Taking the standard geometric
optics approximation, the GW solution of the equation
above can be written as (see e.g. [37])

hμν ¼ eμνAeiΦ=ϵ; ð5Þ

where eμν is a polarization tensor,A is the amplitude of the
wave, and Φ is again the phase. Here ϵ is a small parameter
over which the equations are to be expanded in the
geometric optics domain. At the leading orders in ϵ one
gets the following equations:

kμkμ ¼ 0; and ∇μðA2kμÞ ¼ 0; ð6Þ

where ∇ is the covariant derivative of the D-dimensional
spacetime. The first one of these relations is just saying
that GWs propagate along null geodesics of the higher-
dimensional spacetime, while the second one provides a
conservation equation for the (square) amplitude along the

7Assuming spherical coordinates centered at the source for the
spatial brane of the full four-dimensional spacetime.
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geodesic. We can now solve Eqs. (6) in a D ¼ N þ 1
Minkowski spacetime with invariant element

ds2 ¼ −dt2 þ
XN
i¼1

dx2i : ð7Þ

Integrating the second of Eqs. (6) one gets (see
Appendix A 1)

A ∝ r−ðD−2Þ=2
N ; ð8Þ

where r2N ¼ P
N
i¼1 x

2
i is (the square of) the N-dimensional

coordinate radius in hyperspherical coordinates. Assuming
that this new scaling in rN is the only modification of the
waveform when it passes from four to D dimensions, far
away from the source, but still at noncosmological dis-
tances (the so-called wave zone), the binary waveform (1)
will scale as8

h×ðtsÞ ∝
4

rðD−2Þ=2
N

ðGMcÞ5=3ðπfsÞ2=3 cos θ sinΦðtsÞ: ð9Þ

As mentioned before, however, higher dimensions are
effective only at cosmological distances and thus we need
to take as well into account cosmological effects in the
waveform (9). To do this we repeat the steps that usually lead
to (3); see e.g. [34]. We start by generalizing the Friedmann-
Robertson-Walker (FRW) metric to D dimensions

ds2 ¼ −dt2 þ aðtÞ2
XN
i¼1

dx2i

¼ −dt2 þ aðtÞ2ðdr2N þ r2NdΩ2
N−1Þ; ð10Þ

where dΩ2
N−1 [see Eq. (A2)] is the angular line element in

N − 1 dimensions. A similar calculation to the one presented
in Appendix A 1, shows that integrating Eq. (6) with the
metric (10) gives9

A ∝ ðaðtÞrNÞ−D−2
2 ; ð11Þ

as one would expect. We then have that the waveform (9) at
the observer becomes

h×ðtoÞ ∝
4

ð1þ zÞða0rNÞðD−2Þ=2 ðGMczÞ5=3

× ðπfoÞ2=3 cos θ sinΦðtoÞ: ð12Þ

We can rewrite this waveform as

h×ðtoÞ ¼
4

dGWL
ðGMczÞ5=3ðπfoÞ2=3 cos θ sinΦðtoÞ; ð13Þ

where we have defined

dGWL ∝ ð1þ zÞða0rNÞðD−2Þ=2; ð14Þ

as the quantity inferred by parameter estimation over the
measured GW signal assuming a standard GR template
with amplitude inversely proportional to the luminosity
distance.10

In order to compare GW and EM measurements of the
luminosity distance, we must find the relation connecting
dGWL to the standard four-dimensional luminosity distance
(2) which, assuming that light still propagates in four
dimensions, is the quantity measured by EM observations,

namely dEML ¼ dð4ÞL . First we consider how the definition
of the luminosity distance generalizes to D dimensions.
From its definition in terms of observable quantities
and from simple geometrical consideration, in a D-
dimensional FRW universe the luminosity distance reads
[38] (see Appendix A 3)

dðDÞ
L ¼ a0rNð1þ zÞ2=ðD−2Þ: ð15Þ

Note that by direct inspection of Eq. (9) this expression
gives the correct scaling for GWs propagating in a
D-dimensional spacetime, namely

h ∝ 1=ðdðDÞ
L ÞðD−2Þ=2 ∝ 1=dGWL ; ð16Þ

as one would expect from Eq. (9). To find the relation
between dGWL and dEML , we need thus to find the relation

between dðDÞ
L and dð4ÞL . This can be found by noticing that

the coordinate distances traveled by a GW and EM signal
emitted at the same time by the same source are indeed the
same, since we are assuming they arrive at the same time
at the observer (we assume that GWs travel at the speed
of light at all frequencies). In fact both signals travel from
the source to the observer along null radial geodesics of
their respective FRW spacetimes, implying that ds2D, ds

2
4,

8In order to recover the right dimensional units in Eq. (9) one
should introduce an integration constant as obtained from the
solution (8). However, since this constant can be defined as
the scale of transition between a four- and D-dimensional
spacetime (see below), we will leave it undefined for the moment
being.

9Note that for a higher-dimensional FRW universe described
by the metric (10), the definition of redshift does not depend on
the number of dimensions (see Appendix A 2).

