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With an increasing number of expected gravitational-wave detections of binary neutron star mergers, it is
essential that gravitational-wave models employed for the analysis of observational data are able to
describe generic compact binary systems. This includes systems in which the individual neutron stars are
millisecond pulsars for which spin effects become essential. In this work, we perform numerical-relativity
simulations of binary neutron stars with aligned and antialigned spins within a range of dimensionless spins
of χ ∼ ½−0.28; 0.58�. The simulations are performed with multiple resolutions, show a clear convergence
order and, consequently, can be used to test existing waveform approximants. We find that for very
high spins gravitational-wave models that have been employed for the interpretation of GW170817 and
GW190425 are not capable of describing our numerical-relativity dataset. We verify through a full
parameter estimation study in which clear biases in the estimate of the tidal deformability and effective spin
are present. We hope that in preparation of the next gravitational-wave observing run of the Advanced
LIGO and Advanced Virgo detectors our new set of numerical-relativity data can be used to support future
developments of new gravitational-wave models.
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I. INTRODUCTION

The first detection of gravitational waves (GWs) and
electromagnetic (EM) signals originating from the same
astrophysical source, the binary neutron star (BNS) merger
GW170817, has been a scientific breakthrough which
inaugurated a new era in multimessenger astronomy
[1,2]. Followed by this first direct detection of GWs emitted
from a BNS system, the Advanced LIGO [3] and Advanced
Virgo detectors [4] observed a second BNS event in April
2019, GW190425 [5]. In contrast to GW170817, the total
mass of GW190425 was larger than the mass of BNS
systems known to exist in our galaxy.
Given that GW190425 surprised us by being more

massive than previously observed BNSs, it might also be
possible that, despite our expectation, there is a class of
BNS systems in which the individual NSs have high spins.
Until now, typical GW analyses of BNS systems are run
with two different spin priors, one high-spin prior in which

the NSs have dimensionless spins jχj ≲ 0.89 and one
“astrophysically informed” low-spin prior in which the
individual dimensionless NS spins are restricted by
jχj≲ 0.05. The latter is based on observations of pulsars
in BNS systems, where the fastest-spinning BNSs, capable
of merging within a Hubble time, are PSR J0737-3039A [6]
and PSR J1946þ 2052 [7]. Both will have dimensionless
spins of χ ≲ 0.04 or χ ≲ 0.05 at merger, respectively.
Contrarily, the fastest-spinning neutron stars observed to
date can have spins up to χ ∼ 0.4 [8], and the theoretical
breakup spin for realistic EOSs is about χ ∼ 0.7 [9].
Therefore, the fact that no millisecond pulsar has yet been
observed in BNS systems, could just be an observational
bias. While initially most numerical relativity (NR) studies
have neglected spin effects, there has been a noticeable
advancement over the last few years in which different
groups studied BNS configurations in which the individual
NSs are spinning, see Refs. [10–27]. However, to our
knowledge, none of these studies produced high-quality
NR data for highly spinning systems, i.e., NR data with
uncertainties small enough to validate and potentially
improve existing GW models. However, it would be
essential to perform such NR vs. GW model comparisons
to ensure that the existing GWmodels can reliably describe
also systems in larger regions of the BNS parameter space.
Overall, a reliable analysis of detected GW signals relies
on an accurate theoretical description to cross-correlate
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measured GW strain data with GW approximants [28]
throughout the entire parameter space. If employed wave-
form models were inaccurate, this would immediately lead
to a systematic bias in the extraction of information from
the observed data [29–32].
In this article we describe a first set of highly spinning,

high-accuracy NR data of BNS systems. For this purpose,
we simulate four different configurations. Details about
the numerical setup and the employed configurations are
presented in Sec. II. In Sec. III we present a qualitative
discussion of the merger dynamics and extract information
about the ejecta and remnant properties. In Sec. IV we
study the accuracy of our NR data and compare the
extracted GW signals to a set of state-of-the-art GWmodels
which are currently employed for the analysis of GW data.
We finalize this study through an injection study to
understand possible systematic biases. We conclude in
Sec. V. Unless otherwise stated, we employ geometric units
for which c ¼ G ¼ M⊙ ¼ 1.

