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Scalar-tensor theories with first-derivative self-interactions, known as k-essence, may provide interesting
phenomenology on cosmological scales. On smaller scales, however, initial value evolutions (which are
crucial for predicting the behavior of astrophysical systems, such as binaries of compact objects) may run
into instabilities related to the Cauchy problem becoming potentially ill-posed. Moreover, on local scales,
the dynamics may enter in the nonlinear regime, which may lie beyond the range of validity of the infrared
theory. Completions of k-essence in the ultraviolet, when they are known to exist, mitigate these problems,
as they both render Cauchy evolutions well-posed at all times and allow for checking the relation between
nonlinearities and the low-energy theory’s range of validity. Here, we explore these issues explicitly by
considering an ultraviolet completion to k-essence and performing vacuum 1þ 1 dynamical evolutions
within it. The results are compared to those obtained with the low-energy theory and with the low-energy
theory suitably deformed with a phenomenological “fixing the equations” approach. We confirm that the
ultraviolet completion does not incur in any breakdown of the Cauchy problem’s well-posedness, and we
find that evolutions agree with the results of the low-energy theory when the system is within the regime of
validity of the latter. However, we also find that the nonlinear behavior of k-essence lies (for the most part)
outside this regime.

DOI: 10.1103/PhysRevD.105.064058

I. INTRODUCTION

Six years after the first detection of gravitational waves
(GWs) from a black hole binary coalescence by the LIGO/
Virgo Collaboration [1], general relativity (GR) still stands
as the theory that encodes our best understanding of gravity
at low energies. Consistency and parametrized null tests
performed with all GW observations available so far
continue to show agreement with GR [2–6], and so do
tests performed in the solar system [7,8] and with binary
pulsars [9–12]. However, cosmological observations point-
ing at the existence of a “dark sector” (dark matter and
especially dark energy) may be interpreted as a sign of a
possible breakdown of GR on large scales (see, e.g., [13]
for a review).
This has prompted the development of effective field

theories (EFTs) of dark energy, which attempt to explain
the latter as a gravitational effect (caused by a deviation from
GR) rather than by introducing an exoticmatter component or
a cosmological constant. Restricting to scalar-tensor theories,
which postulate the existence of an additional degree of
freedom (besides the metric) in the gravitational sector, EFTs

of dark energy may be provided by the Horndeski class
[14] (further generalizable to degenerate higher-order scalar
tensor-theories, DHOST [15–18]). In this class, a prominent
role is played by “k-essence” theories with first-derivative
self-interactions [19,20], which are among the very few terms
in theDHOSTclass that remain experimentally viable despite
constraints from GW propagation [21–29].
Potentially even tighter constraints may come from the

generation (rather than just the propagation) of GWs
[30,31]. However, obtaining predictions for GW generation
is far more difficult than for propagation, as the nonlinear
self-interactions of the k-essence scalar are believed to
dominate the dynamics on the small scales characterizing
compact binary systems. In fact, this expectation comes
from calculations of static and quasistatic systems (such as
stars), on whose scales the scalar self-interactions are
important and tend to suppress deviations from GR
[32,33]. This nonlinear mechanism, known as “screening”
(of local scales from GR deviations), is common to other
theories in the DHOST class (see, e.g., Refs. [34–37]) and
is both a blessing and a curse. On the one hand, it allows
k-essence to pass solar-system tests of gravity [30,33], but on
the other hand, it renders the calculation of GW generation
conceptually and practically involved [30,31,33,38,39].
In fact, because of the nonlinear scalar derivative self-

interactions, evolutions to the future of initial configurations
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of interest (on which, calculations of GW generation in the
highly relativistic and strong-field regime of compact bina-
ries are based)maybecome “unstable;” i.e., theymay depend
“discontinuously” on the initial data and/or exhibit fast
exponential growth. (See, e.g., Refs. [38,40–42].) In math-
ematical jargon, this corresponds to the Cauchy (i.e., initial
value) problem becoming ill-posed [43]. While for astro-
physically relevant initial conditions (such as neutron star
binaries or gravitational collapse), this breakdown of the
Cauchy problem can be avoided by a judicious choice of
gauge [31] (at least in specifick-essence theories), for general
theories and configurations, this may not always be possible.
In fact, a more robust approach to “fixing” the Cauchy
problem is to complete k-essence to the ultraviolet (UV) [44]
(when that is allowed by positivity bounds [45]) or to
“deform” the evolution (by adding an auxiliary field that
drives the dynamics to the “real” one on long timescales).
This second approach to “fix the equations”was proposed by
Cayuso, Ortiz, and Lehner in Ref. [46] (see also
Refs. [47,48]), partly inspired by dissipative hydrodynamics,
and was successfully applied to gravitational collapse in
k-essence byRefs. [30,31] (where it was shown to reproduce
the results obtained in a gauge where breakdowns of the
Cauchy problem are avoided). On a similar note, shocks or
caustics in k-essence [38,49,50] may also be resolved by
resorting to a UV completion. In Ref. [51], it was illustrated
that the transfer of energy to an additional (UV) degree of
freedom may allow for the smoothening of shock or caustic
fronts in k-essence.
In this paper, we take a step back and investigate in depth

the relation between first-derivative self-interactions of the
scalar, well-posedness of the Cauchy problem and UV
completions (in both the standard and “fixing the
equations” approaches). To this purpose, we consider a
k-essence model that potentially suffers from both Tricomi-
type and Keldysh-type breakdowns of initial-data evolu-
tions [38,39]. In more detail, the former corresponds to the
equations becoming parabolic (and then elliptic) along the
evolution, while the latter are caused by diverging (coor-
dinate) characteristic speeds for the scalar mode. By
suitably choosing the sign of the coupling of the first-
derivative scalar self-interactions in the action, we can then
extend the k-essence model to a standard Uð1Þ symmetric
UV completion [44]. Solutions in the UV-complete theory
are compared to ones in the low-energy k-essence theory
(as long as the Cauchy problem in the latter remains well-
posed) and to ones in a “fixing the equations” completion.
We also explore the relation between the regime in which
the scalar self-interactions become important and the
domain of validity of the low-energy EFT, finding that
the two are closely connected for the example that
we study.
In more detail, this paper is organized as follows. First, in

Sec. II, we review the k-essence model that we adopt as our
case study. We then introduce its standard UV-completion

in Sec. II A, while our “fixing the equations” approach is
introduced and applied in Sec. II B. We describe our
numerical implementation in Sec. III and present our
results in Sec. IV. Our findings are discussed and con-
clusions drawn in Sec. V. In the Appendix A, we present an
additional example, and in Appendix B, we elaborate on
details regarding the constraint propagation in the “fixed”
theory. Throughout this paper, we use the metric signature
−þþþ and work in units where c ¼ 1. Greek letters
μ; ν;… denote spacetime indices ranging from 0 to 3,
while roman letters near the middle i; j;… range from 1 to
3, denoting spatial indices.

