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We study the covariant expansion of Einstein-Hilbert action in powers of 1/c?, where c is the speed of
light. We assume arbitrary spacetime foliation, i.e., we separate the tangent index into two groups, which
depend on generic n. This is done first by suitable parametrization of geometry which is called “pre-non-
relativistic” parametrization. This allows us to rewrite the general relativity in a form suitable for the

analytical 1/c? expansion. Consequently, we can study the expansion of Einstein-Hilbert action up to the

next-to-next-to-leading order.
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I. INTRODUCTION AND SUMMARY

In the recent years there arose new interest in the
nonrelativistic theories, especially the theories founded
on covariant formulation of Newton gravity, known as
Newton-Cartan geometry (gravity) [1,2]. There are a
number of reasons for this interest, such as quantum
Hall effect [3], holography [4-6] or a possible way to
the quantum gravity through the understanding of the
nonrelativistic string theory, for example [7-13]. (Last
but not least reason to the study nonrelativistic theories
could be our everyday experience of only nonrelativistic
physics, with exception of using GPS.)

In this paper we perform expansion of Hilbert-Einstein
action in parameter ¢~ with arbitrary foliation of the
spacetime with respect to speed of light c¢. The first time
when the covariant expansion of the GR was studied was in
[14], more recently the study was done again with the
connection to the Torsional Newton-Cartan geometry [15].
This work mostly follows up [16], where the expansion was
studied in very systematic way, and [17], on which was [16]
based of.

The paper is organized in the following sections: In
Sec. II we present generalities of our approach to the
expansion, specifically we give a form of expansion for
fields with which we work and also we define a “pre-non-
relativistic” parametrization of vielbein which is suitable
for the expansion. We rewrite the general relativity with
usage of this parametrization and also we introduce a new
covariant derivative with nonzero torsion. As a result we get
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the Einstein-Hilbert Lagrangian which is analytical in the
parameter 1/c?. At the end of the section we give the
specific expansion of the “temporal” and “spatial” vielbein
which play a central role in the expansion of the
Lagrangian. In Sec. III we start with a general expansion
of the Lagrangian which depends on a parameter. We
expand the Lagrangian up to next-to-next-to leading order.
Then we apply this expansion to the Lagrangian which we
got in the Sec. II. With this procedure we obtain three
different Lagrangians in the three different orders of
expansion. We are most interested in the next-to-next-to
leading order Lagrangian which we also simplify with a so-
called “on-shell” condition at the final part of the section.

II. EXPANSION OF GEOMETRY

In this section we perform the expansion of the under-
lying geometry. We follow [16], for other types of non-
relativistic expansions, see [14,15]. The expansion is
performed in a dimensionless parameter which mimics
inverse square speed of light, therefore our expansion
contains only even powers of speed of light. (For expansion
which also includes odd powers of speed of light see [18].)
First, we will define expansion of a generic field. To be able
to use this ansatz as expansion of every field which we
encounter, we have to define pre-non-relativistic paramet-
rization of a vielbein [16]. We follow with parametrization
of Levi-Civita connection of general relativity. In the zeroth
order in the parametrization we find a new connection
which has a nonzero torsion. This connection will be used
to construct a Ricci tensor which will be used in the
formulation of a nonrelativistic Lagrangian later.

A. Expansion of a field

Our aim is to get a nonrelativistic gravity from the
relativistic general relativity. In other words we are inter-
ested in a expansion of general relativity around “c = 00.”

Published by the American Physical Society
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Because speed of light ¢ has a dimension, we need to be
careful about this statement. We rewrite speed of light to the
form

¢
Vo'

where ¢ has a dimension of the speed and o is a
dimensionless parameter in which we will expand. We
also choose units in such a way that ¢ = 1.

Our assumption is that all fields depend on speed of light
and coordinates, i.e., a generic field is ¢ (o, x), where I
stands for any type of indices (spacetime or internal index).
We will work just with fields that are analytic in o, i.e., they
have Taylor expansion in the form

c= (2.1)

#(0.X) = $lo (3) + 09l () + PPl )+ (22)
Here we make an implicit statement, that we are interested
just in ?12 expansion. If the expansion of the field does not
start with ¢°, we multiply the field with a convenient factor.
We are going to apply the ansatz for expansion to the fields
in general relativity.

