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We investigate the unhindered gravitational collapse of a homogeneous scalar field with nonzero
potential, a two-dimensional analog of the Mexican hat-shaped Higgs field potential. The collapsing scalar
field is surrounded by an exterior retarded (outgoing) generalized Vaidya spacetime. We prove that the
density dependence on the scale factor cannot be expressed as an algebraic function in such a scenario. For
a certain transcendental expression of the density of such a field as a function of scale factor, we then show
that the collapse evolves to a singularity at an infinite comoving time, which is equivalent to saying that the
singularity is avoided altogether. An ultra high density region of the order of Planck length can, however, be
reached in a finite comoving time. The absence of the formation of trapped surfaces makes this ultra high
density region globally visible.

DOI: 10.1103/PhysRevD.105.064048

I. INTRODUCTION

Hawking and Penrose depicted the formation of singu-
larities in the gravitational collapse and cosmology in what
is known as the singularity theorems [1,2]. However, it is
widely believed that no past inextendible nonspacelike
geodesic can exist between the singularity and any point on
the spacetime manifold. In other words, no nonspacelike
geodesics could have a positive tangent at the singularity.
This statement is known as the strong cosmic censorship
hypothesis [3,4]. One motivation tempting us towards the
strong cosmic censorship hypothesis is our desire always to
have a globally hyperbolic spacetime metric [4].
Global hyperbolicity is the most potent form of the

causality condition [2]. Even if the spacetime is strongly
causal, which ensures no formation of closed nonspacelike
curves, such a spacetime metric should retain the property
of no violation of causality if there is a small perturbation in
the spacetime metric. Thus, there should be stability in the
spacetime metric in the sense that all “nearby” spacetime
metrics should also have a similar property as far as the

causality condition is concerned. However, different topol-
ogies can be defined on the set of all Lorentz metrics, each
giving a different meaning to the word “nearby.” This
drawback can be overcome by considering the spacetime to
be globally hyperbolic, an alternative, and the strongest
description of the causality condition. Globally hyperbolic
spacetime harbors a unique topology that is homeomorphic
to S ×R, where S is a Cauchy surface admitted by the
spacetime manifold [5] (any two Cauchy surfaces are
homeomorphic to each other). A global hyperbolic space-
time is stably causal [1]. One can show that if the strong
cosmic censorship is not valid, then the spacetime metric is
not globally hyperbolic [6]. Nevertheless, one can also
show that a sufficiently inhomogeneous spherically sym-
metric dust cloud collapse can end up in a singularity such
that null geodesics can escape from the singularity without
getting trapped by the trapped surfaces [7,8]. Such singu-
larities are also stable under small perturbation in a certain
subset of the entire initial data leading to the collapse
[9–11]. These may act as a counterexample to the strong
cosmic censorship hypothesis. Apart from the scenario
mentioned above, examples of gravitational collapse of
various matter fields have been shown to give rise to a
naked singularity [12–20]. The intriguing question is
whether cosmic censorship is respected in the gravitational
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collapse of fundamental matter fields deduced from a
suitable Lagrangian.
In the case of a massless scalar field, it was shown by

Christodoulou that the cardinality of the linearly indepen-
dent elements in the set of initial data giving rise to a naked
singularity as an end state is strictly less than that of the
entire collection of initial data [21,22]. In other words, in
the case of scalar field collapse with zero ϕ2 term in the
scalar field Lagrangian, the set of initial data giving rise to
naked singularity has positive codimension in the entire set
of initial data (the whole set includes those initial data
giving rise to a black hole, and those giving rise to a naked
singularity). This outcome concludes that a massless scalar
field collapses to a naked singularity that is nongeneric
(by the generic outcome of the gravitational collapse,
we mean that the set of the initial data giving rise to the
outcome has a nonzero measure in the entire initial data set
[4]). Genericity aspects of the naked singularity formed due
to massive scalar field collapse are yet to be studied.
In [18], a massive homogeneous scalar field having

a certain potential VðϕÞ ∝ e−ϕ is shown to form a naked
singularity at the end of its collapse. Here, we are interested
in a more realistic potential of the scalar field, whose
Lagrangian has a Z2 symmetry. Symmetries in scalar field
theories are interesting as we know the Higgs field potential
[23] also has symmetries. In particle physics, the Higgs
field plays a pivotal role in determining the properties of the
matter content of the known universe. In our case, we work
with a much-simplified model consisting of only one real
scalar field whose potential has a particular symmetry. Such
potential is motivated by the theory of phase transitions by
Landau [24]. At temperatures above a certain cutoff Tc, the
scalar field has zero average value in its lowest energy state,
i.e., the vacuum. At temperatures below Tc, such a field has
two nonzero average values in vacuum (the value of these
two states are the same in magnitude but differ in polarity).
As there appears multiple vacua in the theory below a
certain temperature, the system has to choose any one of the
vacua, thereby breaking the symmetry of the system. All
the perturbations of the field now have to be done with
respect to a particular vacuum, and consequently the overall
symmetry is broken by the vacuum. This mode of sym-
metry breaking is known as spontaneous symmetry break-
ing. In particle physics, a considerable amount of vacuum
energy in the universe is contributed by the Higgs field
due to its nonzero average lowest energy state [25]. In the
forthcoming sections, we will discuss the dynamics of
gravitational collapse in the presence of a scalar field which
shows spontaneous symmetry breaking.
In this paper, we show that for a certain homogeneous