II. QUADRATIC k-ESSENCE

The action of k-essence in vacuum is given by

SK½gμν; π� ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
R
2κ

þ KðXÞ
�
; ð1Þ

where κ ¼ 8πG, R is the Ricci scalar, gμν is the spacetime
metric, and KðXÞ is a function of the standard kinetic term
of the scalar field πðxÞ, given by X ¼ ∇μπ∇μπ. The
quadratic model is defined by keeping only the leading
first derivative self interaction, i.e.,

KðXÞ ¼ −
1

2
X þ β

4Λ4
X2 þOðΛ−8X3Þ; ð2Þ

with β ∼Oð1Þ a dimensionless coupling constant and Λ the
EFT strong coupling scale. Note that in the presence of
matter, screening is present only in the β < 0 branch
[32,33,39]. However, positivity bounds select the branch
with β > 0 as the one consistent with embedding in a UV
theory [45].
The vacuum field equations derived from action (1) are

given by

Gμν ¼ κTðπÞ
μν ; ð3Þ

where Gμν is the Einstein tensor, and

TðπÞ
μν ¼ KðXÞgμν − 2K0ðXÞ∇μπ∇νπ ð4Þ

is the energy-momentum tensor of the k-essence field. The
equation for the scalar field can be written as

γμν∇μ∇νπ ¼ 0; ð5Þ

where

γμν ¼ gμν þ 2K00ðXÞ
K0ðXÞ ∇μπ∇νπ ð6Þ

is an effective metric for the scalar field. From Eq. (6), it is
evident that the scalar equation (5) may develop shocks or
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caustics (e.g., discontinuities) if the scalar gradients
become large, even in situations when the initial data for
the scalar field is smooth [38,49,50]. Additionally, other
pathologies may arise if K0ðXÞ approaches zero [41].
In order to study the nonlinear dynamical regime, the

well-posedness of the Cauchy problem must first be
assessed. According to Hadamard’s criteria [43], the
Cauchy initial value problem governed by Eqs. (3) and
(5) is well-posed if a unique solution exists and depends
continuously on the initial data. This can be shown to occur
if the associated system of equations is strongly hyperbolic
[52,53], i.e., if the system of equations can be written as a
quasilinear first-order system, and its principal part (con-
sisting of the terms with the highest derivatives) has real
eigenvalues and a complete set of eigenvectors [54,55]. In
our case, one can restrict the analysis to the scalar
equation (5) since the evolution equations for the metric
variables [Eq. (3)] take the same form as in GR (which is
well-posed [56]). and the source terms involve only
derivatives that are lower-order than the principal part.
In the following, we will restrict to spherical symmetry,

where the metric can be written in the form,

ds2 ¼ −α2ðt; rÞdt2 þ grrðt; rÞdr2 þ r2gθθðt; rÞdΩ2; ð7Þ

where αðt; rÞ is the lapse function, and grrðt; rÞ and
gθθðt; rÞ are the spatial components of the metric, and
dΩ2 ¼ dθ2 þ sin2ðθÞdϕ2. The scalar equation (5) can be
written as a first-order system of equations of the form,

∂tU þ V∂rU ¼ SðUÞ; ð8Þ

where U ¼ ð∂tπ; ∂rπÞ, SðUÞ is a source term, and we have
made use of the consistency equation ∂t∂rπ ¼ ∂r∂tπ. The
characteristic speeds, corresponding to the eigenvalues of
the characteristic matrix V , are given by

V� ¼ −
γtr

γtt
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− detðγμνÞ
ðγttÞ2

s
; ð9Þ

where detðγμνÞ should be understood as the determinant of
the effective metric in the ðt; rÞ subspace, i.e.,

detðγμνÞ ¼ γttγrr − ðγtrÞ2: ð10Þ

If these speeds are real and distinct, the corresponding
eigenvectors form a complete set, and thus, the scalar sector
is strongly hyperbolic.
Since the characteristic speeds (9) depend on the

effective metric (which differs in general from the space-
time metric gμν), two situations may arise that can cause a
breakdown of strong hyperbolicity. The first problem
occurs when the scalar equation (5) changes character
from hyperbolic to parabolic, i.e., when one of the
eigenvalues of the effective metric [Eq. (6)],

λ� ¼ 1

2

�
γtt þ γrr �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðγtt − γrrÞ2 − ð2γtrÞ2

q �
; ð11Þ

vanishes, implying detðγμνÞ → 0. This referred to as a
Tricomi-type breakdown [57] (see also Ref. [38]) due to
its resemblance to the behavior of the Tricomi equation,
∂2
t uðt; rÞ þ t∂2

ruðt; rÞ ¼ 0. The system of evolution equa-
tions, including those for the metric, then becomes of
mixed type, with parabolic and hyperbolic sectors [58]. The
second problem occurs when the characteristic speeds
diverge. This referred to as a Keldyish-type breakdown
[57] (see also Ref. [38]), in analogy with the Keldyish
equation, t∂2

t uðt; rÞ þ ∂2
ruðt; rÞ ¼ 0.

Both problems may be solved by a suitable UV com-
pletion of the EFT. In fact, in the following, we will review
a UV completion of the quadratic k-essence model given by
(2) (for β > 0) and show that it allows for avoiding both
Keldysh and Tricomi breakdowns of the Cauchy problem.
Similarly, the “fixing the equations” approach [46] may
also improve the behavior of initial-value evolutions in the
branch β < 0.

A. Uð1Þ UV completion

The positive branch (β > 0) of quadratic k-essence can
be obtained as the low-energy description of a UV
completion given by the Uð1Þ-symmetric action,1

SUV½gμν;ϕ� ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
R
2κ

− ∂μϕ
⋆∂μϕ − Vðϕ⋆ϕÞ

�
;

ð12Þ

with a potential,

Vðϕ⋆ϕÞ ¼ λ

2

�
ϕ⋆ϕ −

v2

2

�
2

; ð13Þ

where ϕ is a complex scalar field (with ϕ⋆ its complex
conjugate), λ > 0 is a dimensionful coupling constant,
and v can be interpreted as the scale of the vacuum
expectation value of ϕ, i.e., the magnitude of ϕ that
minimizes Vðϕ⋆ϕÞ.
In Minkowski space, quadratic k-essence is recovered at

low energies when the Uð1Þ symmetry of action (12) is
broken spontaneously [44]. When gravity is considered, the
same result holds at leading order. Indeed, by expanding ϕ
around the degenerate vacuum of the potential,

ϕðxÞ ¼ vffiffiffi
2

p ½1þ ρðxÞ�eiθðxÞ; ð14Þ

1To be precise, this is a partial UV completion as it only
describes the scalar degree of freedom at higher energies. A full
UV completion would also describe the gravitational degrees of
freedom, e.g., in a full theory of quantum gravity.
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it can be seen, by substituting in action (12), that the radial
field ρðxÞ acquires a “mass”2 Mρ ¼

ffiffiffi
λ

p
v, while the phase

field θðxÞ (i.e., the “Goldstone boson” [59]) remains
massless. At energies much lower than Mρ, one can
use the equation of motion of the radial field,
−□ρþ ð1þ ρÞ∂μθ∂μθ þ v−2∂V=∂ρ ¼ 0, to integrate it
out of action (12). More precisely, one can solve perturba-
tively for ρ as

ρ ¼ −
1

M2
ρ
∂μθ∂μθ þOðM−4

ρ Þ; ð15Þ

and substitute in the action (12) to obtain the effective
action for the phase field θðxÞ. The latter takes the same
form as Eq. (1); i.e.,

Seff ½gμν; θ� ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
R
2κ

þ v2
�
−
1

2
∂μθ∂μθ þ 1

2M2
ρ
ð∂μθ∂μθÞ2

��

þOðv2M−4
ρ ∇6Þ; ð16Þ

where Oðv2M−4
ρ ∇6Þ denotes higher-order terms (in M−2

ρ )
with at least six derivatives. Therefore, this UV completion
reproduces the dynamics of quadratic k-essence at leading
order, and the k-essence field is interpreted as given by the
dimensionful “phase” field,