B. Parametrization of relativistic vielbein

Before we can use the ansatz from the previous sub-
section, we make so-called pre-non-relativistic parametri-
zation, which is very convenient. This parametrization
follows from the scaling between the time and space
directions, which scale with a factor ¢ between each other.
Our starting point is a relativistic vielbein E% and its inverse
E', which characterize a (d + 1)-dimensional Lorentzian
manifold. The index u = 0, 1, ...d is a spacetime index and
the index A = 0,1, ..., d is a tangent space index. The key
essence of pre-non-relativistic parametrization is in
choosing an explicit factor of ¢ in the decomposition of
vielbein. Moreover we split the tangent space index into
two groups, i.e., A= (a,d’), where a =0,1,...,n and
a =n+1,...,d. The directions with unprimed index a
will be scaled with speed of light differently than directions
with primed index «'. This splitting is motivated by usage
of Newton-Cartan-like geometries in string theory and M-
theory, for example [7,9,10,12]. Therefore we write the
splitting of vielbein and inverse vielbein as

E} = cTis) + 455, (2.3)

1 /
EY = ETﬁ(S;{ + &84 (2.4)
We will call T}, a temporal vielbein and Sl‘j/ a spatial

vielbein. Note that fields T; and 5,‘5/ still depend on o, as all
fields before expansion. We will deal with this dependence
later. The tangent space indices can be risen or lowered with

flat metric 17,5 = diag(—1, 1, ..., 1) hence for the unprimed

indices we will use metric

Nay = diag(=1,1,...,1) (2.5)
———

n+1

and for the primed indices a Kronecker delta &,;. The
relativistic veilbein satisfies

EAEA =6,  EMED =58 (2.6)

From (2.6) and from the parametrizations of vielbeins (2.3)
and (2.4) it follows that

& =ThT + &7,
b __ b __ sb
SZ/T/‘ — 0, g’;/gﬂ — 5{1"

TLTh = &5, ThEY =0,

(2.7)

The relativistic vielbein transforms with respect to the
general coordinate transformations (GCT) generated by a
vector Z and with respect to Lorentz transformations with
parameters Ay as
A _ A A B
OE, = L2E, + N'gE,. (2.8)
The decomposition of parameter A%; of Lorentz trans-
formations has to be

1 ! 1 !
Ay = N8 —— A 56 + - Ay 645,

+ Ay 5485 (2.9)
The factors of ¢ follow from a choice which was made in
(2.3) and (2.4). From decompositions (2.3), (2.4) and (2.9)
we can conclude the transformation relations of temporal
and spatial vielbeins to be

1 ,
8T¢ = L=T% + A, Th +aAGEL (210)
SEC = L& — N, T6 + A, EY. (2.11)

From (2.6) we can deduce that the inverse vielbein trans-
forms as

(SEZ - ﬁEEZ - ABAEﬂ N (212)
thus after the decomposition
8Tl = L=Th — AP, T), + AV &, (2.13)
1 /
55? - 555’;, - C—QAbg/Tﬁ - Ab a lll?/' (214)

With help of relativistic vielbein we can define metric and
inverse metric
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G = MagEAEE = CPTOTn,, + ECEV Sy, (2.15)

1 "
¢ =n'BENEY = ?naszTg +orengy,.  (2.16)

For convenience we define temporal and spatial parts of the
metric

N
I := 64 b g’;rg;;/,

T = ThTyn™,

— ' b’
I, =64y & EV

T= TﬁT,{’r]ab. (2.17)

They transform as
L .y
STV = LTIW — C_z(sab (Aba’ng"/ + Abb,ng’;,), (2.18)

I, = L=I1,, — 8y (A, TEY + AV, TIED), (2.19)

STH = LT + n®(AY &y TY + Y, €4 Th).,  (2.20)
1 , o
57/41/ = ‘CET/w + ?nab(A a’gﬂ Tzlj + Aha’gy T;t)' (221)

From (2.7) we can find that the temporal and the spatial
metric satisfy the following relations:

7,7 =0,  TrI, =0,

T, T + T, = &, (2.22)

C. Parametrization of the Christoffel symbol

The next step is an introduction of a covariant derivative.
We use the fact that we defined the relativistic metric in
(2.15). From this metric we can easily construct the
Christoffel symbol as

1
Fﬁl/ = gpa(aygau + avgay - aﬁQﬂv)' (223)

)

We proceed further by a decomposition of this Christoffel
symbol (the overscript numbers track the powers of ¢!)