10Note that the actual waveform model used to perform
parameter estimation over the observed GW signal will differ
from the lowest-order one presented in Eq. (3). However, the
amplitude will always be inversely proportional to the luminosity
distance in GR, implying that the arguments exposed here will
apply anyway whatever waveform model one considers.
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dΩ2
N−1, dΩ2

2 all vanish. From their FRW line elements,
integrating from the source to the observer, we thus get

Z
dt
aðtÞ ¼

Z
drN ¼ rsrcN ; ð17Þ

Z
dt
aðtÞ ¼

Z
dr3 ¼ rsrc3 ; ð18Þ

which immediately gives rN ¼ r3 for the GW source.
From the equations above we thus find

dðDÞ
L ¼ a0r3ð1þ zÞ2=ðD−2Þ ¼ dð4ÞL ð1þ zÞð4−DÞ=ðD−2Þ; ð19Þ

which correctly reduces to an equivalence for D ¼ 4.
Putting everything together we thus get

dGWL ∝ ð1þ zÞða0rNÞðD−2Þ=2;

¼ ð1þ zÞða0r3ÞðD−2Þ=2;

¼ ð1þ zÞ
�

dð4ÞL

ð1þ zÞ
�ðD−2Þ=2

;

¼ ð1þ zÞð4−DÞ=2ðdEML ÞðD−2Þ=2; ð20Þ

providing the relation we were seeking. This can be
rewritten as

dGWL ∝ dEML

�
dEML

ð1þ zÞ
�ðD−4Þ=2

; ð21Þ

which for D ¼ 4 correctly recovers dGWL ¼ dEML , assuming
the constant of proportionality goes to one as D → 4. In
order to fix this constant, however, it is simpler to directly
consider the transition from four dimensions at small
scales to D dimensions at large scales.
As we mentioned above, in order to satisfy all tests of

GR at small scales [35,36], we must require that below a
certain scale the spacetime becomes four-dimensional. In
practice this means that, if we want a relation between dGWL
and dEML valid at all scales, we must introduce a scale below
which this relation becomes an identity. We can thus follow
the standard phenomenological approach [27,28,39], in
which a distance scale Rc is directly introduced in the
relation (21) to separate the small-scale 4D regime to the
higher-dimensional large-scale regime, as follows:

dGWL ¼ dEML

�
1þ

�
dEML

Rcð1þ zÞ
�

n
�ðD−4Þ=ð2nÞ

: ð22Þ

This correctly reduces to an identity for dEML ≪ Rcð1þ zÞ
and to Eq. (21) for dEML ≫ Rcð1þ zÞ, where now Rc
defines the constant of proportionality, and the constant
n determines the steepness of the transition from the small-
scale to large-scale behavior. Of course we could have

chosen a different function to describe the transition from
four dimensions to D dimensions, but in our phenomeno-
logical approach we do not worry too much about the actual
form of this transition as long as the two interesting regimes
are recovered at small and large scales. Equation (22) is the
expression we need to use when comparing luminosity
distance measurements obtained from multimessenger data.
Note that the factor (1þ z) within the square brackets
appears for the first time here and has always been neglected
before in the literature; see e.g. [27,28,31]. This factor has
the physical effect of redshifting the distance scale at which
the transition to higher dimensions takes place. As we will
see in what follows, it strongly impacts constraints on
higher-dimensional cosmologies obtained from GWþ EM
multimessenger events at high redshift.

III. BAYESIAN INFERENCE METHOD

In this paper, we use a Bayesian framework to infer the
dimension D and the distance scale Rc from the multi-
messenger observation of an astrophysical merger event.
Given a dataset x ¼ nþ hðλÞ, containing noise n and some
signal hðλÞ modeled using a parameter set λ, we wish to
obtain a posterior probability distribution on λ, pðλjxÞ,
meaning the conditional probability of the parameters λ
given the data x. This posterior distribution can be rewritten
using the Bayes theorem,

pðλjxÞ ¼ θðxÞLðxjλÞ
EðxÞ ; ð23Þ

where θðxÞ is the prior probability distribution, LðxjλÞ
is the likelihood function, and EðxÞ is a normalization
constant also called the marginal likelihood or the evidence.
If one is interested in a subset of the parameter set λ, say ξ,
one can marginalize over the complementary set of
nuisance parameters, ξc, as

pðξjxÞ ¼
Z

pðλjxÞdξc: ð24Þ

Given measurements of the GW luminosity distance dGWL ,
EM luminosity distance dEML , and the redshift z from
statistically independent datasets xGW, xEM, and xz, respec-
tively, one can use the joint posterior probability distribu-
tion, pðD;Rc; dGWL ; dEML ; zjxGW; xEM; xzÞ to provide
constraints on D and Rc, by marginalizing over the
nuisance parameters. For this, we use two complementary
expressions for the posterior. In the first method, we use the
sample-based approach introduced in [28] but, for the first
time, including an independent measurement of the redshift
z and the new redshift factor as outlined in Eq. (22). The 1D
marginalized posterior on D is
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pðDjxGW; xEM; xzÞ ¼
ZZZ

ddGWL ddEML dz pðdGWL jxGWÞ

× pðdEML jxEMÞpðzjxzÞ
× δ½D −DðdGWL ; dEML ; z; Rc; nÞ�:

ð25Þ

The posterior of Rc is identical to the above equation, with
D and Rc exchanged. A more likely observational scenario,
as outlined in [28,40], is one where we can only measure
two, rather than three, of the observables fdGWL ; dEML ; zg
independently and infer the third, assuming a model for the
expansion of the Universe. This is especially true for LISA
sources, as we discuss in detail in Sec. V, where we are
expected to have measurements of only dGWL and z, and not
of dEML . For such a two-dimensional reduced problem,
we can infer dEML ¼ dEML ðzÞ assuming a standard ΛCDM
model for the expansion of the Universe. Consequently, the
posterior on D can be written as

pðDjxGW; xzÞ ¼
ZZ

ddGWL dz pðdGWL jxGWÞpðzjxzÞ

× δ½D −DðdGWL ; dEML ðzÞ; z; Rc; nÞ�: ð26Þ

Just like Eq. (25), the posterior on Rc can be obtained
by exchanging the positions of D and Rc. We use these
expressions to provide constraints on the LIGO-Virgo
events, GW170817 and GW190521, in the next section
(Sec. IV).
For LISA sources we use a nested sampling algorithm