density dynamics (gravitational collapse) of our toy model
scalar field with a potential which has Z2 symmetry, the
cloud collapses eternally, thereby the singularity formation
is avoided. However, a very ultra high density region
(UHDR) of the size of the order of Planck length is

obtained in a finite comoving time. Trapped surfaces do
not form, causing the exposure of this strong gravity region
to the outside observer.
The paper is arranged as follows: in Sec. II, we derive

basic dynamical equations of the massive scalar field using
the Einsteins field equations, which will be used in further
investigations. In Sec. III, we show that, for the scalar field
mentioned above, the density cannot be an algebraic function
of the scale factor but a transcendental function. For a
particular transcendental function as a density configuration,
satisfying the regularity requirements, we obtain the exact
solution of Einstein’s field equations. The exterior spacetime
is modeled by the retarded (outgoing) generalized Vaidya
spacetime. We depict the conditions that need to be satisfied
for smoothly matching the interior collapsing solution with
the exterior generalized Vaidya metric. In Sec. IV we discuss
the visibility aspects of the UHDR, which may be governed
by quantum gravity, and see if Z2 symmetry in the scalar
field potential is obeyed by the causal property of the UHDR.
We end the paper by concluding remarks and final dis-
cussions. We use the geometrized units c ¼ 8πG ¼ 1.

II. EINSTEIN’S FIELD EQUATIONS AND
COLLAPSE DYNAMICS

Consider a homogeneous gravitational collapse of the
perfect fluid scalar field ϕ ¼ ϕðtÞ having the potential VðϕÞ.
The components of the stress-energy tensor are given by

Tμ
ν ¼ diagðρ; p; p; pÞ: ð1Þ

The spacetime geometry is governed by the Friedmann-
Lemaítre-Robertson-Walker (FLRW) metric

ds2 ¼ −dt2 þ a2dr2 þ R2dΩ2; ð2Þ

where dΩ2 ¼ dθ2 þ sin2θdϕ2. Here a ¼ aðtÞ is the scale
factor such that að0Þ ¼ 1 and aðtsÞ ¼ 0, where ts is the time
of formation of the singularity. R ¼ Rðt; rÞ is the physical
radius of the collapsing cloud and can be written as

Rðt; rÞ ¼ raðtÞ: ð3Þ

The Lagrangian of the scalar field is given by

Lϕ ¼ 1

2
gμν∂μϕ∂νϕ − VðϕÞ; ð4Þ

The stress-energy tensor is then

Tμν ¼ −
2ffiffiffiffiffiffi−gp δð ffiffiffiffiffiffi−gp

LϕÞ
δgμν

: ð5Þ

The density and the isotropic pressure are subsequently
expressed in terms of the time derivative of the scalar field
and its potential as
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ρ ¼ 1

2
_ϕ2 þ VðϕÞ ¼ 3_a2

a2
; ð6Þ

and

p ¼ 1

2
_ϕ2 − VðϕÞ ¼ −

2ä
a

−
_a2

a2
: ð7Þ

The overhead dot denotes the time derivative of the
functions. The Klein-Gordan equation

ϕ̈þ 3_a
a

_ϕþ V;ϕ ¼ 0 ð8Þ

can be obtained from the Einstein’s field Eqs. (6) and (7) [or
from Eq. (6) along with the Bianchi identity] if _ϕ does not
vanish identically. Hence the Klein-Gordan equation should
not be seen as an independent equation constraining the
choice of free functions. From Eqs. (6) and (7), and from
using the chain rule _ϕ ¼ ϕ;a _a, we get

ρþ p ¼ ϕ2
;a _a2: ð9Þ

Equation (6) can be rewritten to obtain the dynamics of the
collapse as

_a ¼ −

ffiffiffiffiffiffiffiffiffi
ρðaÞ
3

r
a; ð10Þ

differentiating which, we obtain

ä ¼ 1

3
a

�
aρ;a
2

þ ρ

�
: ð11Þ

Using Eq. (10) in Eq. (9), we get

ρ

�
1 −

ϕ2
;aa2

3

�
þ p ¼ 0: ð12Þ

From Eqs. (6) and (10), we get

p ¼ ρ − 2V: ð13Þ

Using Eqs. (12) and (13), we get

ρ ¼ VðϕÞ
1 − ϕ2

;aa2

6

: ð14Þ

Using Eqs. (7), (10), and (11) in Eq. (9) and rearranging, we
obtain

ρ;a
ρ

¼ −ϕ2
;aa: ð15Þ

Differentiating Eq. (14) with respect to a and substituting in
Eq. (15), we obtain a second order nonlinear differential
equation

