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We investigate the properties of high-density compact objects in a vector-type theory, inspired by
Einstein’s 1919 theory of elementary particles, in which Einstein assumed that elementary particles are held
together by gravitational as well as electromagnetic-type forces. From a modern perspective, Einstein’s
theory can be interpreted as a vector-type model, with the gravitational action constructed as a linear
combination of the Ricci scalar, of the trace of the matter energy-momentum tensor, and of a massive self-
interacting vector-type field. To obtain the properties of stellar models we consider the field equations for a
static, spherically symmetric system, and we investigate numerically their solutions for different equations
of state of quark and neutron matter, by assuming that the self-interaction potential of the vector field either
vanishes or is quadratic in the vector field potential. We consider quark stars described by the MIT bag
model equation of state, and in the color-flavor-locked phase, as well as compact stars consisting of a Bose-
Einstein condensate of neutron matter, with neutrons forming Cooper pairs. Constant density stars,
representing a generalization of the interior Schwarzschild solution of general relativity, are also analyzed.
As an example of stars described by equations of state obtained by using effective nuclear interactions
of the Skyrme type we consider the Douchin-Haensel (SLy) equation of state. The numerical solutions
are explicitly obtained in both standard general relativity and the Einstein dark energy model, and an in-
depth comparison between the astrophysical predictions of these two theories is performed. As a general
conclusion of our study we find that for all the considered equations of state a much larger variety of
stellar structures can be obtained in the Einstein dark energy model, including classes of stars that are
more massive than their general relativistic counterparts. As a concrete application of our results we
suggest that compact objects with masses of the order of 2.5 M⊙, associated, for example, with the
GW190814 gravitational-wave event, could be in fact quark or neutron stars, described by the Einstein
dark energy model.
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I. INTRODUCTION

The maximum mass of a neutron star is a question
of fundamental importance from both theoretical and
observational points of view. An upper limit for the critical
mass of a star Mmax, of the order of 3.2 M⊙, was found in
[1] from the analysis of the general relativistic hydrostatic
equilibrium Tolman-Oppenheimer-Volkoff equation, by
considering the limiting case of the stiff fluid equation
of state of the dense matter. Still, in this bound the effects
of the rotation and of the existence of exotic states of
matter are ignored. On the other hand, a number of
theoretical arguments, that seemed to be supported by
the observational evidence, suggested that neutron stars

had a characteristic, unique mass of the order of 1.4 M⊙
[2]. Assuming an interaction among neutrons, the role
of the repulsive interactions should be important, thus
leading to a numerical coincidence with the Chandrasekhar
mass [3]. This coincidence led to the postulation that
some specific physical processes at the birth of a neutron
star would uniquely fix its mass [2]. However, with
the increase in the precision of the astronomical observa-
tions, the paradigm of a unique mass distribution around
1.4 M⊙ of the neutron stars has to abandoned, and the
existence of neutron stars with light ð1.174� 0.004 M⊙Þ
[4] or heavy ð2.140.010.09 M⊙Þ [5] masses is presently
well established. These masses are very different from the
long time assumed Chandrasekhar mass limit. Moreover,
in [6], it was shown, by using 54 measured values, that
the neutron star mass distribution can be represented by
bimodal distribution, with the first peak located at
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1.37 M⊙, with a much larger second peak appearing
at 1.73 M⊙.
A new window on the gravitational processes that play a

fundamental role in many astrophysical processes was
opened by the experimental detection of gravitational
waves by the LIGO and VIRGO scientific collaborations
[7,8]. The experimental study of the gravitational waves
leads to a better understanding of the properties of compact
objects, including the mass distribution of the neutron stars.
Another very important advance in gravitational physics
and astrophysics is represented by the GW170817 event
[9]. This experimental event initiated the multimessenger
era, with the signal detected worldwide by more than 60
instruments. In GW170817 the gravitational wave is
produced by the merging of two neutron stars, and it
originates from the shell elliptical galaxy NGC 4993. The
GW170817 event implies a mass of the nonrotating neutron
star of the order of M ≤ 2.3 M⊙ (see [10] for a review of
the merger of binary neutron stars). The merger of neutron
stars takes place in conditions of very high gravitational
fields, and it leads to the emission of intense fluxes of
gravitational waves that can be detected experimentally.
The experimental study of the gravitational waves also

led to some intriguing results that are likely to modify a
number of basic paradigms in present-day astrophysics.
The GW190814 event [11] indicates an unusual structure of
the mass components of the merging stars, with one of the
masses having values of the order of 2.5–2.6 M⊙ (90% con-
fidence). For this gravitational event no optical counterpart
was detected. If the observed object is a neutron star, its
high mass would contradict the paradigm of the existence
of a 1.4 M⊙ mass scale for neutron stars, or of the mass
distributions found in [6], with the mass observed in the
GW190814 event located far away from the previously
inferred peaks.
An accurate measurement of the mass of the millisecond

pulsarMSPJ0740þ 6620, usingShapiro delay, gave another
intriguing value, namely 2.14þ0.10

−0.09 M⊙ [12]. Several other
similarly high mass values have also been measured.
Recently, a companion of V723 Mon, a nearby red giant,
having a mass of around 3 M⊙, has been observed [13]. This
discovery also leads to new questions on the mass distribu-
tion of neutron stars and on the formation of black holes from
the collapse of massive objects. In fact, it was found that the
masses of neutron stars in gravitational-wave binaries are
consistent with a uniform distribution, with a greater preva-
lence of high-mass neutron stars [14].
These observations of the masses of neutron stars require

some drastic modifications in our understanding of the
structure of compact objects, since in order to explain the
observed values we need either to assume that the density is
much higher than the nuclear saturation density, leading to
a significant modification of the equation of state of dense
matter, or to assume that at high densities the gravitational
force itself changes its behavior.

There are a number of physical or astrophysical effects
that could lead to the increase of the masses of neutron stars
and thus explain the GW190814 event. The information
obtained from the GW170817 event was used in [15] to
make a probabilistic inference of the equation of state of
dense stars, which goes beyond the constraints imposed by
nuclear matter properties, which do not allow one to
distinguish between equations of state that predict different
neutron star maximum masses. Constraints on the dense
matter equation of state and neutron star properties from
PSR J0740þ 6620 and multimessenger observations were
obtained in [16]. An analysis of an updated sample of
neutron star masses, derived from the study of a variety of
96 binary systems containing at least one neutron star and
performed in [17], led to the conclusion that the maximum
mass implied by the sample is of the order of 2.5–2.6 M⊙.
A Bayesian analysis of the maximum mass of neutron stars
with a quark core, incorporating the observational data
from tidal deformability of the GW170817 binary neutron
star merger as detected by LIGO/Virgo, and the mass and
radius of PSR J0030þ 0451 gave an absolute upper bound
around 2.85 M⊙ for the mass of the star [18]. The equation
of state of dense matter, up to twice nuclear saturation
density, obtained from chiral effective field theory, and the
recent observations of neutron stars were used in [19] to
gain some insights about the high-density matter. A joint
Bayesian inference of neutron-star mass and radius con-
straints based on GW170817, observations of quiescent
low-mass x-ray binaries, photospheric radius expansion
x-ray bursts, and x-ray timing observations of J0030þ
0451, was performed in [20], indicating that the gravita-
tional-wave and electromagnetic observations of neutron-
star structure can provide a consistent picture of the
neutron-star mass-radius curve and of the equation of state.
The question of the maximum mass of neutron stars was
reconsidered in [21], by using a Markov chain Monte Carlo
approach to generate about 2 million phenomenological
equations of state, with and without first-order phase
transitions. The impact of a 2.6 solar-mass neutron star
on the nucleonic equations of state was considered in [22].
In [23] it was shown that in the recent detection of
GW190814, representing the merger of a binary with a
primary having a mass of ∼23 M⊙ and a secondary with a
mass of ∼2.6 M⊙, the secondary could be interpreted as
either the lightest black hole or the most massive neutron
star ever observed. However, it could also be an indication
of a novel class of exotic compact objects. It was also
proposed that GW190814 is the result of the merging of a
black hole–strange quark star system [24–26].
If a phase transition from neutron to quark matter takes

place in the dense matter inside a neutron star, the physical
properties of the newly formed object may be very different
as compared to the properties of standard neutron stars.
Stellar mass black holes, with masses in the range of
3.8–6 M⊙, may be quark stars in the color-flavor-locked
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(CFL) phase, as suggested in [27]. Rotating CFL quark
stars may have much higher masses than ordinary neutron
stars. One can distinguish quark stars in the CFL or
standard phases from low-mass black holes or neutron
stars through the comparative study of thin accretion disks
that form around these types of objects and Kerr black
holes, respectively [28]. A significant part of the matter
component inside a neutron star may exist in the form of a
Bose-Einstein condensate (BEC) [29]. The astrophysical
parameters of the neutron stars containing matter in the
form of a BEC strongly depend on the mass of the
condensate particle and on its scattering length. One can
conjecture that neutron stars with masses in the range of
2–2.5 M⊙ could be in fact BEC stars, containing a
significant amount of matter in a condensate phase [29].
The properties of condensate stars can also be investigated
via the electromagnetic emissions from their accretion
disks [30].
Another promising avenue for the explanation of the

high masses of some neutron stars is represented by the
possible modification of the nature and characteristics of
the gravitational interaction at very high densities. This
would require the description of the structure of neutron
stars in the framework of modified theories of gravity. A
classic result in general relativity is the Buchdahl limit [31],
which states that for stable compact objects the mass-radius
ratio must satisfy the constraint 2M=R ≤ 8=9. However,
various geometrical and physical effects can modify the
Buchdahl bound. For example, in the presence of a
cosmological constant Λ, for the mass-radius M=R ratio
neutron stars we obtain a constraint of the form 2M=R≤
ð1− 8πΛR2=3Þ½1− ð1− 2Λ=ρ̄Þ2=9ð1− 8πΛR2=3Þ�, where
ρ̄ is the mean density of the star [32]. In modified gravity
theories in which an effective contribution θνμ to the
matter energy-momentum tensor Tν