πðUVÞðxÞ ¼ vθðxÞ: ð17Þ

Direct comparison between the actions (1) and (16) yields
the relation between the coupling constants in the two
theories,

β

2Λ4
¼ 1

M2
ρv2

≥ 0; ð18Þ

and selects the positive branch of quadratic k-essence (for
which there is no screening mechanism in the presence of
matter), consistently with positivity bounds [45]. At next-
to-leading order, the higher-order terms do not reproduce
k-essence, since the UV completion introduces other six-
derivative terms in addition to the cubic term appearing in
Eq. (2)—see, e.g., Ref. [44].
We now turn to the question of whether this UV

completion admits a well-posed Cauchy problem. Since
the scalar field ϕ is minimally coupled to the metric, the
evolution equations for the metric are

Gμν ¼ κTðϕÞ
μν ; ð19Þ

where now

TðϕÞ
μν ¼ ∇μϕ

⋆∇νϕþ∇μϕ∇νϕ
⋆

− gμν½∇σϕ∇σϕþ Vðϕ⋆ϕÞ�: ð20Þ

As before, it can be shown that the system is strongly
hyperbolic [60]. The scalar equation,

□ϕ −
∂V
∂jϕj2 ϕ ¼ 0; ð21Þ

is also manifestly strongly hyperbolic since it is a wave
equation. We split the complex scalar,

ϕ ¼ ϕR þ iϕI; ð22Þ

in its real and imaginary parts, ϕR and ϕI . Then the
associated characteristic speeds are given by

VðϕRÞ
� ¼ VðϕIÞ

� ¼ � αffiffiffiffiffiffi
grr

p ; ð23Þ

which are always real and distinct (hence implying the
existence of a complete set of eigenvectors).

B. Fixing the equations

The “fixing the equations” approach [46] (see also
Refs. [47,48]) provides a prescription to control the high
frequency behavior of an EFT, which may be the cause of
ill-posedness of the Cauchy problem. In the following, we
will apply this prescription to k-essence. Unlike for the case
of the Uð1Þ UV completion presented in the previous
section, we do not make here any assumptions on the sign
of β.
In order to deal with shocks (c.f. Sec. III), it is convenient

to rewrite the scalar equation (5) in conservative form (as
made possible by the shift-symmetry of the theory):

∇μðK0ðXÞ∇μπÞ ¼ 0: ð24Þ

Since large gradients may occur due to the K0ðXÞ factor,
triggering a breakdown of the Cauchy problem, we “fix”
the scalar equation (24) by replacing K0ðXÞ with a new
dynamical field Σ, which, in turn, is prescribed to approach
K0ðXÞ by a “driver” equation. The system of equations that
we adopt (see also Refs. [30,31]) is therefore

∇μðΣ∇μπÞ ¼ 0; ð25Þ

τ∂tΣ ¼ −½Σ − K0ðXÞ�; ð26Þ

where τ is a constant timescale, whose precise value
controls the rate of approach of Σ to K0ðXÞ and which
damps frequencies ω in the range τ−1 ≲ ω [46,61]. For the

2In our units c ¼ 1, the “mass”Mρ is actually the inverse of the
Compton wavelength; i.e., the real mass is mρ ¼ Mρℏ.
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metric, the evolution equations remain unaltered and are
given by Eq. (3).
The characteristic speeds of the “fixed” theory, for

Σ ≠ 0, are

VðFEÞ
� ¼ � αffiffiffiffiffiffi

grr
p ; ð27Þ

with an additional speed VðFEÞ
3 ¼ 0 due to the presence of

the new variable Σ. These speeds are always real and
distinct (hence implying the existence of a complete set of
eigenvectors). Therefore, as long as Σ ≠ 0, the system of
equations of the “fixed” theory is strongly hyperbolic.
However, if Σ approaches zero during the evolution, a

pathological situation occurs. This can be seen as follows:
Rewriting Eq. (25) as Σ□π þ∇μΣ∇μπ ¼ 0, it is evident
that when Σ → 0, the principal part of this equation (i.e.,
the part consisting of the highest derivative terms) vanishes,
and therefore, the system (25)–(26) changes from second
order to first order.
Finally, in contrast with the UV completion of Sec. II A,

there are no restrictions on the sign of the quadratic
k-essence coupling constant β, and the “fixing the
equations” prescription can also be applied to the branch
with screening (β < 0).

III. METHODOLOGY

In order to explore the well-posedness of the Cauchy
problem and the nonlinear dynamics in k-essence, in its
Uð1Þ UV completion and in the “fixing the equations”
approach, the fully nonlinear equations must be considered.
In the following, we present the evolution equations in a
1þ 1 decomposition of the spacetime restricted to spheri-
cal symmetry and describe the details of our numerical
implementation. First, in Sec. III A, we present the evolu-
tion equations for the scalar sector in a first-order
conservative form. We specify our working units in
Sec. III C and then, in Sec. III B, we describe in detail
the procedure used to construct initial data. In Sec. III D, we
describe the numerical evolution scheme and code. Finally,
in Sec. III E, we describe additional diagnostic tools needed
to compare and interpret our numerical simulations.

A. Evolution equations

We decompose the metric into space and time compo-
nents by using the line element in spherical symmetry given
by Eq. (7). In the 1þ 1 decomposition, the Einstein
equations [Eq. (3) for k-essence and the “fixed” theory
and Eq. (19) for the Uð1Þ UV completion] can be written in
first-order form [analogous to Eq. (31)] by using the Z3
formulation, which is strongly hyperbolic [62–64]. We
write the evolution equations for the metric as a first-order
system by defining the variables,

Ar¼
1

α
∂rα; Drr

r¼ 1

2grr
∂rgrr; Drθ

θ¼ 1

2gθθ
∂rgθθ; ð28Þ

and the extrinsic curvature,

Kij ¼ −
1

2
Lngij; ð29Þ

where gij is the spatial metric, and nμ ¼ ð−α; 0Þ is the
normal vector to the foliation. We close the evolution
system by prescribing the singularity-avoidance 1þ log
slicing condition, ∂t logα ¼ −2K, where the trace of the
extrinsic curvature isK ¼ Kr

r þ 2Kθ
θ [65]. The final set of

evolution fields for the Z3 formulation in spherical sym-
metry can be found in Ref. [66].
In the following, we will also describe the scalar

equation in k-essence, in its Uð1Þ UV completion and in
the “fixing the equations” approach, and write it in first-
order form.

1. Quadratic k-essence

Defining the following first-order variables,

Φ ¼ ∂rπ; Π ¼ −
1

α
∂tπ; ð30Þ

one can write the scalar equation (5) in first-order
conservative form as

∂tϕþ αΠ ¼ 0;

∂tΦþ ∂r½αΠ� ¼ 0;

∂tΨþ ∂rFΨ ¼ −
2

r
FΨ; ð31Þ

where

Ψ ¼ ffiffiffiffiffiffi
grr

p
gθθK0ðXÞΠ; ð32Þ

FΨ ¼ αgθθffiffiffiffiffiffi
grr

p K0ðXÞΦ: ð33Þ

At each time step, Π is obtained (numerically) by solving
the nonlinear equation (32).