II. METHODS AND CONFIGURATIONS

A. Physical configurations

We study four different system with similar initial
baryonic mass Mb ¼ 1.495 M⊙, but different spin con-
figurations. In the SLy0.57↑↑ configuration, each star has a
spin of about χA;B ¼ 0.57 aligned with the orbital angular
momentum, which is about 85% of the breakup spin of 0.67
for this EOS. In the SLy0.37↑↑ configuration each star has
aligned spin of about χA;B ¼ 0.37. In SLy0.16↑↓ one star has
aligned spin and the other antialigned spin with magnitude
χA;B ¼ 0.155 and SLy0.28↓↓ has antialigned spins of χA;B ¼
−0.277 for both stars. Further details are given in Table I.
Spin effects are mostly characterized by the mass-weighted
spin combination, χeff ¼ ðMAχA þMBχBÞ=M, where χi ¼
jS⃗ij=Mi2 is the dimensionless spin parameter and S⃗i is the
spin angular momentum of the ith NS.

B. Numerical setup

Configurations simulated within this article, listed in
Table I, employ initial data constructed with the updated

SGRID code [27]. SGRID [13,27,33–36] uses surface fitting
coordinates and solves the conformal thin sandwich equa-
tions along with the constant rotational velocity approach
to describe the NSs with arbitrary rotational profile. SGRID
employs pseudospectral methods to solve the elliptic
equations and the computational domain is divided into
38 patches (Fig. 2 of [27]). Through SGRID’s most recent
update [27], we can construct initial data for configurations
at the edge of the physically allowed BNS parameter
space, which includes high spin, high mass-ratios and high
compactness setups. In this work, we focus on the impact of
high spins.1 We apply an eccentricity reduction procedure
as described in Appendix B of Ref. [27] to all our
configurations to achieve target residual eccentricities
below ≤10−3; cf. compare Refs. [37,38] for studies about
the impact of eccentricity. The exact values are listed in
Table I along with the initial parameters such as initial
ADM mass, angular momentum of the system, and initial
GW frequency. The first and last lines in this table represent
the highest aligned and antialigned spins that we were able
to obtain for the SLy EOS at the time with SGRID. As one
can see, achieving high antialigned spins is harder than
high aligned spins. Note that there is no unambiguous
definition for the mass, momentum or spin of a single star
in a binary, since no true Killing vectors exist in binary
spacetimes. The spin values in Table I were computed
within SGRID using Eq. (54) of Ref. [27]. This method
uses ADM-like integrals over each star’s surface to obtain
its linear and angular momentum. In these integrals we use
coordinate translation and rotation vectors as symmetry
vectors. The accuracy of these spin values is discussed
in [27].
We evolve the initial data using the BAM code [39–42].

and employ the Z4c formulation of the Einstein equation
[43–45] along with 1+log and gamma driver conditions
[46–48] for the evolution of the lapse and shift vector. For
the evolution of the matter variables, we use a 3þ 1
conservative Eulerian formulation of general-relativistic

TABLE I. BNS configurations. The first column gives the configuration name. The next six columns provide the physical properties of
the individual stars: employed EOS, the gravitational masses of the individual stars MA;B, the baryonic masses of the individual stars
MA;B

b , the stars’ dimensionless spin magnitudes χA;B, and tidal deformabilities ΛA;B. The remaining columns give the mass-weighted
effective spin χeff , the residual eccentricity e, the initial GW frequency Mω0

22, the Arnowitt-Deser-Misner (ADM) mass MADM, and the
total ADM-like angular momentum J. The configurations were all evolved with the four resolution n96, n144, n192, n256.

Name EOS MA;B MA;B
b χA χB ΛA;B χeff e Mω0

22
MADM J

SLy0.57↑↑ SLy 1.367 1.495 0.5759 0.5759 360.1 0.5759 0.0011 0.038 2.711 9.849
SLy0.37↑↑ SLy 1.357 1.495 0.3683 0.3683 376.7 0.3683 0.00095 0.032 2.694 9.343
SLy0.16↑↓ SLy 1.351 1.495 0.1556 −0.1556 387.7 0.0000 0.00031 0.032 2.682 8.036
SLy0.28↓↓ SLy 1.354 1.495 −0.2775 −0.2775 382.7 −0.2775 0.00034 0.032 2.688 7.148