μ does appear, the
Buchdahl limit is also modified. By defining an effec-
tive density ρeffc2 ¼ ρc2=Gþ θ00 and an effective mass
meff ¼ 4π

R
r
0 r

2ρeffdr, the generalized Buchdahl bound in
modified gravity theories can be obtained as [33]

2meffðrÞ
r

≤ 1 −
�
1þ 2ð1þ fðrÞÞ

1þ 4πweffðrÞ
�
−2
; ð1Þ

where

fðrÞ ¼ 4π
ΔðrÞ

hρeffiðrÞ
�
arcsin½ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2meffðrÞ=r
p �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2meffðrÞ=r

p − 1

�
; ð2Þ

weffðrÞ ¼ peff=hρeffiðrÞ, andΔ ¼ ðG=c4Þðθ11 − θ22Þ, respec-
tively. Therefore, these general considerations indicate
that the supplementary contributions to the matter energy-
momentum tensor resulting from the modifications of the
gravitational field equations generally lead to the increase
of the mass of the compact object. The physical properties

and structure of the neutron, quark and other types of exotic
stars were in different modified gravity theories in [34–44].
The upper mass limit predictions of the baryonic mass for
static neutron stars in the context of R2 gravity were
investigated in [43]. The maximum baryonic mass of static
neutron stars was calculated by adopting several realistic
equations of state as well as the stiff matter equation of
state. It was found that maximum neutron star masses
are likely to be in the lower limits of the range of M ∼
2.4–3 M⊙ and that neutron stars cannot have gravitational
masses larger than 3 M⊙.
An interesting but forgotten and underrated modified

gravity theory was proposed by Einstein soon after the birth
of general relativity. After constructing a static model of the
Universe, which required the addition of the cosmological
constant in the gravitational field equations [45], Einstein
addressed the problem of the structure of the elementary
particles [46]. By assuming that the fundamental forces
acting on elementary particles are the gravitational force,
described by the metric tensor gμν and its derivatives, and
the electromagnetic forces, with energy-momentum tensor
Sμν, obtained from the electromagnetic fields Fμν, Einstein
proposed the basic equation describing the microscopic
world as [46]

Rμν þ λ̄gμνR ¼ κ2Sμν; ð3Þ

where κ2 ¼ 8πG=c4 is the gravitational coupling constant
and λ̄ is a constant. Taking into account that Sμμ ¼ 0, one
can determine λ̄ from the trace of Eq. (3) as λ̄ ¼ −1=4. Thus
Einstein’s equation (3) can be written as

Rμν −
1

4
gμνR ¼ κ2Sμν: ð4Þ

By assuming that the gravitational field equations in the
presence of a cosmological equation are still valid, Einstein
determined the matter energy-momentum tensor and refor-
mulated the field equation (4) as

Rμν −
1

4
gμνR ¼ κ2

�
Tμν −

1

4
Tgμν

�
: ð5Þ

The field equations (5) can be called the geometry-matter
symmetric Einstein equations. Einstein’s approach to pro-
vide a geometric solution to the problem of the structure
of the matter attracted very little interest [47,48]. It was
however briefly mentioned as a possible solution to the
cosmological constant problem, since it follows from
geometry-matter symmetric Einstein equations as an inte-
gration constant [49].
Rastall [50] proposed a theory somehow similar to

Einstein’s theory of elementary particles, in which the
electromagnetic energy-momentum tensor in Eq. (3) is
replaced by the ordinary matter energy-momentum tensor,
Sμν → Tμν, with the field equations given by
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Rμν þ λ̄gμνR ¼ κ2Tμν: ð6Þ

Hence, the matter energy-momentum tensor is not con-
served, and ∇μT

μ
ν ¼ λ∇νR, λ ¼ const. However, in [51] it

was shown that the Rastall theory is just a particular case of
the fðR; TÞ gravity theory [52], where T is the trace of the
energy-momentum tensor, a modified gravity theory that is
based on the existence of nonminimal curvature-matter
coupling.
Einstein’s theory of elementary particles was reinter-

preted as a vector-type dark energy model in [53], by
considering a gravitational action containing a linear
combination of the Ricci scalar R and of the trace of the
ordinary matter energy-momentum tensor T. The existence
of a massive self-interacting vector-type dark energy field
coupled with the matter current was also assumed. In this
model the matter energy-momentum tensor is not con-
served, and thus the resulting gravitational field equations
can also be interpreted by using the formalism of the
thermodynamics of open systems as describing particle
generation from the gravitational field. In the vacuum case
the model admits a de Sitter–type solution. The cosmo-
logical parameters, including Hubble function, deceleration
parameter, and matter energy density, have been obtained
as a function of the redshift by using analytical and
numerical techniques and for different values of the model
parameters. In [53] it was shown that for all considered
cases the Universe experiences an accelerating cosmologi-
cal expansion, ending with a de Sitter–type evolution. Also,
in [54] the growth rate of matter perturbations in the
Einstein dark energy theory is considered. The dynamical
system analysis of this model has shown that there are three
fixed points corresponding to the dust, radiation and de
Sitter universes. In [54], the model parameters are fitted
with observational data, using two independent datasets
corresponding to the Hubble parameter H and also σ8.
The theory is then shown to be consistent with observa-
tional data.
It is the goal of the present paper to investigate the

properties of relativistic compact high-density objects in
the generalized vector-tensor version of the Einstein dark
energy model [53]. To study the interior solutions of the
field equations we adopt a static spherically symmetric
geometry for the star, and we assume that the matter content
is represented by a perfect fluid. Then, after writing down
the gravitational field equations, as a first step in our study
we derive the mass continuity equation and the Tolman-
Oppenheimer-Volkoff equation, which describe, together
with the equation of motion of the vector field, the basic
astrophysical parameters (mass and radius) of the star. The
stellar structure equations in the Einstein dark energy
model are then solved numerically for several equations
of state of the dense matter. As for the self-interaction
potential of the vector field we assume that it either
vanishes or is quadratic in the vector field potential.

As a first specific example of a high-density compact
object in the theory, we consider the case of the constant
density stars. Even though this kind of object is not
considered appropriate for a realistic description of stellar
objects, they still have a major theoretical importance. As a
second class of stars we consider quark stars in both
standard phase, described by the MIT bag model equation
of state, and in the color-flavor-locked phase, in which the
quarks form Cooper pairs, whose color properties are
correlated with their flavor properties in a one-to-one
correspondence between three color pairs and three flavor
pairs. The color-flavor-locked phase is the highest-density
pase of three-flavor colored matter. The Bose-Einstein
condensate equation of state, corresponding to a polytropic
equation of state with polytropic index n ¼ 1, is considered
within the framework of the Einstein dark energy model.
Finally, we will consider stars described by using effective
nuclear interactions of the Skyrme type (SLy). For all these
matter equations of state the global astrophysical param-
eters of the compact objects (radius and mass), as well as
the vector field, are obtained in both standard general
relativity and the Einstein dark energy model. This
approach allows us to perform an in-depth comparison
of the two theories that could be used for the description of
stellar properties and internal structure. As a general
conclusion of our investigations we find that the Einstein
dark energy model permits the existence of more massive
stable stellar objects, as compared to standard general
relativity.
The present paper is organized as follows. The varia-

tional principle of the Einstein dark energy model is
introduced in Sec. II, where the corresponding field
equations are also presented. The spherically symmetric
static gravitational field equations are also written down,
and the generalized Tolman-Oppenheimer-Volkoff and
mass continuity equations are derived. In Sec. III several
stellar models, corresponding to different equations of state
of the dense matter, are investigated, including constant
density stars and quark stars in normal and CFL phase, as
well as Bose-Einstein condensate and Sly stars, for two
particular forms of the vector field self-interaction poten-
tial. We discuss and conclude our results in Sec. IV.

II. COMPACT STARS IN THE EINSTEIN
DARK ENERGY MODEL

The action and field equations of Einstein dark energy
model have been introduced in [53]. In this approach to the
dark energy problem we assume that the Universe is filled
with a cosmological dark energy vector field ΛμðxνÞ. We
define the dark energy strength tensor according to

Cμν ¼ ∇μΛν −∇νΛμ: ð7Þ

In the following we investigate the local effects of such a
vector field, which may not be necessarily related to the

ZAHRA HAGHANI and TIBERIU HARKO PHYS. REV. D 105, 064059 (2022)

064059-4



cosmological dynamics. We define the energy-momentum
tensor Tμν of the baryonic matter fields as

Tμν ¼ −
2ffiffiffiffiffiffi−gp ∂ð ffiffiffiffiffiffi−gp

LmÞ
∂gμν ; ð8Þ

where Lm is the Lagrangian of the ordinary matter.
The Einstein dark energy model action is given by [53]

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
1

2κ2
ð1 − β1ÞRþ β2

2
T −

1

4
CμνCμν

þ VðΛ2Þ þ Lm

�
; ð9Þ

where β1 and β2 are two arbitrary dimensionless constants.
Also, the potential term V is an arbitrary function of
Λ2 ¼ ΛμΛμ.
The energy-momentum tensor Sμν of the dark energy

field is given by

Sμν ¼ CμαCν
α −

1

4
gμνCαβCαβ; ð10Þ

and it has the property Sμμ ¼ 0.
Varying the action (9) with respect to the metric gives the

field equations

κ2ð1 − β1ÞGμν −
1

2
Sμν −

1

2
gμνV þ ΛμΛνV 0

¼ 1

2
ð1þ β2ÞTμν −

1

2
β2

�
Lm −

1

2
T

�
gμν; ð11Þ

where a prime denotes derivative with respect to the
argument of the function.
By varying the action (9) with respect to the vector

potential of the field, we obtain the equation

∇νCμν ¼ 2ΛμV 0: ð12Þ

By taking the divergence of the metric field equa-
tion (11), and using Eq. (12), one obtains the balance
equation of the matter energy-momentum tensor as