2 © 1O

O, = 2Ch + Ch +— Clu, (2.24)
c
where'

(_/%) 2 b b

Cn =11 nab(Tﬁﬁ[ﬂTﬂ + Tza[,,T/ﬂ), (2.25)
(0)

Chw = Chw + S, (2.26)
'"We define an antisymmetrization as By, =4%(B,, —B,,) and

a symmetrization as B(,,) = 3 (B, + B,,).

0 a 1 0.
C;/;y = TQ@MT,, + Enfﬂ(aynllu + abn/ly - a/lnﬁw)’ (227)
Sy = Tp’lncd(Tg@[ﬂTj} + Tﬁa[l,Tj]) + Tﬁa[sz}, (2.28)
@ b ) A A
C,’;,, = —n? Tﬁ(HﬁyaﬂTb +11,,0,T;, + Tba,ll_lm,). (2.29)

We are interested in transformation with respect to GCT,
because we want to use any of these objects as a connection
for a new covariant derivative. The transformations of
objects (2.25)—(2.29) with respect to GCT generated by a
vector field E are

SacrCly = L2 Cly + 0,0,2. (2.30)
SocrSw = LzShw (2.31)
(-2) (-2)
SactCw = LzChu, (2.32)
) 2)
SoctCiw = L=Clu, (2.33)

and we see that Cﬁy transform as a connection. Other
objects transform as tensors. With this in mind we can
introduce a covariant derivative as

VﬂA/”, = 0,A; + Ch A5 — CLAG, (2.34)

where A is a type (1,1) tensor field. This connection has a
nonzero torsion

T =20}, = 2140, T (2.35)

and satisfies
v, T, =0, (2.36)
v, =0, (2.37)
v, 77 =111V, — 0,1, — 0,11, (2.38)
Viully, = TMT&(D\ [aﬂHV’)l’ + Oy gy = &IH\/J)M]’ (2.39)
V,T¢ =0, (2.40)

V& = ELEYOLEN + T16,,0,,EY)
+ I8 EN 60 OpEL, (2.41)
1

V, T4 = -T1°T4(0,11,, — 0,11, — 0,1L,;),  (2.42)

2
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V.EL = 0,8 — 67 50 380, EL

] !
+ 5077 €50, 11,,. (2.43)

D. Parametrization of Ricci scalar

The next step is a decomposition of a Ricci tensor
followed by a decomposition of a Ricci scalar. We need a
Ricci scalar for the construction of Einstein-Hilbert action.
We define the Ricci tensor as

R, =0, —0,I,, + FﬁAFfw - FﬁAF/’L,. (2.44)
We decompose it as
(=4) -2) () (2) (4)
R, =c'R,+ R, + Ry + Ry + 'R, (2.45)
where
(=4) .
R, = H””H'%’Iub’lchff Téa[sz]a[fTZ]
= H”PH*’(?MTP}DG[,TMJ, (246&)

() D2 ) D) (D
R, = V,Cl = 2C,  Ch + ClyS", — Cl, Sy — ClySt,

(o]
(2.46b)
(0)
Roy = Roy + VSt =V, S)io +2C,, S, + 8,5,
(2 @ @ (2
- S08h, — C Cly—CY, Cly (2.46c¢)

0 8 08 a8 W8 L8
Ry, = V,Cliy +2C}, Ch + S4,Cly = Sy Cho = SiaCly,

(2.46d)

(4)
ij = 4T”TT'M8[TH;L]D8[#HG]G. (2466)

We denote by R, the Ricci tensor corresponding to the
connection Cl,. We want to point out the comparison with
[16] where a case with n = 0 was investigated. For that

4 2
case, the term I(?l,),, is zero and Ié:l, is more simple. The last
object which we need is a Ricci scalar which has the
following decomposition:

R= gyRo'y

1
— <_27611 +H6u>
C

(=4) (=2) (0) (2) (4)
X (¢*Ryy + ¢*R,y + Ry 4+ ¢?Ryy + ¢*R,,)

(-4) (=2 © 1@ 1® 10
=c*R +c*R +R+5R+5R+—5R, (247)
c c c
where
(=4 (=4) (=2) (=2) (=4)
R =TI"R,,, R =TI"R,, + T°"R,,,

(©) (0) (-2)
R =T"R,, + TR,

@) @) (0) (4) (4) @)
R =TR,, + T*R,, R =T"R,,+T"R,,

(6) 4)

R =T%R,,. (2.48)

After a long calculation we obtain the following parts of the
Ricci scalar:

(~4)