2. Uð1Þ UV completion

For the Uð1Þ UV completion, the scalar equation (21)
defines two real systems of equations for the real ϕR and
imaginary ϕI parts. As before, we define the first-order
scalar variables,

ΦR;I ¼ ∂rϕR;I; ΠR;I ¼ −
1

α
∂tϕR;I: ð34Þ

Then, the real scalar system for ϕR;I can be written as
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∂tϕR;I þ αΠR;I ¼ 0;

∂tΦR;I þ ∂r½αΠR;I� ¼ 0;

∂tΠR;I þ ∂r

�
α

grr
ΦR;I

�
¼ SΠR;I

; ð35Þ

with source term

SΠR;I
¼α

�
ðKr

rþ2Kθ
θÞΠR;I

−
1

grr

�
2

r
þDrr

rþ2Drθ
θ

�
ΦR;Iþ

∂V
∂jϕj2ϕR;I

�
: ð36Þ

3. Fixing the equations

Finally, for the “fixed” theory, the first-order system of
equations can be written in the same form as in k-essence
(Sec. III A 1) but replacing K0ðXÞ → Σ and including the
“driver” equation (26).

B. Initial data

We will now describe in detail the construction of initial
data in isotropic coordinates, corresponding to an initially
stationary scalar “shell” in k-essence (Sec. III B 1). We will
then comment on how this procedure can be generalized to
the Uð1Þ UV completion (Sec. III B 2) and the “fixed”
theory (Sec. III B 3).

1. Quadratic k-essence

On the initial slice at time t ¼ 0, we adopt isotropic
coordinates given by

ds2 ¼ −α2ðrÞdt2 þ ψ4ðrÞðdr2 þ r2dΩ2Þ; ð37Þ

and prescribe the initial profile of the lapse function to be
constant and equal to unity—i.e., αðrÞjt¼0 ¼ 1.
In these coordinates, the Hamiltonian and momentum

constraints for k-essence take the form,

1

r2
∂
∂r

�
r2
∂ψ
∂r

�
¼ 1

4
ψ5Kθ

θð2Kr
r þ Kθ

θÞ

þ P½α;ψ ; ∂tπ; ∂rπ; π�; ð38Þ

∂Kθ
θ

∂r ¼ 1

rψ
ðKr

r − Kθ
θÞ
�
ψ þ 2r

∂ψ
∂r

�
þQ½α;ψ ; ∂tπ; ∂rπ; π�; ð39Þ

respectively, where

P½α;ψ ; ∂tπ; ∂rπ; π� ¼
1

4
κψ5½KðXÞ þ 2Π2K0ðXÞ�;

Q½α;ψ ; ∂tπ; ∂rπ; π� ¼ κΠΦK0ðXÞ: ð40Þ

We will consider initially stationary configurations by
imposing ∂tπ ¼ Kθ

θ ¼ K ¼ 0 for which Kr
r and Q≡ 0.

Therefore, Eq. (39) is trivially satisfied, and we only need
to solve Eq. (38) for ψ.
The initial profile for the k-essence field [the free data in

Eqs. (38)–(39)] is specified as

∂rπjt¼0 ¼ A exp

�
−
ðr − rcÞ2

σ2

�
cos

�
π

10
r

�
;

∂tπjt¼0 ¼ 0; ð41Þ

where A is the amplitude of the pulse, and rc and σ are
parameters specifying the location and root-mean-square
width of the Gaussian envelope of the pulse. Note that this
form resembles the initial data used in Ref. [38].
We implement our initial data solver in Mathematica

[67]. First, regularity at the origin is imposed by solving
Eq. (38) perturbatively near the origin. The perturbative
solution for ψðrÞ, which depends on one integration
constant ψð0Þ, is then used as initial data in an outward-
bound integration (in radius) starting from a small nonzero
radius. Finally, using a shooting method, we fix ψð0Þ by
requiring that the exterior Robin boundary condition,

−1þ ψ þ r
∂ψ
∂r

				
r→∞

¼ 0; ð42Þ

is satisfied. Note that this boundary condition corresponds
to imposing that ψ reduces to the asymptotically flat
solution of Eq. (38) (c.f. Birkhoff’s Theorem [68]),
ψðr → ∞Þ ≈ 1þm0=ð2rÞ, where m0 is the (unknown)
Arnowitt-Deser-Misner (ADM) mass.

2. Uð1Þ UV-completion

The construction of the initial data for the metric
variables proceeds as in Sec. III B 1. In this case, the P
and Q terms in Eqs. (38)–(39) are replaced by

P½α;ψ ; ∂tϕR;I; ∂rϕR;I;ϕR;I� ¼ −
1

8
κψ ½ψ4ðΠ2

R þ Π2
I Þ

þΦ2
R þΦ2

I þ ψ4Vðϕ⋆ϕÞ�;

Q½α;ψ ;∂tϕR;I;∂rϕR;I;ϕR;I� ¼−
1

2
κðΠRΦRþΠIΦIÞ: ð43Þ

From the initial profile of the k-essence (phase) field
[Eqs. (41)], we can construct the initial configurations for
the fields ϕR;I by direct application of Eqs. (14) and (15).
Finally, let us comment on a subtlety regarding the initial

profile for the complex scalar field. When specifying the
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initial configuration of the radial field ρ [Eq. (15)], one
needs to provide also information on the configuration of
the metric function ψðrÞ in k-essence, which we denote by
ψKðrÞ. The latter is obtained from the solution of the
Hamiltonian constraint [Eq. (38)]. This complicates the
solution of Eq. (38) for the Uð1Þ UV completion, since it
would require the use of an interpolated function for ψKðrÞ.
For the cases that we consider below, ψKðrÞ ≈ 1. Thus, we
avoid this problem by using the approximation ψKðrÞ≡ 1
in Eq. (15). We stress that the Hamiltonian constraint
[Eq. (38)] in this UV completion should not be solved by
considering ψKðrÞ ¼ ψðrÞ.

3. Fixing the equations

The initial data in the “fixing the equations” approach is
prescribed in exactly the same way as in Sec. III B 1. The
only additional information that we need to include is the
initial profile of the Σ field, which we specify to be

Σjt¼0 ¼ K0ðXÞjt¼0: ð44Þ

C. Units

For convenience in the numerical implementation, we
will measure physical quantities with respect to the
following energy, length, and time units EΛ ≡ Λ−2κ−3=2,
LΛ ≡ Λ−2κ−1=2, and TΛ ≡ LΛ, respectively.

D. Evolution scheme

For this paper, we extend the code of Ref. [64], which
was initially written for one-dimensional black hole sim-
ulations but which was later adapted in Refs. [69] to
perform dynamical evolutions of boson stars, fermion-
boson stars [66], anisotropic stars [70], and also in
Refs. [30,33,39] and in Ref. [71] for neutron stars in
k-essence and chameleon screening, respectively. The
metric equations are evolved using a high-resolution
shock-capturing finite-difference (HRSC) scheme,
described in Refs. [64,72], to discretize the spacetime
variables. This method can be interpreted as a fourth-order
finite difference scheme plus third-order adaptive dissipa-
tion, where the dissipation coefficient is given by the
maximum propagation speed at each grid point. For the
scalar field sector, a more robust HRSC second-order
method is employed, which is based on the Local-Lax-
Friedrichs flux formula with a monotonic-centered limiter
[73]. Integrations in time are carried out through the
method of lines by using a third-order accurate strong
stability preserving Runge-Kutta integration scheme, with a
Courant factor of Δt=Δr ¼ 0.25TΛ=LΛ, such that the
Courant-Friedrichs-Levy condition is satisfied.
We have used a spatial resolution of Δr ¼ 0.01LΛ and a

spatial domain with outer boundary located at r ¼ 480LΛ.
We have checked that the results do not vary significantly
with the position of the outer boundary or with resolution.

For the spacetime variables, we use maximally dissipative
boundary conditions, whereas for the scalar fields, we use
outgoing boundary conditions.