1We note that despite the large spins employed in our work,
artificial density oscillations stay during our simulations below
the 1% level for the highest resolution.
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hydrodynamics by defining Eulerian conservative variables
from the rest-mass density ρ, pressure p, internal energy ϵ,
and 3-velocity vi. For our simulations, we do not employ
the newly developed scheme of [49] but an artificial
atmosphere value of 10−11 with a floor cutoff value of
100, see [40,41] for a more detailed discussion.
The system is closed using a piecewise-polytropic fit for

the SLy [50] EOS with an additional thermal contribution
to the pressure given by pth ¼ ðΓth − 1Þρϵ, where we set
Γth ¼ 1.75 [51,52]. We note that SLy is a rather soft EOS,
i.e., it supports NSs with tidal deformabilities Λ̃ ≈ 400, for
a 1.35 M⊙ mass NS and is in agreement with current
observations [53–67].
Our numerical domain is divided into a hierarchy of cell

centered nested Cartesian grids consisting of L levels
labeled by l ¼ 0;…; L − 1. Each level l contains one or
more Cartesian boxes with constant grid spacing hl and n
(or nmv) number of points per direction. The resolution in
each level is given as hl ¼ h0=2l. Levels l ≥ lmv can move
dynamically according to the technique of “moving boxes”;
here we employ lmv ¼ 5.
The BAM grid setup considered in this work consists of

seven refinement levels. We use four different resolutions
for each configuration labeled n96, n144, n192, and n240,
where the subscript refers to the number of points in
the finest refinement box covering the NSs. This leads
to a finest grid spacing for SLy0.57↑↑ and SLy0.16↑↓ of
0.075 M⊙ with respect to the highest resolution n240.
For SLy0.37↑↑ and SLy0.28↓↓, the finest grid spacings are
0.068 M⊙ for the highest resolution. All setups start at an
initial frequency ofMω ¼ 0.032, except for SLy0.57↑↑ with
an initial frequency of Mω ¼ 0.038. This difference is
caused by the fact that we “reuse” the initial data for
SLy0.57↑↑ computed in Ref. [27].

III. MERGER DYNAMICS

For the analysis of the binary evolution, in particular the
study of ejecta and disk mass estimation, and the emitted
GWs signal, we use methods described in detail in
Refs. [16,22,68–70].

A. Qualitative discussion

Although spin effects that are present during the BNS
coalescence have been studied before, cf. [10–27], we want
to briefly summarize some of the main features that
dominate the overall dynamics.
As visible in Fig. 1, we see that systems with aligned

spin show a delayed merger, while systems with antialigned
spin show an earlier merger. This so called hang-up effect
of spin-aligned systems is caused by the interaction
between the orbital angular moment and the intrinsic spin
of the NSs; cf. [71] and references therein.
Interestingly, we see in the 2d-density plots shown in

Fig. 2 a noticeable difference at the time of merger. Most

notably, the antialigned configuration shows a clear density
minimum in the center. Such a minimum is less pronounced
in all other evolved configurations. Furthermore, the shape of
the individual NS is highly deformed. This deformation,
while in the shown figure being also coordinate dependent,
hints toward an enhancement of nonequilibrium tides. This
observation suggests that due to the large antialigned spin
spin-dependent dynamical tidal effects (as discussed in [72])
have to be included for an accurate modeling of the system;
cf. Sec. IV B. Indeed, tidal effects are dominated by the
response of the l ¼ 2 fundamental oscillation modes of the
star and hence become dynamically enhanced close to a
resonance between the orbital motion and the mode [73–77],
which is most prominent for an antialigned spin configura-
tion since the resonance (with the retrograde fundamental
mode) occurs at lower frequency in this case [72,78,79].

B. Ejecta and remnant properties

In addition to the bound rest-mass density, Fig. 2 shows
the unbound rest-mass density (ejecta) for each simulation.
One finds that most of the mass ejection during our
simlations originates from the tidal tail behind the stars,
and only a small amount of mass is ejected through
breakout shocks or shocks formed within the merger
remnant. However, our simulations also dominantly focus
on the inspiral and early postmerger such that possible mass
ejection on longer timescales might simply be missed.
Overall, we observe that for aligned spin configurations
more material gets ejected than for antialigned systems.
The ejecta mass computation uses two different methods;

see [22] for more details. The first method is based on a
volume integration of the unbound matter, Mν

ej, where the
unbound matter is defined through the two conditions

ut < −1 and vixi > 0; ð1Þ
where ut ¼ −Wðα − βiviÞ is the time component of the
fluid 4-velocity, α is the lapse, βi is the shift vector,W is the