R =0, (2.49a)
(-2)
R =TT, 0, T4 0, TS, (2.49b)

(0)
R = -211"*V,, 82, +TIR,,,

+ 20149, Tg]a[(,Tg] (THn+TAT, +2T45TE), (2.49¢)
2)
R =T%"R,, -2V, (TS%,) + 4T””TﬁT28MT/C}]8U,T;‘]
+ T 1,00, T30, T,
+ 0, T [T4Thn 0, TG — T, T¢]
-2V (TGN, T) + 4C’[; M“be,ngg

=201, 0, Tn*" T} + Clu TS, (2.494)
)
R =0, (2.49)
(6)
R=0 (2.49¢)

We want to stress that all fields here are analytical in ¢
and we will expand them later. In fact, there is still nothing
special about this Ricci tensor, it still leads to general
relativity. The Ricci tensor is just written in a convenient
form for our purpose.
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E. Einstein-Hilbert action

In this subsection we introduce the form of Lagrangian,
equivalent to Einstein-Hilbert Lagrangian, which we later
expand to the second order in the parameter o. Ordinary
Einstein-Hilbert action is given as

d
Sen = 6 & | d'xdiRy/=g. (2.50)

We need to discuss powers of o here, because this
Lagrangian is not analytical in . We have already found
that in our parametrization the expansion of the Ricci scalar
starts with power 6~!. Because of this we define the Ricci
scalar which is analytical in ¢ as

R = oR. (2.51)
It is the same case for the volume element ,/—g. We find
out that the volume element can be written as

VEG =0\ - det (T, +1L,). (252)
For brevity we denote volume element as
E= \/ det (T, +11,,). (2.53)

Altogether the Einstein-Hilbert action has the form

1 -
Sgy = ————— [ d?xd¢ER. 2.54
T 6 God (2549
We denote the integrand as
L = ER. (2.55)

In the expansion of the Ricci scalar (2.49) there is a couple
of total derivatives, therefore we can use the following
identity (we assume that all boundary terms are zero):

Ve, (2.56)

/ d*+1XEV, VH = / dHxE2C
7

where V# is a vector field, to further simplify the
Lagrangian. We obtain the final Lagrangian which is
analytical in o:

L =EM™11*n,.0, T30, Ty +o(lI7R,,
2010, T4 D), Th (T Ny + T4 Ty~ 2T4T5))
to (TGUR + TWTMTH/)’ C[ﬂu] [op]

+2TV,Cl, +Cly TV, 17

+C7 H“"T”ﬁVH o« +2CLTCY ).

o8] (o8] (2.57)

We will expand this Lagrangian to the second order in the
parameter ¢ in the next section. Moreover, in the special
case n = 0, this Lagrangian can be reduced to a simple
one [16]:

Lo = E(-TI" V0, T 0, Ty + 0TI R, — 2T T'R,,,).

(2.58)

F. Expansion of vielbein and other fields

As was already mentioned a few times, the fields in
previous subsections still depend on parameter o. In this
subsection we address it. We expand the vielbein and other
associate fields like metrics and volume element. Recall
here our assumption that fields possessed the Taylor
expansion (2.2)

@' (0.x) = Pl x + ob(y) (x) + 62¢f4) (x) + (2.59)
For the vielbein we make the following ansatz on the
expansion:

T4 =14 + omf + 6*B4 + O(c°), (2.60)

EZ/ = eg/ + aﬂ}‘f/ + O(c?). (2.61)

The fields 7¢ and e%
followed by subleading terms my, and ﬂﬁ'. We can introduce
expansion of inverse vielbein

represent the leading order terms,

T =t — oty (dymb + &y nl) + O(5?), (2.62)

gl = ¢ —get (thml + e nl) + O(c?), (2.63)

where the leading order terms satisfy these relations:
5 :T”T“+e’:,e,‘j,

o
Tﬁea, =0,

rﬁrﬁ = 52,

ehed =59, el Ty =0 (2.64)
which follow from (2.7). In the expansion of inverse vielbeins
the only degrees of freedom are in the leading term, all other
terms can be deduced from it by an order by order calculation.

It is also convenient to expand spatial metric

I, = h, +0o®, +c*w, +0(), (2.65)

where we find the terms in the expansion to be
hy, = el dpel, (2.66)
D, =Sy (nlel +elnl). (2.67)

We skip the precise form of v, as we will not need to work
with it. Similarly we can expand the “inverse” spatial metric as

064051-5
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I = pv — 26h”(”72)m;j —oh”h"®,, + (’)(62), (2.68)
where we define
hﬂl/ = el‘;/(sa b ell;/.

