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In this paper we derive exact analytical formulas for the evolution of the photon sphere and for the
angular radius of the shadow in a special Vaidya space-time. The Vaidya metric describes a spherically
symmetric object that gains or loses mass, depending on a mass function mðvÞ that can be freely chosen.
Here we consider the case that mðvÞ is a linearly increasing or decreasing function. The first case can serve
as a simple model for an accreting black hole, the second case for a (Hawking) radiating black hole. With a
linear mass function the Vaidya metric admits a conformal Killing vector field which, together with the
spherical symmetry, gives us enough constants of motion for analytically calculating the lightlike
geodesics. Both in the accreting and in the radiating case, we first calculate the lightlike geodesics, the
photon sphere, the angular radius of the shadow, and the redshift of light in coordinates in which the metric
is manifestly conformally static, then we analyze the photon sphere and the shadow in the original
Eddington-Finkelstein-like Vaidya coordinates.
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I. INTRODUCTION

As light cannot escape from black holes, the only
possible way of observing them is to study their influence
on light or matter in their neighborhood. When a light ray
passes near a black hole, it can be deflected so strongly that
it travels in a circular orbit. In the case of a spherically
symmetric black hole these circular light rays fill a sphere
around the black hole which is known as a photon sphere.
An observable feature, intimately related to the existence
of photon spheres, is the so-called shadow of a black hole.
A major breakthrough in view of observing black holes was
obtained when the Event Horizon Telescope Collaboration
published an image of a black hole in 2019 [1–6]. It shows
a black disk at the center which is interpreted as the shadow.
The shadow is of great interest because its special features
can be used for distinguishing different types of black holes
from each other and black holes from other compact
objects.
On the theoretical side, what we now call the shadow

was first calculated for a Schwarzschild black hole by
Synge [7] and independently by Zeldovich and Novikov
[8]. In a Schwarzschild space-time with mass parameter m
there is a horizon at r ¼ 2 m and a photon sphere at
r ¼ 3 m. An observer will see the shadow if there are light

sources everywhere around the black hole but not between
the observer and the black hole. Then all past-oriented light
rays that start at the observer position can be divided into
two classes: Light rays of the first class are deflected by the
black hole and meet on their way to infinity one of the light
sources, so we associate brightness with their initial
directions. Light rays of the second class go to the horizon
without meeting one of the light sources, so we associate
darkness with them. The borderline case consists of light
rays that asymptotically spiral toward a circular light ray in
the photon sphere. So the observer will see the shadow in
the sky as a black circular disk whose angular radius
corresponds to the angle between light rays that spiral
toward the photon sphere and the radial direction. Neither
Synge nor Zeldovich and Novikov used the word “shadow”
which became common only later. Synge called the
complement of the shadow the escape cone of light; this
term is still sometimes used today.
Based on the work by Synge or Zeldovich and Novikov,

it is easy to generalize the calculation of the shadow to an
arbitrary spherically symmetric and static metric. This was
first worked out by Pande and Durgapal [9]. The possibility
of giving an analytical formula for the angular radius of the
shadow relies on the fact that in a spherically symmetric
and static space-time the equation for lightlike geodesics is
completely integrable, i.e., that there are enough constants
of motion to reduce the geodesic equation to first-order
form. All one has to do is to calculate the constants of
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motion for the circular light rays; as any light ray that
asymptotically spirals against such a circular light ray must
have the same constants of motion, this allows to analyti-
cally determine the boundary of the shadow in the
observer’s sky. Here it is important that a light ray can
spiral toward a circular lightlike geodesic only if the latter is
unstable with respect to radial perturbations. Therefore, the
determination of unstable photon spheres is of crucial
relevance for determining the shadow. For general proper-
ties of photon spheres in spherically symmetric and static
space-times we refer to Claudel et al. [10].
The situation is more complicated in space-times with

less symmetries. In the case of a rotating object the space-
time is only axially symmetric and stationary, so the
equation for lightlike geodesics is not in general completely
integrable because there is one constant of motion less than
required. However, in some axially symmetric and static
space-times there is another constant of motion, known as a
Carter constant, which is not related to a Killing vector
field of the space-time metric. When a Carter constant
exists, the shadow can be analytically calculated. For a
rotating object the shadow is flattened on one side due to
the dragging of lightlike geodesics by the rotating source.
The most important example of a space-time that admits a
Carter constant is the Kerr metric. For a stationary observer
at infinity, the shape of the shadow of a Kerr black hole was
first calculated by Bardeen [11]. There are a few other
axially symmetric and stationary space-times for which the
shadow can be analytically calculated because they admit a
Carter constant. For reviews on black hole shadows, in
particular in axially symmetric and stationary space-times,
we refer to Cunha and Herdeiro [12] and to Perlick and
Tsupko [13]; related ray-tracing methods are detailed e.g.
in a book by Zink [14].
In this paper we want to consider a different generali-

zation of spherically symmetric and static space-times: We
want to keep spherical symmetry but drop the assumption
of time-independence. More specifically, we want to
calculate the shadow of an accreting or radiating black
hole. As spherical symmetry alone does not give us enough
constants of motion for complete integrability, we will
consider a special case where an additional symmetry
exists. The space-time around a spherically symmetric
body that gains or loses mass can be described by the
Vaidya metric [15]. This is a solution to Einstein’s field
equation with a null dust as the source. This null dust is
either radially ingoing, causing an increase of mass, or
radially outgoing, causing a decrease of mass. The depend-
ence of the mass on time is coded in a mass function mðvÞ
that can be freely chosen. In this paper we will restrict
ourselves to the case that mðvÞ is a linearly increasing or
decreasing function. The first case gives us an idealized
model for an accreting black hole, the second case for a
(Hawking) radiating black hole. IfmðvÞ is linear, the space-
time admits a conformal Killing vector field (cf. Nielsen

[16]) which, together with the spherical symmetry, gives us
enough constants of motion for complete integrability of
the equation for lightlike geodesics. This allows us to
analytically calculate the (time-dependent) area of the
photon sphere and the angular radius of the shadow for
an accreting and for a radiating black hole.
For related material we refer to Example 10 in Claudel

et al. [10] where the photon sphere, but not the shadow, in a
piecewise defined Vaidya metric is considered. The photon
sphere and the shadow in time-dependent space-times was
also discussed in a recent paper by Mishra, Chakraborty
and Sarkar [17]. Their study includes the Vaidya metric as a
special example. However, they did not consider the
particular Vaidya metrics for which the problem can be
solved analytically. To the best of our knowledge, there are
only two previous works where an exact analytical formula
for the angular radius of the shadow was derived in a time-
dependent situation: Schneider and Perlick [18] calculated
the shadow of a collapsing dark star, and Perlick, Tsupko
and Bisnovatyi-Kogan [19] calculated the shadow in an
expanding universe where the expansion is driven by a
cosmological constant alone. There are, however, several
papers where the visual appearance of a collapsing star was
calculated without giving an analytical formula of the
shadow: Based on the pioneering work by Ames and
Thorne [20] several authors calculated the redshift of the
surface of a collapsing star. More recent papers by Kong
et al. [21,22] and by Ortiz et al. [23,24] investigated the
frequency shift of light passing through a collapsing
transparent star, thereby contrasting the collapse to a black
hole with the collapse to a naked singularity. Moreover, we
also want to direct the reader’s attention to a very recent
paper by Koga et al. [25] where the shadow of an accreting
black hole is calculated numerically.
We organize the paper as follows. In Sec. II, we

investigate the evolution of the photon sphere and the
shadow of a Vaidya black hole with linearly increasing
mass function. In Sec. II A, it is our goal to determine
the lightlike geodesics in this space-time where, because of
the spherical symmetry, we may restrict ourselves to the
equatorial plane. To that end we perform a specific
coordinate transformation that makes the space-time man-
ifestly conformally static and allows us to analytically
calculate the lightlike geodesics. Based on these results, we
determine in Sec. II B the location of the photon sphere in
the conformally static coordinates. In Sec. II C, we find an
analytical formula for the angular radius of the shadow as
seen by a conformally static observer, i.e., by an observer
whose worldline is an integral curve of the conformal
Killing vector field. We calculate the redshift under which
one conformally static observer sees another one in
Sec. II D. Finally, in the last Sec. II E, we analyze the
results in the original coordinates. In particular, we calcu-
late the angular radius of the shadow as seen by an observer
adapted to the original coordinates; with respect to the
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conformally static observers, such an observer is moving
toward the black hole. In Sec. III we proceed along the
same lines for the black hole with linearly decreasing mass
function. Finally, in the discussion Sec. IV, we summarize
the results obtained in this paper.