E. Diagnostic quantities

In the Uð1Þ UV completion, the phase field derivatives
can be computed at each time step from

∂rπ ¼ v

�
ϕR∂rϕI − ϕI∂rϕR

ϕ2
R þ ϕ2

I

�
; ð45aÞ

∂tπ ¼ v
�
ϕR∂tϕI − ϕI∂tϕR

ϕ2
R þ ϕ2

I

�
: ð45bÞ

The phase field πðt; rÞ itself, which, at low energies, is
expected to reduce to the k-essence field, can be obtained
by integrating Eq. (45b) along with the evolution equations.
In the “fixing the equations” approach, this procedure is
instead not needed.
Once the phase field and its derivatives are known, one

can compute the k-essence “characteristic speeds” from
Eq. (9). We emphasize, however, that the true characteristic
speeds in the Uð1Þ UV completion and in the “fixed”
theory are given by Eqs. (23) and (27), respectively.
If an apparent horizon (defined as the outermost trapped

surface) is present, its location rAH is given by the zeros
of the expansion of outgoing null rays {Eq. (4.4) of
Ref. [39]},3

Θ ¼ 1ffiffiffiffiffiffi
grr

p
�
2Drθ

θ þ 2

r

�
− 2Kθ

θ: ð46Þ

Similarly, for the k-essence field, we find the location of a
sound horizon (if present) by looking for the zeros of the
expansion of outgoing null rays with respect to the effective
metric γμν {Eq. (4.5) of Ref. [39]},

S ¼ r2gθθ½ðrDrθ
θ þ 2Þ2γrr

þ rKθ
θαðrγttKθ

θα − 2ðrDrθ
θ þ 2ÞγtrÞ�: ð47Þ

Finally, we compare the evolutions in two theories A and
B by calculating a discrepancy measure for a given
field χ as

EA;B½χ�ðtÞ ¼
kχðAÞ − χðBÞkAH

kχðBÞkAH
; ð48Þ

where the L2-norm of a function ξ is defined as

kξk2AH ¼
Z

∞

max
A;B

ðrAHÞ
jξðt; rÞj2dr; ð49Þ

3We correct here a typo in Eq. (4.4) in Ref. [39].
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with the integration domain only covering the exterior of
the apparent horizons rAH of both theories A and B. This
measure is inspired in a similar measure introduced for
Minkowski space in Ref. [47].

IV. RESULTS

In this section, we will compare the dynamics of
quadratic k-essence, the Uð1Þ UV completion, and the
“fixed” theory during the gravitational collapse of a scalar
“shell.” We will first study in Sec. IVA the initial stage of
gravitational collapse, when the Cauchy problem in
k-essence is well-posed, and confirm that the Uð1Þ UV
and the “fixed” theory reproduce the same dynamics of
quadratic k-essence. After a Tricomi-type breakdown of
k-essence, we will continue the evolution with theUð1ÞUV
completion and the “fixed” theory to determine in Sec. IV
B that the end state of the system corresponds to that of a
black hole. Finally, in Sec. IV C, we will show that the
system enters the nonlinear regime and compare the
dynamics of the Uð1Þ UV completion and the “fixed”
theory within it. This will serve as a “validation” test of the
“fixing the equations” approach in a setting where we have
access to the UV physics, and it will also allow us to
explore the relation between the nonlinear regime and the
range of validity of the EFT. Additional comments for
the case of a large coupling constant β are given in
Sec. IV D. In the following, we will explore the case
corresponding to initial data [Eq. (41)] generated with
parameters, rc ¼ 55LΛ, σ ¼ 1.5LΛ, and A ¼ 0.14LΛ, and
coupling constants, β ¼ 1, M2

ρ ¼ 2L−2
Λ , v2E−1

Λ LΛ ¼ 1, and
τT−1

Λ ¼ 1. In Appendix A, we present an additional
example with weak initial data, where no breakdown of
the Cauchy problem or black hole formation occurs.

A. EFT evolution and Tricomi-type breakdown

By construction, the initial radial profile of the k-essence
field πjt¼0 agrees with the profiles from the Uð1Þ UV
completion phase field πðUVÞjt¼0 and from the π-field of the
“fixed” theory. {Recall that in theUð1ÞUV completion, the
k-essence field is described at low energies by the (dimen-
sionful) phase mode [Eqs. (14) and (17)] of the complex
scalar ϕ and needs to be computed from Eqs. (45).} The
initial data for the metric variables, obtained after solving
the constraint equations, is also in agreement. In particular,
for the Uð1Þ UV completion, this is not a trivial statement,
as the agreement in the metric occurs because the extra
degree of freedom (the radial mode of the complex scalar
[Eq. (14)]) contains a negligible fraction of the scalar
energy content. Thus, we can say that the initial data is in
the regime of validity of the EFT description of k-essence.
In the early stage of collapse in k-essence, from t ¼ 0 to

t ∼ 55TΛ, the scalar pulse splits into an ingoing (collaps-
ing) pulse traveling toward the origin and into an outgoing
(radiated) pulse moving toward the outer boundary of the

numerical grid. In the following, we will concentrate on the
former. This stage is reproduced by the Uð1Þ UV com-
pletion and the fixed theory. In Fig. 1, in the first panel, we
can observe that the k-essence scalar field at t ∼ 50TΛ and
r ∼ 7LΛ is almost indistinguishable in the Uð1Þ UV
completion and in the “fixed” theory. We quantify this
agreement by plotting the absolute difference of these
profiles in the second panel. In the third and fourth panels,
we also plot the relative difference of grr and gθθ,
respectively, showing that the metric is also very well
recovered, with a relative error of ≲0.01%.

FIG. 1. EFT evolution. First panel: The radial profile of the k-
essence field multiplied by r, at time t ¼ 50TΛ (red solid line)
compared with the phase field of the Uð1Þ UV completion (green
dashed line) and the π-scalar of “fixed” theory (blue dotted line),
showing that they are indistinguishable from each other. Second
panel: Absolute differences Δπ ≡ πðAÞ − πðBÞ for theories A vs B;
namely, k-essence vs UV (orange solid lines), k-essence vs
“fixed” (light green dashed lines) and “fixed” vs UV (black
dotted lines). Third and fourth panels: relative differences,
R½g�≡ jðgðAÞ − gðBÞÞ=gðBÞj, of the metric functions g ¼ grr; gθθ
for theories A vs B.
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As the pulse approaches the origin, the k-essence scalar
gradients increase. At t ∼ 56.5TΛ, large gradients trigger a
Tricomi-type breakdown, by which, the scalar equation (5)
transitions from hyperbolic to parabolic and then elliptic.
From the discussion in Sec. II, this occurs when, at any
point of the spatial grid, the determinant of the effective
metric (6) vanishes, or equivalently, when at least one
eigenvalue of the latter becomes zero. We can gain some
insight by tracking the spatial maximum and minimum of
the eigenvalues of the effective metric [Eq. (11)] as a
function of time, as can be seen in the first panel of Fig. 2.
Note that for the Uð1Þ UV completion and the “fixed”
theory, the effective metric is not a fundamental but an
“emergent” quantity; therefore, these eigenvalues have
been computed from Eqs. (11) and (45). Initially,
λ� ≈�1. As the evolution progresses, the Tricomi-type
breakdown is signaled in this plot by one of the eigenvalues
approaching zero. Specifically, we observe that
minðλþÞ → 0. In the second panel, we plot the spatial
maximum and minimum values of the characteristic speeds
of k-essence [Eq. (9)] as a function of time. In the early
evolution, the system is clearly strongly hyperbolic since
V� are real and distinct. As the pulse approaches the origin,
first, we observe the formation of a sound horizon (roughly
when maxðV−Þ ≈ 0

4). Then, the Tricomi-type breakdown
occurs when the characteristic speeds become equal.
Indeed, we observe that jminðVþÞ −maxðV−Þj → 0, indi-
cating that strong hyperbolicity is lost.5 Note that, as before,
for the Uð1Þ UV completion and the “fixed” theory, the
values of V� have been computed using Eqs. (9) and (45).
We argue that the change of character of the scalar

equation (5) occurs within the EFT regime since all three
theories predict that the effective metric becomes degen-
erate (corresponding to a Tricomi transition in the low
energy k-essence theory) at similar times. Past this point,
only with the Uð1Þ UV completion and the “fixed” theory,
for which the Cauchy problem remains well-posed, can the
scalar and metric be evolved smoothly and the final fate of
the system be predicted.