(2.69)

It is also useful to label the first term in the expansion of 7+¥
to be
™ = Ty, (2.70)

Moreover we need to deal with volume element. We define
the nonrelativistic volume element to be

e=E|,_,= \/— det (¢4nptl + hy,).  (2.71)

In the next section we vary the Lagrangian with respect
to 7; and h,,. From (2.64) it is easy to obtain variation of
the 7’ and 7{ with respect to fields with the opposite
position of indices

III. NONRELATIVISTIC LAGRANGIANS

In this section we expand the Lagrangian, which we
found in the previous section. We begin with a general
analysis of the expansion of the Lagrangian. Then we apply
that to the Lagrangian (2.57), which we expand into next-
to-next-to-leading order (NNLO). This nonrelativistic
NNLO Lagrangian will be the main result of this paper.

A. Expansion of Lagrangian

As all other fields considered here, the Lagrangian has
also expansion in the powers of ¢. Our Lagrangian L is a
function of o, T%, Ty, 11, T1* and spacetime derivatives.
For clarity we present here the expansion of the Lagrangian
which depends just on one field ¢ (o, x) which has the
expansion (2.2). The generalization to the case of more
fields is straightforward. We are interested in the expansion
of the Lagrangian around ¢ = 0, which is precisely non-
relativistic limit ¢ — oo. We will denote the total derivative
with respect to ¢ by a prime and this derivative is given by a

i _pil V(3 P) 5. b
Sh¥ = —h"* W Sh,, — 20" 518, (272)  chain rule as
518 = —h'dsh,, — 45T (2.73)
And we also need variation of the volume element which d o0 0po 00,0 0 31
can be obtained from the properties of a determinant do 0o dcdp 0o 90, (3.1)
1
Se = —e(27,61% + h*Sh,,). 2.74
) e(2radr + w) (2:74) The expansion of the Lagrangian is then
|
) ) _ 1.
L(0)ls—0 = £(0) + £'(0)l5—00 + 5 L"(0) 500" + O(c?)
. OL(c SL(0 19°L(o SL(0 5§ OL(c
20+ [ Y, I2EO) L SO, b ot
[ P ?0) [ P 3¢ (0) Sy o |,
1 9*L(0) 9*L(0) 0*L(0)
2 2
- 4200, 40,400 —)]0 32
P < > g, @980 55 50,40 @%b 55 4000, (32)

Lio = L(0) = L(0,p0). Dub(0))- (3.3)
. OL(0) 5L(0)
L = + , 34
NO =5 ¢0) b0 (3.4)
~ 10°L(0) 5L(0) 5 OL(o)
Lano =575 + +
R & 59 (o) ¢ Sy 0o |,—g
1 0*L(0) 0*L(0)
+=( ¢? +2¢ 2,0 —
2 <¢(2) 8¢%0) ¢(2> ﬂ¢(2) a¢<0) 88’”5(0)
9*L(0) )
+ 0,20 — ), 3.5

where LO stands for leading order and NLO for next-to-
leading order. It can be shown that the following identities
hold:

5‘CLO — 5‘CNLO _ 5’CNNLO
6oy  6pp) S

6‘CNNLO — 5ENLO
0¢(2) 5oy

(3.6)

These relations imply that equations of motion for lower
order Lagrangian are reconstructed in higher order La-
grangians by variation with respect to the higher order
fields in the expansion. These relations can be also
generalized to higher order Lagrangians and fields.

The generalization of a situation with more fields on
which the Lagrangian depends is straightforward, the main
difference is presence of mixed derivatives in the NNLO
Lagrangian:

064051-6
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Ero = E0.8y, 0. 6.)
Lnio = % e ‘; ;zb(fg) (8
Lynio = 282;(2 0) o 451 )5 ¢(10) 45{2) 5(20) 8?9((:) 0
A
+2¢£2>6u¢{2>$%
+ 3,,¢f2>3y¢(]2) #ggi% (3.9)

The fields which we use follow from expansion of
relativistic temporal vielbein (2.60) and spatial “metric”
(2.65) and schematically we can write

= {Ta’ h;w}’ ¢f2) {B ) l/’yu}

(3.10)

—(mg@u). ¢l

B. Leading order Lagrangian

We begin with the LO Lagrangian (3.7) which is the
cornerstone of the whole expansion. The LO Lagrangian is