Nestle [41] instead. This allows us to not only compute the
joint posterior on D and Rc but also the evidence which we
need for model comparison. Starting from Bayes’ theorem
(23) and assuming we observe a set of n MBHB merger
events measured at redshifts xz ¼ fxz1; � � � xzng and GW
distances xGW ¼ fxGW1; � � � xGWng, then provided the
measurement uncertainties on the sirens are all indepen-
dent, the likelihood of the observed data can be written as

pðxz;xGWjD;RcÞ ¼
Yn
i¼1

pðxzi; xGWijD;RcÞ: ð27Þ

Now applying Bayes’ theorem consecutively the likelihood
for a single event can be written as

pðxzi;xGWijD;RcÞ¼
Z

pðxGWi;xzi;zijD;RcÞdzi

¼
Z

pðxGWijzi;D;RcÞpðxzijziÞpðziÞdzi:

ð28Þ

If we further assume that each measured redshift is subject
to an independent, normally distributed uncertainty

ui ∼N ð0;ΔiÞ and assuming that the width of the
Gaussian pðxzijziÞ that describes the redshift uncertainties
is small compared with the scale over which the distribution
of true redshifts is varying, we can approximate pðziÞ in the
equation above as a constant, so that the marginalization
integral simplifies to

pðxzi; xGWijD;RcÞ ¼ C
Z

pðxGWijzi; D; RcÞpðxzijziÞdzi;

ð29Þ

where to be conservative we evaluate the integral over zi
over the range (xzi − 5Δi, xzi þ 5Δi) and the normalization
constant is independent of the parameters we are trying to
model. This completes the derivation of the likelihood.
Finally, given some prior on the model parameters
pðD;RcÞ ¼ pðDÞpðRcÞ, which we discuss in Sec. V, we
have all the ingredients to compute the joint or margin-
alized posteriors on D and Rc. We use these expressions to
forecast the ability of LISA to provide constraints on future
MBHB events.

IV. CONSTRAINTS FROM CURRENT
GROUND-BASED INTERFEROMETERS

The LIGO-Virgo detectors [42,43], over their three
observing runs, O1/O2/O3, have observed two GW events
with (potential) EM counterparts: GW170817 [2] and
GW190521 [44]. GW170817 was followed up by more
than 70 terrestrial and space-based EM observatories [3],
which traced its source to the host galaxy, NGC 4993.
A claim that active galactic nuclei (AGN) J124942.3þ
344929 (at z ¼ 0.438) was a possible EM counterpart of
GW190521 was made in [40], based on a preliminary
trigger from the LIGO-Virgo Collaborations, S190521g.
The association between this AGN flare and GW190521 is
currently uncertain and constraints derived from it should
be taken with caution. Following the public announcement
of the results of the LIGO-Virgo data analysis [45], there
has been follow-up work [46–53] which has claimed
insufficient evidence to confirm AGN J124942.3þ
344929 as an actual EM counterpart to GW19052111

(see, however, the recent [?] finding a stronger signifi-
cance). Joint observations in the GW and EM sectors have
allowed GW standard siren [54] measurements of the
Hubble constant for both events [10,55–57]. GW170817
and GW190521 observations have already been used to
constrain extra dimensions [26–28] (under the assumption
of a real GW-EM association for the latter), though without
the redshift factor introduced in Eq. (22). In this paper, for

11The inconsistency of their final EM and GW luminosity
distance measurements shows up in our analysis through a
posterior on D which peaks away from 4, the nominal GR
value. This is likely an artifact of the inconsistent measurements,
rather than any significant deviation from GR.
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the first time, we report constraints onD and Rc for the GW
events GW170817 and GW190521 by including a sta-
tistically independent measurement of the redshift z and by
considering the new relation given by Eq. (22).
A GW measurement of the luminosity distance for

GW170817, dGWL ¼ 40þ8
−14 Mpc, was reported in [2]. A

simultaneous measurement of surface brightness fluctua-
tions of the host galaxy, NGC 4993, yielded an EM
luminosity distance, dEML ∼N ð40.7;2.4ÞMpc [58]. These
dGWL and dEML measurements are identical to the ones
considered in [28]. For our independent redshift measure-
ment, we use the Multi Unit Spectroscopic Explorer/Very
Large Telescope measurement reported in [59]: zcosmic ¼
0.00980� 0.00079. Following [59], and in keeping with
the measurement in dEML , we assume z to be distributed as a
Gaussian with mean 0.00980 and standard deviation
0.00079. Note that this is the predicted redshift due to
the Hubble expansion at the distance of NGC 4993, the
host galaxy of GW170817, after correcting for the (sig-
nificant) peculiar velocity of NGC 4993—which can be
estimated from a reconstruction of the large-scale peculiar
velocity field in its vicinity, as e.g. derived from analysis of
all-sky galaxy redshift surveys combined with redshift-
independent distance indicator information [60,61]. The
standard deviation assigned to zcosmic is based on a
conservative estimate of the error associated with deriving
this reconstructed peculiar velocity field; see [10,59,62] for
further details. Finally we ignore weak lensing effects on all
these measurements; although weak lensing will provide
additional systematic uncertainties, these are negligible at
low redshift, such as that associated with GW170817.
The posterior probability distributions on D and Rc