FIG. 1. Comparison of the highest resolution simulation for
SLy0.37↑↑, SLy0.16↑↓, and SLy0.28↓↓. All these systems start at the
same initial frequency, SLy0.57↑↑ is not shown because of a
smaller initial separation. Clearly visible is the orbital hangup
effect caused by the interaction between the intrinsic spin of the
NSs and the orbital angular momentum.
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Lorentz factor, and xi ¼ ðx; y; zÞ the coordinate vector. This
method is particularly affected from inaccuracies when the
matter decompresses and the density becomes compatible
to the density of the atmosphere. At this stage matter gets
set to the atmosphere and the ejecta mass is decreased
artificially; cf. the discussion in [49]. For this purpose, we
extract the ejecta mass based on the volume integration
when it reaches the maximum after the merger and starts to
slowly decrease.
The second method uses the matter flux across a

coordinate sphere with radius rs,

MS
ej ¼

Z
t

0

dt0
Z
r¼rs

ffiffiffi
γ

p ½Duðαvi þ βiÞni�r2dΩ; ð2Þ

with ni ¼ xi=r and r ¼
ffiffiffiffiffiffiffiffi
xixi

p
. Du denotes the unbound

fraction of conserved rest mass density D ¼ Wρ, and γ is

the determinant of the induced 3-metric. As an extraction
radius, we use rs ¼ 300 following, e.g., [80].
The estimated ejecta mass is listed in Table II for all

configurations. We find that the highest ejecta mass of

FIG. 2. Rest-mass density profile and velocity field inside the orbital plane for all simulations. The snapshots represent moments close
to the merger. The rest-mass density ρ is shown on a logarithmic scale from blue to red. The rest-mass density of unbound material (ρu) is
colored from brown to dark green. Most material gets ejected from the tidal tails of the NSs inside the orbital plane. Note that the shown
densities are given in geometric units, the high densities of the order of log10 ρ ¼ −3 correspond to 6. × 1014 g=cm3 which is about 2.6
times nuclear saturation density. Spatial axes are given in multiples of M⊙, which corresponds to 1 M⊙ ∼ 1.48 km.

TABLE II. Ejecta mass estimates using the volume integralMV
ej

and the coordinate sphere integration MS
ej for the two highest

resolutions n240 and n192.

MV
ejðM⊙Þ MS

ejðM⊙Þ
Name n240 n192 n240 n192

SLy0.57↑↑ 0.0506 0.0506 0.0549 0.0559
SLy0.37↑↑ 0.0090 0.0096 0.0062 0.0083
SLy0.16↑↓ 0.0026 0.0028 0.0053 0.0022
SLy0.28↓↓ 0.0081 0.0064 0.0003 0.0007
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about 5 × 10−2 M⊙ (independent of the resolution) is
present for the SLy0.57↑↑ configuration. This observation
is in agreement with, e.g., [16,17,24], while [23,26] point

out that in some cases antialigned setups can eject more
massive ejecta. This “disagreement” is likely caused by the
observation that different ejecta mechanisms have different
spin dependence. While Ref. [16] explained that aligned-
spin systems will create larger dynamical ejecta due to
larger torque in the tidal tails, Ref. [23] points out that
antialigned spin can lead to a larger impact velocity around
the moment of merger, which increases shock-driven
outflows. Both observations are in agreement with our
simulations as visible in Fig. 3, where we show the bound
and unbound density 10 ms after the merger. One finds that
setups with aligned spin produce significantly more ejecta
inside the orbital, but aligned spin setups, most notably
SLy0.28↓↓, produce ejecta orthogonal to the orbital plane.
We note that furthermore, disk-wind ejecta released after

the merger will also depend on the spin of the NSs.
Generally, the initially aligned spin systems create a faster
rotating remnant, a more massive debris disk (see Fig. 3),
and larger ejecta mass. However, longer simulations which
have to include more advanced microphysical descriptions
will be necessary for quantitative studies.
Another major difference between the spin-aligned and

antialigned configurations is the stability of the formed
remnant, see Refs. [81,82]. In fact, the antialigned spin
configuration SLy0.28↓↓ is the only setup forming a black
hole quickly after the merger. For this setup, the final black
hole has a mass of about MBH ¼ 2.641 M⊙ and a dimen-
sionless spin of χBH ¼ 0.713. Except for SLy0.28↓↓, all
other configurations form hypermassive neutron stars,
which do not collapse to a black hole until the end of
our simulations. This difference in the collapse time might
be caused by the reduced initial angular momentum for the
SLy0.28↓↓ configuration, so that due to the reduced momen-
tum support a black hole is quickly formed. A similar effect
with respect to the remnant’s lifetime has also been
discussed in Refs. [10,11,16,24], but due to the large spin
contributions considered here, has not been so pronounced.
Indeed, this suggests that remnant classifications and also
classifications of the prompt collapse threshold [83–86]
should contain the intrinsic spin of the individual NSs if
they are employed within the entire parameter space.