II. PHOTON SPHERE AND SHADOWOF A BLACK
HOLE WITH INCREASING MASS

The Vaidya metric [15] describes spherically symmetric
(i.e., nonrotating) stars or black holes, emitting or absorbing a
null dust. Thus, their mass will be accordingly decreasing
or increasing, in contrast to the Schwarzschild space-time
where the mass is a constant. As a consequence, the Vaidya
metric describes a dynamical space-time instead of a static
space-time as the Schwarzschild metric does. In the real
world, astronomical bodies gain mass when they absorb
radiation and they lose mass when they emit radiation which
means that the space-time around them is time-dependent.
The Vaidya metric provides a comparatively simple but
interesting setting for studying the properties of such
dynamical space-times, in particular the existence of a
photon sphere and the formation of a shadow.
In Eddington-Finkelstein-like coordinates, the Vaidya

metric is given by the equation

ds2 ¼ −
�
1−

2mðvÞ
r

�
dv2 � 2dvdrþ r2ðdθ2 þ sin2 θdϕ2Þ:

ð1Þ

For constantmðvÞ this reduces to the Schwarzschild metric.
For nonconstantmðvÞ the metric describes the gravitational
field around a central object with increasing or decreasing
mass, where the mass depends on the coordinate v. Note
that the hypersurfaces v ¼ const are spanned by the light-
like vector field ∂r and the spacelike vector fields ∂θ and
∂ϕ, so these hypersurfaces are lightlike. If the metric (1) is
inserted on the left-hand side into Einstein’s field equation,
the right-hand side gives us an energy-momentum tensor of
the form

Tρν ¼ � 8πG
c4

m0ðvÞKρKν; Kρ∂ρ ¼ ∓ ∂r: ð2Þ

This is the energy-momentum tensor of a null dust. In (1)
and (2) we have to choose always the upper sign or always
the lower sign. Note that then the vector field Kρ∂ρ is
always future-oriented, assuming that the time-orientation
has been chosen such that the coordinate v is increasing
toward the future. If we choose the upper sign, the
coordinates are referred to as “ingoing Eddington-
Finkelsteinlike coordinates.” Then the null dust is moving
in the direction of decreasing r and the energy-density is
positive if m0ðvÞ > 0 which means that the central object is
accreting by absorbing infalling matter of positive energy

density. This is the case we will consider in this section.
More specifically, we will consider the special case that
mðvÞ is a linearly increasing function, mðvÞ ¼ μv with a
positive constant μ. Then the metric reads

ds2 ¼ −
�
1 −

2μv
r

�
dv2 þ 2dvdrþ r2ðdθ2 þ sin2 θdϕ2Þ

ð3Þ

and, by Einstein’s field equation,

Tρν ¼ 8πG
c4

μKρKν; Kρ∂ρ ¼ −∂r: ð4Þ

We will see that for 0 < 16μ < 1 the space-time features
two horizons; it can then be interpreted as a simple and
idealized but useful model for an accreting black hole. The
coordinates θ and ϕ have their usual range on the sphere,
whereas −∞ < v < ∞ and 0 < r < ∞. On this domain the
metric (3) is obviously regular. As the Kretschmann scalar
equals 48μ2v2=r6, there is a curvature singularity at r ¼ 0,
i.e., it is impossible to extend the metric beyond this range.
On the domain −∞ < v < 0 the mass is negative which
should be considered as unphysical. Therefore, we restrict
our consideration to the domain 0 < v < ∞ and we assume
that to the past of this domain the space-time is given by
some other metric. The latter has not to be specified
because it is irrelevant for the construction of the shadow,
as we will see below. One possibility is to assume that
mðvÞ ¼ 0 (Minkowski space-time) for v < 0. Such models,
where a singularity forms at v ¼ 0, have been considered
first by Kuroda [26] and by Papapetrou [27] and are
sometimes called Vaidya-Kuroda-Papapetrou models.
For a more detailed discussion of Vaidya metrics and the
nature of their horizons and singularities we refer the reader
to Sec. IX.5 of the book by Griffiths and Podolský [28].
The dimensionless number μ is a measure of the

accretion rate of the black hole. An observer on a v-line
assigns the mass mðv0Þ to the black hole when crossing the
hypersurface v ¼ v0. Here and in the following, by an
“observer on a v-line” we mean an observer whose
worldline has constant r, θ and ϕ coordinates. From the
metric we read that such worldlines are indeed timelike if
r > 2μv and that proper time τ is related to the coordinate v
by c2dτ2 ¼ ð1 − 2μv=rÞdv2 where c is the vacuum speed
of light. This demonstrates that v=c can be identified with
proper time if the observer is far away from the black hole.
As in SI units the mass of the black hole is M ¼ c2μv=G,
the accretion rate, as seen by such a distant observer, is

dM
dτ

≈ c
dM
dv

¼ c3μ=G: ð5Þ

HereG is Newton’s gravitational constant. For a very rough
order-of-magnitude estimate of the highest value of μ that

PHOTON SPHERE AND SHADOW OF A TIME-DEPENDENT … PHYS. REV. D 105, 064056 (2022)

064056-3



can be expected in an astrophysical situation, we may
consider a supermassive black hole of 1010 M⊙ and an
accretion rate that exceeds the Eddington accretion rate by
two orders of magnitude; this is not totally unrealistic, see
e.g. Du et al. [29]. This would give an accretion rate of

dM
dτ

≈ 103 M⊙=yr; μ ≈ 10−8: ð6Þ

A. Lightlike geodesics in the equatorial plane

To understand the behavior of light traveling in the
metric (3), we formulate the equations of motion for
lightlike geodesics in this metric. The metric (3) is
obviously spherically symmetric, but this symmetry alone
does not provide us with sufficiently many constants of
motion for reducing the geodesic equation to first order.
Apparently there is no additional symmetry. Actually, the
general Vaidya metric (1) does not have any additional
symmetry. The more special metric (3), however, admits an
additional conformal Killing vector field, as was already
discussed by Nielsen [16], which allows us to analytically
determine the lightlike geodesics. We mention that, more
precisely, a Vaidya metric (1) admits an additional con-
formal Killing vector field only if mðvÞ is a linear function.
This follows from the work of Ojako et al. [30] who
determined the existence of a conformal Killing vector field
in a class of space-times that includes the traditional Vaidya
metrics. As we are free to add a constant to the coordinate
v, (3) is indeed the most general form of a Vaidya metric
with increasing mass function where an additional con-
formal Killing vector field exists. To make the existence of
this conformal Killing vector field for the metric (3)
explicit, we perform the coordinate transformation

v ¼ r0ecT=r0 and r ¼ RecT=r0 ð7Þ

where r0 is a positive constant with the dimension of a
length. In the new coordinates the metric (3) takes the
following form:

ds2 ¼ e2cT=r0
�
−
�
1 −

2μr0
R

−
2R
r0

�
c2dT2

þ 2cdTdRþ R2ðdθ2 þ sin2θdϕ2Þ
�
: ð8Þ

We read that in this representation the metric is regular
on the domain −∞ < T < ∞ and 0 < R < ∞. By (7), this
corresponds to the domain 0 < v < ∞ and 0 < r < ∞ in
the original coordinates. This is precisely the domain to
which we want to restrict our consideration.
From (8) it is obvious that ∂=∂T is a conformal Killing

vector field. This vector field is timelike if

1 −
2μr0
R

−
2R
r0

> 0; ð9Þ

i.e., on the domain

R− < R < Rþ ð10Þ

where

R� ¼ r0
4
ð1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 16μ

p
Þ ð11Þ

are the positions of two horizons. Obviously these are
conformal Killing horizons. In the following we assume
that 16μ < 1 to make sure that we have a region where
∂=∂T is timelike. The inner horizon at R− is then to be
interpreted as a black hole horizon.
We will now determine the lightlike geodesics in the

metric (8). Later we will then transform back the results to
the original coordinates ðv; r; θ;ϕÞ. The lightlike geodesics
in the equatorial plane obey the following equation of
motion derived from Eq. (8)