V;ϕϕ;a

V
þ a

3

ϕ;aðaϕ;aa þ ϕ;aÞ
1 − ϕ2

;aa2

6

þ aϕ2
;a ¼ 0: ð16Þ

Now, in case ϕ;a ≠ 0, we can get the reduced form of the
above differential equation as

V;ϕ

V
þ a

3

ðaϕ;aa þ ϕ;aÞ
ð1 − ϕ2

;aa2

6
Þ

þ aϕ;a ¼ 0: ð17Þ

For a given potential V ¼ VðϕÞ, one can solve the differ-
ential Eq. (17) by choosing two suitable initial conditions
to get ϕ ¼ ϕðaÞ. In the next section, we derive the exact
solution of the collapsing toy model scalar field with the
potential having Z2 symmetry.

III. EXACT SOLUTION: AN ETERNALLY
COLLAPSING CLOUD

The toy model scalar field which we consider is
described by the potential (Fig. 1)

VðϕÞ ¼ 1

2
qϕ2 þ λϕ4: ð18Þ

At high temperature T, above a certain cutoff Tc, q > 0.
The potential in such case is a parabola [see Fig. 1(a)], with
the average of its lowest energy state at

ϕv ¼ 0: ð19Þ
This is the vacuum. As the temperature cools down below
Tc, q < 0, and the potential is no more a parabola [see
Fig. 1(b)]. Now there are two states of vacuum, i.e., the
lowest energy states, represented by

ϕv ¼ �
ffiffiffiffiffiffiffiffiffi
−

q
4λ

r
: ð20Þ

Both the vacuum states are allowed to exist with equal
probability. One can see that, at T > Tc, the lowest energy
state is symmetric with respect to ϕ ↔ −ϕ reflection.
However, at T < Tc, choosing any one of the ground
states as the lowest energy state, we see that the symmetry
ϕ ↔ −ϕ is not respected any more.
Now, as far as solving the Einstein’s field equations are

considered, we can, in principle, get the complete solution
by solving the differential Eq. (17) for the particular
potential (18). This will give us the functional form of
the scalar field ϕ in terms of the scale factor. Once ϕðaÞ
is obtained, we can get ρðaÞ from Eq. (14), pðaÞ from
Eq. (13), and aðtÞ from Eq. (10), thereby solving the field
equations completely. However, the problem with this
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particular approach is that the differential Eq. (17) thus
obtained is nonlinear and is not easy to solve analytically.
We, therefore, do not proceed with this approach. Instead,
we carefully choose the density configuration as a function
of the scale factor such that the underlying potential turns
out to be of the form in Eq. (18). This can be done due to
one degree of freedom available to us.
However, choosing a particular density configuration so

as to ensure that the scalar field follows the “Higgs-like”
potential [Eq. (18)] is a hit and trial method. It is obviously
not practical to try each and every possible kind of density
configuration and see if the corresponding underlying
potential of the scalar field is the one that we desire.
The following theorem, however, helps us to choose a
suitable density profile that can lead to a desirable potential.
It states that in a gravitational collapse involving homo-
geneous scalar field ϕðaÞ governed by FLRW spacetime, if
ρðaÞ is an algebraic function, then either VðϕÞ is a
transcendental function, or

lim
a→0

VðϕðaÞÞ ¼ 1

ϕα ; α > 0: ð21Þ

[If (21) is true, then VðϕÞ can be algebraic or
transcendental.]
The proof of this theorem can be found in the

Appendix A. One of the results of this theorem is that
the density configuration of the collapsing homogeneous
scalar field having the potential (18) is not an algebraic
function of a. The proof of this statement can be found in
Appendix A. Employing this fact, let us set the density
configuration of the homogeneous scalar field as the
following transcendental function in a:

ρðaÞ ¼ 64λðk − logaÞ2; k > 0: ð22Þ

For such density profile, using Eqs. (10), (11), and (7) in
Eq. (9), we get

ϕ2
;a ¼

2

a2ðk − log aÞ : ð23Þ

Taking the square root gives us

ϕ;a ¼ �
ffiffiffi
2

p

a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k − log a

p : ð24Þ

Integrating the above equation, we get

ϕðaÞ ¼ ∓2
ffiffiffi
2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k − log a

p
: ð25Þ

Using Eqs. (22) and (23) in Eq. (14), we then obtain

VðϕÞ ¼ −
8

3
λϕ2 þ λϕ4; ð26Þ

which resembles the potential depicted in Eq. (18) with

q ¼ 16

3
λ: ð27Þ

If we choose ϕ;a > 0, then ϕ < 0, and vice versa. We can see
that as the cloud evolves from a ¼ 1 to a ¼ 0 (singularity),
the scalar field evolves from −2

ffiffiffi
2

p ffiffiffi
k

p
to −∞ if we choose

ϕ;a > 0. It evolves from 2
ffiffiffi
2

p ffiffiffi
k

p
to∞ if we choose ϕ;a < 0.