∇μTμν ¼
β2

1þ β2
∇ν

�
Lm −

1

2
T

�
: ð13Þ

A. Field equations for high-density static
spherically symmetric objects

In order to investigate the properties of dense stars in the
Einstein dark energy model, we adopt for the line element
the standard static, spherically symmetric form, given by

ds2 ¼ −e−2fðrÞdt2 þ 1

1 − 2mðrÞ=r dr
2 þ r2dΩ2; ð14Þ

where the two metric tensor components gtt ¼ −e−2fðrÞ and
grr ¼ 1=ð1 − 2mðrÞ=rÞ are functions of the radial coordi-
nate r only. As for the vector field, we adopt the ansatz

Λμ ¼
ffiffiffiffiffiffiffiffi
jgttj

p
hðrÞδμt ; ð15Þ

where hðrÞ is an arbitrary function to be determined from
the field equations. The energy-momentum tensor of the
matter is given by

Tμν ¼ ðpþ ρÞuμuν þ pgμν; ð16Þ

where ρ and p are the energy density and pressure,
respectively.
With these assumptions, the vector field equation (12)

becomes

h00
�
1 −

2m
r

�
þ h0

�
m
r2
ð2rf0 − 3Þ − f0 −

m0 − 2

r

�

þ h

�
m0 − 2

r
f0 þ 3m

r2
f0 − f00

�
1 −

2m
r

�
− 2V 0

�
¼ 0;

ð17Þ

where VðΛ2Þ ¼ Vð−h2Þ.
The balance equation of the energy-momentum tensor

Eq. (13) gives

2p0 − β2ðρ0 þ p0Þ ¼ 2ð1þ β2Þðρþ pÞf0: ð18Þ

The components of the metric field equations are then as
follows (in the following we set κ2 ¼ 1):

4ð1 − β1Þ
m0

r2
¼ 2ρþ β2ðρ − 3pÞ þ ρΛ; ð19Þ

4ð1− β1Þ
�
m
r3

þ f0

r

�
1−

2m
r

��
¼ −2p− β2ð5pþ ρÞ þ pΛ;

ð20Þ

2ð1 − β1Þ
��

1 −
2m
r

�
ðf00 − f02Þ þ

�
m0 −

m
r

�
f0

r

þ 1

r2

�
m0 −

m
r

��
¼ −2p − β2ð5pþ ρÞ þ pΛ; ð21Þ

where we have denoted

ρΛ ¼
�
1 −

2m
r

�
ðh02 − 2hh0f0 þ h2f02Þ þ 2V þ 4h2V 0

ð22Þ
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and

pΛ ¼ ρΛ − 4h2V0; ð23Þ
respectively.
In the following we will assume that the dense matter

satisfies a barotropic equation of state, p ¼ pðρÞ. Hence,
dp=dr ¼ ðdp=dρÞðdρ=drÞ, giving dρ=dr ¼ ð1=c2sÞ×
ðdp=drÞ, where c2s ¼ dp=dρ is the speed of the sound.
Hence, Eq. (18) can be written as

p0 ¼ −
ð1þ β2Þðρþ pÞf0

ðβ2=2Þð1þ 1=c2sÞ − 1
: ð24Þ

Since the pressure must be a monotonically decreasing
function inside the star, the condition p0 < 0 must hold
∀ r ∈ ½0; RÞ, and thus the coupling parameter β2 > 0 must
satisfy the constraint

β2
2

�
1þ 1

c2s

�
> 1: ð25Þ

By expressing f0 from Eq. (20), and after substituting
it in Eq. (24), we obtain the generalized Tolman-
Oppenheimer-Volkoff (TOV) equation in the Einstein dark
energy model as

dpðrÞ
dr

¼ −
ð1þ β2ÞðρðrÞ þ pðrÞÞf½pΛ − 2pðrÞ − β2ð5pðrÞ þ ρðrÞÞ�r3 − 4ð1 − β1ÞmðrÞg

4ð1 − β1Þ½ðβ2=2Þð1þ 1=cs2Þ − 1�r2ð1 − 2mðrÞ=rÞ : ð26Þ

The TOVequation must be solved together with the mass
continuity equation, which takes the form

dmðrÞ
dr

¼ 1

4ð1 − β1Þ
½2ρðrÞ þ β2ðρðrÞ − 3pðrÞÞ þ ρΛ�r2;

ð27Þ

and with the boundary conditions mð0Þ ¼ 0, ρð0Þ ¼ ρc,
and pðRÞ ¼ 0, respectively.
In the next sections, we will consider different kinds of

equation of states for the compact stars. In order to simplify
the mathematical formalism for the study of dense stellar-
type objects we will use a set of dimensionless parameters,
defined as follows:

p ¼ ρcp̄; ρ ¼ ρcρ̄; m̄ ¼ ffiffiffiffiffi
ρc

p
m

η ¼ ffiffiffiffiffi
ρc

p
r; h ¼ ρch̄; ð28Þ

where ρc is the central density of the star.

B. Constraints on the model parameters

The nature and structure of the stellar models in the
Einstein dark energy model essentially depend on the
model parameters β1 and β2, respectively. There are a
number of high-precision observational tests that allow one
to obtain very strong constraints on the free parameters of
the gravitational theories. Such tests are represented by the
Shapiro delay observations in the case of massive objects
[56,57], which can yield precise masse determinations for
both a millisecond pulsar and its companion star. However,
it is important to point out that the delay effect can only be
easily observed in a small subset of high-precision, highly
inclined (nearly edge-on) binary pulsar systems [57]. By
using the Shapiro delay effect the mass of PSR J1614-2230,

which show a strong Shapiro delay signature, has been
determined to be 1.97� 0.04 M⊙ [56], while for the mass
of the millisecond pulsar MSP J0740þ 6620 the value
2.14þ0.10

−0.09 M⊙ [57] has been obtained. Further important
tests of gravity theories can be obtained from the precession
of the planet Mercury [58] or from the study of the recently
detected gravitational waves [59].
The allowable range of the parameters β1 and β2 of the

Einstein dark energy model, and of the potential of the form
VðΛ0Þ ¼ V0 þ νΛ2

0, where V0 and ν are constants, was
investigated in the cosmological setting in [53]. Since the
time variation of the gravitational constant G, which also
contains the model parameter β1 is very small, in the
cosmological approach it has been neglected from the field
equations, by taking β1 ≈ 0. Secondly, the constant term in
the potential can be interpreted as the cosmological con-
stant. As for β2, in order to obtain consistency with the
cosmological observations at low redshift, it must take
values in the range β2 ≤ 4. This high value of β2 is not
surprising, since in the present model dark energy, repre-
senting around 75% of the energy of the Universe, is
generated from ordinary matter (around 25%), via the
coupling β2T in the matter Lagrangian. Hence, in the
cosmological approach, the contribution of the term β2T,
together with that of the vector field potential, must exceed
several times the contribution coming from the matter
Lagrangian alone, so that this term can act as dark energy.
As for the parameters of the potential V, V0 can be
interpreted as a cosmological constant, while ν is deter-
mined so that the Universe enters in a de Sitter accelerat-
ing phase.
However, the situation is different in the case of high-

density compact objects. The contribution to the total
energy balance of the term β2T, containing the trace of
the energy-momentum tensor, cannot exceed significantly
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the contribution of the matter Lagrangian Lm, and it gives
mostly a gravitational-type correction to the energy content
of the star. Hence, in the following wewill assume that β2 is
smaller than 1, β2 < 1. Moreover, we will not impose any
a priori restrictions on the sign of β2, allowing both positive
and negative values for it. In vacuum, the gravitational field
equations of the Einstein dark energy model reduce to the
standard form of a vector-tensor theory,

κ2ð1 − β1ÞGμν −
1

2
Sμν −

1

2
gμνV þ ΛμΛνV 0 ¼ 0: ð29Þ

If the vector field potential can be neglected, the vacuum
spherically symmetric solution of Eq. (29) is given by the
effective Reissner-Nordström metric, with gtt ¼−ð1− 2M=
rþQ=r2Þ and grr ¼ 1=ð1 − 2M=rþQ=r2Þ, respectively,
where Q ¼ Q0=κ2ð1 − β1Þ, with Q0 an integration con-
stant, plays the role of an effective charge. The effective
chargeQ can be constrained from the perihelion precession
of Mercury as [60]

jQj ≤ M⊙að1 − e2Þ
π

Δϕ; ð30Þ

where a is the semimajor axis of the planet, e the
eccentricity of the orbit, and Δϕ ¼ δϕObs − δϕGR ¼
0.17� 0.21 arc sec per century is the excess perihelion
precession that cannot be explained by general rela-
tivity. By taking into account the observational data for
Mercury [58], we obtain jQj ≤ ð5.17� 6.39Þ × 104 m2, or
jQj ≤ ð1.32� 1.63Þ × 1030 MeV−2. Hence for β1 we
obtain the expression

β1 ≤ 1 −
πQ0

κ2 M⊙að1 − e2ÞΔϕ : ð31Þ

Hence the value of β1 depends on the dark energy charge
Q0 of the central object. If the second term in the above
equation can be neglected, then the restriction for β1
reduces to β1 ≤ 1, a condition required to assure the
positivity of the gravitational coupling. However, in the
following we will assume that the dark energy chargeQ0 of
the dense compact objects is high, and we will assume that
β1 can take positive values in the range β1 ≤ 0.10, and we
will also allow negative values for it.

