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A general geometric construction of a generic null hypersurface in presence of torsion in the spacetime
(Riemann-Cartan background), generated by a null vector la, is being developed here. We then explicitly
define and structure various corresponding kinematical quantities. The dynamics of the null surface,

particularly given by Ĝabkalb, is also discussed. The later one is constructed under the geodesic constraint
condition. This yields a relation among the rate of change of expansion scalar corresponding to auxiliary
null vector ka and various kinematical entities on the null surface. Using this relation we show that the
Einstein-Cartan-Kibble-Sciama equation (which provides the dynamics of the metric and the torsion
tensor) on this null hypersurface acquires a thermodynamic interpretation. The thermodynamic entities like
temperature, entropy density, energy, and pressure are properly identified. In the whole analysis we adopt
the geometrical field interpretation of torsion and all discussions are done in a covariant manner.
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I. INTRODUCTION AND MOTIVATION

In the context of Einstein gravity, the fascinating analogy
between the well-known laws of black hole mechanics and
classical thermodynamics came about through the works of
Bekenstein, Hawking, and others [1–5] (for a review see
[6–8]). This connection allowed the conception of entropy
and temperature to be assigned to stationary black hole event
horizons. Such possible connections to thermodynamics
have also been explored on stationary event horizons in
modified theories of gravity [9–14]. Generalizations to first
and second laws of black hole mechanics in the context of
dynamical horizons have also been explored [15–21].
Moving away from global event horizons, black hole
thermodynamics for quasilocal horizons have also been
studied [22,23].
A clear indication of the underlying connection between

gravitational dynamics and thermodynamics came about
from the work of Jacobson [24]. He derived the Einstein
field equations from the underlying Clausius identity δS ¼
δQ
T as applied to local Rindler horizons in equilibrium
constructed at any point in the spacetime. Here, T and δQ
are interpreted as the Unruh temperature and the energy
momentum flux crossing the Rindler horizon as observed
by the accelerated observer. The entropy change δS is
proportional to the change of the cross-sectional area of the
null curves generating the Rindler horizon. Moreover, it has
been shown by Padmanabhan et al. [25–29] that gravita-
tional field equations near static as well as stationary event

horizons in general relativity, Lanczos-Lovelock and other
modified theories of gravity assume a thermodynamic
identity TδλS ¼ δλEþ PδλV. For a more complete set of
references towards this thermodynamic identity, see [30].
Such structure of the thermodynamic identity analogous to
the first law of thermodynamics (where the symbols have
their usual meanings) is defined for virtual displacement δλ
along an affine parameter λ off the event horizon.
It might appear that such connections between field

equations and thermodynamics only applies to special
spacetime solutions having event horizons. However, it
has been shown that any generic null hypersurface con-
structed at any point in spacetime acts as a local Rindler
horizon for a specific accelerated observer [24,27]. The
Unruh effect [31,32] provides a clear concept of temper-
ature assigned to the Rindler horizon by this class of
observers. This renders a thermodynamical structure to
this local null surface [33,34] which may not necessarily be
a black hole horizon. Particularly the same observer-
dependent program (following Jacobson) of deriving the
field equations via the Clausius identity or (following
Padmanabhan) interpreting the gravitational field equations
near the null surface in a thermodynamic form can be
followed. It has also been shown [35,36] that the extrem-
ization of the sum of gravitational heat density and matter
density of a generic null surface in the spacetime produces
the given gravitational field equations.
In fact, it has been shown in the literature that three

particular projections of the Einstein tensor Gab on a
generic null surface H upon use of the gravitational field
equations lead to fluid-dynamical and thermodynamic
interpretations. The relevant projections are Gablaqbc,
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Gabkalb, and Gablalb. Here la and ka are the null generator
and the auxiliary null vector field respectively of H, while
qab is the induced metric on a transverse spacelike cross-
section St of H. The specific observations are as follows:

(i) It was shown by Damour [37,38] that the projection
component Gablaqbc on a null surface in Einstein
gravity leads to an equation which is similar
to Navier-Stokes (NS) equation, known as the
Damour-Navier-Stokes (DNS) equation. The DNS
equation when viewed from local inertial frames
leads to the nonrelativistic NS equation [39]. This
connection between gravitational dynamics and
fluid dynamical NS equation was also explored
through the extremization of entropy functional
defined on a generic null hypersurface [40].

(ii) As mentioned above, Jacobson [24] used the null
Raychaudhuri equation (NRE) [41] in a system of
nonexpanding congruence of null curves to derive
the Einstein field equations from the Clausis identity
δS ¼ δQ

T as applied to a local causal horizon in
equilibrium. The NRE relates Gablalb with the
evolution dynamics of the outgoing expansion scalar
of the null generators. In fact, this procedure can be
reverse engineered. It has been shown [42,43] that
the field equations for any diffeomorphism invariant
theory of gravity via the component Gablalb on a
nonexpanding general null surface leads to the
Clausius identity. Jacobson’s formalism was later
extended to local causal horizons in the nonequili-
brium case [44–46] and also for modified theories of
gravity [45,46].