As a special case example, for k ¼ kv given by

kv ¼
1

6
;

the collapse initiates from the vacuum state

ðϕv; VvÞ ¼
�
� 2ffiffiffi

3
p ;−

23λ

9

�
; ð28Þ

Eq. (20). It ends at the singularity, for which the scalar field
and the potential blows up as

–1.0 –0.5 0.5 1.0

0.5

1.0
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2.0

2.5
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FIG. 1. The scalar field ϕ and the potential VðϕÞ are represented by the horizontal and vertical axes, respectively. q > 0 in (a) and

q < 0 in (b). Here, γ ¼
ffiffiffiffiffi
−q
4λ

q
and δ ¼

ffiffiffiffiffi
−q
2λ

q
.
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lim
a→0

ðϕ; VÞ ¼ ð�∞;∞Þ: ð29Þ

We, therefore, have a class of scalar field collapse with
the potential Eq. (26), which starts from some finite
nonzero value of ϕ and blows up in the end, maintaining
the polarity of ϕ throughout the collapse. It is worth
mentioning that Eqs. (25) and (26) satisfy the differential
Eq. (17).
To understand the time evolution of the cloud, we solve

differential Eq. (10) by substituting Eq. (22) and setting the
constant of integration such that að0Þ ¼ 1. We then obtain

aðtÞ ¼ exp

�
k

�
1 − exp

�
8

ffiffiffi
λ

p
tffiffiffi

3
p

���
: ð30Þ

We can see that a → 0 at t → ∞. Hence, the singularity is
formed at the infinite comoving time. As mentioned before,
the UHDR is, however, reached in a finite comoving time.
We will discuss the property of this region in the next
section. But before, we would like to note that the eternally
collapsing solution derived here, which we call an interior
metric, can be joined smoothly with an exterior generalized
Vaidya metric [26,27] at the boundary of the collapsing
cloud such that the union of these two metrics forms a valid
solution to Einstein’s field equations [28]. The boundary is
a timelike hypersurface Σ having the radial coordinate rc.
We rewrite the metric governing the eternally collapsing
scalar field (the interior metric) as

ds2− ¼ −dt2 þ a2dr2 þ R2dΩ2: ð31Þ

The exterior generalized Vaidya spacetime is expressed as

ds2þ ¼−
�
1−

2MðRc;vÞ
Rc

�
dv2 − 2dvdRcþR2

cdΩ2: ð32Þ

Here v is the retarded (outgoing) null coordinate, Rc
ð¼ RcðtÞÞ is the Vaidya radius, and MðRc; vÞ is the
generalized Vaidya mass function. Smooth matching of
the interior and exterior spacetime at Σ was discussed in
detail in [18]. Following their work, the relevant equations
obtained by matching the first and second fundamental
forms for the interior and the exterior metrics on Σ are as
follows:

RcðtÞ ¼ Rðt; rcÞð¼ rcaðtÞÞ; ð33Þ

Fðt; rcÞ ¼ 2MðRc; vÞ; ð34Þ
�
dv
dt

�
Σ
¼ 1þ _Rc

1 − Fðt;rcÞ
Rc

; ð35Þ

and

MðRc; vÞ;Rc
¼ Fðt; rcÞ

2Rc
þ RcR̈c: ð36Þ

Here, F ¼ Fðt; rÞ ¼ R _R2 is the Misner-Sharp mass func-
tion of the collapsing scalar field. Assurance of smooth
matching of the two spacetime metrics on Σ puts a
restriction on the otherwise free Vaidya generalized mass
function MðRc; vÞ in the sense that the above four
equations should be satisfied on Σ. Using Eqs. (11), (15),
(22), and (23), along with Eqs. (33) and (34), we can
rewrite Eq. (36) as

M;Rc
−
M
Rc

−AR2
cðB− logRcÞðB−1− logRcÞ¼0; ð37Þ

where

M ¼ MðRc; vÞ; A ¼ 64λ

3
; and B ¼ kþ log rc: ð38Þ

Solving the differential Eq. (37), one can obtain the
dependence of M on Rc as

M ¼ 1

2
AR3

cðB − logRcÞ2 þ RcM1ðvÞ: ð39Þ

Here, the functionM1ðvÞ is still free, hence this expression
rather describes a class of exterior generalized Vaidya mass
function, which allows the smooth matching of the exterior
generalized Vaidya spacetime with the interior eternally
collapsing ball of homogeneous scalar field with potential
mentioned in Eq. (26).
Here, one could ask the reason for choosing the gener-

alized Vaidya solution for modeling the exterior spacetime.
If the exterior region is governed by the Schwarzschild
metric, which is a particular case of Eq. (32) having constant
M, then smooth matching is not possible as is apparent from
Eqs. (33)–(36). A physical explanation would be to say that
the negative pressure inside the collapsing cloud causes a
diffusion of the matter field and the outward flowing photons
(called null dust) in the outer region. The internal pressure of
the collapsing cloud is related to F as