assuming three statistically independent measurements of
dGWL , dEML , z are inferred using Eq. (25). In order to plot the
90% credible upper (lower) bounds on the posteriors on D
(Rc) for a given n, we choose the same fixed values of Rc
(D) as in [2]. The results are plotted in Fig. 1. We assume
that EM radiation always propagates in four dimensions,
and hence dGWL > dEML orD > 4. This effectively imposes a
prior D ≥ 4 when estimating pðDjxGW; xEM; xzÞ in the
upper plot of Fig. 1. This is also the reason we choose
representative values for D > 4, i.e., ¼ 5, 6, 7 in inferring
the lower bounds on Rc in the bottom plot of Fig. 1. The
fixed values of Rc chosen to infer pðDjxGW; xEM; xzÞ are
comparable to the source distance (∼40 Mpc).
The addition of a third independent variable z which

would consequently need to be marginalized over increases
the statistical uncertainty in the measurements of D and Rc
compared to those reported in [2] (specifically, look at
Figs. 3 and 4 of [2]). At the same time, the two results are
extremely close, since GW170817 was observed in the very
local Universe (z ∼ 0.01). At such distances, the redshift
measurement is precise and does not add substantial
uncertainty over the measurement uncertainties of dGWL
and dEML . Similarly, when we consider independent

measurements in just fdGWL ; zg, and assume a ΛCDM
model of the Universe to infer dEML as a function of the
redshift z,12 the results only marginally improve because of
the reduced dimensions of the problem, compared to [2]
or the case with three independent variables shown in
Fig. 1. This is because of the lack of measurement
uncertainties associated with a third observable. Hence,
to summarize, because of the proximity of the GW170817
source, the presence or absence of a redshift measurement
does not significantly affect our bounds on D or Rc, as
clearly shown by Fig. 1 which in practice is identical to
Figs. 3 and 4 of [2].
GW190521 is a slightly different case study. For its GW

luminosity distance, we use the measurements with the
surrogate numerical relativity binary black hole waveform
model NRSurPHM reported in [44]; dGWL ¼ 5.3þ2.4

−2.6 Gpc.
This makes GW190521 significantly farther away than
GW170817. At such distances, we would expect a larger

FIG. 1. Top (bottom): 95% upper bounds (lower limits) on the
distance scale, Rc (number of spacetime dimensions D), assum-
ing fixed transition steepness n and D (Rc) for GW170817 with
three independent measurements of dGWL , dEML , and z. Shading
indicates the regions of parameter space excluded by the data.

12We use results from the Planck 2018 data release [63]:
Ωm ¼ 0.3087; ΩΛ ¼ 0.6913; h ¼ 0.6764; w0 ¼ −1; wa ¼ 0.
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effect of the redshift measurement on fD:Rcg. We use
the redshift measurement for AGN J124942.3þ 344929
reported in the SDSS catalog [64]: z ¼ 0.438� 0.00003.
We report our bounds in Fig. 2. Just like in the case of
GW170817 above, we restrict ourselves to a prior onD ≥ 4
and use the same fixed values 5,6,7 to infer bounds on Rc.
However, unlike the case of GW170817, since GW190521
was observed at a much larger distance, we consider fixed
Rc values comparable to the source distance, i.e., 500 Mpc,
1 Gpc, and 2 Gpc, respectively. We find that, compared
to GW170817, GW190521 is able to constrain Rc a lot
better at large distances. However, the GW190521 bounds
for D are significantly worse. This is unsurprising consid-
ering GW190521 was significantly less loud compared to
GW170817.

V. FORECASTS FOR FUTURE SPACE-BASED
INTERFEROMETERS: LISA

In this section we explore how future observations
carried out with LISA will help to constrain the number
of spacetime dimensions on cosmological scales. Among
all the LISA GW sources that will convey cosmological
information (see e.g. [65–67]), the most interesting ones for
our scope are mergers of MBHBs with an identified EM
counterpart [68]. These high-redshift multimessenger

events can in fact efficiently test the expansion of the
Universe at redshift up to z ∼ 8 [69,70] and probe devia-
tions from the standard cosmological models, namely
ΛCDM, at cosmological epochs still scarcely probed by
EM observations [21,71,72]. In what follows we consider
simulated catalogs of LISA MBHBs with EM counterparts
and apply the Bayesian approach outlined in Sec. III to
derive realistic forecasts on the higher-dimensional cos-
mological model presented in Sec. II.
In order to produce catalogs of MBHBs detected by

LISA, we closely follow the strategy adopted in [31], which
in turn is based on [69,73], with few minor improvements.
Here we outline only the main details of these catalogs,
referring the reader to [69,73] for more information. The
cosmological evolution, merger rates, and properties of
MBHBs, over which the catalogs depend, are based on the
semianalytic galaxy formation models of [74] (see also [75]
for a more recent analysis). Following [69,73] we consider
three possible populations of MBHB mergers, based on
different underlying astrophysical properties, mainly dis-
tinguished by the seeding process that sparks the growth of
massive black holes over the cosmic history:

(i) Model popIII: A “light-seed” scenario where the first
massive black holes form from the remnants of
population III stars (popIII) [76–78].

(ii) Model Q3d: A “heavy-seed” scenario where the first
massive black holes form from the collapse of
protogalactic disks [79–81], which includes a delay
between the coalescence of MBHB host galaxies
and that of the massive black holes themselves [78].

(iii) Model Q3nod: Same as Q3d, but assuming no delay
between the merger of host galaxies and that of the
massive black holes.