IV. ANALYSIS

A. Convergence of the GW signal

In Fig. 4,2 we test the convergence properties for all
configurations listed in Table I. The usage of multiple grid
resolutions and setups, i.e., 96, 144, 192, and 240 points in
the refinement levels covering each individual NS, allows
us to test convergence properties of the GW signal
extracted from our simulation. As discussed in, e.g.,
Refs. [20,42] the full error budget of the GW signal would

FIG. 3. Bound and unbound rest-mass density and velocity
profile in the x-z-plane. The snapshots are taken 10 ms after the
merger. The rest-mass density ρ is shown on a logarithmic scale
from blue to red. The rest-mass density of unbound material (ρu)
is colored from brown to dark green. Most material gets ejected
from the tidal tails of the NSs inside the orbital plane, but in case
of antialigned spin, some material is also ejected orthogonal to
the orbtital plane.

2GW simulation data are publicly available under http://www
.doi.org/10.5281/zenodo.6139938.
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consist of a number of individual effects, most notably the
finite extraction radius of the waves and the discretization
error introduced through the finite resolution of the
numerical domain. While uncertainties through finite
extraction3 radii are typically of the order of ≲0.1 rad,
finite resolution errors easily contribute on the order of a
radian to the final error budget.
However, if we are able to determine the exact con-

vergence order of our simulation, we can employ
Richardson extrapolation to obtain an improved estimate
for the GW signal, labeled as R240;192. Based on this

consideration, we test in Fig. 4 the convergence of the
GW phase and also present the phase difference between
the highest resolution and the Richardson-extrapolated
waveform. This phase difference can be understood as
an estimate of the numerical uncertainty of the gravitational
waveform, where we will neglect the influence of the finite
radius extraction due to its smaller size.
Regarding Fig. 4, subfigure (a) shows data correspond-

ing to the SLy0.57↑↑ configuration. For this (as well as for
all other systems), the upper most parts show the (2, 2)—
mode of GWs for all employed resolutions and for the
Richardson-extrapolated waveform R240;192. The vertical
solid lines indicate the merger time. The middle panel
shows the phase difference among different resolutions
(solid lines), as well as the rescaled phase difference

FIG. 4. Top panels: real part of the GW signal for the four different resolutions employing 96, 144, 192 and 240 points in the
refinement levels covering the individual NSs for configurations SLy0.57↑↑ (top left panel), SLy0.37↑↑ (top right panel), SLy0.16↑↓
(bottom left panel), and SLy0.28↓↓ (bottom right panel). Middle panels: phase difference between different resolutions. Bottom panels:
phase difference between different Richardson-extrapolated waveforms or between a Richardson-extrapolated waveform and the
waveform from an individual resolution. The vertical lines in each panel refer to the time of merger, i.e., the time of the maximal GW
amplitude for the individual resolutions. The dashed lines in the bottom two panels show the phase difference scaled to the next lowest
pair of resolutions assuming second order convergence, i.e., dashed red lines should overlap with solid blue lines and dased green lines
should overlap with solid red lines. For the Richardson extrapolated waveforms second order is achieved if the dashed red line overlaps
with the brown line (bottom panel). u=M denotes the retarded time scaled by the total mass M.

3We use an extraction radius of r ¼ 1000 for SLy0.37↑↑ and
SLy0.16↑↓ and r ¼ 900 for SLy0.28↓↓ and SLy0.37↑↑.
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according to an assumed second order convergence (dashed
lines). The bottom panel shows the phase difference
between the Richardson-extrapolated data and two highest
resolutions. Also for these phase differences, we find clear
second order convergence, which simply acts as a cross
check for the correctness of the Richardson extrapolation.
The purple curve in the bottom panels shows the phase
difference between two Richardson-extrapolated wave-
forms based on data from different NR resolutions. This
phase difference shows no clear monotonic behavior and
contains even zero crossings. This fact indicates that the
numerical accuracy of our data would not allow us to
perform a second Richardson-extrapolation step to further
improve our final estimate. Similarly, we show in Fig. 4
similar plots for SLy0.37↑↑ in the top right panel (b), for
SLy0.16↑↓ in the bottom left panel (c), and for SLy0.28↓↓ in
the bottom right panel (d) of Fig. 4. Second order con-
vergence is obtained throughout the inspiral for all the
configurations when we consider the highest NR
resolutions.
The final difference between the highest resolution and

the Richardson-extrapolated waveform is then for all cases
used to estimate the NR uncertainty of the simulation.
It is worth pointing out that while the GW amplitude

shows a monotonic behavior with increasing resolution, the
amplitude is, in contrast to the GW phase, not converging
with clean convergence order. For this purpose, we do not
employ any Richardson extrapolation for the GWamplitude.