III. DENSE STELLAR-TYPE STRUCTURES IN THE
EINSTEIN DARK ENERGY MODEL

In the following we will consider the structure and
astrophysical properties of several classes of compact
objects in the Einstein dark energy model. In particular,
we will investigate constant density stars, two types of
quark stars, with the first, described by the MIT bag model
equation of state, consisting of a mixture of u, d and s
quarks. At ultrahigh densities, quark matter may exist in a

variety of superconducting states, in the so-called CFL
phase. An interesting class of objects is represented by the
Bose-Einstein condensate stars, in which it is assumed that
the dense matter underwent a phase transition to form a
Bose-Einstein condensate. For each case we will consider
two forms of the vector field potential, corresponding to the
cases V ¼ 0 and to the Higgs type V ¼ λþ aΛμΛμ [55],
respectively, where a and λ are constants.

A. Constant density stars

The first interior solution of the Einstein gravitational
field equations was obtained by Schwarzschild in 1916 [61]
under the assumption of the constant density of the star.
It has a remarkable mathematical simplicity, and despite
the fact that it is generally considered as not providing a
realistic description of neutron stars, its properties have
been intensively investigated [62]. In particular, for con-
stant density stars the Buchdahl bound becomes exact, so
that 2M=R ¼ 8=9.
We begin our study of the compact objects in the

Einstein dark energy model by considering the case in
which the density is constant throughout the star. In the
following we study the numerical solution of the model
for ρ ¼ const ¼ 2.15 × 1014 g=cm3.

1. The case V = 0

The behaviors of mass and pressure and of the nonzero
component of the vector dark energy h̄ inside the star are
presented in Figs. 1 and 2, respectively.
As one can see from Fig. 1, the mass profile is an

increasing function of η, while the pressure is a monoton-
ically decreasing function, vanishing on the surface of the
star. In Fig. 2 is shown that the dimensionless vector field is
a monotonically decreasing function of η inside the star and
outside the star also decreases and asymptotically reaches
to a constant value. All physical parameters are strongly
dependent on the model parameters β1 and β2.
The mass-radius relation for this case in shown in

Fig. 3. To obtain the M − R plots we have considered
the central pressure in the range 1.89 × 1032 erg=cm3 ≤
p ≤ 2.16 × 1035 erg=cm3.

2. The case V = λ+ aΛμΛμ

Next, we consider the effects of a nonzero potential,
given by V ¼ λþ aΛμΛμ, where a and λ are constant, on
the quark star structure. The dimensionless parameters in
the potential are defined as

λ ¼ ρcλ̄; a ¼ 1

ρc
ā: ð32Þ

We also assume that λ cannot exceed the central density
ρc, and hence we will take λ̄ < 1. Similarly, we will impose
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the restriction ā < 1 on the dimensionless coefficient
of Λ0Λ0.
In the following we set β1 ¼ 0.10 and β2 ¼ 0.15 and

consider the role of the different values of the parameters in
the potential term. The behaviors of the mass and pressure
inside the constant density star are shown in Fig. 4. One can
see the behavior of the nonzero component of the vector
dark energy h̄, inside and outside of the constant density
star in Fig. 5. Inside the star it is monotonically decreasing
function of η. However outside the star, the behavior of h̄
strongly depends on the potential parameters.
The physical properties of the constant density stars are

dependent on the potential parameters, and they determine

some significant differences as compared to the standard
general relativistic behavior. The dark energy vector field
has a similar behavior to the V ¼ 0 case.
The mass-radius relation for this case is presented

in Fig. 6, with the central pressure varying in the range
1.89 × 1032 to 2.16 × 1035 erg=cm3.
Significant differences with respect to the standard

general relativistic case can be observed, indicating a
dependence of the mass of the Einstein dark energy model
on the potential parameters.

B. MIT bag model strange quark stars

A large number of theoretical and experimental inves-
tigations of the baryonic structure indicates that strange

FIG. 2. Variation of the temporal component of dark energy
vector field inside and outside (solid lines) of the star with
constant density as a function of the radial distance from the
center of the star η for V ¼ 0 and for three different values of the
constants β1 and β2: β1 ¼ 0.10 and β2 ¼ 0.15 (dashed curve),
β1 ¼ 0.10 and β2 ¼ −0.15 (dotted curve), and β1 ¼ −0.20 and
β2 ¼ 0.15 (dot-dashed curve). For the central pressure of the star
we have adopted the value pc ¼ 1.93 × 1035 erg=cm3, while
h̄0 ¼ 0.1 and h̄00 ¼ 0.5.

FIG. 3. The mass-radius relation for constant density stars for
V ¼ 0 and for three different values of the constants β1 and β2:
β1 ¼ 0.10 and β2 ¼ 0.15 (dashed curve), β1 ¼ 0.10 and β2 ¼
−0.15 (dotted curve), and β1 ¼ −0.20 and β2 ¼ 0.15 (dot-dashed
curve). The initial values of the vector field are h̄0 ¼ 0.1 and
h̄00 ¼ 0.5. The solid curve represents the standard general
relativistic mass-radius relation for constant density stars.

FIG. 1. Variation of the interior mass and pressure profiles of a constant density star as a function of the dimensionless radial distance η
from the center of the star for V ¼ 0 and for three different values of the constants β1 and β2: β1 ¼ 0.10 and β2 ¼ 0.15 (dashed curve),
β1 ¼ 0.10 and β2 ¼ −0.15 (dotted curve), and β1 ¼ −0.20 and β2 ¼ 0.15 (dot-dashed curve). For the central pressure of the star we
have adopted the value pc ¼ 1.93 × 1035 erg=cm3, while h̄0 ¼ 0.1 and h̄00 ¼ 0.5. The solid curve represents the standard general
relativistic mass and pressure profile.
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quark matter, consisting of the u (up), d (down) and s
(strange) quarks is energetically the most favorable state of
baryonic matter. The possibility of the existence of stars
made of quarks was initially suggested in [63,64], and it
was later reconsidered in [65,66].
The theory of quark matter is based on the fundamental

quantum chromodynamics (QCD) Lagrangian, which is
given by [67–69]

LQCD ¼ 1

4

X
a

Fa
μνFaμνþ

XNf

f¼1

ψ̄

�
iγμ∂μ−

1

2
gγμAa

μλ
a−mf

�
ψ ;

ð33Þ

where the various quark flavors u, d, and s are denoted
collectively by the subscript f, the vector potential Aa

μ takes
values in the Lie algebra with generators λa, and g is a
coupling constant, respectively. The gluon field strength
Fa
μν is defined as

Fa
μν ¼ ∂μAa

ν − ∂νAa
μ þ gfabcAb

μAc
ν: ð34Þ

QCD indicates that at short distances (or high momenta
Q2) the quark-quark interactions weaken. Moreover, for
high momenta Q2 the coupling constant g2ðQ2Þ vanishes,
and for Nf → 33=2 it tends to infinity.
By neglecting the quark masses and considering that

the interactions of quarks and gluons are weak, it follows

FIG. 4. Variation of the interior mass and pressure profiles of constant density star as a function of the radial distance from the center of
the star η, for V ¼ λþ aΛμΛμ and for three different values of the constants λ̄ and ā: λ̄ ¼ 0 and ā ¼ −0.5 (dashed curve), λ̄ ¼ 0.21 and
ā ¼ 0.0 (dotted curve), and λ̄ ¼ −0.21 and ā ¼ 0.0 (dot-dashed curve). For the central pressure of the star we have adopted the value
pc ¼ 1.93 × 1035 erg=cm3, while h̄0 ¼ 0.1 and h̄00 ¼ 0.5. The solid curve represents the standard general relativistic mass and density
profile for constant density stars.

FIG. 5. Variation of the temporal component of dark energy
vector field inside and outside (solid lines) the constant density
star as a function of the radial distance from the center of the
star η for V ¼ λþ aΛμΛμ and for three different values of the
constants λ̄ and ā: λ̄ ¼ 0 and ā ¼ −0.5 (dashed curve), λ̄ ¼ 0.21
and ā ¼ 0.0 (dotted curve), and λ̄ ¼ −0.21 and ā ¼ 0.0 (dot-
dashed curve). For the central pressure of the star we have
adopted the value pc ¼ 1.93 × 1035 erg=cm3, while h̄0 ¼ 0.1 and
h̄00 ¼ 0.5.