0 ¼ −
�
1 −

2μr0
R

−
2R
r0

�
c2 _T2 þ 2c _T _RþR2 _ϕ2: ð12Þ

The crucial observation is that ∂=∂T is a conformal Killing
vector field. This gives us along every lightlike geodesic the
following constant of motion E:

−
�
1 −

2μr0
R

−
2R
r0

�
e2cT=r0c _T þ e2cT=r0 _R ¼ E: ð13Þ

Another constant of motion L derives from the fact that
∂=∂ϕ is a Killing vector field:

e2cT=r0R2 _ϕ ¼ L: ð14Þ

From (12) we read that radial light rays ( _ϕ ¼ 0) satisfy

cdT ¼ 0; cdT ¼ 2dR

1 − 2μr0
R − 2R

r0

ð15Þ

where the first equation is for ingoing and the second for
outgoing radial light rays. Integration of these equations
results in

cT ¼ const;

cT ¼ r0
Rþ − R−

�
R− log

�
R
R−

− 1

�
− Rþ log

�
1 −

R
Rþ

��
þ const ð16Þ

These radial light rays are plotted in Fig. 1. The little arrows
indicate the future direction.
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For nonradial light rays we divide Eqs. (12) and (13) by
_ϕ2 and _ϕ, respectively, and use Eq. (14) to find

−
�
1−

2μr0
R

−
2R
r0

�
c2
�
dT
dϕ

�
2

þ 2c
dT
dϕ

dR
dϕ

þR2 ¼ 0; ð17Þ

−
�
1 −

2μr0
R

−
2R
r0

�
c
dT
dϕ

þ dR
dϕ

¼ ER2

L
: ð18Þ

By solving Eqs. (17) and (18) for dR
dϕ and dT

dϕ, we get the
following equations describing lightlike geodesics in the
equatorial plane for the metric (8):

dR
dϕ

¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2R4

L2
− R2 þ 2μr0Rþ 2R3

r0

s
; ð19Þ

c
dT
dϕ

¼
− ER2

L �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2R4

L2 − R2 þ 2μr0Rþ 2R3

r0

q
1 − 2μr0

R − 2R
r0

: ð20Þ

Equation (19) determines R as a function of ϕ. Thereupon,
(20) can be used to determine T as a function of ϕ.

B. The photon sphere

We will now show with the help of (19) that the metric
(8) with μ < 1=16 admits exactly one photon sphere, and
that it is located between the two horizons. We first evaluate
the condition dR

dϕ ¼ 0 which will give us the extremum
points of light paths, R ¼ Rm. In a second step we will then

determine the radius coordinate Rp of the photon sphere by

requiring in addition that d2R
dϕ2 ¼ 0 at Rp. By (19) the

condition dR
dϕ ¼ 0 holds at R ¼ Rm if and only if

E2R3
m

L2
− Rm þ 2μr0 þ

2R2
m

r0
¼ 0: ð21Þ

From Eq. (21), we can write E2

L2 in terms of Rm as follows,

E2

L2
¼

Rm − 2μr0 −
2R2

m
r0

R3
m

: ð22Þ

Now we compute d2R
dϕ2 at R ¼ Rm from (19):

d2R
dϕ2

����
R¼Rm

¼ 4E2R3
m

L2
− 2Rm þ 2μr0 þ

6R2
m

r0
: ð23Þ

By (22), Eq. (23) results in

d2R
dϕ2

����
R¼Rm

¼ −
2

r0
ðR2

m − r0Rm þ 3μr20Þ ð24Þ

which can be rewritten as

d2R
dϕ2

����
R¼Rm

¼ −
2

r0

�
Rm −

r0
2
ð1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 12μ

p
Þ
�

×

�
Rm −

r0
2
ð1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 12μ

p
Þ
�
: ð25Þ

On the other hand, we can rewrite Eq. (21) in the following
form:

E2

L2
¼ 2ðRm − r0

4
ð1 − ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 16μ
p Þðr0

4
ð1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 16μ
p Þ − RmÞ

R3
m

:

ð26Þ

Comparison of this equation with (11) shows that E2

L2 > 0

only for R− < Rm < Rþ, i.e., turning points occur only in
the region between the two horizons where the conformal
Killing vector field ∂=∂T is timelike. Thus, light traveling
inside of both the horizons will move toward the central
singularity without any extremum point and light traveling
outside of both the horizons will move toward infinity
without having any extremum point.
This observation implies that a photon sphere can exist

only in the region between the two horizons. To find the
exact location of a photon sphere we need to find a value
Rm with R− < Rm < Rþ such that the right-hand side of
(25) vanishes. The only possible solution of this problem is
the following value of Rm ¼ Rp:

R

T

R R

FIG. 1. Radial light rays.

PHOTON SPHERE AND SHADOW OF A TIME-DEPENDENT … PHYS. REV. D 105, 064056 (2022)

064056-5



Rp ¼ r0
2
ð1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 12μ

p
Þ: ð27Þ

Thus, there is one photon sphere, located at the radius Rp
given by (27), for the metric (8) with 0 < 16μ < 1 as
shown in Fig. 2. In this figure, the two horizons are shown
as black circles and lengths are given in units of r0.
For Rm ¼ Rp we find from (22) that

E
L
¼

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2μr0

Rp
− 2

Rp

r0

q
Rp

; ð28Þ

so (20) gives us the following relation between T and ϕ for
an equatorial lightlike geodesic in the photon sphere:

cT ¼ �Rpϕffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2μr0

Rp
− 2Rp

r0

q : ð29Þ

As T runs over all of R, so does ϕ. By (14), this implies
that the lightlike geodesics in the photon sphere are
nonextendable: They start at the singularity and the affine
parameter then runs up to ∞. The latter remark is
important, in particular in view of the fact that the
coordinates ðT; R;ϕ; θÞ cover only half of the space-time.
Lightlike geodesics which have a ratio of constants E

L
given by Eq. (28) are either completely contained in the
photon sphere or they spiral asymptotically toward the
photon sphere as shown in Fig. 2. Here it is important
to realize that, although the metric (8) depends on T, the
photon sphere and the two horizons exist at fixed
R-coordinates for all T. Also note that the area of the
photon sphere is not equal to A ¼ 4πR2

p with Rp from (27);
from (8) we read that this area rather depends on T and is
equal to

A ¼ 4πr2p ¼ 4πe2cT=r0R2
p ¼ πe2cT=r0r20ð1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 12μ

p
Þ2;
ð30Þ

so it goes to 0 for T → −∞ and to ∞ for T → ∞. Again
according to (8), along a T-line at the photon sphere proper
time τ is related to T by

dτ ¼ ecT=r0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

2μr0
Rp

−
2Rp

r0

s
dT: ð31Þ

This implies that the area radius rp of the photon sphere
increases with proper time at a constant rate,

drp
dτ

¼ Rpc

r0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2μr0

Rp
− 2Rp

r0

q ¼
ffiffiffiffiffi
27

p
μcð1þOðμÞÞ: ð32Þ

For the accretion rate according to (6) this gives a velocity of
approximately 10−7c for the expansion of the photon sphere.