(iii) Padmanabhan and his collaborators [25,28,30] have
shown that the projection component Gabkalb of the
Einstein field equation on the generic null surfaceH
leads to a thermodynamic interpretation that is
structurally similar to the first law of thermodynam-
ics. The formalism was later extended to Lanczos-
Lovelock theories of gravity [29,47,48]. However
such interpretational analogy had been done so by
adapting a Gaussian null coordinate system on the
null surface.1 As a result, the thermodynamic
parameters had been coordinate dependent. A com-
pletely covariant approach to the thermodynamic
structure provided by Gabkalb on the null surface
was given in [50] and was also applied in the case of
scalar-tensor theory of gravity [51]. It was pointed
out in [30] that Gabkalb is a more natural projection
component than Gablalb for the thermodynamic
interpretation. This has to do with the fact that
Gabkalb is the projection component of the vector
field −Ga

blb along the null generators la as opposed

to Gablalb which represents the projection compo-
nent along the auxiliary null field ka. Hence Gabkalb

is a quantity intrinsic to H as compared to Gablalb.
These vivid connections of gravitational dynamics with

thermodynamics and fluid equation established in the
context of generic null hypersurfaces form the motivation
for thinking about gravity as an “emergent phenomenon.”2

In a paradigm shift, the “emergent gravity” program
considers gravitational dynamics to be not fundamental.
Rather it considers gravity to be emergent from funda-
mental degrees of freedom associated with the gravitational
field [53–58]. That is, gravity and its dynamics emerge
much like thermodynamics of matter arises as an effective
theory from the statistical mechanics of its constitu-
ent atoms.
Under this point of view, if gravity is indeed emergent (as

seen especially for Einstein gravity), then the connections
between gravitational dynamics and thermodynamics
should indeed transcend to other theories of gravity.
Here, in our case we take the example of Einstein-
Cartan (EC) theory [59]. The EC theory is built in the
geometrical backdrop of the Riemann-Cartan (RC) space-
time. The EC theory is a natural extension of Einsten
gravity obtained by including the intrinsic spin of the par-
ticle(s) in the geometrization of spacetime [60]. The
presence of intrinsic spin causes nonzero torsion in the
spacetime geometry and the relevant gravitational field
equations are the Einstein-Cartan-Kibble-Sciama (ECKS)
equations [61–65] (for textbook expositions and reviews
see [66–71]). The presence of spin allows for a nonzero
spin angular momentum tensor in addition to the energy-
momentum tensor. In the macroscopic classical domain, the
spin degrees of freedom cancel out due to their dipole
nature and hence dynamics of macroscopic bodies are
characterized by the energy-momentum tensor alone.
However, in the microscopic regime, one cannot ignore
the spin angular momentum which actually “sources”
torsion as being a geometric field in the spacetime in
addition to the metric tensor.
In this paper, we aim to address exclusively the question

whether the projection component Ĝabkalb onH in the EC
theory can be provided a thermodynamic interpretation in a
completely covariant way. Here, Ĝab is the analog (not
symmteric) of the Einstein tensor in the RC spacetime. Let
us pause to mention that the component Ĝablalb is related
to the NRE determining the dynamical evolution of the
outgoing expansion scalar. The evolution equations, cor-
responding to the expansion, shear, and vorticity, for
congruences of both timelike as well as null curves in
spacetimes with torsion (under different assumptions on the
nature of the torsion) have been provided in [46,72–74].
The thermodynamic interpretation for Ĝablalb has been

1Recently justification on assigning temperature on the generic
null surface was addressed in [49].

2Emergent nature of gravity was initially introduced in 1967
by Sakharov [52].
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provided in [46] and hence will not be pursued here. In
absence of torsion, it can be shown [50] that Gabkalb is
related to the dynamics of the ingoing expansion scalar as
opposed to the outgoing one in spacetimes without torsion.
This can be achieved by taking the trace of the evolution
equation of the transversal deformation rate tensor [75]. In
order to arrive at such a covariant evolution equation, we
would require to foliate the spacetime in the neighborhood
of H by a family of null hypersurfaces. We would then
foliate this null family by a stack of spacelike surfaces in
the spirit of 3þ 1 decomposition. This allows us to
unambiguously construct the relevant kinematics and
dynamics of the general null surface [75]. Upon using
the Einstein field equations and combining the evolution
equation of the ingoing expansion scalar with the process of
a virtual displacement leads to a covariant structurization of
the thermodynamics attested to Gabkalb.
Our aim, hence in this paper is twofold. Firstly, under the

framework of the 3þ 1 null foliation ofH, we construct all
the relevant kinematics and dynamics of H in the RC
spacetime.3 However, especially while studying the dynam-
ics, we will impose a particular constraint which we name
as the geodesic constraint. The geodesic constraint is the
choice that restricts the null generators of H in the RC
spacetime to be simultaneously autoparallel as well as
geodesic curves. We are hence led to the evolution equation
of the transversal deformation rate tensor and the evolution
equation of the ingoing expansion scalar of H in RC
spacetime under the geodesic constraint. As usual, we will
see that the dynamics of the ingoing expansion scalar is
related to Ĝabkalb in the RC spacetime. Secondly, with the
help of the notion of virtual displacement4 applied to this
evolution equation and the relevant field equations, we
provide a covariant thermodynamic interpretation to
Ĝabkalb. In doing so, we will be able to access how the
thermodynamic parameters and their interpretation are
affected by the inclusion of torsion under the geodesic
constraint.
The organization of the paper is as follows. In Sec. II, we

very briefly discuss the geometric properties of the RC
spacetime and the corresponding ECKS field equations. In
Sec. III, we discuss in detail the structure of a generic null
hypersurfaceH in the RC spacetime. In Sec. IVand Sec. V,
we explore respectively the kinematics and dynamics of H
in such a spacetime. In Sec. VI, we begin our in-depth study
of the thermodynamic interpretation provided to Ĝabkalb

and also discuss some special cases. Finally we conclude in
Sec. VII. At the end, in Appendix A we rederive for
completeness, the NRE corresponding to the outgoing
expansion scalar of the null generators in the framework

of the 3þ 1 null foliation. We also provide four other
appendixes for calculational details.
Let us clarify our position on notations and dimensions.