ZLo = Z(O) =
= eh"”h/‘“naca[ﬂrz’]f)[ﬂr

Enaynﬂa”aca[ﬂ TZ] a[o’ T(Cl] |0=0

(3.11)
The variations of £ o, with respect to fields 7, and hy,, are

6L10 = [ethh™ 0, 0,70,
- 4eh/"’r’;h"“naca[ﬂz}6[ﬂr

—-20, (eh"ﬁh’mnbca[grg] )]5TZ

1
+ 3 eh’“h"”h/‘anaca[ﬂz’] 8[,,1;]

— 2eh™ W Th 10,70 01y [ OBy (3.12)

Note that these equations of motion can be obeyed when
the following condition holds:
he 0,z ” —O (3.13)
For case n = 0 this means that there is a foliation of the
manifold by hypersurfaces which have the constant time
coordinate. The geometry which arises from the expansion
with n =0 is called twistless torsional Newton-Cartan
geometry [4]. The case n = 1 was discussed in [19].

C. Next-to-leading order Lagrangian

For a description of an expansion of Ly o it is useful to
make a couple of definitions. Let us start with a Ricci tensor
for ¢ = 0 which appears in the first term of (3.8),

mo’u = Rtwla:O' (314)
This Ricci tensor corresponds to the connection, which
arises from C%, with ¢ = 0:

1
(sﬁl/ = Cﬁl/|a:0 = rﬁa,,rﬁ + Eh/)/l(anh/lv + 8uh/16 - 811161/)'

(3.15)
We denote a covariant derivative with respect to € as V¢,

Due to the presence of vielbein indices we also introduce
for convenience a “torsional matrix,”’

Aj, = 275075 (3.16)
Note that the following relation holds:
Zrb o] = = 7}AS . (3.17)

The last object which we define is a generalization of an
extrinsic curvature,

K

pva —

l\JI'-‘NI'-*Nl'—

(730, + 0,70 hgy + 0,75 hy,)

= (aahmf - 8;4hav - aph/m)fg
(Vghm/ v;(tgh(w - vl(/i ;m) Z (318)

For Lxnio We also need variations of the above objects
which are

R, = V566], — Vi56), + 267,665, (3.19)
565, = TGSt + WK 5 S7) + WG She,
+ WS Shyy + hAGE Sl
+ Eh/”(v%hh + VE6h,, — VS6h,,), (3.20)
526, = 20,V Eseh — 2hHGY Shy,,  (3.21)
Ay, = 20Ty 67 1T0h,, — T,ALOT, + 215V 46T,
+ 27567, 575 (3.22)

We can proceed further with expansion of the Lagrangian.
We first focus on a part of Ly, which does not follow
from L; g, i.e.,
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oL
T, = BT Ry + 2P0, T 0Ty (T %+ T3T§ = 2T5T)] o
=e(h™R,, + 2h’“’8[},r o[ (T Nap + 7575 — 27477))
_ e<hw9‘im n Ehw(g@fv 6L — 467, GY L~ AY AL nab)). (3.23)

The second part of Ly o (3.8) follows directly from  and the & variation of the ordinary part is

equations of motion of Lj .

We can continue with the equations of motion. For
reasons presented in the last subsection of this paper, we
are interested just in the variation of (3.23). For clarity we
separate variations with respect to zj; and h,, into two

1
Su(eh™R,,) = e {5 WRR,, — R R,

H VG ypa
distinct parts. We label eh®*R,, as the “ordinary” part of + hoh” (12@” Glm]
(3.23)_as it is the only term which appears in the case n = 0. + 4G* @/1 |+ 2VSGE )
We will call the “new” part the remaining part of (3.23). o] o]
The 7 variation of the ordinary part is + (467, G’[L i ZVG@’[; o))
5.(ehR,,) = e[tth*R,, — 2(W*°h*" — WP hY) x (h*eh* — h’l"h/’”)] ohg,. (3.25)

X (VSKUO'C - A? vob T 26;[”/,] (wc)

+ ARV CY (2K e — ThTCK )07,
This can be compared with [16], where the case n = 0 was
(3.24) studied. The 7 variation of the new part is

|

a p v v a Ab cd
(E eh (86:[/3 ](S:[y ] 46[”1/]6:[0/5] _AdMAcar] r]ab))