B. End state

In both the Uð1Þ UV completion and the “fixed” theory,
the system collapses to form a black hole. In Fig. 3, we
show the lapse function approaching zero near the origin at
different representative times, a typical behavior leading up
to the formation of a black hole [60]. We confirm this
conclusion by identifying the appearance of an apparent

FIG. 3. Gravitational collapse of the pulse. Radial profiles of
the lapse α at times t=TΛ ¼ 30, 55, 80 in k-essence (red solid
lines), Uð1Þ UV completion (green dashed lines), and the
“fixed” theory (blue dotted lines). Increasing times are denoted
by increasing intensity of the color. The lapse approaching
zero near the origin is a typical effect signaling the formation
of a black hole. Note that k-essence experiences a Tricomi
breakdown at t ∼ 55.6TΛ, much before any apparent horizon
formation.

FIG. 2. Character of the k-essence scalar equation. First panel:
the minimum and maximum values of the eigenvalues of the
effective metric in k-essence (red solid line), Uð1Þ UV com-
pletion (green dashed line), and the “fixed” theory (blue dotted
line). For the last two, the effective metric is not a fundamental
quantity but “emergent” at low energies. From top to bottom:
maxðλþÞ, minðλþÞ, maxðλ−Þ, minðλ−Þ. The Tricomi-type
breakdown is signaled by min λþ → 0 at t ∼ 56.5TΛ. Second
panel: the minimum and maximum values of the characteristic
speeds. In this panel, from top to bottom: maxðVþÞ,
minðVþÞ, maxðV−Þ, minðV−Þ. Notice that, at t ∼ 56.5TΛ,
jminðVþÞ−maxðV−Þj→0, signaling a Tricomi-type breakdown.

4As mentioned earlier, we define the location of the (apparent)
sound horizon as the zero of the effective metric’s null ray
expansion (47). In areal coordinates, that condition is exactly
equivalent to V− ¼ 0, and this equivalence carries on (albeit
approximately) also in the isotropic coordinates that we utilize.

5This is actually a necessary and not sufficient condition for
the loss of hyperbolicity, but we have checked that the effective
metric also becomes degenerate when Vþ ¼ V−.
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horizon, which we indicate with solid vertical lines in
Fig. 6. For the “fixed” theory, we have checked that the
final state is a black hole when varying τ=TΛ ∈ ½1; 10�.
This end state remains inaccessible with the low-energy
k-essence model, where the Tricomi-type breakdown
occurs well before the lapse gets close to zero.
With our numerical implementation (Sec. III D), we can

only track the evolution of the black hole horizon for
some time after formation. This is due to the formation of
steep gradients in the collapse front of the lapse [64].
Finally, in the Uð1Þ UV completion, the final area is
ABH ¼ 4πR2

AH ∼ 5.2L2
Λ, where RAH ∼ 0.64LΛ is the polar

radius of the apparent horizon. In the “fixed” theory, the
initial value of the black hole area is ABH ∼ 7.1L2

Λ (37%
larger) with RAH ∼ 0.75LΛ (17% larger). However, we
cannot accurately determine the final value of the area due
to additional constraint violation contributions with respect
to the Uð1Þ UV completion: In the “fixed” theory, the
stress-energy tensor is only strictly conserved in the limit
Σ → K0ðXÞ; thus, the Hamiltonian constraint time deriva-
tive is only strictly vanishing in the limit Σ → K0ðXÞ. We
will elaborate on this point in Appendix B.

C. Nonlinear vs UV regime

Having confirmed that the k-essence dynamics is recov-
ered at early times (Sec. IVA) and that the evolution can be
continued past the Tricomi transition to determine the final
fate of the system (Sec. IV B), we will now proceed to
compare the Uð1Þ UV completion and the “fixed” theory in
the nonlinear regime. This will allow us to explore the
relation between the latter and the range of validity of the
EFT (defined by the difference between the Uð1Þ UV
completion and quadratic k-essence evolved within the
“fixing the equations” approach).
To establish whether the dynamics enters the nonlinear

regime, we monitor the ratio of the first k-essence
self-interaction operator to the kinetic term, i.e., NL≡
jβΛ−4Xj ¼ j2M−2

ρ v−2Xj. As can be seen, this can be
rewritten, using Eqs. (1) and (15), as simply NL ¼ 2jρj.
One therefore expects the nonlinear regime [i.e.,
NL ∼Oð1Þ] to be closely related, if not equivalent, to
the range of validity of the low-energy theory, to which the
Uð1Þ UV completion only reduces when ρ becomes non-
dynamical and can be integrated out (thus implying that
NL ¼ 2jρj is small). We will verify this conjecture with our
numerical simulations in the following.
Let us first analyze when the nonlinear regime is attained.

In Fig. 4, we plot the spatial maximumofNL as a function of
time in the region outside the apparent horizon (if present).
We denote this quantity as maxAHðNLÞ. During the early
evolution, this ratio is small, signaling that the dynamics is
linear. However, as the pulse approaches the origin and
scalar gradients grow, both theUð1ÞUV completion and the
“fixed” theory enter the nonlinear regime. In particular, for
the “fixed” theory, the growth of the gradients within the

nonlinear regime is damped in comparison to the Uð1Þ UV
completion, andwe observe amilder growth inmaxAHðNLÞ.
Recall that in the “fixed” theory, high frequency modes are
suppressed by construction. Finally, once the black hole
forms, the nonlinear regions become hidden behind the
apparent horizon, andwe observe a decrease inmaxAHðNLÞ.
We now proceed to compare the k-essence (phase) field

profiles in the nonlinear regime. In Fig. 5, we plot the
discrepancy measure EAB½π�, between the k-essence scalar
profiles of theories A and B, as defined in Eq. (48). (Note that
the plot for the discrepancy of the kinetic energyXwould look
qualitatively similar and lead to the same conclusions.)
We denote in colored diamonds the approximate time of
formation of sound horizons and in colored squares, the
approximate time of formation of apparent horizons in each
theory. We focus on the discrepancy between the “fixed”
theory (theory A) and the Uð1Þ UV completion (theory B),
plotted in blue dotted lines. This provides a measure of how
much the EFT and UV dynamics differ; i.e., it allows for
understanding the range of validity of the EFT. During the
earlyevolution, theagreement is clear (EAB½π�<10−3); i.e., the
EFT is a good description of the full dynamics. As the system
enters the nonlinear regime, indicated with a black star, the
discrepancy increases toOð1Þ, which would seem to indicate
that the dynamics exits the range of validity of the (fixed) low-
energy EFT. However, the comparison of the scalar profiles is
subtle, and we should examine them in more detail.