We work in d ¼ 4 spacetime dimensions and use the
metric signature ð−;þ;þ;þÞ. We employ a geometrized
unit system where we set c, ℏ, and G to unity. The
lowercase Latin alphabets a; b; · · · are for the bulk space-
time and run from 0 to 3. The spatial coordinate indices on
the transverse two-dimensional subspace St of H are
denoted by uppercase Latin alphabets A;B; · · · and run
from 2 to 3.

II. A BRIEF REVIEW OF SPACETIME
WITH TORSION AND GRAVITATIONAL

FIELD EQUATIONS

Our objective is to provide a thermodynamical inter-
pretation to the ECKS field equations. We are hence
interested in the spacetime with torsion in the background.
Our ambient spacetime ðM;g; ∇̂Þ is provided with a metric
compatible affine connection,

∇̂agbc ¼ 0: ð2:1Þ

Such a spacetime is designated as the Riemann-Cartan
spacetime.

A. Geometrical properties of ðM;g;∇̂Þ
Let us now very briefly review the geometrical properties

of such a spacetime. For details refer to [69]. Just to set the
convention straight, we define the covariant derivative of a
ðr; sÞ rank tensor Ta1···ar

b1···bs
to be

∇̂aT
a1···ar

b1···bs
≡ ∂aT

a1···ar
b1···bs

þ Γ̂a1
ai1
Ti1···ar

b1···bs
þ � � �

þ Γ̂ar
air
Ta1···ir

b1···bs
− Γ̂j1

ab1
Ta1···ar

j1···bs
� � �

− Γ̂js
abs

Ta1···ar
b1···js

; ð2:2Þ

where notice that the differentiating index “a” sits at the
first position in the suffix of affine connections. The torsion
tensor is basically defined as

Ta
bc ≡ Γ̂a

bc − Γ̂a
cb; ð2:3Þ

implying that the torsion tensor is antisymmetric in the last
two indices. This general metric compatible affine con-
nection is related to the symmetrical Levi-Civita connection
Γa

bc via the contorsion tensor Ka
bc,

Γ̂a
bc ¼ Γa

bc þ Ka
bc: ð2:4Þ

The contorsion tensor can be expressed in terms of the
torsion tensor as

3As far we know this has not been dealt with explicitly in the
literature.

4In this context the concept of virtual displacement was
initially introduced in [76].
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Ka
bc ¼

1

2
ðTa

bc þ Tbc
a þ Tcb

aÞ: ð2:5Þ

The above relation can be obtained by the familiar trick of
setting ð−∇̂agbc þ ∇̂bgca þ ∇̂cgabÞ ¼ 0 via (2.1) and then
using (2.2). It is quite easy to verify [according to the
convention followed in (2.3)] that the contorsion tensor
Kabc is antisymmetric in the first and last indices. Here, we
use the metric tensor gab to raise and lower all spacetime
indices of a tensorial quantity. Let us now look at the trace
of the torsion tensor defined via contracting the first and the
third index. The following properties can then be easily
deduced from the definition,

Tb ≡ gacTabc ¼ Ta
ba ¼ −Ta

ab;

Ka
ab ¼ −Tb; Ka

ba ¼ 0; Kb
a
a ¼ Tb: ð2:6Þ

Another quantity of interest that comes into play is the
modified torsion tensor Sabc defined as

Sabc ≡ Ta
bc þ δabTc − δacTb; ð2:7Þ

which like the torsion tensor is antisymmetric in the last
two indices.
In general, the existence of torsion in the spacetime

ðM;g; ∇̂Þ can be characterized from the fact that the action
of the commutator of the covariant derivatives ∇̂ on any
scalar field does not vanish,

½∇̂a; ∇̂b�Φ ¼ −Td
abð∇̂dΦÞ: ð2:8Þ

The corresponding action on contravariant and covariant
vectors are summarized below,

½∇̂a; ∇̂b�Ai ¼ R̂i
kabAk − Td

abð∇̂dAiÞ; ð2:9Þ

½∇̂a; ∇̂b�ωc ¼ −R̂d
cabωd − Td

abð∇̂dωcÞ: ð2:10Þ

The Riemann tensor in the spacetime ðM;g; ∇̂Þ follows the
usual definition in terms of the affine connection Γ̂a

bc and
as per our convention is

R̂a
bcd ≡ ∂cΓ̂a

db − ∂dΓ̂a
cb þ Γ̂a

ciΓ̂i
db − Γ̂a

diΓ̂i
cb: ð2:11Þ

The following symmetries of the Riemann tensor are then
quite evident,

R̂abcd ¼ −R̂abdc and R̂abcd ¼ −R̂bacd: ð2:12Þ

However, the usual symmetry under pairwise exchange of
the indices does not follow through over here, as R̂cdab ¼
R̂abcd þ Q̂abcd where,

Q̂abcd¼−
3

2
ð∇̂½bT jajcd�−∇̂½aT jbjcd�−∇̂½dT jcjab� þ∇̂½cT jdjab�

þTae½bTe
cd�−Tbe½aTe

cd�−Tce½dTe
ab� þTde½cTe

ab�Þ:
ð2:13Þ

In the above equation, jj indicates the enclosed index barred
from antisymmetrization. Similarly, the usual first and the
second Bianchi identities do not follow:

R̂d
½cab� ¼ ∇̂½aTd

bc� − Tf ½abTd
c�f; ð2:14Þ

∇̂½aR̂f jdjbc� ¼ −Tk½abR̂f jdkjc�: ð2:15Þ

Here, we have used the convention that

A½i1···in� ¼
1

n!
Σ
σ
ð−1ÞϵσAiσð1Þ···iσðnÞ ;

Aði1···inÞ ¼
1

n!
Σ
σ
Aiσð1Þ···iσðnÞ ; ð2:16Þ

where the summation is over all possible permutations fσg
of the set f1; 2; · · ·ng and

ϵσ ¼ 0; when σ isanevenpermuationof f1;2; · · ·ng
ϵσ ¼ 1; when σ isanoddpermuationof f1;2; · · ·ng: ð2:17Þ

The Ricci tensor is no longer symmetric owing to the
presence of torsion,

R̂½ab� ¼ −
1

2
ð∇̂i þ TiÞSiab: ð2:18Þ

In analogy with the Einstein tensor of the usual
Riemannian geometry, we introduce the tensor Ĝa

b ≡
R̂a

b − 1
2
δabR̂ in the spacetime ðM;g; ∇̂Þ. As anticipated,

due to the presence of torsion, the tensor Ĝa
b fails to be

divergenceless,

∇̂aĜ
a
b ¼ −Tk

abR̂
a
k þ

1

2
TkadR̂adkb: ð2:19Þ

The Lie derivative of the metric tensor of ðM;g; ∇̂Þ along a
given vector field v is

£vgab ¼ ∇̂avb þ ∇̂bva þ ðTacb þ TbcaÞvc: ð2:20Þ

B. The gravitational field equations

The gravitational action in the spacetime ðM;g; ∇̂Þ will
henceforth be referred to as the Einstein-Cartan actionAEC.
For details refer to [68,69,77]. In this theory both the metric
and the torsion tensors are treated as independent dynami-
cal variables. The total action for the theory is
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Atot ¼ AEC þAm ¼ 1

16π

Z
V
d4x

ffiffiffiffiffiffi
−g

p
R̂þAm; ð2:21Þ

where, Am is the corresponding matter action. Obviously,
the above action is extremized by varying with respect to
(w.r.t.) both the metric and the torsion (preferably here the
contorsion tensor) to yield the field equations. The
Einstein-Cartan-Sciama-Kibble field equation (by varying
w.r.t. the metric) is [68,69,77]

Ĝabþ
1

2
ð∇̂cþTcÞð−ScabþSabcþSbacÞ¼8πTðmÞ

ab ; ð2:22Þ

where TðmÞ
ab is the matter stress energy-momentum tensor.

The field equation obtained by extremizing the total action
w.r.t. the contorsion tensor is

Sabc ¼ 8πτabc; ð2:23Þ

where τabc is the spin angular momentum tensor. Hence
given a matter Lagrangian depending upon the metric, the
matter field and its first derivative, the variation of the
matter action is given as

δAm ≡ −
1

2

Z
V
d4x

ffiffiffiffiffiffi
−g

p ½TðmÞ
ab δgab þ τbcaδKa

bc�: ð2:24Þ

This indicates that the matter energy-momentum tensor

TðmÞ
ab is symmetric whereas the spin angular momentum

tensor τabc is antisymmetric in the last two indices. In
anticipation of the result we are trying to achieve, let us
state the following identity:

ð∇̂aTb − ∇̂bTaÞ þ ð∇̂i þ TiÞTi
ab ¼ ð∇̂i þ TiÞSiab: ð2:25Þ

The above result can quite easily be verified by using the
definition of the modified torsion tensor (2.7). Upon using
(2.25) in (2.22), we obtain

Ĝab þ ð∇̂aTb − ∇̂bTaÞ þ ð∇̂i þ TiÞTi
ab

¼ 8πTðmÞ
ab þ 1

2
ð∇̂i þ TiÞ½3Siab þ Saib þ Sbia�: ð2:26Þ

Using (2.23), the last term on the right hand side (rhs) of the
above equation can be expressed in terms of the spin
angular momentum tensor. This form of the gravitational
field equation (2.26) will be used later in our analysis.

III. GEOMETRY OF A GENERIC
NULL HYPERSURFACE IN THE
RIEMANN-CARTAN SPACETIME

In the introduction to the structure of a generic null
hypersurface in the RC spacetime ðM;g; ∇̂Þ and its
associated kinematics and dynamics (to be introduced in

the next sections), we will stick to the notations and
formalism introduced in [75], which provided the formu-
lation for torsionless spacetime. In fact part of our objective
is to see what modifications do the kinematics and
dynamics of a general null surface incur provided our
ambient spacetime has nontrivial torsion present in it. It is
to this respect that we adopt the formalism introduced in
[75] and follow the notions.
A null hypersurface is basically a surface of codimension

one, such that it can be described by specifying its
corresponding induced metric and second fundamental
form (characterizing the extrinsic curvature). These rel-
evant quantities need to described properly for a null
hypersurface in ðM;g; ∇̂Þ, i.e., when there is nontrivial
torsion in the spacetime. We consider the existence of a
generic null hypersurface H in the spacetime ðM;g; ∇̂Þ,
defined via the scalar field uðxaÞ ¼ 0. The surface H is
integrable into a hypersurface-orthogonal null surface such
that its null normal l is given by