1
—e {—46@4 @:[ﬂﬁa] hr‘"”r’e1 + <h’1”1‘;‘ — 3 h"%”é) (4(§ﬂ H]G’[/aﬂ] + AZ”AIZanCdY]ab)
+a(hragh — W )VECH |+ (Rl — IWh?) (46T K e = K aALl s
+ (hpaij hlafp)(ZAga(g[ﬂp] + 2G[ﬁp]A?a’7Cd’/Ieb - ng?anCd”eb)

= 2RI K e + 20 (RN SCE ) = WOVSEY ) 4 T (AG ALy — AG AL i) |75, (3.26)

lap) e

and finally the & variation of the new part is

1
et p p v a Ab ,ed
5/1 (2 eht (86[/} ]6[144] 4¢ y](g[a/i] - AdﬂAcan ”lab))

—e |:% (h;mha/l 2hﬂahaﬂ)(8€ﬂ I

4 v —AY apprEo v
[Ba] = [bu] 46Dw]@[a] A Aca'] 7]ab> Y/l I CE A (X

[pa] = vu]

+ARRGS, G = 2 hP S T AL ¢ nab} Shy. (3.27)

D. Next-to-next-to-leading order Lagrangian
In this subsection we complete the expansion of the Lagrangian (2.57) to the second order in ¢. From (3.9) we obtain the
general form of Lynio as
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19°L (o) 5L1o Lo, 8 OL(o) 5 0L(o)
B¢ 2 I yp—
Enio =3 55| 0+ o Ve Sh T e |,y e, B0 |,
a4m [OJRO) a ag b
+ [ Malll f’a “dr h+ PO gDy " Bzt P G200,
> ELO 1 P Lo
®0,mé— "0 4 9 mid mb—2 0| 3.8
O G 00,78 2O 5 2100, (3:28)

Let us begin with the first term in (3.28) which follows
easily from (2.57):

1 822(6) oV oV a ﬂ
2 00 |,y e H T G Gy
+20VEGT ) + 6 D VT,
+ 6 her ”ﬁvghpa+2(5” 76T ).

(3.29)

We can write down contraction of the Ricci tensor with
temporal metric

Tﬂvmm/ [ thKp/laK abhpa - vg(hﬂiKplaTZ)
+ WK oK i = 267, VTl

uva

(3.30)

which adds up with other terms in (3.29) to obtain

10*L(o
E 85(2 ) —0 n ab[hm/hpﬂKﬂvaK Ab T thp /JMKl‘“b
= Vo (W Kyaty) = 36], Vyamy)

+ e("' 1 7,; 67 ]G/[} it ZTVAVG(S”
/4 ac Vﬂ (S v (%4
—1—(5:[ ]h V,/hpa—l—Z@[ ﬂ]TV @[J’V])’
(3.31)

The second and third terms in (3.28) are equations of
motion of £; o which we already obtained in (3.12). The
fourth term in (3.28) is a variation of the part of Ly, o which
we encountered in (3.24) and (3.25). The same is true for
the fifth term in (3.28) which is calculated in (3.26) and
(3.27). Now we focus on the square bracket in (3.28)
which contains the remaining terms. We denote the whole
bracket with abbreviation [- - -]. The particular terms in this
bracket are

Lt CEL0 L oty facbpoetn — st
2aﬁ81381[l;2 e pledizath b

— 875Thh ™ W + 84Ty he W

+ 47575 h*P W0 4 Ay 7o hP b

+ 4r’jjrﬁh/}"hap]8wri]8[ar |
1 PL 1
5 Pas®ss ngy& =5

1
e®y P,y | hV WY

— % Wt WP pov pe — 2 jhyd hao pbv pie
+2 hoo hﬂy VY h&/) + 4Ahvo h&p her hﬂﬂ

X ’cha[y%]a T

. Lo
v ahaﬂaf

1
= eDsmin., E‘LJ h hov h#e

-4 WPY hov hie

q)aﬂ m a
4
_ 2’1'}:, hoo h/}y hHP

A G e e

+ 47O WP hEP 4 ATV WO b hPP
c d
X 3[},%]8[5%

aaﬁmV 8’[‘188 b

= Zemgﬁ[ﬁm}’f]nbc [t h#r hPv

— 2t hem P — 21’§h0‘7hﬁ"]8[ﬂr§},
Lo
D30, m§ ————— = D0, m; Nace(h® ho°hr?
Yy s ahaﬁaayré pTy o)

— 4hﬁﬂhayh5:;)a[o_r;] ,

1 2L
Eaam;;aymf;a Lo _ = edjym

e @ ), 0oy hHP.
0,500, 28 5y Oy M oo

(3.32)
We introduce the following object:

FS, = 9,mg — 0,m§, + 2m,‘jf§8b,1;] - Zmﬁr’;@wrﬁ]

= 20),mg) + 2A¢

. (3.33)
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For the case n = 0, this can be thought of as a field strength
for the field m,,.