B. GW Modeling

Since the NR dataset produced for this article contains
BNS simulations with high individual NS spins, uses low
eccentricity (below 10−3) initial data, and since we have
the possibility for a clear error assessment, it is natural to
use this dataset for waveform model comparison. We will
compare our numerical data with a set of waveform models
implemented in the LALSuite package [87], and we will
summarize the main features of the model in the following.
IMRPhenomD_NRTidalv1: IMRPhenomD is a phe-

nomenological, frequency-domain waveform model dis-
cussed in detail in Refs. [88,89]. It describes nonprecessing
BBH coalescences throughout inspiral, merger, and ring-
down. To obtain BNS waveforms, the IMRPhenomD
approximant is augmented with tidal phase corrections
given by NRTidal, Refs. [19,90]. No additional contri-
butions from EOS-dependent spin-spin or cubic-in-spin
effects are present, i.e., within this model the quadrupole
moment is set to 1.
IMRPhenomPv2_NRTidalv1: This model is based

on IMRPhenomPv2, which describes precessing binary-
black-hole (BBH) systems throughout the inspiral, merger
and ringdown [91]. IMRPhenomPv2 is augmented with
the NRTidal phase corrections to model BNS mergers
[19,90]. In addition, the model includes 2PN and 3PN

spin-spin corrections that depend on the EOS-dependent
spin-induced quadrupole moment.4

IMRPhenomPv2_NRTidalv2: The updated
version of IMRPhenomPv2_NRTidalv1 model is
IMRPhenomPv2_NRTidalv2. It uses NRTidalv2
tidal phase corrections which include up to 3 PN spin-
spin effects, including quadrupole and octupole contribu-
tions up to 3.5 PN as well as cubic-in spin effects and a tidal
amplitude correction.
SEOBNR_ROM_NRTidalv2: This approximant is

based on an EOB description of the general-relativistic
two-body problem [94,95] with free coefficients tuned to
NR waveforms [96]. The BBH model SEOBNRv4_ROM
is augmented with the NRTidalv2 phase corrections
[97] to obtain BNS waveforms. It also includes spin-
corrections and tidal amplitude corrections similar to
IMRPhenomPv2_NRTidalv2.
SEOBNRv4T: This model is a time domain EOB model

[76,77] which includes the quadrupolar and octopolar
adiabatic and dynamical tides, spin-induced quadrupole
moment effect, with a prescription for tapering at the end
of the waveform. In this paper, we include two different
versions of themodel. First, the currently implemented one in
the LALSuite, second an updated version that was recently
presented in [72] and incorporates spin-dependent resonance
effects that change the dynamical tides description.
TEOBResumS: TEOBResumS incorporates an enhanced

attractive tidal potential derived from resummed PN and
gravitational self-force expressions of the EOB A-potential
that determined tidal interactions Refs. [98–100]. For BNS,
tidal effects are incorporated by computing a resummed
attractive potential such that the tidal phase includes
next-to-leading order (NLO) tidal contributions and gravi-
tational self-force description of relativistic tidal inter-
actions. It incorporates the EOS dependent self-spin
effects up to NLO.
In Fig. 5, we compare our NR data with all previously

described waveform models. For this purpose, we show the
estimated uncertainty of the NR dataset as shaded regions
and the phase difference between the NR data and the GW
approximants as dashed lines. In general, we find that all
models tend to underestimate tidal effects with respect to
the NR data. This phenomenon was already discussed and
outlined in a number of works, e.g., [99,101–103] and has
two reasons. On the one hand, analytical models generally
underestimate tidal contributions during the last stages of
the coalescence due to missing higher order corrections
and physical effects appearing when both stars come into
contact. On the other hand, NR simulations tend to
overestimate tidal effects because numerical dissipation

4Within this work all models and injections use the quasiu-
niversal relations of Ref. [92,93] for the computation of the spin-
induced quadrupole moment based on the tidal deformability.
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leads to an accelerated inspiral, which emphasizes the
importance of a confident error estimate.
The top panel of Fig. 5 shows the comparison against

SLy0.57↑↑. We find that IMRPhenomD_NRTidalv1 has
the largest dephasing with respect to the NR data. This
observation is not surprising since this model does not
incorporate EOS-dependent spin-spin interactions. These
interactions appear at first at 2PN order and, for spin
magnitudes employed in this work, can lead to large
dephasings. Contrarily IMRPhenomPv2_NRTidalv1
shows the smallest dephasing with respect to the NR setup,
where we expect that this is caused (i) by the fact that the
original NRTidal contribution is more attractive than the
updated NRTidalv2 contribution and (ii) that, in contrast to
the NRTidalv2 approximants no 3.5PN spin-spin is
included. Both contributions lead to an accelerated inspiral
and hence a better agreement with the NR data.
The second panel shows a comparison against SLy0.37↑↑.