C. The angular radius of the shadow

Here we find the angular radius of the black hole shadow
seen by an observer on a T-line in the region between the
two horizons. We will see that this angular radius is time-
independent, although the area of the photon sphere
increases with T. To find the angular radius of the shadow,
we use the following tetrad field for R− < R < Rþ.

e0 ¼
e−cT=r0� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 2μr0
R − 2R

r0

q 	
c

∂
∂T ; ð33Þ

e1 ¼
e−cT=r0� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 2μr0
R − 2R

r0

q 	
c

∂
∂T

þ
 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 −
2μr0
R

−
2R
r0

s !
e−cT=r0

∂
∂R ; ð34Þ

e2 ¼
e−cT=r0

R
∂
∂θ and e3 ¼

e−cT=r0

R sin θ
∂
∂ϕ : ð35Þ

In the equatorial plane we consider a lightlike geodesic
ðTðλÞ; RðλÞ;ϕðλÞÞ, where λ is an affine parameter. We then
expand the lightlike geodesic’s tangent vector with respect
to the tetrad (33) to (35). Since the tangent vector is
lightlike, the expansion can be written in terms of an angle
α as follows:

_T
∂
∂T þ _R

∂
∂Rþ _ϕ

∂
∂ϕ ¼ ξðe0 þ e1 cos α − e3 sin αÞ ð36Þ

where ξ is a scalar factor and α is the angle between the
lightlike geodesic and the radial direction in the rest system

FIG. 2. Light rays spiraling toward the photon sphere
(μ ¼ 1=32).
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of the observers governed by the tetrad (33) to (35).
Comparing the coefficients of ∂

∂R and ∂
∂ϕ in (36) yields

_R ¼ cos α

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

2μr0
R

−
2R
r0

s !
e−cT=r0 ; ð37Þ

_ϕ ¼ −
ðsin αÞe−cT=r0

R
: ð38Þ

From Eqs. (19), (37) and (38), we have

1
E2R4

L2 − R2 þ 2μr0Rþ 2R3

r0

¼ sin2α

cos2αð1 − 2μr0
R − 2R

r0
ÞR2

: ð39Þ

From Eqs. (22) and (39), we can write sin α in terms of Rm
as follows:

sin α ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R3
mðR − 2μr0 − 2R2

r0
Þ

R3ðRm − 2μr0 −
2R2

m
r0
Þ

vuut : ð40Þ

Now the photon sphere is at the radius Rp ¼
r0
2
ð1 − ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 12μ
p Þ. Thus, the angular radius of the shadow

of the photon sphere for an observer at R ¼ R0 becomes

sin αsh ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R3
p

�
R0 − 2μr0 −

2R2
0

r0

	
R3
0

�
Rp − 2μr0 −

2R2
p

r0

	
vuuut

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R3
pðR0 − R−ÞðRþ − R0Þ

R3
0ðRp − R−ÞðRþ − RpÞ

s
: ð41Þ

Of course, the expression under the square-root must
be between 0 and 1 which is indeed the case for
R− < R0 < Rþ, i.e., in the region where the conformally
static observers exist. Equation (41) must be supplemented
with the information that αsh is in the interval between 0
and π=2 for Rp < R0 < Rþ and in the interval between π=2
and π for R− < R0 < Rp. We have αsh → 0 (bright sky) for
R0 → Rþ and αsh → π (dark sky) for R0 → R−. At R0 ¼ Rp

the shadow covers half of the sky which is obvious without
any calculation. In Fig. 3, we have plotted the angular
radius of the black hole shadow αsh as a function of R0. The
solid black lines labeled R− and Rþ mark the inner and
outer horizon, respectively, and the dashed black line
labeled Rp represents the photon sphere. R0 is given in
units of r0.
As an alternative, the shadow formula (41) can be

rewritten as

cos αsh ¼
ðR0 − RpÞ

R0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2μr0Rp

R0ð4μr0 − RpÞ

s
: ð42Þ

This version gives a unique value for αsh in the interval
between 0 and π, for all R− < R0 < Rþ.
With the shadow known for a conformally static

observer, the shadow can be calculated for an observer
in arbitrary motion with the help of the aberration formula.
We will exemplify this in Sec. II E below. As the aberration
formula maps circles in the sky onto circles in the sky, any
observer in the region between the two horizons sees a
circular shadow.

D. The redshift of light

In this section we compute the redshift in the metric (8).
We assume two observers, labeled A and B respectively,
who are both moving on T-lines. This is of course only
possible in the region between the two horizons. The
redshift z ¼ νA

νB
− 1 is determined by the frequency-ratio

νA
νB

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g00ðTB; RBÞ
g00ðTA; RAÞ

s
ð43Þ

where νA and νB are the frequency of the light at
ðTA; RA; θA;ϕAÞ and ðTB; RB; θB;ϕBÞ, respectively. From
(8), Eq. (43) becomes

νA
νB

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2μr0

RB
− 2RB

r0

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2μr0

RA
− 2RA

r0

q ecðTB−TAÞ=r0 : ð44Þ

As ∂=∂T is a conformal Killing vector field, TB − TA has
the same value for all light rays from A to B, i.e., the
redshift is time-independent. Note that this result comes
from the fact that the conformal factor in front of the metric
(8) is an exponential function of T. If this factor would
depend on T in any other form, TB and TA would enter not

FIG. 3. Angular radius of the shadow (μ ¼ 1=24).
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only in the form of their difference and the redshift between
two observers on T-lines would depend on T.
We now specify to the case that the considered light rays

travel in the radial direction which requires ðθA;ϕAÞ ¼
ðθB;ϕBÞ. Then we find from (16) that (44) becomes

νA
νB

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2μr0

RB
− 2RB

r0

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2μr0

RA
− 2RA

r0

q ð45Þ

for ingoing and

νA
νB

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1− 2μr0

RB
− 2RB

r0

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1− 2μr0

RA
− 2RA

r0

q ��
RB −R−

RA −R−

� R−
Rþ−R−

�
Rþ −RA

Rþ −RB

� Rþ
Rþ−R−

�

ð46Þ

for outgoing light rays.

E. Analysis in the original coordinates

Now we transform back the obtained results to the
original coordinate system ðv; r; θ;ϕÞ. This allows us to
analyze the behavior of the photon sphere as seen by
observers on v-lines (lines of constant r; θ;ϕ).
From (3) we read that the v-lines are timelike on the

domain where

2μv < r; 2μr0 < R: ð47Þ

This domain includes the region between the horizons. The
v-lines are plotted as dashed curves in Fig. 5. The domain
where the v-lines fail to be timelike (i.e., where (47) is
violated) is shown in dark gray. The other features of Fig. 5
will be explained below.We see that the observers on v-lines
come from infinity, first cross the outer horizon at Rþ, then
the photon sphere at Rp and then the inner horizon at R−.
For analyzing the situation in the coordinates ðv; r; θ;ϕÞ

it is important to realize that the hypersurfaces v ¼ const
are lightlike everywhere and that r is an area coordinate,
i.e., that the sphere ðv; rÞ ¼ const has area 4πr2, as can be
read from (3).
We have found above that in the ðT; R; θ;ϕÞ coordinates

light paths in the photon sphere are at R ¼ Rp ¼ r0
2
ð1 −ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 12μ
p Þ and that in the equatorial plane their T and ϕ
coordinates are related by (29). Transforming these two
equations back to the original coordinates ðv; r; θ;ϕÞ with
the help of (7) results in

r¼ Rpv

r0
and ϕ¼�

 
r0
Rp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−

2μr0
Rp

−
2Rp

r0

s !
log

�
v
r0

�
:

ð48Þ

These equations give us the path of the geodesic para-
metrized by v. We see that in these coordinates the lightlike
geodesics in the photon sphere spiral outward, see Fig. 4,
i.e., that the photon sphere expands. In this figure lengths
are given in units of r0. The radius coordinate r is linearly
increasing with v. The angle ϕ is a logarithmic function of
v, so the angular speed dϕ

dv is inversely proportional to v.
Whereas v is appropriate for parametrizing individual

light rays, we have to keep in mind that the hypersurfaces
v ¼ const are lightlike, i.e., that they cannot be interpreted
as equal-time slices. For describing the expansion of the
entire photon sphere, as observed by observers on v-lines,
we have to introduce an appropriate time function. We
define such a function t in the ðT; R; θ;ϕÞ coordinates by
the equation

cdt ¼ cdT −
dR

1 − 2μr0
R − R

r0

: ð49Þ

With the help of the relation

∂
∂v ¼ e−cT=r0

1

c

� ∂
∂T −

cR
r0

∂
∂R
�

ð50Þ

which follows from (7), it is easy to verify that the
hypersurfaces t ¼ const are orthogonal to the v-lines,
i.e., that events in such a hypersurface happen simulta-
neously for the observers on v-lines. Integration of (49)
results in

ct ¼ cT − r0ðFðRÞ − FðRpÞÞ ð51Þ

with

FIG. 4. Light path in the photon sphere in ðv; r; θ;ϕÞ coor-
dinates (μ ¼ 1=24).
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FðRÞ ¼ 1

2
log

ð ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 8μ

p þ 2R
r0
− 1Þð1−8μÞ−1=2−1

ð ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 8μ

p
− 2R

r0
þ 1Þð1−8μÞ−1=2þ1

: ð52Þ

In (51) we have chosen the integration constant such that t
coincides with T on the photon sphere.
The hypersurfaces t ¼ const are shown as solid curves in

Fig. 5. The time function t runs from −∞ to þ∞ on the
domain r0

2
ð1 − ffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 8μ
p Þ < R < r0

2
ð1þ ffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 8μ
p Þ. Outside

of this domain there is a region where v is timelike but t is
running backwards; this region is shown in light gray in
Fig. 5. Also note that t does not give proper time along the
v-lines: The vector field ∂=∂v is synchronizable but not
proper-time synchronizable.
It is now easy to calculate the expansion of the photon

sphere as observed by the observers on v-lines. If we
restrict (51) to the hypersurface R ¼ Rp we find

ct ¼ cT ¼ r0 log
r
Rp

ð53Þ

where the second equality follows from (8). Solving for r
results in

r ¼ Rpect=r0 ð54Þ

which demonstrates that the observers on v-lines see the
photon sphere exponentially expanding with time t. As r is
an area coordinate, this result is in agreement with (30).
Similarly, we can calculate the expansion of any other

sphere R ¼ const in the domain (47). We can do this in
particular for the horizons at R� which results in

r ¼ R�eFðR�Þ−FðRpÞect=r0 : ð55Þ

So the horizons expand exponentially, as any other sphere
R ¼ const does. We have plotted the expansion of the
photon sphere and of the horizons in Fig. 6, where the inner
dark region is bounded by the inner horizon, the inner
(orange) circle represents the photon sphere and the outer
(black) circle represents the outer horizon. Lengths are
given in units of r0 and times are given in units of r0=c. In
our theoretical model the initial radius of the photon sphere
is zero at t ¼ −∞ and its radius becomes infinite at t ¼ ∞.
We will now calculate the angular radius of the shadow

as seen by an observer on a v-line. We call this angular
radius α̃sh, and we relate it to the angular radius of the
shadow as seen by a conformally static observer, αsh, by the
special-relativistic aberration formula

tan2
�
α̃sh
2

�
¼ ðc−VÞ
ðcþVÞ tan

2

�
αsh
2

�
¼ ðc−VÞ
ðcþVÞ

ð1− cosαshÞ2
sin2 αsh

:

ð56Þ

Here αsh is given by (41) or (42), and V is the momentary
3-velocity of the observer on a v-line with respect to the
observer on a T-line. The latter has 4-velocity

U ¼ e−cT=r0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2μr0

R − 2R
r0

q ∂
∂T ; gðU;UÞ ¼ −c2 ð57Þ

whereas, by (50), the former has 4-velocity

FIG. 5. v-lines (dashed) and hypersurfaces t ¼ const (solid).
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Ũ¼ e−cT=r0ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1− 2μr0

R

q � ∂
∂T−

cR
r0

∂
∂R
�
; gðŨ;ŨÞ¼−c2: ð58Þ

By applying, at each moment, the special-relativistic
formula

gðU; ŨÞ ¼ −c2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ðVcÞ2

q ð59Þ

we find that the relative 3-velocity V of the two observers is
given by

V
c
¼ R2

0

R2
0 þ 2ðRþ − R0ÞðR0 − R−Þ

ð60Þ

at R ¼ R0. Plugging (60) and (41) into the aberration
formula (56) results in

tan2
�
α̃sh
2

�
¼ R3

0ð4μr0 − RpÞ
R3
pðR0 − 2μr0Þ

ð1 − cos αshÞ2: ð61Þ

This formula is valid for R− < R0 < Rþ., i.e., on the
domain where both the T-lines and the v-lines are timelike.
Note that on this domain R0 > 2μr0 and that, because of
our assumption 0 < μ < 1=16, also 4μro > Rp. We read
from (61) that for R0 → Rþ, where αsh → 0, also α̃sh → 0.
For R0 → R−, where αsh → π, however, α̃sh approaches a
finite value. By inserting (42) we see that (61) can be
analytically extended to all values 2μr0 < R0 < Rþ, i.e., to
the entire domain where the v-lines are timelike,

tan2
�
α̃sh
2

�
¼ R3

0ð4μr0 − RpÞ
R3
pðR0 − 2μr0Þ

×

 
1 −

ðR0 − RpÞ
R0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2μr0Rp

R0ð4μr0 − RpÞ

s !
2

:

ð62Þ

In Fig. 7 α̃sh is plotted against R0, with the latter given in
units of r0. So an observer on a v-line sees the shadow
come into existence when crossing the outer horizon.

FIG. 6. Evolution of photon sphere as seen by observer on a v-line (μ ¼ 1=24).

FIG. 7. Angular radius of shadow as seen by observer on v-line
(μ ¼ 1=24).
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The shadow gradually grows while the observer moves
inward. It covers less than half of the sky at R0 ¼ Rp,
which reflects the fact that aberration has a demagnifying
effect in the forward direction. Nothing peculiar happens
when the observer crosses the inner horizon. The shadow
covers the entire sky in the limit R → 2μr0, i.e., when the
observer reaches the speed of light.

III. PHOTON SPHERE AND SHADOW OF A
BLACK HOLE WITH DECREASING MASS

We will now consider the case that the mass function
mðvÞ is decreasing where we will again assume thatmðvÞ is
a linear function, mðvÞ ¼ −av with a positive constant a.
A Vaidya metric with a decreasing mass function may be
viewed as a simplified model for a black hole that
evaporates by emitting Hawking radiation, as was sug-
gested already in the 1980s, see Hiscock [31,32], Kuroda
[33] and Beciu [34]. There are two different ways in which
an evaporating black hole can be modeled by a Vaidya
metric. One possibility is to use (1) and (2) with the lower
sign, i.e., to use outgoing Eddington-Finkelstein-like coor-
dinates. Then the central object would lose mass by
emitting a null dust of positive energy density. For a
linearly decreasing mass function the space-time region
covered by the ðv; r; θ;ϕÞ coordinates would be just the
time-reversed version of the space-time region considered
in the previous section. That is to say, all results would
literally carry over if we just replace v by −v and T by −T
everywhere. In particular, we would again have two
horizons in the space-time region covered by our coor-
dinates, with the inner one now being a white-hole horizon.
Here we will consider another possibility. We will use

(1) and (2) again with the upper sign. Doing so with a
decreasing function mðvÞ means that the null dust is
again ingoing but with a negative energy density. We will
view such an ingoing null dust with negative energy
density as a model for Hawking radiation. Of course, this
model is (over-)simplified, in particular because Hawking
radiation consists of a superposition of ingoing negative
energy density and outgoing positive energy density.
Unfortunately, such a superposition cannot be modeled
by a single Vaidya metric. (The simplest model that
describes ingoing negative energy density and outgoing
positive energy density requires patching together two
Vaidya metrics, see Hiscock [32].) In any case, we believe
that studying the case of a black hole that loses mass by
absorbing negative energy density is of some conceptual
interest. We will see that this situation is considerably
different from the above-mentioned case which is just the
time-reversed version of the accreting black hole treated
in the previous section. In particular, we will see that now
we have only one horizon instead of two.