FIG. 4. Nonlinear regime assessment. The spatial maximum of
the ratio of the self-interaction term to the kinetic term for
k-essence (red solid line), theUð1Þ UV completion (green dashed
line), and the “fixed” theory (blue dotted line). The maximum is
taken in the region outside the apparent horizon, if present.
During the early evolution, this measure is small (≲10−2). As the
pulse approaches the origin, the system enters the nonlinear
regime maxAHðNLÞ ∼Oð1Þ, shortly after the Tricomi transition
at t ∼ 56.5TΛ. This measure decreases in the later stage once the
black hole is formed and nonlinearities are hidden behind the
apparent horizon.
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In Fig. 6, in the left panels, we show snapshots of the
scalar profiles of the k-essence (phase) field close to when
the nonlinear regime is reached, as well as at later times. In
the top left panel, at t ¼ 55TΛ, and right before the Tricomi
transition, we observe that the scalar field is indistinguish-
able in k-essence, in the Uð1Þ UV theory and in the “fixed”
theory. In the following panels, only the profiles of the last
two theories are shown, as k-essence undergoes a Cauchy
(Tricomi) breakdown, as mentioned earlier. We notice that
the scalar profile of the “fixed” theory exhibits a qualita-
tively similar behavior of that of the Uð1Þ UV theory. From
this figure, theOð1Þ discrepancies in Fig. 5 are then seen to
originate mostly as a consequence of a “lag” between the
scalar profiles. Once the black hole forms, the largest
sources of discrepancy are hidden behind the apparent
horizon, as can be seen for times t≳ 61TΛ in Fig. 5. From
the right panels of Fig. 6, we notice that the “fixed” theory
also qualitatively follows the radiated (outgoing) scalar
field of the Uð1Þ UV completion. Note that the observed
difference in amplitude is small but is magnified by the
factor r. In Fig. 5, it can be seen that the discrepancy is
approximately Oð10−1Þ.
The observed “lag” in Fig. 6 can be traced, at least partly,

to the form of the “driver” equation [Eq. (26)] and its
associated timescale τ, which controls how fast the field Σ

relaxes to K0ðXÞ. By decreasing (increasing) the value of τ,
we can partly reduce (increase) the “lag” in scalar profiles.
Other sources of “delay” may be due to the slightly
different evolution of the lapse in the two theories—see
Fig. 3. The latter observation illustrates that one must be
careful when comparing fixed time scalar profiles from
different evolutions. To overcome these ambiguities, better
measures of comparison may be defined from observables
such as the scalar radiation detected by an asymptotic
observer—see, e.g., Ref. [31].
Finally, we briefly comment on the low-energy sound

horizons, which form prior to the formation of the black
hole. Since physical modes in the Uð1Þ UV completion
move along null geodesics [c.f. Eq. (21)] and are no longer
(at least in principle) well-described by the k-essence scalar
equation (5), the sound horizons may lose physical mean-
ing. This causes a strange behavior of the sound horizon in
our simulations, as illustrated, e.g., in Fig. 6. At t ¼ 57TΛ,
the sound horizon has already formed in the Uð1Þ UV
theory and is marked by a green dashed vertical line. This
horizon disappears shortly after and is not shown in
subsequent frames. At t ¼ 65TΛ, the sound horizon instead
reappears. Again, we stress that this is probably due to the
sound horizon losing physical meaning in the UV regime.

D. Large coupling

In astrophysical settings, where masses and lengths are,
respectively, of order M⊙ and km (or larger), one typically
has to employ units adapted to the system under scrutiny to
simulate it, e.g., ones in which G ¼ c ¼ M⊙ ¼ 1. In these
units, the numerical value of the coupling constant βΛ−4 is
extremely large [30,31,33]. This coefficient is intimately
connected to the scalesMρ and v in theUð1ÞUVcompletion
by Eq. (18). Fixing v2 ¼ EΛ=LΛ to avoid short wavelength
oscillations in the complex scalar ϕ ∝ exp ½iπðUVÞ=v�
[Eqs. (14) and (17)], larger values of βΛ−4 correspond to
smaller values of Mρ. This, in turn, means a weaker
suppression of higher-order terms, suppressed by powers
of M−2

ρ v−2. Therefore, for fixed initial data parameters
fA; σ; rcg [Eq. (41)], larger values of βΛ−4 will push the
initial data out of the linear regime and potentially also out of
the EFT’s regime of validity. One symptom of this is an
increased disagreement by the metric coefficients obtained
by solving the Hamiltonian constraint [Eq. (38)] at t ¼ 0.
This is due to the radial ρ field [in Eq. (14)] containing an
increasing fraction of the scalar energy content in the Uð1Þ
UV theory, which is not accounted for in k-essence (nor in
the “fixed” theory), and resulting in “deeper” gravitational
“potential wells.”Oneway to return to the linear regime and
to the EFT regime is toweaken the initial data by decreasing
the amplitude A and/or choosing milder initial scalar
gradients by increasing the root-mean-square width σ.
Finally, in Sec. II B, we highlighted a caveat with the

strongly hyperbolic nature of the “fixed” theory’s scalar

FIG. 5. Discrepancy of the k-essence scalar. The discrepancy
measure EAB of the k-essence scalar π of theories A vs B, defined
in Eq. (48); namely, k-essence vs Uð1Þ UV completion (red solid
line), k-essence vs “fixed” theory (green dashed line), and “fixed”
theory vs Uð1Þ UV completion (blue dot-dashed line). The
discrepancy measures involving k-essence stop at the Cauchy
breakdown of the theory. The colored diamonds and square
markers denote the (approximate) time of formation of the sound
horizon (SH) and apparent horizon (AH) in each theory, respec-
tively. Note that the diamonds are superposed since both theories
agree in the EFT regime. The black star marker denotes the
approximate time where maxAHðNLÞ ≈ 1 in the Uð1Þ UV theory
(see also Fig. 4).
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system of equations (25)–(26). Namely, when Σ → 0, the
system becomes pathological. We have performed numeri-
cal evolutions with larger values of β (and correspondingly
smaller values of Mρ) and observe that the Uð1Þ UV
completion evolution may drive the reconstructed value of
K0ðXÞ to zero. In the “fixed” theory, K0ðXÞmay also vanish
dynamically, driving Σ to zero with it, and causing the code
to crash. Moreover, this may happen in regions not
censored by an apparent horizon (see also Ref. [41]).
This problem may be avoided in other versions of k-
essence. For instance, in cubic k-essence, the particular
functional form of KðXÞ may keep jK0ðXÞj ≥ q2 > 0,
where q is a constant—see, e.g., Refs. [30,31,33,39].
Alternatively, one may look for a different way to imple-
ment the “fixing the equations” approach.