The catalogs contain all information on the MBHBs (their
intrinsic properties) and of their astrophysical environment
at merger. These inputs are then used to estimate both the
detectability with LISA and the EM counterpart emission.
To check whether any event in each catalog is detected

by LISA, we employ the approach of [69,73]. This consists
of using a Fisher matrix method to calculate the signal-to-
noise ratio and perform parameter estimation over the GW
signal, using inspiral-only precessing waveforms, including
spin-spin and spin-orbit interactions up to 2 and 3.5 post-
Newtonian orders. The contribution to the SNR and the
parameter estimation coming from the merger and ring-
down phases, is then calculated following the phenomeno-
logical approach of [69]. The detectability threshold is then
set to SNR> 8, but taking into account the full inspiral,
merger, and ring-down signal. This procedure allows us to
find the LISA measurement uncertainties on the luminosity
distance and sky localization for each MBHB event, which
we require for our cosmological analysis.
In order to use these events as standard sirens, we need to

collect an associated redshift measurement for each one of
them. This is done by assuming that an EM counterpart is

FIG. 2. Same as for Fig. 1 but for GW190521.
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observed and by measuring the redshift of the correspond-
ing host galaxy. To estimate the emission and observation
of EM counterparts, we follow [69], to which the reader is
referred for full details. First, only MBHB events with a
sufficiently accurate sky localization (ΔΩ < 10 deg2) are
considered, in order to be able to efficiently point and use
realistic future EM facilities. Then, by using the informa-
tion on the host galaxy and MBHB environment given by
the simulated catalogs, the emission of EM radiation in the
optical and radio bands at merger and after merger is
estimated from theoretical models of EM production from
MBHBs [82]. Two strategies are then employed to check
the detectability of the emitted EM radiation and to measure
its redshift. The first one is the detection of an optical
flare at merger with the Large Synoptic Survey Telescope,13

the second one is the detection of a postmerger radio jet or
flare with the Square Kilometer Array (SKA),14 followed
by a redshift measurement with the Extremely Large
Telescope.15 Given its nature, which could give rise to a
radio transient lasting up to months after merger, and its
higher magnitude, the emission in the radio and detection
with SKA is by far the most promising strategy to collect an
associated redshift measure, as shown in [69].
The redshift measurement uncertainty is then estimated

as follows, depending whether the measurement is made
using spectroscopic or photometric methods (which
depends on the properties of the host galaxy, mainly its
distance and luminosity; see [69]). For spectroscopic
measurements we assume a constant 1σ relative error of
0.01. For photometric measurements instead we assume
that relative 1σ measurement errors scale as 0.03ð1þ zÞ.
This corresponds to the “optimistic” scenario of [69].
Finally in order to complete our catalogs we need to

consider also the systematic effects of weak lensing and
peculiar velocities, which degrade the uncertainty on the
luminosity distance retrieved by LISA. In order to estimate
the contribution of peculiar velocities we follow again the
expression provided in [69], which, however, is not
particularly relevant for high-redshift events. More impor-
tant is the contribution of weak lensing, which is expected
to be the dominant source of uncertainty on the luminosity
distance at high redshift. In order to estimate this contri-
bution, we use the recent results of [83], which provides
fitting formulas for the average weak lensing uncertainty
as functions of redshift. We also assume that delensing is
possible up to z ¼ 2 to a maximum of 30%, exactly as
considered in [70], and effectively we use the same
delensing model adopted there. The peculiar velocities
and remaining weak lensing uncertainties are then added in
quadrature to the LISA measurement error to provide the

total uncertainty on the luminosity distance retrieved
from MBHBs.
By following the procedure outlined here above, we

produce catalogs of MBHB events, assuming a ΛCDM
cosmology, for which both the luminosity distance and the
redshift is measured. Equipped with these mock catalogs
we use the functional relation describing the effect of
gravitational damping on the GW waveform in higher-
dimensional theories with noncompact extra dimensions,
Eq. (22), to generate realizations of MBHB sirens for
various possible higher-dimensional theories. To do so we
assume a stationary Gaussian noise σi on the measured
gravitational wave luminosity distance given by procedure
outlined above. This procedure could in principle lead to
some MBHBs, in particular those at high redshift, to drop
below the adopted SNR threshold for observable events.
The effect of this sample correction on the parameter
estimation was investigated in [31] and was found to be
small, hence we do not consider this possible selection bias
further. It is also important to note that to be fully self-
consistent, we should compute the MBHBmerger rates and
redshift distributions in our particular chosen higher-
dimensional theory and not in ΛCDM. However, we do
not expect the rates and distributions obtained in that
manner to be significantly different, since the dominant
effect is instead the details of the galaxy formation and
evolution model adopted. Thus, we adopt the merger rates
and redshift distribution calculated for the ΛCDM model.
In what follows we consider the following arbitrary, but not
ruled by observations, “injection”model fD¼5;RcHd¼1;
n¼1g where Hd ¼ H−1

0 is the current Hubble radius.
We create 22 catalogs of 4-year LISA observations of

MBHBs for each one of the three massive black hole
population models (popIII, Q3d, Q3nod). These catalogs
contain the same number of sources, roughly ∼14 events
for popIII and Q3d and ∼28 for Q3nod, as the ones
considered in [31] to which we refer for more details.
The nested sampling implementation described in Sec. III
is then run on the simulated GW and EM data for each of
these 22 catalogs and for the cosmological model presented
in Sec. II. We assume each measured redshift and gravi-
tational distance is subject to an independent, normally
distributed uncertainty such that xzi ∼N ðzi;ΔiÞ and
xGWi ∼N ðdLGW;i; σiÞ, respectively. In order to represent
complete ignorance about the parameters defining the
higher-dimensional theory we take uniform uninformative
priors in the range D ∈ ½4; 11� and Rc ∈ ½20;∞Þ where the
lower limit on the screening scale is set by distances ruled
out by GW170817 in Sec. IV. The lower limit on D is
chosen to be consistent with Sec. IV and the upper limit
chosen to limit the computational cost of the parameter
estimation method. For the background cosmology we
assume the same cosmology as the one used to generate
the catalogs; see footnote 12. We discuss the results of the
parameter estimation for each functional relation on the