According to this plan, we consider the metric

ds2 ¼ −
�
1þ 2av

r

�
dv2 þ 2dvdrþ r2ðdθ2 þ sin2θdϕ2Þ

ð63Þ

where the corresponding energy-momentum tensor (2) is

Tμν ¼ −
8πG
c4

aKμKν; Kμ∂μ ¼ −∂r: ð64Þ

The metric is regular for −∞ < v < ∞ and 0 < r < ∞,
whereas θ and ϕ have their usual range on the sphere as
before. However, as the mass is negative for 0 < v < ∞,
we consider the metric only on the domain −∞ < v < 0.
That is to say, the central object starts with an infinite mass
(which is admittedly an idealization) and then radiates until
the mass has gone down to zero. From this moment on we
think of the space-time as being of some other form which
we need not specify because it is irrelevant for the shadow.
We have already emphasized that, in our view, the

calculations in this section are of some conceptual interest.
In view of astrophysical observations, the effect is so small
that there is no chance to observe it with stellar or
supermassive black holes: It is known that for a black
hole of one solar mass Hawking radiation produces a mass
loss of dM=dτ ≈ −10−67 M⊙=yr. As the mass loss scales
with M−2, it is even 20 orders of magnitude smaller for a
supermassive black hole of 1010 Solar masses.

A. Lightlike geodesics in the equatorial plane

As in the case of increasing mass, the metric admits a
conformal Killing vector field, i.e., we can make a
coordinate transformation ðv; r; θ;ϕÞ → ðT; R; θ;ϕÞ such
that the metric becomes manifestly conformally static. In
the case at hand, this transformation reads

v ¼ −r0e−cT=r0 and r ¼ Re−cT=r0 ð65Þ

where r0 is a constant and c is the speed of light. In the new
coordinates the metric (63) takes the following form:

ds2 ¼ e−2cT=r0
�
−
�
1 −

2ar0
R

þ 2R
r0

�
c2dT2

þ 2cdTdRþ R2ðdθ2 þ sin2θdϕ2Þ
�
: ð66Þ

The metric (66) is regular on the domain−∞ < T < ∞ and
0 < R < ∞. From Eq. (65) it can be seen that on this
domain the original coordinates have the range of −∞ <
v < 0 and 0 < r < ∞. This is precisely the domain to
which we restrict our consideration.
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The conformal Killing vector field ∂=∂T is timelike if

1 −
2ar0
R

þ 2R
r0

> 0 ð67Þ

i.e., on the domain

R > Rh ð68Þ

where

Rh ¼
r0
4
ð−1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 16a
p Þ ð69Þ

is the position of the horizon. Again, it is obvious that this
is a conformal Killing horizon. Thus, in this case there is
only one horizon, for any a > 0, instead of two as in the
previous case.
The lightlike geodesics in the equatorial plane obey the

following condition derived from (66):

0 ¼ −
�
1 −

2ar0
R

þ 2R
r0

�
c2 _T2 þ 2c _T _R þ R2 _ϕ2: ð70Þ

The conformal Killing vector field ∂=∂T and the Killing
vector field ∂=∂ϕ give us the following two constants of
motion E and L:

−
�
1 −

2ar0
R

þ 2R
r0

�
e−2cT=r0c _T þ e−2cT=r0 _R ¼ E; ð71Þ

L ¼ e−2cT=r0R2 _ϕ: ð72Þ

From (70) we read that radial light rays ( _ϕ ¼ 0) satisfy

cdT ¼ 0; cdT ¼ 2dR

1 − 2ar0
R þ 2R

r0

ð73Þ

where the first equation is for ingoing and the second for
outgoing radial light rays. Integration of these equations
results in

cT ¼ const;

cT ¼ r0
kþ Rh

�
k log

�
R
k
þ 1

�
þ Rh log

�
R
Rh

− 1

��
þ const ð74Þ

with Rh from (69) and

k ¼ r0
4
ð1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 16a
p Þ: ð75Þ

The ingoing and outgoing radial lightlike geodesics are
plotted in Fig. 8. Again, the little arrows indicate the future
direction.

For nonradial light rays we divide Eqs. (70) and (71) by
_ϕ2 and _ϕ, respectively, and use Eq. (72) to find

−
�
1−

2ar0
R

þ 2R
r0

�
c2
�
dT
dϕ

�
2

þ 2c
dT
dϕ

dR
dϕ

þR2 ¼ 0; ð76Þ

−
�
1 −

2ar0
R

þ 2R
r0

�
c
dT
dϕ

þ dR
dϕ

¼ ER2

L
: ð77Þ

By solving Eqs. (76) and (77) for dT
dϕ and dR

dϕ, we obtain the
following equations describing lightlike geodesics in the
equatorial plane for the metric (66):

dR
dϕ

¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2R4

L2
− R2 þ 2ar0R −

2R3

r0

s
; ð78Þ

c
dT
dϕ

¼
− ER2

L �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2R4

L2 − R2 þ 2ar0R − 2R3

r0

q
1 − 2ar0

R þ 2R
r0

: ð79Þ

Equation (78) determines R as a function of ϕ. Thereupon,
(79) can be used to determine T as a function of ϕ.

B. The photon sphere

We will now show with the help of (78) that the metric
(66) admits exactly one photon sphere, located outside of
the horizon. As mentioned in the previous case, the
condition dR

dϕ ¼ 0 gives the extremum points of light paths,
R ¼ Rm. Then the radius coordinate Rp of the photon
sphere can be calculated from the additional condition
d2R
dϕ2 ¼ 0. By (78) the condition dR

dϕ ¼ 0 holds at R ¼ Rm if

R

T

Rh

FIG. 8. Radial light rays.
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E2R3
m

L2
− Rm þ 2ar0 −

2R2
m

r0
¼ 0: ð80Þ

This equation allows us to express E2

L2 in terms of Rm,

E2

L2
¼

Rm − 2ar0 þ 2R2
m

r0

R3
m

: ð81Þ

Now we compute d2R
dϕ2 at R ¼ Rm from (78):

d2R
dϕ2

����
R¼Rm

¼ 4E2R3
m

L2
− 2Rm þ 2ar0 −

6R2
m

r0
: ð82Þ

From (81), Eq. (82) can be written as

d2R
dϕ2

����
R¼Rm

¼ 2

r0

�
Rm −

r0
2
ð−1 − ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 12a
p Þ

�

×

�
Rm −

r0
2
ð−1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 12a
p Þ

�
: ð83Þ

To find the location of the photon sphere, we have to equate
the right-hand side of (83) to zero. As Rm > 0, the only
solution Rm ¼ Rp is

Rp ¼ r0
2
ð−1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 12a
p Þ: ð84Þ

This is the only possible value for a photon sphere. We still
have to check if the condition E2

L2 > 0 is satisfied at
Rm ¼ Rp. By rewriting Eq. (81) as

E2

L2
¼ 2

r0

ðRm−
r0
4
ð−1− ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ16a
p ÞÞðRm−

r0
4
ð−1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ16a
p ÞÞ

R3
m

;

ð85Þ

we see that this condition requires Rm > r0
4
ð−1þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 16a
p Þ which is indeed satisfied by Rm ¼ Rp. We
summarize these findings in the following way: For any
choice of the parameter a > 0, there is one horizon, at
radius Rh given by (69), and one photon sphere, at radius
Rp given by (84) which is always between the horizon and
infinity, see Fig. 9.
To find the relation between T and ϕ for an equatorial

lightlike geodesics in the photon sphere we insert Rm ¼ Rp

into (81) which yields

E
L
¼

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2ar0

Rp
þ 2

Rp

r0

q
Rp

: ð86Þ

By (79) gives us the desired relation,

cT ¼ �Rpϕffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2ar0

Rp
þ 2Rp

r0

q : ð87Þ

As T runs over all ofR, so does ϕ. By (72), this implies that
also in this case the lightlike geodesics in the photon sphere
are nonextendable: The affine parameter starts at −∞ and
then runs up to a value where the singularity is reached. We
repeat that this observation is nontrivial because the
coordinates ðT; R;ϕ; θÞ cover only a part of the original
space-time (63).
Equation (86) gives us the ratio of constants E

L for
equatorial lightlike geodesics that are completely contained
in the photon sphere, and also of such geodesics that spiral
asymptotically toward the photon sphere, see Fig. 9. In this
figure the dashed line represents the horizon and lengths
are given in units of r0. As in the previous case, the
R-coordinate of the photon sphere is fixed (as is the
R-coordinate of the horizon), but by (66) the area A of
the photon sphere depends on T,

A¼ 4πe−2cT=r0R2
p ¼ πe−2cT=r0r20ð−1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 12a

p Þ2; ð88Þ

so it goes to ∞ for T → −∞ and to 0 for T → ∞.