p ¼ −
_F

R2 _R
: ð40Þ

Now, using Eqs. (6), (7), (11), and (22), one can express the
dynamics of pressure as

p ¼ 128

3
λðk − log aÞ − 64λ ðk − log aÞ2: ð41Þ

One can observe from the above equation that given a λ and
k, after a certain time through the process of collapse, the
pressure becomes negative and remains so after that. The
diffusion of matter from the ever-collapsing scalar field is
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due to this negative pressure inside the cloud, which causes
the Misner-Sharp mass function of the cloud to decrease
with time, as seen from Eq. (40). Hence, there is no
vacuum in the exterior of the collapsing cloud. Therefore,
this outer region can be modeled by spacetime corre-
sponding to the stress-energy tensor, the linear super-
position of null dust, and perfect fluid. Such spacetime is
nothing but the generalized Vaidya spacetime. It is a wider
class of spacetime, including many known solutions like
the Vaidya solution [32], monopole solution [33], charged
Vaidya solution [34], and Hussain solution [35] as special
cases. As is apparent from Eq. (39), the exterior spacetime
cannot be classified in any of the aforementioned sub-
classes of spacetimes.
Furthermore, satisfaction of the energy conditions puts a

constraint on the otherwise free generalized Vaidya mass
function MðRc; vÞ. For the exterior spacetime to obey the
weak energy condition, the function M1ðvÞ appearing in
Eq. (39) should satisfy the following condition:

M1ðvÞ ≥
A
4
ð

ffiffiffiffiffi
13

p
− 3Þ exp

�
2Bþ

ffiffiffiffiffi
13

p
− 5

3

�
: ð42Þ

Additionally, M1ðvÞ should be a monotone decreasing
function of the null coordinate v.
Similarly, for the exterior spacetime to obey the dom-

inant energy condition, M1ðvÞ is further restricted as
follows:

M1ðvÞ ≥
A
4
ð

ffiffiffiffiffi
61

p
− 6Þ exp

�
2Bþ

ffiffiffiffiffi
61

p
− 13

6

�
: ð43Þ

The strong energy condition, however, cannot be satisfied
throughout the collapse by this spacetime. More insights in
the generalized Vaidya spacetime and its energy conditions
can be found in Appendix B.

IV. NATURE OF THE ULTRA HIGH DENSITY
REGION

To check the nature of the strong gravity region formed
due to gravitational collapse, as far as its visibility is
concerned, we have to investigate the formation of trapped
surfaces around the singularity. Trapped surfaces do not
form at time t if

ρR2

3
< 1: ð44Þ

This ensures the positivity of the expansion scalar of the
outgoing null geodesic congruence, which in our case is
given by

θl ¼
2

R

�
1 −

ffiffiffi
ρ

3

r
R

�
: ð45Þ

We can hence conclude from Eq. (44) that for a given rc
(where rc is the largest comoving radius of the collapsing
cloud) when the redefined time a becomes zero, θl > 0 if

r2c < lim
a→0

3

a2ρ
: ð46Þ

We see that for the density configuration mentioned in
Eq. (22), the inequality (44), which is the condition to avoid
the formation of trapped surface, is satisfied at a → 0. This
is because

lim
a→0

ρa2r2

3
¼ 0: ð47Þ

Hence, there is always a causal connection from any point
in the collapsing cloud to an external observer.
As mentioned before, the singularity is formed at the

infinite comoving time. One could argue that the knowl-
edge of the causal structure of the singularity is relevant
physically (or astrophysically) only if it is formed in a finite
comoving time. However, since we have shown that
trapped surfaces never form in such eternal collapse, the
collapsing region is always visible to the external observer,
in principle. The density monotonically increases, and
beyond a specific threshold density, the quantum effects
dominate. These quantum effects will be hidden behind the
event horizon if the collapse ends in a black hole. However,
in the scenario discussed here, these effects will be visible
since there are no trapped surfaces to trap the outcoming
light from the collapsing region. The Penrose diagram [2]
for such an eternal collapse with no formation of trapped
surfaces, depicting the causal structure of the UHDR that is
plotted in Fig. 2. The diagram is for a specific scenario in
which there is an upper bound to the comoving radius
corresponding to the boundary of the collapsing scalar
field. This upper bound is represented by the inequality
rc < 3=ða2ρÞ ∀ a ∈ ½0; 1�. This inequality ensures that
θl > 0 throughout the collapse. The unhindered escape
of null geodesics from the UHDR can be traced as seen in
the diagram.
Now, at different epochs as we go in the future, along

different outgoing radial null geodesics that emanate from
the center, we can calculate the quantity RijKiKj. It can be
shown that as we go forward in time (in other words, as a
decreases) RijKiKj increases, blowing up at a ¼ 0.
To see this, consider the geodesic equation of the radial

null geodesic escaping from the center written as follows:

_Kt þ Kr0

a
þ _a
a
Kt ¼ 0: ð48Þ

The outgoing radial null geodesic with the tangent having
components
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Kt ¼ 1

a
; Kr ¼ 1

a2
; Kθ ¼ Kϕ ¼ 0 ð49Þ

is one of the kind described by Eq. (48). For this particular
geodesic,

RijKiKj ¼ −
3_a
a3

þ 2_a2

a4
þ ä
a3

: ð50Þ

In terms of the scale factor, we can rewrite the above
equation using Eqs. (10), (11), and (22) as

RijKiKj ¼ ðk− log aÞ
3a2

ð64λð−1þ 3k− 3 log aÞ þ 24
ffiffiffiffiffi
3λ

p
Þ:

ð51Þ

One can see that RijKiKj increases progressively as a
decreases and blows up at a ¼ 0. So whereas the actual
singularity is never approached or reached, RijKiKj

becomes larger and larger with time, as seen in Fig. 3.
What it means is that the projection of the Ricci scalar in the
null frame with four-velocity Ki increases monotonically as
one progresses forward in time.

V. CONCLUSIONS AND DISCUSSIONS

The density of a collapsing scalar field with potential,
which is a two-dimensional analog of the “Mexican hat”
shaped Higgs field potential, is not an algebraic function of

the scale factor. We hence choose a suitable transcendental
function for the density configuration and show that the
singularity is formed at an infinite comoving time.
However, in a finite but large time, the density of the
cloud goes beyond a certain cutoff, above which the laws of
quantum gravity governs. The absence of trapped surfaces
allows one to observe the UHDR where new physics
takes place.
The collapsing scalar field obeys the strong energy

condition only if

ρþ 3p ¼ −
6ä
a

> 0:

Using Eq. (30) and some rearrangement leads to

1

k
> exp

�
8t

ffiffiffi
λ

p

3

�

for the strong energy condition to hold. Since the collapsing
system reaches the UHDR in a finite comoving time
(beyond which the laws of physics are not governed by
general relativity), the above inequality may or may not
hold continually, depending on the values of k and λ.
However, the weak energy condition is always obeyed by
the collapsing cloud as seen from Eq. (9). Furthermore, the
collapsing scalar field obeys the dominant energy condition
only for positive value of the potential V, as seen from
Eqs. (6) and (7).
We find that the causal structure of UHDR respects the

Z2 (reflection: ϕ ↔ −ϕ) symmetry.
Unlike a massless scalar field collapse, which is proven

to have a nongeneric naked singularity [21,22], we do not
know whether the UHDR formed due to the scalar field
with a nonzero ϕ2 term gives a generic outcome. The
visible nature of the UHDR is nevertheless stable under
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=0.1, k=1

=1, k=0.1

=1, k=1

0.2 0.4 0.6 0.8 1.0
a

2000

4000

6000

8000

10000

R ijk
ik j

FIG. 3. RijKiKj along the outgoing radial null geodesic
increases unboundedly as the scale factor decreases in a gravi-
tational collapse of a homogeneous scalar field with potential
given by Eq. (26) and density given by Eq. (22).FIG. 2. Penrose diagram of the eternally collapsing homo-

geneous scalar field with potential given by Eq. (26) and density
given by Eq. (22). The singularity is formed in future timelike
infinity—however, the UHDR forms in a finite comoving time.
Since trapped surfaces do not form at all, null geodesics (repre-
sented by blue arrows) can escape the UHDR and reach an external
observer. This picture holds true if rc <

3
a2ρ ∀ a ∈ ½0; 1�. Here,

J þ, J −, iþ, i−, and i0 are the future null infinity, past null infinity,
future timelike infinity, past timelike infinity, and spacelike infinity,
respectively.
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small perturbation in the parameters λ and k, as seen from
Eqs. (22) and (47).
It is known that in our case, the Einstein equations and

the real scalar field equation both are time-symmetric.
Changing t by −t does not change the form of the
equations. This fact shows that what we call a gravitational
collapse, in the presence of a real scalar field, can yield
the time-reversed process of expansion if we retrace the
dynamics in a reverse temporal order. If the collapse starts
at time ti and we follow the collapsing process up to time
tf (ti > 0; tf > 0 and tf > ti) then the expansion in the
reverse order starts at −tf and proceeds up to time −ti. In
both cases, time increases monotonically. Expansion in
FLRW spacetime in the presence of a scalar field has
already been studied in various forms in various models of
cosmic inflation [36–39]. In inflationary models, spacetime
enters the quasi–de Sitter phase after some moments from
the initial singularity. For a very brief, finite period, the
spatial length scales expand exponentially. During the
inflationary phase the ratio _a=a remains approximately
constant and pþ ρ ∼ 0. Inflation ends when the real scalar
field starts to decay into a radiation fluid. One interesting
question can be raised at this point: can the scalar field-
driven gravitational collapse in the FLRW spacetime, as
presented in this paper, be viewed as the time-reversed form
of inflationary expansion? This question becomes mean-
ingful as lots of work has been done on inflation; one may
use some of those works in a time-reversed way to predict
gravitational collapse. In this regard, we want to point out
that the gravitational collapse, in the presence of the
potential VðϕÞ as given in (26), does not produce infla-
tionary expansion in the time-reversed sense and hence one
cannot use models of inflation to predict about the present
collapse scenario. In the inflationary models, one has a
constant _a=a during inflation, whereas Fig. 4 in our case
shows that H ¼ _a=a is a continuously decreasing function
of time, for some arbitrary parameter values. If, in reality,
the collapse corresponded to time-reversed inflation, _a=a
should have settled to a constant value in the initial phase of