As before, IMRPhenomD_NRTidalv1 shows the largest

dephasing and is outside the NR uncertainty. The other
models stay within the estimated NR uncertainty up to the
moment of merger.
For the SLy0.16↑↓ setup (third panel of Fig. 5) all models

stay within the estimated NR uncertainty. This indicates
that for systems with χeff ≈ 0, but still large individual spin
contributions, the existing BNS waveform models might
allow a reasonable description of the last few orbits covered
by our NR simulations.
Finally, results for SLy0.28↓↓ are shown in the bottom

panel. It becomes clear that none of the existing models that
is used for the GW analysis of previous events is able to
describe all systems reliably.
Interestingly, the recent model update of SEOBNRv4T

[72] seems to be capable of describing SLy0.28↓↓, i.e.,
systems with large antialigned spin contribution very well.
We show a comparison of this setup and others in Fig. 6,
where the model which includes a spin-dependent descrip-
tion of the tidal section through the inclusion of resonance
effects is clearly advantageous in the antialigned case.

C. Parameter estimation

To understand possible biases during parameter esti-
mation for highly spinning systems, we perform an
injection study using the LALINFERENCE code [28,87].
We employ the Markov-Chain Monte Carlo (MCMC)
algorithm to estimate posterior probability distribution
functions; cf. Figs. 7 and 8. We inject hybrid waveforms
starting from 23 Hz. The hybrids are a combination of the

FIG. 5. We plot the highest NR resolution waveform of the GW
signal for the four different configurations SLy0.57↑↑ (top left
panel), SLy0.37↑↑ (second top panel), SLy0.16↑↓ (third from the
top panel) and SLy0.28↓↓ (bottom panel) with black curve. For an
easier assessment, we show for all configurations the real part
of the GW in black. In addition, we compare the GW waveform
with different waveform models such as IMRPhenomPv2_
NRTidalv2, SEOBNRv4T, SEOBNR_ROM_NRTidalv2,
IMRPhenomPv2_NRTidalv1, TEOBResumS, and IMRPhe-
nomD_NRTidalv1. The phase difference (in radians) between
different highest NR resolution waveforms and waveform models
is given by different colors. The alignment window is between
u=M ¼ ½200; 1500� for all configurations. The vertical black
dashed line in each panel refers to the time of merger, i.e., the
peak time of the GW amplitude. u=M denotes the retarded time
scaled by the total mass M.

FIG. 6. Phase difference for all our setups employing the
original SEOBNRv4T and the updated SEOBNRv4T model as
developed in [72]. The real part of the GW strain is shown in
black for an easier understanding about the performance of the
model within the last cycles before merger.
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updated SEOBNRv4Tmodel to cover the early inspiral part
and the highest resolution NR waveforms.5 To reduce
computational costs, we only perform studies using the
SLy0.57↑↑ and SLy0.28↓↓ configuration. The injected

waveforms have an SNR of 32.4 and an inclination of about
0 deg. We perform zero noise injection but assume design
sensitivity of Advanced LIGO and Advanced Virgo. For the
analysis, we assume a uniform prior distribution in the inter-
val ½1 M⊙; 3 M⊙� for component masses and ½−0.9; 0.9�
for both dimensionless aligned spins. The prior on the
tidal deformability is uniform in the individual tidal deform-
abilities ΛA;B and ranges between 0 and 5000. We only
consider nonprecessing recoveries. We recover injections

FIG. 7. Estimated chirp mass, mass ratio, effective spin, and tidal deformability for the SLy0.57↑↑ setup. Recoveries labeled by
IMRPhenomPv2_NRTidalv1 (red), IMRPhenomPv2_NRTidalv2 (orange), IMRPhenomD_NRTidalv1 (blue) use different
approximants to recover our hybridized waveform which is a combination of the updated SEOBNRv4T model and the highest NR
resolution data. The IMRPhenomPv2_NRTidalv2 -inj-same (gray) uses for injection and recovery the IMRPhenomPv2_NRTi-
dalv2 model with the same source parameters as the hybrid. The latter injection serves as validation set for our injection setup. The
injected source parameters are marked with a solid black line. The contours shown in the 2D-plots refer to 50% and 90% credible
intervals, intervals marked in the 1D plots refer to 90% credible intervals.