C. The angular radius of the black-hole shadow

In this section we calculate the angular radius of the
black-hole shadow as it is seen by an observer on a T-line.
Of course, the observer must be between the horizon and
infinity. We will see that the angular radius is time-
independent, although the area of the photon sphere
decreases with T. We use the following tetrad field on
the domain R > Rh.

FIG. 9. Light rays spiraling toward the photon sphere
(a ¼ 1=12).
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e0 ¼
ecT=r0� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 2ar0
R þ 2R

r0

q 	
c

∂
∂T ; ð89Þ

e1 ¼
ecT=r0� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 2ar0
R þ 2R

r0

q 	
c

∂
∂T

þ
 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 −
2ar0
R

þ 2R
r0

s !
ecT=r0

∂
∂R ; ð90Þ

e2 ¼
ecT=r0

R
∂
∂θ and e3 ¼

ecT=r0

R sin θ
∂
∂ϕ : ð91Þ

Expanding the tangent vector of an equatorial lightlike
geodesic ðTðλÞ; RðλÞ;ϕðλÞÞ, where λ is an affine parameter,
with respect to this tetrad results in

_T
∂
∂T þ _R

∂
∂Rþ _ϕ

∂
∂ϕ ¼ ξðe0 þ e1 cos α − e3 sin αÞ ð92Þ

where ξ is a scalar factor and α is the angle between
the lightlike geodesic and the radial direction in the rest
system of the observers with four-velocity e0. Comparing
the coefficients of ∂

∂R and ∂
∂ϕ in (92) yields

_R ¼ cos α

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

2ar0
R

þ 2R
r0

s !
ecT=r0 ; ð93Þ

_ϕ ¼ −
ðsin αÞecT=r0

R
: ð94Þ

From Eqs. (78), (93) and (94), we have

1
E2R4

L2 − R2 þ 2ar0R − 2R3

r0

¼ sin2 α

cos2 αð1 − 2ar0
R þ 2R

r0
ÞR2

ð95Þ

With the help of (81) and (95), we write sin α as follows:

sin α ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R3
mðR − 2ar0 þ 2R2

r0
Þ

R3ðRm − 2ar0 þ 2R2
m

r0
Þ

vuut : ð96Þ

The angular radius αsh of the shadow for an observer at
R ¼ R0 is found by inserting into this equation the radius
Rm ¼ Rp of the photon sphere,

sin αsh ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R3
p

�
R0 − 2ar0 þ 2R2

0

r0

	
R3
0

�
Rp − 2ar0 þ 2R2

p

r0

	
vuuut

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R3
pðR0 þ kÞðR0 − RhÞ

R3
0ðRp þ kÞðRp − RhÞ

s
ð97Þ

with Rh from (69) and k from (75). This equation is valid
for all observer positions R0 > Rh where the expression
under the square-root is indeed between 0 and 1.
Equation (97) must be supplemented with the information
that αsh is in the interval between 0 and π=2 for R0 > Rp

and in the interval between π=2 and π for Rh < R0 < Rp.
We have αsh → 0 (bright sky) for R0 → ∞ and αsh → π
(dark sky) for R0 → Rh. At R0 ¼ Rp the shadow covers half
of the sky which is obvious without any calculation for this
case too. Figure 10 shows the angular radius of the black-
hole shadow αsh as a function of R0. The solid black line
labeled Rh marks the horizon, the dashed black line labeled
Rp represents the photon sphere and R0 is given in units
of r0. For this case the domain of interest is outside of the
horizon because inside the horizon no conformally static
observer can exist.
As for the accreting black hole, is it also possible to give

a formula for the cosine, rather than the sine, of αsh,

cos αsh ¼
ðR0 − RpÞ

R0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2ar0Rp

R0ð4ar0 − RpÞ

s
: ð98Þ

This equation determines αsh uniquely in the interval
between 0 and π, for all Rh < R0 < ∞.
In contrast to the case of an accreting black hole, we do

not have an outer horizon, so we can consider conformally
static observers that are arbitrarily far away from the black
hole. For R0 ≫ Rp we may rewrite Eq. (97) as

sin αsh ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2R2
p

Rpr0 − 2ar20 þ 2R2
p

s

×

ffiffiffiffiffiffi
Rp

R0

s �
1þ r0

4Rp

Rp

R0

þO

�
R2
p

R2
0

��
ð99Þ

FIG. 10. Angular radius of the shadow (a ¼ 1=24).
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and neglect the terms of second and higher order. We see
that the sine of the angular radius of the shadow falls off
with R−1=2

0 in leading order. This is in contrast to the
Schwarzschild case where it falls off, for a static observer at
Schwarzschild coordinate R0, with R−1

0 , see Synge [7].

D. The gravitational redshift of light

In this section we compute the gravitational redshift of
light in the metric (66). We assume that two observers,
labeled A and B respectively, are moving on T-lines in the
domain outside of the horizon. Then

νA
νB

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g00ðTB; RBÞ
g00ðTA; RAÞ

s
ð100Þ

where νA and νB are the frequency of the light at
ðTA; RA; θA;ϕAÞ and ðTB; RB; θB;ϕBÞ, respectively. From
(66), equation (100) becomes

νA
νB

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2ar0

RB
þ 2RB

r0

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2ar0

RA
þ 2RA

r0

q ecðTA−TBÞ=r0 : ð101Þ

As in the previous case, the fact that ∂=∂T is a conformal
Killing vector field implies that TB − TA has the same value
for all light rays traveling from A to B, so the redshift is
again time-independent.
For light rays traveling in the radial direction, which

requires ðθA;ϕAÞ ¼ ðθB;ϕBÞ, we find from (74) that (101)
becomes

νA
νB

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2ar0

RB
þ 2RB

r0

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2ar0

RA
þ 2RA

r0

q ð102Þ

for ingoing and

νA
νB

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2ar0

RB
þ 2RB

r0

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2ar0

RA
þ 2RA

r0

q ��
kþ RA

kþ RB

� k
kþRh

�
RA − Rh

RB − Rh

� Rh
kþRh

�

ð103Þ

for outgoing light rays, where k ¼ r0
4
ð1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 16a
p Þ

and Rh ¼ r0
4
ð−1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 16a
p Þ.

E. Analysis in the original coordinates

As in the previous case, we now transform back the
results to the original coordinate system ðv; r; θ;ϕÞ. This
allows us to analyze the shadow as seen by observers on
v-lines for the metric (63). Recall that we restrict to the
domain where −∞ < v < 0 (and 0 < r < ∞).