the collapse. The other diagram in Fig. 5 shows that in the
initial phase of collapse p=ρ ≠ −1. Consequently, in the
time-reversed sense, one cannot identify the time reversed
collapse with the inflationary expansion. As a result of
these observations, we claim that our model of gravitational
collapse, in the presence of a real scalar field having a
potential that follows Z2 symmetry, is a new collapse
solution that cannot be obtained by time reversing any of
the single field inflationary models used till now.
It is worth mentioning that in some models of inflation,

called power law inflation [40], aðtÞ ∼ tp for some real
p > 1. In these models, although _a=a varies with time but
for inflation such models require an exponential potential
for the real scalar field. As a result of this we can safely
omit these kinds of models of inflation as the potential
we are working with is not of the exponential type.
Nevertheless, the time-reversal of the solution obtained
in this paper still could be interesting as an expanding
cosmological model which begins in the infinite past.
It should be noted that we have followed the philosophy

of Misner [41], which says that even though we are well
aware of the possibility of the failure of general relativity as
one approaches the UHDR, one should take into consid-
eration the predictions of general relativity in this regime
since it may give us some indication about what one should
expect from a more general theory of gravity which works
in this regime.
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APPENDIX A: CONSTRAINT ON DENSITY
CONFIGURATION

Theorem.—In a gravitational collapse involving homo-
geneous scalar field ϕðaÞ governed by FLRW spacetime,
if ρðaÞ is an algebraic function, then either VðϕÞ is a
transcendental function, or Eq. (21) is satisfied. In the latter
case, VðϕÞ can be algebraic or transcendental.
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FIG. 4. The dynamics of H ¼ _a=a with time: in a typical
gravitational collapse involving a scalar field with potential given
by Eq. (26) and density given by Eq. (22).
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FIG. 5. The dynamics of ω ¼ p=ρ with time: in a typical
gravitational collapse involving a scalar field with potential given
by Eq. (26) and density given by Eq. (22).
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Proof.—If we consider that the density configuration of
the collapsing cloud can be expressed as an algebraic
function in a, then we can say that the density close to the
time of formation of the singularity is of the order as
follows:

lim
a→0

ρ ∼O

�
1

an

�
: ðA1Þ

From Eq. (10), we then obtain

lim
a→0

_a∼Oða1−n
2Þ; ðA2Þ

differentiating which we get

lim
a→0

ä∼Oða1−nÞ: ðA3Þ

Substituting Eqs. (A2) and (A3) in Eq. (7), the behavior of
the dynamics of pressure close to the time of formation of
the singularity is obtained as

lim
a→0

p ∼O
�
1

an

�
: ðA4Þ

The above equation along with Eq. (9) gives

lim
a→0

_ϕ2 ≤ O

�
1

an

�
: ðA5Þ

Now, since we assume the density to have an algebraic
expression in terms of a, we imply using Eqs. (A4) and (9)
that _ϕ2 has an algebraic expression in terms of a. We
therefore have from Eq. (A5) that

lim
a→0

_ϕ2 ∼O
�

1

am

�
; m ≤ n: ðA6Þ

Using the chain rule _ϕ2 ¼ ϕ2
a _a2 and Eq. (A2), we can then

conclude

lim
a→0

ϕ;a ∼O

�
1

a1þm−n
2

�
: ðA7Þ

Using (A7) and (A1) in Eq. (14), we obtain the behavior of
the potential close to the singularity as

lim
a→0

V ∼O

�
1

an

�
: ðA8Þ

Case I: if m ¼ n, then

lim
a→0

ϕ;a ∼O

�
1

a

�
: ðA9Þ

Integrating the expression (A9), we obtain

lim
a→0

ϕ ∼Oðlog aÞ: ðA10Þ

Hence, for (A8) to hold true, V should be a transcendental
function of ϕ.
Case II: if m < n, then by integrating the expression

(A7) we obtain

lim
a→0

ϕ ∼Oðan−m
2 Þ: ðA11Þ

Hence, for (A8) to hold true, (21) should be satisfied where

α ¼ 2n
n −m

: ðA12Þ

Corollary: The density configuration of the collapsing
homogeneous scalar field having the potential (18) is not an
algebraic function of a.
This follows because for such potential, substituting

either (A10) or (A11) in (18) does not satisfy (A8), which
holds true for algebraic ρðaÞ. The corollary is valid for both
q > 0 and q < 0 in Eq. (18).