5We do not use the Richardson-extrapolated waveform to
avoid any potentially unphysical behavior of the waveform once
convergence is lost after the merger. We employ the methods
outlined in Ref. [29] for hybdridization.
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with IMRPhenomPv2_NRTidalv2, IMRPhenomPv2_
NRTidalv1, and IMRPhenomD_NRTidalv1.
To check the sanity of our runs and to ensure that

our pipeline works properly, we inject in addition a
IMRPhenomPv2_NRTidalv2 waveform constructed
using same parameters as SLy0.57↑↑ and we recover this
injection with the same IMRPhenomPv2_NRTidalv2
model. We label this additional injection as
IMRPhenomPv2_NRTidalv2 -inj-same and do not
expect to see biases for this setup.
In Fig. 7, we show the results for the SLy0.57↑↑ setup,

where we show the 2D and 1D marginalized probability
densities for a subset of the recovered posteriors, namely
the chirp mass Mc, the mass-ratio q, the effective spin

parameter χeff, and the tidal deformability Λ̃. In the 2D
contour plots, we show the 50% and 90% credible intervals.
The solid black line marks the injected value.
Through the comparison with IMRPhenomPv2_

NRTidalv2 -inj-same, we find that our employed setup
is able to recover the injected parameters and that all injected
parameters are recoveredwithin the 90%confidence interval.
Furthermore, We note that IMRPhenomPv2_NRTidalv2
-inj-same, as well as all other setups, shows a large tail in
the Λ̃ posterior which might be due to the high-spin of the
system. However, additional tests and injections are required
to verify this assumption.
To the contrary, using our hybrid waveform for

the SLy0.57↑↑ setup, we find much larger discrepancies.

FIG. 8. Estimated chirp mass, mass ratio, effective spin, and tidal deformability for the SLy0.28↓↓ setup. The injected source parameters
are marked with a solid black line. Shown contours in the 2D-plots refer to 50% and 90% credible intervals, intervals marked in the 1D
plots refer to 90% credible intervals.
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Most notably, while obtaining sharp posteriors, the
IMRPhenomD_NRTidalv1 model estimates the chirp
mass, mass ratio, spin, and tidal deformability wrong. As
discussed before, this inaccuracy is introduced by the
missing EOS-dependence of the spin-induced quadrupole
moment. All other waveform approximants recover the
injected values (dashed line) within the 90% credible
interval, which, to a large extent, is possible due to
generally large uncertainties of the obtained posterior
distributions.
In Fig. 8, we show the results for our injection study

for the SLy0.28↓↓ setup. It is notable that IMRPhenomD_
NRTidalv1 performs better than in the previous case,
which is consistent with our investigations in Fig. 5.
However, the model still shows the largest bias in the
chirp mass. Finally, it is worth pointing out that none of the
models is capable of recovering the effective spin and tidal
deformability correctly. Hence, it is obvious that tidal and
spin measurements will be biased noticeably for systems
with large antialigned spin.

V. CONCLUSION

Within this work, we have presented high-resolution
simulations for a set of four different physical configura-
tions of highly spinning, equal mass binary neutron star
systems. Every setup has been evolved with a total of four
resolutions, which allows a precise computation of uncer-
tainties. We find that for the highest spinning configura-
tions χ ¼ 0.58 and χ ¼ −0.28 existing waveform models
do not provide an accurate description during the late
inspiral. It is worth pointing out that the dephasing between
the SEOBNRv4T model and our numerical-relativity sim-
ulations can be reduced by incorporating spin-dependent

resonance effects as outlined in Ref. [72]. To understand the
influence of this disagreement on gravitational-wave analy-
sis, we have performed an injection study in which we have
tried to recover the source parameters of a hybrid waveform
consisting of our high-resolution numerical-relativity data
and the updated SEOBNRv4T model. Most notably for
large antialigned spins, estimated tidal deformabilities and
effective spins are biased and it was not possible to recover
the injected source parameters.
Our study shows that, at least for the tested waveform

models, further development is needed to ensure a reliable
interpretation of future gravitational-wave detections of
possibly highly spinning binary neutron star systems.
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