la ¼ −eρ∂au ¼ −eρ∇̂au; ð3:1Þ

where ρ is some smooth scalar field on H. The coefficient
eρ that relates the null normal la with the gradient of the
scalar field ∂au is chosen to be negative such that la is
future pointing. This can be done by a suitable choice of the
scalar field uðxaÞ. Notice that the null normal cannot be
provided a unique normalization on account of the fact that
l · l ¼ 0. Next, we postulate the existence of an auxiliary
null foliation in the neighborhood of our null hypersurface
H. In order to have well-defined operations valid in the
spacetime ðM;g; ∇̂Þ like the covariant derivative ∇̂, we
cannot be only constrained on the single null hypersurface
uðxaÞ ¼ 0. The support of the null vector field l needs to be
extended from the null surface to at least in its vicinity.
Following Carter [78], this is facilitated by considering not
just a single hypersurface u ¼ 0, but by rather a family of
null hypersurfaces uðxaÞ ¼ c, where c is a constant. Hence
the spacetime is foliated by a family of null hypersurfaces
Hu of which our particular chosen surface Hu¼0 ¼ H is
just an element with c ¼ 0. This null foliation of ðM;g; ∇̂Þ
in the neighborhood of H extends the validity of the scalar
field ρ and hence l to not just on H, but to an open
neighborhood of ðM;g; ∇̂Þ aboutH. This finally allows us
to perform operations that are valid on the ambient
spacetime rather than on the hypersurface. Even though
such a foliation is nonunique, the geometrical quantities of
interest that will be introduced and evaluated on our chosen
hypersurface H does not depend on the choice of foliation.
Next, we proceed to a discussion of the Frobenius

identity on our null surface. The fact that we have been
able to write our null generator in the form of (3.1) means
that the exterior derivative of the null normal to the
hypersurface satisfies
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dl ¼ dρ ∧ l: ð3:2Þ

This represents the Frobenius theorem in its dual formu-
lation [79]. The Frobenius identity quantifies the fact that
the hyperplane, normal to l, is integrable into our null
hypersurfaceH and is hence hypersurface orthogonal. As a
consequence of the dual formulation of the Frobenius
identity we have

l ∧ dl ¼ l ∧ dρ ∧ l ¼ −dρ ∧ l ∧ l ¼ 0: ð3:3Þ

In the index notation, the above implies

l½a∂blc� ¼ 0: ð3:4Þ

Converting to the spacetime covariant derivatives, the
above formula translates to

ωabc ≡ l½a∇̂blc�
¼ −laðTd

bcldÞ − lbðTd
caldÞ − lcðTd

abldÞ: ð3:5Þ

Thus we see that due to the presence of torsion in the
spacetime, hypersurface orthogonality does not imply a
zero twist ωabc.

A. Hypersurface orthogonal null geodesic congruence

As a consequence of the Frobenius identity (3.2), we have

∂alb − ∂bla ¼ ð∇̂alb − ∇̂blaÞ þ Tc
ablc

¼ ð∇alb −∇blaÞ ¼ ð∂aρÞlb − ð∂bρÞla: ð3:6Þ

Contracting the above formula with la, we obtain

la∇̂alb þ Tcablalc ¼ la∇alb ¼ ðla∂aρÞlb: ð3:7Þ

The operator ∇ is the covariant derivative of the spacetime
taken w.r.t. the Levi-Civita connection. Defining the direc-
tional rate of change of the scalar field ρðxaÞ along the null
generators la to be κ, i.e., la∂aρ ¼ κ and using the anti-
symmetry of the torsion tensor in its last two indices (2.3), we
hence have

la∇̂alb − Tabclalc ¼ la∇alb ¼ κlb: ð3:8Þ

The above equation indicates that even though the vector
field la is the null generator ofH, yet it is not an autoparallel
vector field, i.e., la does not satisfy the parallel transport
equation w.r.t. to the spacetime connection ∇̂,

la∇̂alb ¼ κlb þ Tabclalc ¼ κlb þ Tb; ð3:9Þ

where Tb ≡ Tabclalc. Notice that even though l is not an
autoparallel vector field in the spacetime ðM;g; ∇̂Þ, yet l is

extremal in the sense that they are null geodesic curves of
extremal length. This is because the notion of extremal
curves is defined only w.r.t. the Levi-Civita connection.

B. Extrinsic geometry of the null hypersurface

For any hypersurface of codimension one embedded in
the spacetime ðM;g; ∇̂Þ, the extrinsic curvature captures
the notion of bending of the hypersurface. The extrinsic
curvature is quantified by the Weingarten map (also known
as the shape operator). The Weingarten map at a point P on
the hypersurface measures how its normal changes as we
move along a vector on the tangent space established on the
hypersurface at P. Let us now focus on our null surface H.
For any vector v ∈ TPðHÞ, we have the definition of the
Weingarten map Hχab as follows:

Hχabvb ≡ ∇̂vla: ð3:10Þ

Now, since the notion of the Weingarten map involves
taking the covariant derivative of the null generator along a
tangent vector to H, the quantity Hχabvb is independent of
the null foliation. The quantity Hχabvb again itself lies on
the tangent space of H established on P as verified via the
following:

laðHχabvbÞ ¼ la∇̂vla ¼ lavb∇̂bla ¼ 0

⇒ ðHχabvbÞ∂a ∈ T PðHÞ: ð3:11Þ

In contrast to Riemannian spacetimes, the presence of
nontrivial torsion in the Riemann-Cartan spacetime forces
the Weingarten map to not be self-adjoint. This can be
shown along the following lines. Consider two vectors u
and v established on the tangent space of H at the point P,
i.e., laua ¼ 0 ¼ lava. Then obviously the Lie commutator
of these two vectors again lies on the tangent space ofH at
P, i.e., ½u; v� ∈ T PðHÞ as can be verified by showing that

la½u; v�a ¼ laub∇̂bva − lavb∇̂bua − laTa
bcubvc

¼ −ubva∇̂bla þ uavb∇̂bla − Ta
bclaubvc

¼ ubvað∇̂alb − ∇̂blaÞ− Ta
bclaubvc

¼ ubvaðð∂aρÞlb − ð∂bρÞla − Tc
ablcÞ− Ta

bclaubvc

¼ −lcTc
bauavb − lcTc

abuavb ¼ 0: ð3:12Þ

Getting back to our reasoning and using the definition of
the torsion tensor we have the following:

uaðHχabvbÞ ¼ uaðvb∇̂blaÞ ¼ −lavb∇̂bua

¼ −laub∇̂bva þ la½u; v�a þ Tabclaubvc

¼ vaðub∇̂blaÞ þ Tabclaubvc

¼ vaðHχabubÞ þ Tabclaubvc: ð3:13Þ
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This shows that the presence of nonzero torsion in the
Riemann-Cartan spacetime accounts for the fact that
uaHχabvb ≠ vaHχabub and hence the Weingarten map is
in general not self-adjoint.
Let us then move on to the concept of the second

fundamental form of H. The second fundamental form
HΘab is a second rank tensor belonging to the cotangent
space of the hypersurface H defined as the following.
Consider any two vectors u and v belonging to the tangent
space of H, then,

HΘabuavb≡uaðHχabvbÞ
⇒H Θabdxa ⊗ dxb ∈ T �

PðHÞ⊗T �
PðHÞ: ð3:14Þ

Notice that since the Weingarten map is not self-adjoint, the
second fundamental form is not symmetric in its two
indices. It can very easily be verified that

HΘabvaub ¼ HΘabuavb þ Tabclavbuc: ð3:15Þ

Our aim is to finally consider a 3þ 1 induced foliation of
the null family of the hypersurfaces. For that we consider in
our spacetime a stack of spacelike hypersurfaces defined
via Σt ≡ tðxaÞ ¼ constant slices. The timelike normal to
these spacelike slices is defined via

na ¼ −N∂at ¼ −N∇̂at: ð3:16Þ

The timelike normal is normalized, i.e., nana ¼ −1 and the
proportionality factor N is called the lapse function. The
orthogonal projection tensor onto the surfaces Σt defined as

γab ¼ δab þ nanb ð3:17Þ

projects any vector in ðM;g; ∇̂Þ onto the surface Σt. Now
with the help of this spacelike foliation we can introduce an
adapted coordinate system for ðM;g; ∇̂Þ. Let the indepen-
dent coordinates parametrizing the tðxaÞ ¼ cðconstantÞ
surface be yμ. This allows a locally well-defined coordinate
system to be established in an open neighborhood of
ðM;g; ∇̂Þ given via xa ¼ ðt; yμÞ. The coordinate time
vector t along its flow basically joins the points having
the same spatial coordinates yμ for the different time slices
and is defined as

t≡ ∂
∂t and ta∂at ¼ 1: ð3:18Þ

This allows an orthogonal decomposition of the time vector
as follows:

ta ¼ Nna þ βa: ð3:19Þ

The vector βa is basically the projection of the time vector
onto the tðxaÞ ¼ c slice and is known as the shift vector.

Now, we finally come to the topic of foliating our family
of null hypersurfaces by a stack of spacelike hypersurfaces.
The reason for doing this is as follows. As of yet, precisely
because of the unique structure of our null hypersurfaceH,
we do not have any notion of a vector that is transverse to
H. Hence we do not have any well-defined projection
tensor onto the null surface. To define a projector onto
T PðHÞ we need to have a direction that is transverse to the
hypersurface so that we may define a projector along this
direction. There exists no unique transverse direction toH.
The auxiliary null vector kðauÞ ∈ T PðMÞ defined via the
relations

kðauÞ · kðauÞ ¼ 0 and kðauÞ · l≡ −1 ð3:20Þ

defines a notion of a vector transverse to the null surfaceH.
However such a vector is nonunique. Hence the idea behind
foliating our null surface by the family of spacelike tðxaÞ ¼
constant slices is to provide some extra structure ontoH so
that we can unambigously define a unique transverse
direction to our null surface. This extra structure will
provide two immediate benefits. One is that it allows a
unique projection tensor onto H and that we can in a sense
normalize our null generators by choosing a specific
parameter made possible via this extra structure.
The spacelike slices Σt cut our generic null surface into a

stack of two-dimensional cross-sections St defined as

St ≡H ∩ Σt: ð3:21Þ

As we can visualize, the family of these transverse space-
like two-dimensional cross-sections St provide a foliation
of H. The value of the scalar field tðxaÞ ¼ constant can be
chosen as a parameter along each null generator la of H.
With this (in general) nonaffine parametrization t, we can in
essence normalize [75] the null normal by demanding that

la ¼ dxa

dt
: ð3:22Þ

Geometrically this means that the 2-surfaces St can be Lie
dragged along the null generators la thus forming our null
hypersurface H. It is in this sense that the null vector l is
called the null generator of H. Thus following (3.21) the
transverse 2-surfaces St can be defined as level sets of
the scalar field uðxaÞ ¼ 0 such that it is the set of all the
points P,