FIG. 6. The mass-radius relation for constant density stars for
V ¼ λþ aΛμΛμ and for three different values of the constants λ̄
and ā: λ̄ ¼ 0 and ā ¼ −0.5 (dashed curve), λ̄ ¼ 0.21 and ā ¼ 0.0
(dotted curve), and λ̄ ¼ −0.21 and ā ¼ 0.0 (dot-dashed curve).
The initial values are h̄0 ¼ 0.1 and h̄00 ¼ 0.5. The solid curve
represents the standard general relativistic mass-radius relation
for constant density stars.
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that the equation of state of strange quark matter is given
by [67–69]

ρ ¼
�
1 −

15

4π
αs

�
8π2

15
T 4 þ Nf

�
1 −

50

21π
αs

�
7π2

10
T 4

þ
X
f

3

�
1 − 2

αs
π

��
π2T 2 þ μ2f

2

�
μ2f
π2

þ B; ð35Þ

where T ≠ 0 denotes the temperature of the quark-gluon
plasma, B is the difference between the energy density of
the perturbative and nonperturbative QCD vacuum (the bag
constant), μf is the chemical potential, Nf is the number of
active quark flavors, and αs is the strong interaction
coupling constant, respectively. Equivalently, we obtain

pþ B ¼
X

i¼u;d;s;e−;μ−
pi: ð36Þ

In its simplest form the bag model equation of state takes
the form [67–69]

ρðT Þ ¼ σSBT 4 þ B; pðT Þ ¼ σSB
3

T 4 − B; ð37Þ

where the energy density ρ and the pressure p of the quark
gluon plasma are assumed to have a simple dependence
on the temperature T , modified, with respect to the
radiation gas, by the addition of the positive constant B.
The Stefan-Boltzmann constant σSB in Eq. (37) is given by
σSB ¼ ðπ2=30ÞðdB þ 7dF=8Þ, where dB and dF denote the
degeneracy factors for the gluons, and quarks and anti-
quarks, respectively [67–69]. Equation (37) is assumed to

FIG. 7. Variation of the interior mass and pressure profiles of the MIT quark star as a function of the radial distance from the center of
the star η for V ¼ 0 and for three different values of the constants β1 and β2: β1 ¼ 0.10 and β2 ¼ 0.15 (dashed curve), β1 ¼ 0.10 and
β2 ¼ −0.15 (dotted curve), and β1 ¼ −0.20 and β2 ¼ 0.15 (dot-dashed curve). For the central density of the star we have adopted the
value ρc ¼ 2.45 × 1015 g=cm3, while h̄0 ¼ 0.1 and h̄00 ¼ 0.5. The solid curve represents the standard general relativistic mass and
density profile for MIT quark stars.

FIG. 8. Variation of the temporal component of dark energy
vector field inside and outside (solid lines) of the MIT quark star
as a function of the radial distance from the center of the star η for
V ¼ 0 and for three different values of the constants β1 and β2:
β1 ¼ 0.10 and β2 ¼ 0.15 (dashed curve), β1 ¼ 0.10 and β2 ¼
−0.15 (dotted curve), and β1 ¼ −0.20 and β2 ¼ 0.15 (dot-dashed
curve). For the central density of the star we have adopted the
value ρc ¼ 2.45 × 1015 g=cm3, while h̄0 ¼ 0.1 and h̄00 ¼ 0.5.

FIG. 9. The mass-radius relation for MIT quark stars for V ¼ 0
and for three different values of the constants β1 and β2: β1 ¼
0.10 and β2 ¼ 0.15 (dashed curve), β1 ¼ 0.10 and β2 ¼ −0.15
(dotted curve), and β1 ¼ −0.20 and β2 ¼ 0.15 (dot-dashed
curve). The initial values are h̄0 ¼ 0.1 and h̄00 ¼ 0.5. The solid
curve represents the standard general relativistic mass-radius
relation for MIT quark stars.
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be valid at temperatures T > T c, where T c is the critical
temperature of a first-order phase transition in the SUð3Þ
quark-gluon plasma model, or it is the temperature of a
smooth crossover in the full QCD theory [69].
Therefore, from Eq. (37) it follows that the thermody-

namic parameters of the strange quark-gluon plasma are
related, in the first order of approximation, by the MIT bag
model equation of state, given by

p ¼ 1

3
ðρ − 4BÞ: ð38Þ

Hence, in the MIT approximate description quarks and
gluons can freely move inside the bag, and by squeezing
the bags against each other, the deconfined phase can
appear. At high baryon numbers and high energy densities,
the components of the quark-gluon plasma can move freely
over large regions inside a star. When investigating stellar
strange quark-gluon plasma the assumption of the electric
charge neutrality must also be imposed, which can be
formulated generally as

X
i¼u;d;s;e−;μ−

qini ¼ 0: ð39Þ

For a star formed from massless u, d and s quarks,
the charge neutrality condition is given by 2nu=3 ¼
ðnd þ nsÞ=3.

Equation (38) corresponds to the equation of state of a
system of massless particles, with perturbative interactions,
and negative corrections due to the QCD trace anomaly. For
αs ¼ 0.5, the energy density of a strange quark-gluon plasma
is lessened, at a given temperature, by a factor of the order of
2 [67–69]. In the following, wewill investigate the properties
of dense stellar objects obeying the equation of state (38) in
the Einstein dark energy model. For the quark model
equation of state the trace of the energy-momentum tensor
(or the trace anomaly) is T ¼ −ρþ 3p ¼ −4B < 0.
For the bag constant we adopt the numerical value

B ¼ 1.03 × 1014 g=cm3. For this case, in general rela-
tivity, the maximum mass of the star is M=M⊙ ¼ 2.00
with radius R¼10.92km [65,66] and central density
ρc ¼ 1.98 × 1015 g=cm3.
We will consider two separate cases corresponding to

zero potential and nonzero potential, respectively, for the
dark energy vector. In all cases the central density is
ρc ¼ 2.45 × 1015 g=cm3, and the initial conditions for
the temporal component of the vector field are h̄0 ¼ 0.1
and h̄00 ¼ 0.5. The stop point in integration is where the
pressure becomes zero, i.e., ρ ¼ 4B.

1. The case V = 0

The behaviors of mass and pressure inside theMIT quark
star are presented in Figs. 7, and 8 shows the behavior of
nonzero component of the vector dark energy h̄ inside and
outside of the MIT quark star. As one can see from the
figures, the mass distribution is a monotonically increasing
function of r. On the other hand, the pressure is mono-
tonically decreasing and becomes zero for a finite value
r ¼ R of the radial coordinate, with R giving the radius of
the star. The variation of the temporal component of the
Einstein dark energy vector field is shown in Fig. 8. h̄
reaches its maximum at the stellar center and decreases

TABLE I. The maximum masses and corresponding radii and
central densities for the MIT bag model stars for V ¼ 0.

β1 −0.20 0.10 0.10
β2 0.15 −0.15 0.15
Mmax=M⊙ 2.49 1.13 2.16
RðkmÞ 12.31 10.52 10.66
ρc × 10−15 ðg=cm3Þ 1.96 2.22 1.96

FIG. 10. Interior mass and pressure profiles of MIT quark stars as a function of the dimensionless radial distance from the center of the
star η for V ¼ λþ aΛμΛμ and for three different values of the constants λ̄ and ā: λ̄ ¼ 0 and ā ¼ −0.5 (dashed curve), λ̄ ¼ 0.06 and
ā ¼ 0.0 (dotted curve), and λ̄ ¼ −0.06 and ā ¼ 0.0 (dot-dashed curve). For the central density of the star we have adopted the value
ρc ¼ 2.45 × 1015 g=cm3, while h̄0 ¼ 0.1 and h̄00 ¼ 0.5. The solid curve represents the standard general relativistic mass and density
profile for MIT quark stars.
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toward the star’s surface. Finally, it reaches a constant value
outside the star.
The mass-radius relation for this case is presented in

Fig. 9. To obtain Fig. 9 we have considered a range of
central densities varying between 4.6 × 1014 and
2 × 1016 g=cm3. Different values of the coupling param-
eters can induce large departures as compared to the
standard general relativistic case, leading to stars having
both much larger, and much smaller, maximum masses.
Some specific parameters of the MIT bag model quark

stars are presented in Table I. For a negative value of the
parameter β1, a significant increase in the maximum mass
of the quark does occur. On the other hand, a negative β2
leads to a drastic decrease in the maximum mass,
with values of the order of 1.13 M⊙. The maximum mass
values are reached for central densities of the order of
ρc ≈ 2 × 1015 g=cm3.

2. The case V = λ+ aΛμΛμ

Now, the effects of a nonzero potential, given by
V ¼ λþ aΛμΛμ, are considered on the quark star structure.
In the following we have set β1 ¼ 0.10 and β2 ¼ 0.15, and
we investigate the role of the different values of the
parameters in the potential term. The behaviors of the
mass and pressure inside the MIT quark star are presented
in Fig. 10. The mass is a monotonically increasing function
inside star, while the pressure becomes zero on the stellar
surface. The evolution of p̄ does not show a significant
dependence on the potential parameters. One can also see
the behavior of the nonzero component of the vector dark
energy h̄ inside and outside the MIT quark star in Fig. 11.
The vector field monotonically decreases inside the star.

The evolution of h̄ outside the star depends on the
parameters of the potential.
The mass-radius relation for this case in shown in

Fig. 12. The presence of the potential of the vector field
strongly influences the maximum mass of the star, which
can reach values as high as 2.81 M⊙. Selected maximum
mass values of the quark stars in the Einstein dark energy
model are presented in Table II.

C. CFL quark stars

At very high densities the quarks may form Cooper pairs,
whose color properties are correlated with their flavor
properties in a one-to-one correspondence between three
color pairs and three flavor pairs. The CFL phase is the
highest-density phase of three-flavor colored matter. There
is presently an almost general consensus that, even if the
quark masses are unequal, the CFL phase of quarks
represents the ground state of matter, at least for asymptotic
densities [70–75]. The equal number of flavors is imposed
by symmetry considerations. In this phase there is no need
for electrons to be present, since the quark-gluon plasma is
neutral. The properties of the quark matter in the CFL phase
depend significantly on the values of the deconfinement

FIG. 11. Variation of the temporal component of dark energy
vector field inside and outside (solid lines) of the MIT quark star
as a function of the radial distance from the center of the star η for
V ¼ λþ aΛμΛμ and for three different values of the constants λ̄
and ā: λ̄ ¼ 0 and ā ¼ −0.5 (dashed curve), λ̄ ¼ 0.06 and ā ¼ 0.0
(dotted curve), and λ̄ ¼ −0.06 and ā ¼ 0.0 (dot-dashed curve).
For the central density of the star we have adopted the value
ρc ¼ 2.45 × 1015 g=cm3, while h̄0 ¼ 0.1 and h̄00 ¼ 0.5.