From (63), we read that the v-lines are timelike on the
domain

−2av < r; 2ar0 < R: ð104Þ

This domain includes the photon sphere if 0 < a < 1=4; it
always lies outside of the horizon. As in the previous case
we observe that the hypersurfaces v ¼ const are lightlike
everywhere and that r is an area coordinate, i.e., that
the sphere ðv; rÞ ¼ const has area 4πr2, as can be read
from (63).
We have found above that in the ðT; R; θ;ϕÞ coordinates

light paths in the photon sphere are at R ¼ Rp ¼ r0
2
ð−1þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 12a
p Þ and that in the equatorial plane their T and ϕ
coordinates are related by (87). Transforming these two
equations back to the original coordinates ðv; r; θ;ϕÞ with
the help of (65) results in

r¼−Rpv

r0
and ϕ¼�

 
r0
Rp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−

2ar0
Rp

þ2Rp

r0

s !
log

�
−v
r0

�
:

ð105Þ

These equations give us the path of the geodesic para-
metrized by v. We see that in these coordinates the lightlike
geodesics in the photon sphere spiral inwards, see Fig. 11,
i.e., that the photon sphere shrinks. The radius coordinate r,
which is again plotted in units of r0, is linearly decreasing
with v. The angle ϕ is a logarithmic function of −v, so the
angular speed dϕ

dv is inversely proportional to −v implying
that the angular speed increases with time.
We repeat that the hypersurfaces v ¼ const are lightlike,

i.e., that they cannot be interpreted as equal-time slices.
For describing the shrinking of the entire photon sphere, as
observed by observers on v-lines, we have to introduce an

FIG. 11. Light path in the photon sphere seen in ðv; r; θ;ϕÞ
coordinates (a ¼ 1=24).
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appropriate time function for this case also. We define such
a function t in the ðT; R; θ;ϕÞ coordinates by the equation

cdt ¼ cdT −
dR

1 − 2ar0
R þ R

r0

: ð106Þ

With the help of the relation

∂
∂v ¼ ecT=r0

1

c

� ∂
∂T þ cR

r0

∂
∂R
�
; ð107Þ

which follows from (65), it is easy to verify that the
hypersurfaces t ¼ const are orthogonal to the v-lines, i.e.,
that events in such a hypersurface happen simultaneously
for the observers on v-lines. As in the previous case, the
vector field ∂=∂v is synchronizable on the domain (104)

but not proper-time synchronizable, so t does not give
proper time for the observers on v-lines.
Integration of (106) results in

ct ¼ cT − r0ðFðRÞ − FðRpÞÞ ð108Þ

with

FðRÞ ¼ 1

2
log

ð1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 8a

p þ 2R
r0
Þð1þ8aÞ−1=2þ1

ð1 − ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 8a

p þ 2R
r0
Þð1þ8aÞ−1=2−1 : ð109Þ

If we restrict (108) to the hypersurface R ¼ Rp we find that

ct ¼ cT ¼ −r0 log
r
Rp

ð110Þ

where the second equality follows from (65). Solving for r
results in

r ¼ Rpe−ct=r0 ð111Þ

which demonstrates that the observers on v-lines see the
photon sphere exponentially shrinking with time t.
Any other sphere R ¼ const in the domain (104) shrinks

in a similar way. In particular, for the horizon we find that

r ¼ RheFðRpÞ−FðRhÞe−ct=r0 : ð112Þ

We have plotted the shrinking of the photon sphere and of
the horizon in Fig. 12. The dark region is bounded by the
horizon and the (orange) circle represents the photon
sphere. Lengths are given in units of r0 and times are
given in units of r0=c.
Figure 13 shows the v-lines and the hypersurfaces t ¼

const for the case a ¼ 1=18. The region where the v-lines

FIG. 12. Evolution of photon sphere as seen by observer on
v-line (a ¼ 1=18).

FIG. 13. v-lines (dashed) and hypersurfaces t ¼ const (solid).
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fail to be timelike is shaded. For the chosen value of a the
photon sphere is outside of this region.
We will now calculate the angular radius α̃sh of the

shadow as seen by an observer on a v-line. It is related to
the angular radius αsh of the shadow as seen by a
conformally static observer by the special-relativistic aber-
ration formula (56). Here for this case αsh is given by (97)
or (98), and V is the momentary 3-velocity of the observer
on a v-line with respect to the observer on a T-line. The
latter has 4-velocity

U ¼ ecT=r0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2ar0

R þ 2R
r0

q ∂
∂T ; gðU;UÞ ¼ −c2 ð113Þ

whereas, by (107), the former has 4-velocity

Ũ¼ ecT=r0ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1− 2ar0

R

q � ∂
∂TþcR

r0

∂
∂R
�
; gðŨ;ŨÞ¼−c2 ð114Þ

From (59) we find that

V
c
¼ −R2

0

R2
0 − 2ar20 þ r0R0

ð115Þ

at R ¼ R0. Note that here V is negative because, with
respect to U, the four-velocity Ũ is directed away from the
center.
Plugging (115) and (97) into the aberration formula (56)

results in

tan2
�
α̃sh
2

�
¼ R3

0ð4ar0 − RpÞ
R3
pðR0 − 2ar0Þ

ð1 − cos αshÞ2: ð116Þ

This formula is valid for R0 > 2ar0., i.e., on the domain
where both the T-lines and the v-lines are timelike. We read
from (116) that for R0 → ∞, where αsh → 0, also α̃sh → 0,
and that for R0 → 2ar0, where the v-lines become lightlike,
α̃sh → π. By inserting (98) into (116) we find that

tan2
�
α̃sh
2

�
¼ R3

0ð4ar0 − RpÞ
R3
pðR0 − 2ar0Þ2

×

 
1 −

ðR0 − RpÞ
R0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2ar0Rp

R0ð4ar0 − RpÞ

s !
2

:

ð117Þ

The observer on a v-line starts at R0 ¼ 2ar0, asymp-
totically with the speed of light. The shadow, which in the
beginning covers the entire sky, gradually shrinks while the
observer moves outwards. It covers more than half of
the sky at R0 ¼ Rp, which reflects the fact that aberration
has a magnifying effect in the backwards direction. The
shadow vanishes for R0 → ∞. We have plotted α̃ sh against
R0, with the latter given in units of r0 in Fig. 14.

IV. CONCLUSIONS

In this paper we have considered the class of Vaidya
metrics which describe the spherically symmetric and
nonstationary space-time around a time-dependent mass.
We have restricted ourselves to the special case that the
mass function increases or decreases in such a way that the
space-time admits a conformal Killing vector field. In this
case the equation of lightlike geodesics is completely
integrable. In the case of an increasing mass function,
the space-time gives us a model for an accreting black hole,
whereas in the case of a decreasing mass function it can be
considered as a (rough) model for a black hole that loses
mass by way of Hawking radiation. In view of observa-
tions, the second case is certainly less relevant than the first
because, for black holes of a Solar mass or more, the mass
loss by Hawking radiation is very, very slow. However, we
believe that both cases are of some interest from a
conceptual point of view.
With the help of the conformal Killing vector field, we

have explicitly calculated the lightlike geodesics. In the
case of a black hole with increasing mass, there are two
horizons with a conformally static region in between,
whereas in the case of a black hole with decreasing mass
there is only one horizon, with the conformally static region
between the horizon and infinity. We have found that in
both cases there is a photon sphere in the conformally static
region. In the case of increasing mass, the area of the
horizons and of the photon sphere increases in the course of
time, whereas in the case of decreasing mass the area of the
horizon and of the photon sphere decreases in the course
of time. The photon sphere determines the shadow. We
have calculated the angular radius of the shadow for a

FIG. 14. Angular radius of shadow as seen by observer on
v-line (a ¼ 1=24).
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conformally static observer (which has to be, of course,
in the conformally static region), and we have found that
it is time-independent, in spite of the fact that the area of
the photon sphere is either increasing or decreasing with
time. We have also calculated the redshift under which
one conformally static observer sees another one and we
have found that it is time-independent. This is not in
general true in conformally static metrics, as is exem-
plified by the well-known Robertson-Walker metrics, but
it is true here because the conformal factor has a special
form. With the angular radius of the shadow known for
conformally static observers, one can easily calculate the
angular radius of the shadow for any other observer with
the help of the aberration formula. We have exemplified
this for some ingoing observers in the case of a black

hole with increasing mass and for some outgoing
observers in the case of a black hole with decreas-
ing mass.
What we have presented here is the third example of an

exact analytical calculation of the shadow in a time-
dependent situation. The other two examples are the
shadow of an isolated collapsing star surrounded by
vacuum [18] and the shadow of a black hole in an
expanding universe modeled by the Kottler metric [19].
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