St≡fP∈M;P∈ St∶uðPÞ¼ 0 and tðPÞ¼ tg: ð3:23Þ

Let us consider a unit spacelike vector field s belonging to
the tangent space of Σt and which is directed outward from
the transverse 2-surface St. This vector field follows the
properties given as
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s · s ¼ 1; n · s ¼ 0; sa∂au < 0;

∀ v ∈ T PðΣtÞ; v ∈ T PðStÞ ⇔ s · v ¼ 0: ð3:24Þ

Then it can be quite easily shown [75] that, the 3þ 1
decomposition of the null generator is

l ¼ Nðnþ sÞ: ð3:25Þ

Obviously it can be seen that the projection of the null
generator onto the spacelike slices Σt given by γablb ¼ Nsa

with N > 0 points in the exterior direction w.r.t. St. It is in
this respect that the null generators are outgoing w.r.t. the 2-
surface St. Using (3.1) and (3.16), it can very easily be
shown that

sa ¼
�
1

N

�
la − na ¼ N∂at −

�
eρ

N

�
∂au ¼ N∂atþM∂au;

ð3:26Þ

where M ¼ −eρ=N. Now once we have provided a null
normal na to the spacelike slices Σt and the unit outward
spacelike vector field sa to the transverse cross-sections St,
we can define an orthogonal projection tensor qab onto the
spacelike 2-surface St as

qab ¼ gab þ nanb − sasb: ð3:27Þ

Now let us come to the discussion of the construction of an
ingoing transverse auxiliary null vector field toH. Any null
vector pointing in the direction ðn − sÞ points in the ingoing
direction w.r.t. St. We can normalize this ingoing auxiliary
null field [75] by taking it as

k ¼ 1

2N
ðn − sÞ: ð3:28Þ

The normalization has been chosen so that k is consistent
with a unique definition of the auxiliary null vector field
thanks to the foliation of the null surface H by the stack of
spacelike slices Σt,

l · k ¼ −1; k · k ¼ 0 and k · eA ¼ 0; ð3:29Þ

where feAg denotes the set of basis vectors lying on the
tangent space T PðStÞ of St. By using Eqs. (3.28), (3.26),
and (3.16) we have

ka ¼ −∂at −
�
M
2N

�
∂au: ð3:30Þ

The unique orthogonal projection tensor onto the transverse
2-surface St can also be defined in terms of the null normal
la and the auxiliary null normal ka as

qab ¼ gab þ lakb þ kalb: ð3:31Þ

Its trivial to verify that qablb ¼ 0 and qabkb ¼ 0. Finally,
owing to the foliation of H by the stack of spacelike Σt we
have at our disposal both a unique normalized null normal
la and a unique auxiliary transverse null vector field ka.
This enables us to define a unique projection tensor ontoH
as

Πa
b ¼ δab þ kalb ¼ qab − lakb: ð3:32Þ

This projection tensor basically projects any vector belong-
ing to T PðMÞ to only the part belonging to T PðHÞ. The
projection tensor satisfies the following properties as can be
easily verified:

Πa
blb ¼ la; Πa

bkb ¼ 0;

Πa
bla ¼ 0 and Πa

bka ¼ kb: ð3:33Þ

IV. KINEMATICS OF THE NULL
HYPERSURFACE H

Following [75], what we imply by kinematical quantities
are all those geometrical entities that have first order
derivatives of the null vector fields l and k, their associated
1-forms l and k and the metric fields g and q as well. By
first order derivatives, we mean spacetime covariant deriv-
atives ∇̂ as well as the Lie derivatives along l and k. The
extension of such kinematical quantities (to be described in
detail in this section) to the case of the Riemann-Cartan
spacetime ðM;g; ∇̂Þ is quite necessary for our analysis. In
doing so, we will keep track of the modifications that arise
in these kinematical quantities when we consider torsion in
the spacetime.

A. The extended second fundamental form

Previously we have defined our Weingarten map or the
shape operator corresponding to vectors constrained only
on the hypersurface H. Now, as we have a unique
projection tensor onto the tangent space of H, we can
extend the definition of the Weingarten map to vectors
living in the tangent space T PðMÞ. The extended
Weingarten map χab is defined for vectors living in
T PðMÞ as

χabvb ≡ HχabðΠb
cvcÞ ¼ ∇̂ΠðvÞla ¼ ðδbc þ kblcÞvc∇̂cla;

ð4:1Þ

where contrary to the earlier section, now v ∈ T PðMÞ.
From the above, it follows that

χab ¼ ∇̂bla þ ðkc∇̂claÞlb: ð4:2Þ
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Then one finds that

χablb ¼ lb∇̂bla ¼ κla þ Tb
a
clblc ¼ κla þ Ta; ð4:3Þ

χabkb ¼ 0; ð4:4Þ

where Ta ≡ Tb
a
clblc. It is worthwhile to notice that the

action of the extended Weingarten map onto any spacetime
vector v ∈ T PðMÞ is to effectively map it to another vector
belonging to the tangent space of H. This can quite easily
seen by

laχabvb ¼ la∇̂ΠðvÞla ¼
1

2
Πa

bvb∇̂aðldldÞ ¼ 0: ð4:5Þ

This clearly shows that χabvb belongs to the tangent space
T PðHÞ for any vector v ∈ T PðMÞ. For this reason the
action of the extended Weingarten map onto any spacetime
vector is the same as its action on the projected part of the
vector onto the tangent space of H, i.e.,