APPENDIX B: ENERGY CONDITIONS IN
EXTERNAL GENERALIZED VAIDYA

SPACETIME

For a spacetime to be a valid solution of the Einstein’s
field equations, the stress-energy tensor giving rise to such
a spacetime should obey certain energy conditions. Here
we investigate the energy conditions for the stress-energy
tensor corresponding to generalized Vaidya spacetime as
mentioned in Eq. (32). Consider two null dual vectors lμ
and nμ in the ðv; Rc; θ;ϕÞ coordinates such that

lμ ¼ ð1; 0; 0; 0Þ; and nμ ¼
�
1

2

�
1 −

2M
Rc

�
; 1; 0; 0

�
:

ðB1Þ
The stress-energy tensor for generalized Vaidya spacetime
can then be expressed as superposition of null dust and
perfect fluid as [27]

Tμν ¼ TðnÞ
μν þ TðmÞ

μν ; ðB2Þ

where

TðnÞ
μν ¼ ϵ̄lμlν; and TðmÞ

μν ¼ ðϵþ PÞðlμnν þ lνnμÞ þ Pgμν:

ðB3Þ

Here, ϵ̄, ϵ, and P can be expressed in terms of the Vaidya
radius Rc and the derivatives of the generalized Vaidya
mass function MðRc; vÞ as

ϵ̄ ¼ −
2M; v
R2
c

; ϵ ¼ 2M;Rc

R2
c

; and P ¼ −
M;RcRc

Rc
: ðB4Þ
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The generalized Vaidya solution includes most of the known
solutions of the Einstein’s field equations [27]. For example,
if one can express the generalized Vaidya mass function as

MðRc; vÞ ¼
Xn¼þ∞

n¼−∞
bnðvÞRn

c; ðB5Þ

then, for biðvÞ ¼ 0∀ i ≠ 0 and b0ðvÞ ≠ 0, the well-known
Vaidya solution [32] is obtained. Now, based on the choice
of functions bðvÞ, various other known particular solutions
can be achieved, like the monopole solution [33], the de
Sitter/anti–de Sitter solution, the charged Vaidya solution
[34], and the Hussain solution [35]. It is worth noting
that since ϵ̄, ϵ, and P are linear in terms of derivatives ofM,
the linear superposition of multiple special solutions is
also a solution. Now, since the class of generalized Vaidya
mass function as obtained in Eq. (39) as a result of smooth
matching with the interior solution cannot be expressed in
the series form Eq. (B5), the exterior spacetime in this paper
cannot be classified in any of these known solutions.
Now, for the matter field corresponding to generalized

Vaidya spacetime to satisfy the weak energy condition,
ϵ̄ ≥ 0 and ϵ ≥ 0. These imposes restrictions on MðRc; vÞ,
such that

M1;v ≤ 0; and M;Rc
≥ 0: ðB6Þ

Furthermore, one can see from Eq. (39) that the above latter
inequality restricts the initially free function M1ðvÞ as
follows:

M1ðvÞ ≥ EðRcÞ; ðB7Þ

where

EðRcÞ ¼
AR2

c

2
ðBð2− 3BÞþ 2ð3B− 1Þ logðRcÞ− 3 logðR2

cÞÞ:
ðB8Þ

Here B ¼ kþ log rc, as mentioned in Eq. (38). EðRcÞ has a
maxima at

Rc ¼ exp

�
Bþ

ffiffiffiffiffi
13

p
− 5

6

�
;

and at this value

Emax ¼
A
4
ð

ffiffiffiffiffi
13

p
− 3Þ exp

�
2Bþ

ffiffiffiffiffi
13

p
− 5

3

�
: ðB9Þ

Hence, one can get the following restriction on M1ðvÞ for
the weak energy condition to be satisfied throughout the
collapse:

M1ðvÞ ≥ Emax: ðB10Þ

Strong energy condition demands that P ≥ 0, in addition
to the satisfaction of Eqs. (B6) and (B10). This inequality is
equivalent to the criteria

M;RcRc
≤ 0; ðB11Þ

as seen from Eq. (B4). However the above inequality
cannot be satisfied throughout the collapse, since the
maximum value of M;RcRc

, which is obtained at

Rc ¼ exp ðB − 3Þ; ðB12Þ

is

13A exp ðB − 3Þ;

and this is always positive.
For the dominant energy condition to hold true, ϵ ≥ P.

Using Eq. (B4), we obtain the inequality

2M;Rc
þRcM;RcRc

≥ 0: ðB13Þ

This inequality puts a further constraint on M1ðvÞ as
follows:

M1ðvÞ ≥ Gmax; ðB14Þ

where Gmax is the maximum value of the following
function:

GðRcÞ¼
AR2

c

2
ð7B−1−6B2þð12B−7ÞlogðRcÞ−6logðR2

cÞÞ;
ðB15Þ

Gmax is obtained at

Rc ¼ exp

�
B −

13 −
ffiffiffiffiffi
61

p

12

�
:

and is given by

Gmax ¼
A
4
ð

ffiffiffiffiffi
61

p
− 6Þ exp

�
2Bþ

ffiffiffiffiffi
61

p
− 13

6

�
: ðB16Þ
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