13http://www.vso.org.
14http://www.skatelescope.org.
15https://elt.eso.org.
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luminosity distance and consider a model comparison to
the ΛCDM model.
The 2D parameter estimation on fD;Rcg described

above gives us a joint posterior distribution and 1D
posteriors on each parameter for each catalog within a
given MBHB formation model. To further quantify the
capability of LISA to constrain either D or Rc, we first
record the median values of the marginalized posterior of
each cosmological parameter for all the catalog realiza-
tions. We then use the median of the median marginalized
posteriors as a figure of merit (FOM) for these parameter
estimates. For an estimate of the LISA error on this “median
FOM” we first take the 95% credible interval (CI) around
the median value for each catalog and then adopt the
median of these intervals to represent the 95% confidence
interval of the figure of merit. When we compare the
capability of LISA to place constraints on a given parameter
for different MBHBmodels, we will always use the median
FOM together with the 95% confidence interval, which
essentially captures the scatter in the FOM—and hence
provides a realistic estimate of the expected statistical
uncertainty. Note that there is also a significant scatter in
the characteristics of the MBHB population between differ-
ent catalogs. The impact of this scatter on the cosmological
constraints that we can place is non-negligible and was
studied in [31].
Figure 3 shows the joint posterior distribution over our

two-dimensional model parameter space fD;Rcg for the
FOM catalog for the “new” [with the (1þ z) factor in in
Eq. (22)] and “old” (without) functional relation for each
MBHB formation model. Table I presents figures of merit,
derived from the marginalized posteriors, for each of the
cosmological model parameters, for all MBHB formation
scenarios and for each functional relationship. In each entry
of Table I, the top row shows the median FOM and 95% CI
for light seeds (popIII), the central row for heavy seeds with
delays (Q3d), and the bottom row for heavy seeds without
delays (Q3nod). We find, in agreement with our previous
analysis [31], that Q3nod systematically gives better results
than the other two scenarios, which are roughly comparable
to each other, due to their lower number of detectable
standard sirens. This shows that the extent to which LISA
can be used to perform meaningful constraints on theories
of modified gravity defined by the new scaling, Eq. (22),
will still strongly depend on the actual redshift distribution
of MBHB merger events and the corresponding efficiency
in identifying an EM counterpart. But we also find that
the new functional relation Eq. (22) strongly affects our
ability to constraint the parameters, the details of which we
discuss next.
We first consider the effect of the new functional relation

on LISA’s ability to place limits on the number of spacetime
dimensions. Figure 3 and Table I both show that, for all
formation models, there is a systematic shift in the median
value of the number of spacetime dimensions away from its

true value (indicated by the black square in the figure), but
also an increase in the statistical spread. Despite this, the
Bayes factors shown in Table I indicate that we will still
be able to distinguish a ΛCDM universe from a higher-
dimensional cosmology, at least according to Jeffrey’s scale
[49]. Since LISA will be observing events up to high
redshifts, unlike LIGO, it is not surprising that the extra

FIG. 3. Joint posterior distributions on the number of spacetime
dimensions D and screening scale Rc for the cosmological
scenario (D ¼ 5, RcHd ¼ 1.0) and different MBHB formation
models using Eq. (22) with (new/gray) and without (old/yellow)
the redshift dependence. From top to bottom the formation
models considered are heavy seeds without delays (Q3nod),
heavy seeds with delays (Q3d), and light seeds (popIII). The
(blue/red) dashed lines in the 1D marginalized posteriors indicate
the 95% confidence intervals. The black square and black dashed
lines represent the injected values.
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redshift dependence in the GW luminosity distance relation
strongly affects the constraints. Again we note that the
formation model with the highest number of sources,
namely Q3nod, gives the best results.
Considering next the constraints of the screening scale,

we find a similar trend—although the effect is more
pronounced. Looking at the joint posterior distribution
we find that, for the cosmological scenario considered, the
number of dimensions and screening scale are strongly
correlated. This is not because of the new functional
relation for the luminosity distance and was also the case
when the redshift factor is ignored. However, it was found
in [31] that, as the transition to a higher-dimensional
cosmology becomes steeper and/or the screening scale
becomes closer, the parameters become uncorrelated. For
completeness we also considered a scenario where the
screening scale is four times the Hubble radius and hence
the deviation from GR at small redshift is less pronounced;
in this case we find, in agreement with our previous study,
that the constraints on the screening scale are less accurate.
Similarly if one were to consider a cosmological scenario
where the number of spacetime dimensions is greater
than 5, the constraints would improve due to the more
significant deviations from four dimensions. We refer the
reader to [31] for more details on these cases.