FIG. 12. The mass-radius relation for MIT quark stars for V ¼
λþ aΛμΛμ and for three different values of the constants λ̄ and ā:
λ̄ ¼ 0 and ā ¼ −0.5 (dashed curve), λ̄ ¼ 0.06 and ā ¼ 0.0
(dotted curve), and λ̄ ¼ −0.06 and ā ¼ 0.0 (dot-dashed curve).
The initial values are h̄0 ¼ 0.1 and h̄00 ¼ 0.5. The solid curve
represents the standard general relativistic mass-radius relation
for MIT quark stars.

TABLE II. The maximum masses and the corresponding
radii and central densities for the MIT bag model stars for
V ¼ λþ aΛμΛμ and for β1 ¼ 0.10 and β2 ¼ 0.15.

λ̄ −0.06 0.0 0.06
ā 0.0 −0.5 0.0
Mmax=M⊙ 1.71 2.17 2.81
RðkmÞ 10.01 10.66 11.49
ρc × 10−15 ðg=cm3Þ 3.24 1.96 1.13
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phase transition density and on the CFL gap parameter.
From both theoretical and experimental points of view the
numerical values of these parameters are not well known.
For quark matter in the CFL phase the free energy density
ΩCFL is given by [76]

ΩCFLðμ; μeÞ ¼ Ωquarks
CFL ðμÞ þ ΩGB

CFLðμ; μeÞ þ Ωelectrons
CFL ðμeÞ;

ð40Þ

where by ΩGB
CFL we have denoted the contribution from

the Goldstone bosons, coming from the breaking of
chiral symmetry of the CFL phase, and μe is the chemical
potential of the electrons. If the massms of the s quark is of
the same order of magnitude as the chemical potential μ,

one can approximate the thermodynamical potential of the
quark matter in the CFL phase as [77]

ΩCFL ¼ −
3μ4

4π2
þ 3m2

s

4π2
−
1 − 12 ln ðms=2μÞ

32π2
m4

s

−
3

π2
Δ2μ2 þ B; ð41Þ

where Δ denotes the gap energy. FromΩCFL the expression
for the pressure P of the quark matter in the CFL phase is
obtained as a function of the energy density ρ as [77]

P ¼ 1

3
ðρ − 4BÞ þ 2Δ2δ2

π2
−
m2

sδ
2

2π2
; ð42Þ

where

FIG. 13. Variation of the interior mass and density profiles of CFL quark stars for V ¼ 0 as a function of the radial distance from the
center of the star η, for three different values of the constants β1 and β2: β1 ¼ 0.10 and β2 ¼ 0.15 (dashed curve), β1 ¼ 0.10 and
β2 ¼ −0.15 (dotted curve), and β1 ¼ −0.20 and β2 ¼ 0.15 (dot-dashed curve). For the central density of the star we have adopted the
value ρc ¼ 2.45 × 1015 g=cm3, while h̄0 ¼ 0.1 and h̄00 ¼ 0.5. The solid curve represents the standard general relativistic mass and
density profile for CFL quark stars.

FIG. 14. Variation of the temporal component of dark energy
vector field inside and outside (solid lines) of the CFL quark star
as a function of the radial distance from the center of the star η, for
three different values of the constants β1 and β2: β1 ¼ 0.10 and
β2 ¼ 0.15 (dashed curve), β1 ¼ 0.10 and β2 ¼ −0.15 (dotted
curve), and β1 ¼ −0.20 and β2 ¼ 0.15 (dot-dashed curve). For
the central density of the star we have adopted the value
ρc ¼ 2.45 × 1015 g=cm3, while h̄0 ¼ 0.1 and h̄00 ¼ 0.5.

FIG. 15. The mass-radius relation for CFL quark stars with
V ¼ 0 for three different values of the constants β1 and β2: β1 ¼
0.10 and β2 ¼ 0.15 (dashed curve), β1 ¼ 0.10 and β2 ¼ −0.15
(dotted curve), and β1 ¼ −0.20 and β2 ¼ 0.15 (dot-dashed
curve). The initial values are h̄0 ¼ 0.1 and h̄00 ¼ 0.5. The solid
curve represents the standard general relativistic mass-radius
relation for CFL quark stars.

COMPACT STARS IN THE EINSTEIN DARK ENERGY MODEL PHYS. REV. D 105, 064059 (2022)

064059-13



δ2 ¼ −αþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α2 þ 4

9
π2ðε − BÞ

r
ð43Þ

and

α ¼ −
m2

s

6
þ 2Δ2

3
: ð44Þ

Hence, Eq. (42) gives finally the equation of state of the
quark matter in the CFL phase as

P ¼ 1

3
ðρ − 4BÞ þ 3αδ2

π2
; ð45Þ

which will be used in the analysis of the Einstein dark
energy stars outlined below.
We consider the cases with Δ ¼ 300 MeV, ms ¼

150 MeV andB ¼ 1.15 × 1014 g=cm3. The range of central
densities is between 4.7 × 1014 and 6.8 × 1015 g=cm3. In the
standard general relativistic case, the maximum mass of
the CFL quark star is M=M⊙ ¼ 2.10, with the radius
R¼ 11.21 km, and central density ρc ¼ 1.88 × 1015 g=cm3.
In the following we consider again two separate cases

corresponding to a zero potential and a nonzero potential,
respectively, for the vector dark energy. In all cases the

central density is ρc ¼ 2.45 × 1015 g=cm3, and the initial
conditions for the temporal component of the vector field
are h̄0 ¼ 0.1 and h̄00 ¼ 0.5, respectively. The stop point in
integration is where the pressure becomes, i.e., p ¼ 0.

1. The case V = 0

We first consider the case of a vanishing potential, with
V ¼ 0. The behaviors of the mass and the pressure inside
the CFL quark star are depicted in Fig. 13. The mass and
the pressure behave physically inside the star. The variation
of nonzero component of the vector dark energy h̄ in terms
of η is depicted in Fig. 14. h̄ is a monotonically decreasing
function of η and asymptotically reaches a constant value
outside the star.
The mass-radius relation for this case, shown in Fig. 15,

indicates again significant departures from the standard
relativistic case, with the maximum masses of the CFL
quark stars strongly dependent on the model parameters.
A few selected values of the maximum masses and radii

of the CFL quark stars are presented in Table III. The
change in the numerical values of the coupling constants β1
and β2 leads to significant variations in the numerical
values of the maximal masses of the stars, which can have
both higher and lower values as compared to the standard
general relativistic case.

2. The case V = λ+ aΛμΛμ

Next, we investigate CFL quark stars in the presence
of a nonzero potential of the dark vector field, with
V ¼ λþ aΛμΛμ. We fix β1 ¼ 0.10 and β2 ¼ 0.15 and
consider the role of the different values of the parameters
in the potential term. The behaviors of the mass and
pressure inside the CFL quark star with V ≠ 0 are depicted
in Fig. 16. The behavior of the nonzero component of the

TABLE III. The maximum masses and the corresponding radii
and central densities for CFL quark star model with V ¼ 0.

β1 −0.20 0.10 0.10
β2 0.15 −0.15 0.15
Mmax=M⊙ 2.58 1.24 2.24
RðkmÞ 12.58 10.83 10.89
ρc × 10−15 ðg=cm3Þ 1.91 2.01 1.91

FIG. 16. Variation of the interior mass and density profiles of the CFL quark star for V ¼ λþ aΛμΛμ as a function of the radial
distance from the center of the star η, for three different values of the constants λ̄ and ā: λ̄ ¼ 0 and ā ¼ −0.5 (dashed curve), λ̄ ¼ 0.06
and ā ¼ 0.0 (dotted curve), and λ̄ ¼ −0.06 and ā ¼ 0.0 (dot-dashed curve). For the central density of the star we have adopted the value
ρc ¼ 2.45 × 1015 g=cm3, while h̄0 ¼ 0.1 and h̄00 ¼ 0.5. The solid curve represents the standard general relativistic mass and density
profile for CFL quark stars.
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vector dark energy h̄ is shown in Fig. 17, inside and outside
of the CFL quark star. All these quantities have a physical
behavior, similar to the previous cases.
The mass-radius relation for CFL quark stars with V ¼

λþ aΛμΛμ is shown in Fig. 18. The main results of the
figure are summarized in Table IV, which indicates a
significant increase in the maximum mass of the stars,
which can reach values as high as 3 M⊙.

D. Bose-Einstein condensate stars

Bose-Einstein condensation is assumed to play a key role
in many nuclear and quark matter processes. Presently, it is

assumed that at ultrahigh densities nuclear matter is formed
from a degenerate Fermi gas of quarks. In this system
Cooper pairs of quarks form near the Fermi surface.
Therefore, high-density nuclear matter in the quark phase
can be described, from a physical point of view, as a color
superconductor [78,79]. For strong enough attractive inter-
actions between fermions, and with the temperature drop-
ping below the critical value, the fermions undergo a phase
transition into the bosonic zero mode and form a Bose-
Einstein condensate of quarks [80–82]. Hence, in order to
obtain a Bose-Einstein condensate of fermions one must
first form a BCS state, which can be realized physically
under the assumption that the attractive interaction between
particles is weak. Hence, high-density nuclear matter may
exist in a superfluid phase, characterized for single-particle
excitations by the existence of an energy gap. The energy
gap is formed through the creation of the Cooper pairs. A
Bose-Einstein condensate can also be formed when the
attractive interaction between fermions is extremely strong,
leading to the formation of bound particles (bosons). At the
critical temperature Tc the bosons begin to condense into
the bosonic zero mode. On the other hand, the BCS and the
BEC states are smoothly connected (crossover), and no
phase transition occurs in the system.
The equation of state of the standard Bose-Einstein

condensate with quartic nonlinearity is given by a poly-
tropic equation of state with index n ¼ 1, given by

p ¼ kρ2; ð46Þ

where k is a constant.
In the following we consider the cases with

k̄ ¼ ρck ¼ 0.4. The range of central density is between
3.96 × 1014 and 7.35 × 1015 g=cm3. For this case, the
maximum mass of the standard general relativistic star is
M=M⊙ ¼ 2.00, with radius R ¼ 11.17 km, and central
density ρc ¼ 2.58 × 1015 g=cm3. In the following we
consider two separate cases, corresponding to a zero
potential and a nonzero potential, respectively, for the
vector dark energy. In all cases the central density is
ρc ¼ 2.45 × 1015 g=cm3, and the initial condition for the
temporal component of the vector field is h̄0 ¼ 0.1 and
h̄00 ¼ 0.5, respectively. The stop point in integration is
where ρ ¼ 1.96 × 1013 g=cm3.