V. CONCLUSIONS

In this work, we have studied two general strategies to
deal with the breakdown of the Cauchy problem in
k-essence. The first was to resort to a UV completion of

the theory, which allows for an initial-value problem that
remains well-posed at all times. Unfortunately, while this
was possible for the k-essence model considered in this
paper, it is not possible for generic ones, e.g., for those that
possess screening mechanisms, for which such UV com-
pletions remain unknown (if existing at all [45]). The
second strategy consisted in “fixing the equations” [46] of
k-essence to control the high frequency behavior suspected
of leading to the Cauchy breakdown. Both strategies were
studied before in Minkowski space by Allwright and
Lehner [47] to demonstrate their technical viability.6

Here, we have generalized them to include gravity.
By considering the specific case of quadratic k-essence,we

have shown that both approaches reproduce the EFT dynam-
ics of k-essence up to a “Tricomi-type” breakdown of the

FIG. 6. Dynamics of the pulse in the nonlinear regime. Time snapshots of the k-essence scalar for representative times from t ¼ 55TΛ
to t ¼ 69TΛ for k-essence (red solid lines), the phase field of the Uð1Þ UV completion (green dashed lines), and the π-scalar of the
“fixed” theory (blue dotted lines). The profiles corresponding to the quadratic model of k-essence exist only up to the Tricomi-type
breakdown of the theory (at t ∼ 56.5TΛ), and hence, they are only shown in the first panel. The “fixed” theory exhibits a qualitatively
similar behavior to that of the Uð1Þ UV completion. The solid vertical lines indicate the location of the apparent horizon, while the
dashed and dotted vertical lines denote the location of the low-energy sound horizon. The appearance and disappearance of the sound
horizon between frames t ¼ 57TΛ and t ¼ 65TΛ occurs due to the theory entering the nonlinear and UV regime. The singularity-
avoidance prescription chosen for the lapse causes the “freezing” of the scalar profile near the origin, once the black hole forms.

6See also Refs. [74,75] where this UV theory and its
corresponding EFT description were studied without considering
the coupling to gravity, and Ref. [51], where it is shown that
shocks or caustics in k-essence may be smoothed by a suitable
UV completion.
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Cauchyproblem,where the scalar equation changes character
from hyperbolic to parabolic and then elliptic. Furthermore,
both the UV completion and the “fixing the equations”
approach allow for evolving the dynamics past the Cauchy
breakdown to the physical end state of the evolution (in our
example, the formation of a black hole). This should be
contrasted with previous efforts to “chart” the space of initial
data in k-essence in order to rule out regions leading to ill-
posed problems—see, e.g., Refs. [38,39,76,77].With the two
strategies described above, (most of) these regions need not
be excluded. In the context of compact binaries, in particular,
this opens up the possibility of simulating their coalescence,
allowing the study of the entire dynamics and the emission of
gravitational and scalar radiation in more generic k-essence
models than currently possible [31].
Moreover, sincewe have access to the high-energy regime

of k-essence thanks to its UV completion, our results for the
scalar evolution provide a validation test of the “fixing the
equations” approach. It is important to stress that this
approach, albeit agnostic of the details of the UV comple-
tion, qualitatively agrees with the dynamics of the latter well
into the nonlinear regime of k-essence. One can therefore
argue that this nonlinear regime can be at least qualitatively
captured by the low-energy EFT. In fact, we find that only in
the high curvature or gradient region inside the black hole
apparent horizon does the “fixing the equations” approach
significantly deviate from the UV completion evolution.
This is expected, as it is in those regions that the key
assumption of the “fixing the equations” approach, i.e., the
requirement that energy does not cascade into high energy
modes [46], is violated. This provides hope that even the
screening mechanism, which depends crucially on the
nonlinear dynamics of k-essence, may be within reach of
the low-energy EFT, at least qualitatively.
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APPENDIX A: WEAK DATA EXAMPLE

In this Appendix, we show results for the case with weak
initial data corresponding to parameters rc ¼ 55LΛ,
σ ¼ 15LΛ, and A ¼ 0.02LΛ [Eq. (41)], and the same
values for the coupling constants as in the main text
(Sec. IV). During the evolution, an ingoing pulse bounces
off the origin and is dispersed as it propagates outward. No
apparent sound or black hole horizons are formed.

In Fig. 7, we show the spatial maximum and minimum
values of the eigenvalues of the effective metric and of the
characteristic speeds, where no Cauchy breakdown is

FIG. 7. Character of the k-essence scalar equation (weak
initial data). First panel: the minimum and maximum values
of the eigenvalues of the effective metric in k-essence (red solid
line), the Uð1Þ UV completion (green dashed line), and the
“fixed” theory (blue dotted line). For the last two, the effective
metric is not a fundamental quantity but “emergent” at low
energies. From top to bottom: maxðλþÞ, minðλþÞ, maxðλ−Þ,
minðλ−Þ. Second panel: the minimum and maximum values of
the characteristic speeds. In this panel, from top to bottom:
maxðVþÞ, minðVþÞ, maxðV−Þ, minðV−Þ.

FIG. 8. Discrepancy of the k-essence scalar (weak initial data).
The discrepancy measure EAB of the k-essence scalar π for
theories A vs B, defined in Eq. (48); namely, k-essence vs Uð1Þ
UV completion (red solid line), k-essence vs “fixed” theory
(green dashed line), and “fixed” theory vs Uð1Þ UV completion
(blue dot-dashed line). For completeness, we plot maxAHðNLÞ in
the Uð1Þ UV completion (orange dot-dashed line).
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observed. Consistently with the discrepancy measure
EAB½π� in Fig. 8, the scalar profiles show agreement across
the board in Fig. 9. For this initial data, the evolution
remains in the linear and EFT regime at all times.

APPENDIX B: CONSTRAINT PROPAGATION
IN THE “FIXED” THEORY

In the “fixed” theory, the equations of motion do not
automatically imply the conservation of the stress-energy
tensor. Indeed, the right-hand side of

∇μTðπÞ
μν ¼ 2∇νπ∇μ½ðΣ − K0ðXÞÞ∇μπ�

þ term prop: to Eq: ð25Þ ðB1Þ

is not formally zero when the equations of motion are used.
However, if the “driver” equation [c.f. Eq. (26)] is such that

Σ ≈ K0ðXÞ, an approximate conservation equation for TðπÞ
μν

is expected, i.e., ∇μTðπÞ
μν ≈ 0.

In order to see the effect on the propagation of the
constraint equations, we follow Ref. [60] (see also
Ref. [78]). We begin by defining the projections of

Einstein equations Eμν ≡Gμν − κTðπÞ
μν ¼ 0, given by

H≡ nμnνEμν;

Mμ ≡ −nρPμ
σEρσ;

Eμν ≡ Pμ
ρPν

σEρσ; ðB2Þ

where nμ is the vector normal to the foliation, and Pμ
σ ¼

ðδσμ þ nμnσÞ is the spatial projector. Therefore, the
Hamiltonian and momentum constraints can be expressed
as H ¼ 0 and Mμ ¼ 0, respectively. The evolution equa-
tions for the metric are instead Eμν ¼ 0. Finally, the
evolution of the Hamiltonian and momentum constraints

can be obtained from the projections of ∇μðGμν − κTðπÞ
μν Þ

and are given by

nν∇νH ¼ −DνMν − EμνDμnν þ LHðH;MσÞ
þ κnν∇μTðπÞ

μν ; ðB3Þ

nν∇νMμ ¼ −DνEμν − Eμνnλ∇λnν þ LMμ
ðH;MσÞ

− κPμ
σ∇λTðπÞ

σλ ; ðB4Þ

respectively, where and LH and LMμ
are zero for vanishing

arguments, and D is the spatial covariant derivative. Thus,
an approximate conservation of the constraints (nν∇νH ≈ 0
and nν∇νMμ ≈ 0) happens if (i) they are satisfied initially,
(ii) we use the equations of motion, and (iii) the driver
equation ensures that Σ ≈ K0ðXÞ during the evolution.
In contrast, for k-essence and the Uð1Þ UV completion,

the stress energy tensor is conserved, and thus, nν∇νH ¼
nν∇νMμ ¼ 0 when the equations of motion are used.
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