VI. DISCUSSION AND CONCLUSION

In this paper we reconsidered the possibility of con-
straining extra spatial dimensions at cosmological distances
with GW multimessenger events. We revised the theory
behind the derivation of the relation between dGWL and dEML ,
spelling out all underlying assumptions and explicitly
presenting all details of the calculation. By doing this,
we showed that an additional redshift factor, which was
neglected in previous analyses, must actually be included in
the GW luminosity distance relation given by Eq. (22). We
then revised the constraints derived from current and future

GWobservations, respectively, with LIGO-Virgo and LISA,
taking into account the new luminosity distance relation.
To derive constraints on higher dimensions from current
GW observations carried out with the LIGO-Virgo detec-
tors, we considered the data analysis strategy of [27,28] and
expanded it to include the possibility of an independent
measurement of dEML . To produce forecasts for future GW
observations taken from space with LISA, we instead
considered and expanded the approach of [31]. Our two
approaches were shown to provide consistent results.
Our results were presented in Secs. IV and V. As

expected, constraints obtained with low-redshift events
such as GW170817 do not change appreciably from the
old to the new luminosity distance relation, i.e., respec-
tively, by neglecting or considering the (1þ z) factor in
Eq. (22). The correction due to this factor at low redshift is
in fact small and does not affect the final results as long as
subpercent accuracies are not reached. For this reason, the
constraints presented in [27,28] can equally apply to the
new relation (22) without loss of generality. The constraints
that we derived using GW190521 are, however, less
impressive due to the large uncertainties associated with
the measurements of this event—although the transition
scale Rc can effectively be better constrained due to the
larger distance of this GW event. Note, however, that the
association of an EM counterpart with GW190521 is at best
debatable, and constraints derived from this event should
not be taken seriously. As an academic exercise, they show,
however, how higher-redshift multimessenger GW events
can help to constrain higher-dimensional models, notably
by bounding the screening scale to larger distances.
A different conclusion applies, on the other hand, to

the constraints derived from our simulated LISA MBHB
sources. At high redshift, effectively at z≳ 1, the new
(1þ z) factor appearing in Eq. (22) strongly affects the
derived constraints. As shown in Sec. V, expected con-
straints on the number of spacetime dimensions at cosmo-
logical distances effectively worsen by almost an order of

TABLE I. Left and middle: Median figures of merit and 95% credible intervals summarizing the marginalized
posterior of D, the number of dimensions, and Rc, the crossover length scale assuming an underlying cosmology
with true parameters θ ¼ fD ¼ 5; RcHd ¼ 1; n ¼ 1; H0 ¼ 67.4g, for the different MBHB formation models
considered. In each row of the table separated by dashed lines, the top subrow shows the figures of merit and CI for
light seeds (popIII), the central subrow for heavy seeds with delays (Q3d), and the bottom subrow for heavy seeds
without delays (Q3nod). Results denoted by new are derived using the modified distance relation taking into account
the redshift factor (1þ z) in Eq. (22), while results denoted by old assume the same relation, without the (1þ z)
factor, as considered in [27,28,31]. The right column gives the log Bayes factor for a particular higher dimensional
model, compared with the ΛCDM model. A positive log Bayes factor implies evidence in favor of the NGR model.

D RcHd lnB

Model Old New Old New Old New

PopIII 5.01þ0.18
−0.14 5.83þ1.17

−1.04 1.03þ0.38
−0.28 2.17þ1.84

−1.54 1074þ627
−672 141þ126

−101

Q3d 5.02þ0.14
−0.13 5.47þ1.34

−0.75 1.05þ0.30
−0.25 1.69þ2.07

−1.11 1568þ722
−868 171þ125

−81

Q3nod 4.99þ0.12
−0.10 5.26þ1.23

−0.49 1.01þ0.25
−0.19 1.35þ1.87

−0.70 2748þ629
−1217 321þ152

−145
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magnitude with respect to the results obtained without taking
into account the (1þ z) factor. Fortunately, however, this
does not hinder the ability of LISA to efficiently constrain
these higher-dimensional cosmological models. In fact, so
long as the screening scale Rc is not taken to be larger than
the Hubble radius, LISAwill be able to distinguish between
ΛCDM and a five-dimensional cosmological model irre-
spective of the underlying astrophysical properties of the
MBHB population. More generally the higher the distance of
our detected multimessenger events, the larger the transition
scale Rc that can be constrained. In fact from our analysis
it is clear that current LIGO/Virgo results, in particular
GW170817, can only constrain Rc up to tens of mega-
parsecs, while LISA will allow us to push constraints up to
gigaparsec scales with the detection of MBHB mergers.
We conclude by stressing that the higher-dimensional

cosmological spacetime considered in this paper is only a
simple phenomenological toy model that leads to a GW-
EM luminosity distance relation expected to well describe
better motivated higher-dimensional modified gravity mod-
els, used for example to characterize the current acceler-
ation of the Universe. Nevertheless, by excluding the
possibility of simple higher-dimensional extensions of
the homogeneous and isotropic spacetime that well capture
the overall features of our Universe at the largest scales, we
can help direct the efforts aimed at understanding the
fundamental nature of the observed cosmic acceleration,
which will then be restricted to consider only models
admitting exactly four dimensions. Of course more com-
plex higher-dimensional models can always be constructed
in order to avoid the constraints derived here, but these will
only come at the cost of abandoning the theoretical and
observational simplicity of a homogeneous and isotropic
distribution of matter in the Universe.
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APPENDIX: DETAILS OF CALCULATIONS
OF SEC. II

1. Damping of GWs in higher dimensions

Here we prove that using the Minkowski D-dimensional
metric (7) in (hyper)spherical coordinates, namely

ds2 ¼ −dt2 þ dr2N þ r2NdΩ2
N−1; ðA1Þ

the integration of Eq. (6) yields the scaling (8) for the GW
amplitude. In the metric (A1) the explicit expression for
dΩ2

N−1 is

dΩ2
N−1 ¼ dθ21 þ sin2θ1dθ22 þ sin2θ1sin2θ2dθ32

þ � � � þ sin2θ1 � � � sin2θN−2dθ2N−1; ðA2Þ

where θi are the N − 1 angular coordinates in the D ¼
N þ 1-dimensional spacetime. First we note that Eq. (6)
can be rewritten as