FIG. 17. Variation of the temporal component of dark energy
vector field inside and outside (solid lines) of the CFL quark star
for V ¼ λþ aΛμΛμ as a function of the radial distance from the
center of the star η, for three different values of the constants λ̄ and
ā: λ̄ ¼ 0 and ā ¼ −0.5 (dashed curve), λ̄ ¼ 0.06 and ā ¼ 0.0
(dotted curve), and λ̄ ¼ −0.06 and ā ¼ 0.0 (dot-dashed curve).
For the central density of the star we have adopted the value
ρc ¼ 2.45 × 1015 g=cm3, while h̄0 ¼ 0.1 and h̄00 ¼ 0.5.

FIG. 18. The mass-radius relation for CFL quark stars for V ¼
λþ aΛμΛμ and for three different values of the constants λ̄ and ā:
λ̄ ¼ 0 and ā ¼ −0.5 (dashed curve), λ̄ ¼ 0.06 and ā ¼ 0.0
(dotted curve), and λ̄ ¼ −0.06 and ā ¼ 0.0 (dot-dashed curve).
The initial values are h̄0 ¼ 0.1 and h̄00 ¼ 0.5. The solid curve
represents the standard general relativistic mass-radius relation
for CFL quark stars.

TABLE IV. The maximum mass and corresponding radius and
central density for CFL quark stars with V ¼ λþ aΛμΛμ for β1 ¼
0.10 and β2 ¼ 0.15.

λ̄ −0.06 0.0 0.06
ā 0.0 −0.5 0.0
Mmax=M⊙ 1.76 2.25 2.92
RðkmÞ 10.26 10.92 11.73
ρc × 10−15 ðg=cm3Þ 3.12 1.86 1.08
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1. The case V = 0

For a vanishing potential, with V ¼ 0, the behaviors of
the mass and the density inside the BEC star is presented in
Fig. 19. The variation of the nonzero component of the
vector dark energy h̄ in terms of the η inside and outside the
BEC star is shown in Fig. 20. The physical quantities
behave in a proper manner.
The mass-radius relation for this case is presented

in Fig. 21.
A few selected values of the maximum masses of BEC

stars with V ¼ 0 are presented in Table V. The maximum
masses of the stars in the Einstein dark energy model

exceed significantly the mass values of their general
relativistic counterparts.

2. The case V = λ+ aΛμΛμ

Finally, we consider the case of the nonzero potential
V ¼ λþ aΛμΛμ. For the coupling constants β1 and β2 we
adopt the values β1 ¼ −0.20 and β2 ¼ 0.05, respectively,
and we investigate the role of the different values of the
parameters in the potential term. The behaviors of the mass
and density inside the BEC star are presented in Fig. 22.
One can also see the effects of the values of the potential on
the behavior of the vector dark energy h̄ inside and outside
of the BEC star in Fig. 23. All the parameters of the star
have a physical behavior.

FIG. 19. Variation of the interior mass and density profiles of BEC star with V ¼ 0 as a function of the radial distance from the center
of the star η, for three different values of the constants β1 and β2: β1 ¼ −0.20 and β2 ¼ 0.05 (dashed curve), β1 ¼ 0.20 and β2 ¼ −0.01
(dotted curve), and β1 ¼ 0.20 and β2 ¼ 0.05 (dot-dashed curve), respectively. For the central density of the star we have adopted the
value ρc ¼ 2.45 × 1015 g=cm3, while h̄0 ¼ 0.1 and h̄00 ¼ 0.5, respectively. The stop point in integration is ρ ¼ 1.9613 g=cm3. The solid
curve represents the standard general relativistic mass and density profile for BEC stars.

FIG. 20. Variation of the temporal component of dark energy
vector field inside and outside (solid lines) of the BEC star with
V ¼ 0 as a function of the radial distance from the center of the
star η, for three different values of the constants β1 and β2: β1 ¼
−0.20 and β2 ¼ 0.05 (dashed curve), β1 ¼ 0.20 and β2 ¼ −0.01
(dotted curve), and β1 ¼ 0.20 and β2 ¼ 0.05 (dot-dashed curve).
For the central density of the star we have adopted the value
ρc ¼ 2.45 × 1015 g=cm3, while h̄0 ¼ 0.1 and h̄00 ¼ 0.5. The stop
point in integration is ρ ¼ 1.9613 g=cm3.

FIG. 21. The mass-radius relation for BEC quark stars with
V ¼ 0 for three different values of the constants β1 and β2: β1 ¼
−0.20 and β2 ¼ 0.05 (dashed curve), β1 ¼ 0.20 and β2 ¼ −0.01
(dotted curve), and β1 ¼ 0.20 and β2 ¼ 0.05 (dot-dashed curve.
The solid curve represents the standard general relativistic mass-
radius relation for BEC stars.
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The mass-radius relation for this case in shown in
Fig. 24. Several selected values of the maximum masses
and of the corresponding radii and central densities are
presented in Table VI.

E. Douchin-Haensel (SLy) type stars

An equation of state of the neutron star matter, describ-
ing both the neutron star crust and the liquid core, was
proposed in [83]. It was obtained by considering an
effective nuclear interaction SLy of the Skyrme type, which
is extremely useful for the calculation of the properties of
very neutron-rich matter. The structure of the crust, as well
as its equation of state, are obtained by considering the
zero temperature case and by assuming the ground state
composition. As for the crust-core transition, it is consid-
ered as a very weak first-order phase transition, with the
relative density jump being of the order of 1%. The
equation of state of the liquid core is obtained by assuming
that it consists of neutrons, protons, electrons, and muons
only. For this equation of state the minimum and maximum
masses of static neutron stars are 0.094 M⊙ and 2.05 M⊙,
respectively.
In order to study the properties of neutron-rich stars in

the Einstein dark energy model we have adopted the
data given in Tables 3 and 5 of Ref. [83] for the core

and inner crust of the stars. The density of the core is
between 1.30 × 1014 and 4.05 × 1015 g=cm3. The density
of the inner crust lies in the range 3.49 × 1011 g=cm3 ≤
ρ ≤ 1.28 × 1014 g=cm3. The equation of state for the outer
crust is p ¼ Kρ4=3 [83], where the constant K will be
determined by the continuity of the equation of state at
the boundary between the inner and outer crusts. In the
following, two cases are considered. In the first case we
assume that the potential V vanishes, while in the second
case we consider a quadratic-type potential. In both cases
the results are compared to the ones obtained in standard
general relativity. The stop point for integration in all cases
is ρ ¼ 3 × 1010 g=cm3. The initial condition for the vector
field is h̄0 ¼ 0.1 and h̄00 ¼ 0.5.

1. The case V = 0

The radius-mass relation for this case is shown in Fig. 25.
The maximum masses, radii and central densities are

presented, for some particular values of the model param-
eters β1 and β2, in Table VII.
The presence of the vector field induces modifications

in the basic stellar parameters of the neutron stars. In
particular, positive values of the parameter β1 lead to a
decrease of the maximum mass of the star.

2. The case V = λ+ aΛμΛμ

Now, we consider the case where the potential has the
form V ¼ λþ aΛμΛμ. To investigate the numerical solu-
tion for this case we have set β1 ¼ 0.12 and β2 ¼ −0.001.
The radius-mass relations for three different sets of the
values of λ̄ and ā are represented in Fig. 26.
The maximum masses, radii, and central densities for

each cases are shown in Table VIII.

TABLE V. The maximum masses and the corresponding radii
and central densities for BEC stars with V ¼ 0.

β1 −0.20 0.20 0.20
β2 0.05 −0.01 0.05
Mmax=M⊙ 2.48 1.75 2.03
RðkmÞ 15.42 13.47 12.59
ρc × 10−15 ðg=cm3Þ 1.74 2.74 1.74

FIG. 22. Variation of the interior mass and density profiles of a BEC star with V ¼ λþ aΛμΛμ as a function of the radial distance from
the center of the star η, for three different values of the constants λ̄ and ā: λ̄ ¼ 0 and ā ¼ −0.5 (dashed curve), λ̄ ¼ 0.003 and ā ¼ 0.0
(dotted curve), and λ̄ ¼ −0.03 and ā ¼ 0.0 (dot-dashed curve). For the central density of the star we have adopted the value
ρc ¼ 2.45 × 1015 g=cm3, while h̄0 ¼ 0.1 and h̄00 ¼ 0.5. The solid curve represents the standard general relativistic mass and density
profile for BE stars.
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The variations of the potential parameters have a
significant impact on the maximum mass of the star. For
the considered values of the coupling parameters there is a
slight decrease in the maximum masses of the stars, as
compared to the V ¼ 0 case.