Because of introduction of Ff, we can rewrite [- -] as

1
[-]= ~1 encdh”/’h”"Fﬁ,,Fg,, + a[arz]h"‘shﬂ’Xy&c, (3.34)

where X,5. is a tensor whose explicit form will not be
needed.

E. On-shell condition

In this section we discuss the simplification of Lyyio-
Let us begin with recalling the equations of motion for £y o:

TZ: ergh"”h”anaca[ﬂrj]a[arg] - 4ehﬁ"r’;h"“nacawrl‘j]8[org]
- 28ﬂ(eh"/}h”“11b68[61';]) =0, (3.35)
Ny, eh’”h"”h"“nacawrﬁa[a‘rg}
— 4eh"’1h”h"“naca[ﬂrz] 8[5’52} =0. (3.36)

Both equations can be satisfied if the fields obey the
condition

he 9z = 0. (3.37)

This condition is of course on-shell condition. If we could
apply this condition off shell it would greatly simplify our
results. From Lo We can obtain equations of motion for
NNLO fields By, and y,, which are the same as equations
of motion from L, ;, above. Moreover a lot of the terms in
|

[- - -] have also a form of (3.37) times some tensor. Those are
the reasons for the following. We variate the on-shell
condition (3.37) times an arbitrary tensor, i.e.,

8(eh " h00), 7 X poq), (3.38)

and analyze what restricts us to apply this condition off
shell. The variation is

5(eh”/)h””8[ﬂrf]x poa) = —eh”f’zf,jh"”a[ﬂrﬁ]X oaOTh

— eh™ ¢ pP (9[,41':’] X poa otb

+ eh””h’“"awérﬁ]Xp,,a. (3.39)
We see that there are few terms that spoil the possibility to
apply the condition directly on the Lagrangian. On the
other hand, we can restrict ourselves only to some special

type of variation. Particularly if we consider only a
variation of the form

5tb = Qb (3.40)

where Q is an arbitrary function of spacetime coordinates,
we find out that whole variation of (3.38) is

5(ehﬂph””8U,1;’]Xp,,a) =0, (3.41)
and we can apply the on-shell condition (3.37) directly in

the NNLO Lagrangian. After application of the on-shell
condition the particular terms in (3.28) are

10°L(o
E 80'(2 ) = enab[hﬂyhleﬂvaKplb - hﬂlhﬂaKpﬁaKyab - vg (hMLK;MaTZ) - 3@[;,1]v57';72]
=0
oV a p AV (Y4 P ac vp\7C v PO
+ e(t7 70587, C, + 27 \% €+ Cph™r Vo h, + 267 57" (SW),
(3.42a)
SL(0
B (b ) _o, (3.42b)
51/,
5L(0)
=0 3.42
Vir 5hh ’ ( C)
5 9L(0
ié_ﬁ% S - emﬁ |:Téhgym6u + (hlghpy - hlphgy)(zA?pKuab - 2v/(7gKu0c‘ - KaudAIe)pnedncb)
1
P p a YTt a p v a Ab ed
— 4G, b T+ (h Hed _Ehﬂ Tg) (4C), €Ly + A AN Nab)

+ (e — Wee)) (2A4,6), | + 267, AL ey = VS AL ney)

+ ng(hbavgc"/[{aﬁ] - hﬂavg G"I[Jaﬁ]) + hﬂ(lT’; (AZﬂWEdnahA?a - AfjﬂAganad”ch) + 4(11”{17'%' - hmf}é)vg@/}
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8 9L(0)
4 Sh,, 0o

o=0

+ s

B —

1 ,
[' : ] = _Zencdhﬂphyo—F:nga'

By adding up all terms above and term with the Lagrange
multiplier which enforces (3.37),
Cooah?” hwawg] , (3.43)

we obtain the final nonrelativistic Lagrangian, which
concludes the main result of this paper.

(h#eho* — 21 1) (867, G | — 4G 6F ) — A% AL In) |

1
= e®,, {5 WRR,, — B R,, + (468 6 = 2VSEl ) (k= )

[

(3.42¢)

(3.42f)
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