∇μðA2kμÞ ¼ 1ffiffiffiffiffiffi−gp ∂μð
ffiffiffiffiffiffi
−g

p
A2kμÞ; ðA3Þ

where g is the determinant of the D-dimensional metric
and ∂μ is the usual partial derivative. For the metric (A1)
we find

ffiffiffiffiffiffi
−g

p ¼ rD−2
N sinD−3θ1sinD−2θ2 � � � sin2θD−3 sin θD−2: ðA4Þ

Considering a GW propagating from the origin of the
coordinates toward the radial direction, we have

kμ ¼ ðk0; kr; 0;…; 0Þ ¼ ðω;ω; 0;…; 0Þ; ðA5Þ

where the second equality comes taking into account that
k0 ¼ ω (the frequency) and kμkμ ¼ 0. In what follows we
will assume that the frequency does not depend on the
spatial spacetime coordinates, although it is still allowed to
depend on the coordinate time t. Using these two last
relations into Eq. (A3) one finds

∂
∂t ðA

2ωÞ þ 1

rD−2
∂
∂r ðr

D−2A2ωÞ ¼ 0: ðA6Þ

Assuming _A ≫ A and _ω ≪ ω, which are both valid within
the geometric optics approximation, we obtain

∂
∂r ðr

D−2A2ωÞ ¼ 0; ðA7Þ

which once integrated gives

A ∝ r−ðD−2Þ=2; ðA8Þ

where all dependencies upon t and all the other coordinates
have been adsorbed in the proportionality relation. This
coincides with the scaling (8).

2. Definition of redshift in higher dimensions

In this appendix we demonstrate that the redshift in
the D-dimensional FRW spacetime (10) coincides with the
usual one defined in four dimensions. The cosmological
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redshift can be defined as the ratio between the observed
frequency fO and the emitted frequency fE from an EM
signal

fO
fE

¼ 1

1þ z
: ðA9Þ

The frequency can be rewritten as the inverse of the time of
arrival δt of two subsequent wave crests, namely f ¼ 1=δt.
Taking an EM ray propagating along the radial direction
[dΩ2

N ¼ 0 in Eq. (10)] toward the origin of the coordinates
(the observer) we have

ds2 ¼ 0; ⇒ dt¼−aðtÞdrN ⇒
Z

tO

tE

dt
aðtÞ ¼

Z
rO

rE

drN:

ðA10Þ

Differentiating the last equation with respect to time and
recalling that comoving coordinates are time independent,
one obtains

δtO
aðtOÞ

−
δtE
aðtEÞ

¼ 0: ðA11Þ

Recalling that f ¼ 1=δt, from the definition (A9) one
obtains the usual relation between the redshift and the
scale factor

1

1þ z
¼ aðtEÞ

aðtOÞ
; ðA12Þ

which is thus valid also in the D-dimensional FRW
spacetime. In conclusion the redshift in a higher-
dimensional FRW universe coincides with the one defined
in four dimensions.

3. Luminosity distance in higher dimensions

The luminosity distance can be defined by the relation
between the emitted luminosity flux LE of an astronomical
source and the luminosity flux LO observed by telescopes
on Earth assuming lights propagates spherically in an
Euclidean spatial geometry. In D ¼ N þ 1 dimensions
the geometrical relation between LE and LO must take
into account that the EM flux propagates isotropically in a
hypersphere embedded in N þ 1 dimensions, implying that

the luminosity distance dðDÞ
L is now defined by the relation

LO ¼ LE

bN−1ðdðDÞ
L ÞN−1

; ðA13Þ

where

bN−1 ¼
2πN=2

ΓðN=2Þ ; ðA14Þ

is a geometrical constant factor (the surface of the N-sphere
of unit radius) and Γ is the gamma function. In the D-
dimensional FRW spacetime (A1) the ratio between LE and
LO is given by the surface SN of a N-sphere of radius rN .
This can be computed integrating the line element (A1) at
fixed time and radius (dt ¼ drN ¼ 0)

SN ¼
Z

dθ1 � � � dθN−1
ffiffiffiffiffiffiffiffiffiffiffiffiffi
−gN−1

p
; ðA15Þ

¼
Z

dθ1 � � � dθN−1rN−1
N aðtÞN−1

× sinN−2 θ1 � � � sin2 θN−2 sin θN−1; ðA16Þ

¼ bN−1rN−1
N aðtÞN−1; ðA17Þ

where we used the N − 1-dimensional angular integration
measure

ffiffiffiffiffiffiffiffiffiffiffiffiffi−gN−1
p

. In addition the rate of arrival of
individual photons is lower by a factor 1=ð1þ zÞ due to
the cosmological expansion and the energy of each photons
is also redshifted by the same factor 1=ð1þ zÞ. This implies
that the luminosity LO observed from Earth is lower
by the factor 1=ð1þ zÞ2 because of the cosmological
expansion. Putting all this together we find [note that this
relation is evaluated at the observer, so here aðtÞ ¼ a0;
see e.g. [84] ]

LO ¼ LE

bN−1ða0rNÞN−1ð1þ zÞ2 ; ðA18Þ

which, compared to Eq. (A13), immediately implies that
the luminosity distance in D dimensions is given by

dðDÞ
L ¼ a0rNð1þ zÞ2=ðN−1Þ ¼ a0rNð1þ zÞ2=ðD−2Þ: ðA19Þ

This formula was first derived in [38] for a general
D-dimensional FRW metric including spatial curvature.
In four dimensions one correctly recovers the usual relation

dð4ÞL ¼ a0r3ð1þ zÞ: ðA20Þ
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