FIG. 23. Variation of the temporal component of dark energy
vector field inside and outside (solid lines) of the BEC star with
V ¼ λþ aΛμΛμ as a function of the radial distance from the
center of the star η, for three different values of the constants λ̄ and
ā: λ̄ ¼ 0 and ā ¼ −0.5 (dashed curve), λ̄ ¼ 0.003 and ā ¼ 0.0
(dotted curve), and λ̄ ¼ −0.03 and ā ¼ 0.0 (dot-dashed curve).
For the central density of the star we have adopted the value
ρc ¼ 2.45 × 1015 g=cm3, while h̄0 ¼ 0.1 and h̄00 ¼ 0.5.

FIG. 24. The mass-radius relation for BEC stars with V ¼
λþ aΛμΛμ for three different values of the constants λ̄ and ā:
λ̄ ¼ 0 and ā ¼ −0.5 (dashed curve), λ̄ ¼ 0.003 and ā ¼ 0.0
(dotted curve), and λ̄ ¼ −0.03 and ā ¼ 0.0 (dot-dashed curve).
For the central density of the star we have adopted the value
ρc ¼ 2.45 × 1015 g=cm3, while h̄0 ¼ 0.1 and h̄00 ¼ 0.5. The solid
curve represents the standard general relativistic mass-radius
relation for BEC stars.

TABLE VI. The maximum mass and corresponding radius and
central density for BEC stars with V ¼ λþ aΛμΛμ for β1 ¼
−0.20 and β2 ¼ 0.05.

λ̄ −0.03 0.0 0.003
ā 0.0 −0.5 0.0
Mmax=M⊙ 2.11 2.50 2.55
RðkmÞ 12.53 15.55 16.23
ρc × 10−15 ðg=cm3Þ 3.45 1.70 1.49

FIG. 25. The radius-mass relation for SLy stars for three
different values of the constants β1 and β2: β1 ¼ −0.03 and β2 ¼
0.002 (dashed curve), β1 ¼ −0.03 and β2 ¼ −0.001 (dotted
curve), and β1 ¼ 0.12 and β2 ¼ −0.001 (dot-dashed curve),
respectively. The solid curve represents the standard general
relativistic mass-radius relation.

FIG. 26. The radius-mass relation for SLy stars for three
different values of the constants λ̄ and ā: λ̄ ¼ 0 and ā ¼ 0.3
(dashed curve), λ̄ ¼ −0.002 and ā ¼ 0 (dotted curve), and λ̄ ¼
0.01 and ā ¼ 0.3 (dot-dashed curve), respectively. The solid
curve represents the standard general relativistic mass-radius
relation.

TABLE VII. The maximum masses and the corresponding radii
and central densities for the SLy stars.

β1 0.12 −0.03 −0.03
β2 −0.001 −0.001 0.002
Mmax=M⊙ 1.92 2.08 2.09
RðkmÞ 9.25 10.01 10.23
ρc × 10−15 ðg=cm3Þ 2.86 2.86 2.83

ZAHRA HAGHANI and TIBERIU HARKO PHYS. REV. D 105, 064059 (2022)

064059-18



IV. DISCUSSIONS AND FINAL REMARKS

In the present paper, we have investigated the basic
physical properties of stellar-type compact objects in the
Einstein dark energy model, which brings together ele-
ments of the fðR; TÞ gravity theory and vector-tensor
gravitational theories. Our main goal was to investigate
if Einstein dark energy model can explain gravitational
phenomena on both large cosmological scales and astro-
physical scales through a single formalism. An important
feature of the theory is the presence of a vector-type field,
which plays an important role in the study of the interior of
the dense compact objects.
Vector-type dark energy models, and their generaliza-

tions, in which dark energy is described by a vector field
minimally coupled to gravity [84,85], a vector field non-
minimally coupled to gravity [86–88], or some extended
vector field models [89–92] has been intensively inves-
tigated in the literature. For example, the action for a
nonminimally massive vector field coupled to gravity can
be introduced as [86]

S ¼ −
Z

d4x
ffiffiffiffiffiffi
−g

p �
R
2
þ 1

16π
FμνFμν −

1

2
μ2ΛAμAμ

þ ωAμAμRþ ηAμAνRμν þ Lm

�
; ð47Þ

where AμðxνÞ, μ, ν ¼ 0, 1, 2, 3, denotes the four-potential
of the dark energy, which couples nonminimally to gravity.
Moreover, ω and η are dimensionless coupling parameters,
while μΛ is the mass of the massive cosmological vector
field. The field tensor of the dark energy is given by
Fμν ¼ ∇μAν −∇νAμ. Superconducting dark energy models
that contain vector and scalar fields in a gauge-invariant
way were also investigated [91,92].
In the present study we have concentrated on the local

aspects of Einstein dark energy theory. From a physical
point of view our main assumption is that the vector field
Λμ, which in Einstein’s theory can be interpreted from a
cosmological point of view as vector-type dark energy,
plays also an important role at the stellar level. To obtain the
field equations of the model, we have adopted an fðR; TÞ-
type Lagrangian [52], which contains a linear combination
of the Ricci scalar and of the trace of the energy-momentum
tensor. Moreover, we construct the self-interacting dark

energy tensor field Cμν in terms of the massive vector
potentialΛμ. A coupling between the matter current and the
vector potential can also be assumed, but in the present
approach we have neglected this term.
It is important to point out that in the present gravita-

tional action of the theory there is no direct (multiplicative)
coupling between curvature and geometry, the action
having an additive structure in the Ricci scalar and the
trace of the matter energy-momentum tensor. However, the
presence of T and of the vector field in the action leads even
in static spherically symmetry to a set of complicated
interior field equations, which can be solved only by using
numerical methods. We did begin our study by deriving the
basic field equations describing the structure of compact
objects. From the field equations we have obtained the
mass continuity equation, the generalized TOV (hydrostatic
equilibrium equation), and the equation of the vector field,
given by a complicated second-order nonlinear differential
equation. A physical or geometrical quantity that has an
important effect in the determination of the properties of the
stellar objects is the self-interaction potential V of the
vector field. In our study we have assumed that V either
vanishes, V ¼ 0, or it is quadratic in the vector field
potential, thus having some similarities with the Higgs
potential of the scalar fields. Of course, different other
choices of the potential are possible, and they will lead to
dense stellar-type objects with different physical properties
as compared to the properties of the stars analyzed in the
present work.
Once the vector field self-interaction potential is fixed, to

close the system of the structure equations of the star one
must specify the dense matter equation of state. We have
adopted five equations of state of the dense matter, and we
have constructed, through the numerical integration of the
gravitational field equations, five classes of stellar models,
corresponding to constant density stars, quark stars, CFL
stars, Bose-Einstein condensate superfluid stars, and stars
described by the Douchin-Haensel equation of state,
respectively. For all these equations of state we have
effectively obtained the Einstein dark energy model struc-
ture of the star and compared it to its general relativistic
counterpart. As a general conclusion of our study is that for
all the five considered equations of state the Einstein dark
energy model stars have a large variety of behaviors,
determined by the variation of the model parameters.
Much more massive stars than in general relativity can
also be obtained. For example, if the maximum mass of a
quark star in general relativity is of the order of 2 M⊙, in
the Einstein dark energy model the maximum mass of a
quark star can have values of the order of 2.5 M⊙ for V ¼ 0
and 2.8 M⊙ for a quadratic self-interaction potential. For
the CFL quark stars with V ≠ 0 the maximum mass can
reach values as high as 2.9 M⊙, very close to the black hole
stability limit of 3 M⊙. The masses of the stars are also
strongly dependent on their central density. In the case of

TABLE VIII. The maximum mass and corresponding radius
and central density for SLy stars for β1 ¼ 0.12 and β2 ¼ −0.001.

λ̄ 0.0 −0.002 0.01
ā 0.3 0.0 0.3
Mmax=M⊙ 1.92 1.91 1.97
RðkmÞ 9.19 9.23 9.32
ρc × 10−15 ðg=cm3Þ 2.90 2.90 2.69
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the Bose-Einstein condensate stars there is also an increase
of the maximum mass from values of the order of 2 M⊙ to
masses in the range of 2.4–2.5 M⊙.
A large number of high-precision astronomical obser-

vations of the neutron star mass distribution have recently
confirmed the existence of a large number of neutron stars
with masses of the order of 2 M⊙, or higher [93,94]. For
example, the mass of the Black Widow Pulsar B1957þ 20,
an eclipsing binary millisecond pulsar, is estimated to be in
the range 1.6–2.4 M⊙ [95]. A range of 2–2.4 M⊙ is very
difficult to explain by using the standard neutron matter
models together with general relativity, even if one admits
the existence of exotic particles inside the stars, including
quarks or kaons. But these values of the stellar masses can
be explained rather easily once we assume they are Einstein
dark energy model stars. As we have seen, an Einstein dark
energy model star has an internal structure that is more
complex than that of the general relativistic stars.
One important question is if and how different types

of stellar models can be distinguished observationally.
One such possibility is related to the study of accretion
disks that form around massive stellar-type objects [96–99].
As a result of the differences in the exterior geometry

(metric), the thermodynamic and electromagnetic prop-
erties of the disks (temperature distribution, energy
flux, equilibrium radiation spectrum, and efficiency of
energy conversion, respectively) are different for differ-
ent classes of dense stellar-type objects. Therefore, the
emissivity properties of the accretion disks, and of the
compact objects themselves, could be the key signature
that would allow one to differentiate Einstein dark
energy model stars from compact general relativistic
objects. However, even if a number of distinctive
astrophysical signatures that could differentiate between
different classes of stars may exist at a theoretical level,
their observational detection may prove to be an
extremely difficult task. The possible observational
and astrophysical features of the Einstein dark energy
stars will be discussed in a future publication.
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