χabðΠb
cvcÞ ¼ χabvb: ð4:6Þ

Notice that l is not an eigenvector of the extended
Weingarten map exclusively due to the presence of torsion
in ðM;g; ∇̂Þ. In the same vein, we can extend the notion of
the second fundamental form HΘab to its action over
vectors living in T PðMÞ rather than T PðHÞ. Hence for
any two vectors ðu; vÞ ∈ T PðMÞ × T PðMÞ we define the
extended second fundamental form Θ̂ab as the following:

Θ̂abuavb ≡ HΘabðΠa
cucΠb

dvdÞ ¼ ðΠa
cucÞðΠb

dvdÞ∇̂bla

¼ ððqac − lakcÞucÞððqbd − lbkdÞvdÞ∇̂bla

¼ ðqacqbducvd∇̂blaÞ − ðkdvdÞqacucðκla þ TaÞ
þ ðkcucÞðkdvdÞlaðκla þ TaÞ

¼ ðqcaqdb∇̂dlc − qcakbT cÞuavb: ð4:7Þ

This naturally allows us to define the extended second
fundamental form as a bilinear,

Θ̂ab ¼ ðqcaqdb∇̂dlcÞ − ðqcakbT cÞ: ð4:8Þ

Naturally by inspection it can be observed that

Θ̂abla¼0; Θ̂ablb¼qcaT c; Θ̂abka¼0 and Θ̂abkb¼0:

ð4:9Þ

The above Eq. (4.9) very clearly shows that in the
presence of torsion in ðM;g; ∇̂Þ, the extended second
fundamental form Θ̂ab is not a second rank tensor lying
only in the space T �ðStÞ ⊗ T �ðStÞ; rather it lies in the
space T �ðHÞ ⊗ T �ðHÞ. We can compute the trace of this
extended second fundamental form,

θ̂l

ðeÞ
≡ gabΘ̂ab ¼ gab½ðqcaqdb∇̂dlcÞ − ðqcakbT cÞ� ¼ qcd∇̂dlc

¼ ðgcd þ lckd þ kcldÞ∇̂dlc ¼ ∇̂ala − κ þ kaTa: ð4:10Þ

It maybe noted that if we impose the constraint,

Tb ≡ Tabclalc ¼ 0; ð4:11Þ

in the Riemann-Cartan spacetime, we then have via (3.9)
that the null generators are parallel-transported along
themselves with κ being the nonaffinity parameter,

la∇̂alb ¼Tb¼0
κlb: ð4:12Þ

The condition (4.11) will be termed as the geodesic
constraint. Application of the geodesic constraint implies

la∇̂alb ¼ la∇alb − Kc
ablalc ¼Tb¼0

la∇alb ¼ κlb; ð4:13Þ

thus verifying the fact that if the null generators l of H
satisfy the parallel-transport equation w.r.t. the connection
∇̂, then they also satisfy the geodesic equation w.r.t. the
Levi-Civita connection ∇. The above geodesic constraint
(4.11) represents the vanishing of the torsion current
Tabclalc. In the context of Killing horizons established
in the spacetime ðM;g; ∇̂Þ it has been shown in [46] that
the above condition of the vanishing of such a torsion
current is necessary to establish the zeroth law. This allows
a notion of equilibrium to be defined for such a horizon. We
will have much to say about this later.
Imposing the geodesic constraint, i.e., Ta ¼ 0, we notice

that the extended second fundamental form lies in the
orthogonal transverse space (to l and k) T �ðStÞ ⊗ T �ðStÞ
and hence is orthogonal to both l and k. Note that again due
to the presence of torsion in the spacetime, the extended
second fundamental form is not symmetric in its indices,
i.e., Θ̂ab ≠ Θ̂ba. For the specific case of the geodesic
constraint Ta ¼ 0, the extended second fundamental
form being a bilinear established on the two-dimensional
transverse space orthogonal to both l and k can be provided

an irreducible decomposition into a symmetric trace part θ̂l
ðeÞ
,

a traceless symmetric part ðl;eÞσab, and an antisymmetric
traceless part ðl;eÞωab,

Θ̂ab ¼
1

2
qab θ̂l

ðeÞ
þ ðl;eÞσab þ ðl;eÞωab: ð4:14Þ

θ̂l

ðeÞ
¼Ta¼0 ð∇̂ala − κÞ; ðl;eÞσab ¼Ta¼0 Θ̂ðabÞ−

1

2
qab θ̂l

ðeÞ
and

ðl;eÞωab ¼Ta¼0 Θ̂½ab�: ð4:15Þ
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Note that the trace of the extended second fundamental
form is not to be designated as the expansion scalar
corresponding to the null congruence l since it does not
quantify the fractional rate of change of the area elementffiffiffi
q

p
of St along l. We will soon develop the proper notion of

an expansion scalar corresponding to null congruences in
ðM;g; ∇̂Þ for our purpose.

B. The rotation 1-form and the Hajicek 1-form

A quantity of great interest and utility for practical
calculation dealing with this topic is the spacetime covar-
iant derivative of the null normal la. Now having foliated
the spacetime in the neighborhood of our generic null
surfaceH by a family of null hypersurfaces and the slicing
of this null family by a stack of spacelike slices Σt, we have
now a well-defined notion of ∇̂alb. According to (4.7), we
have for any ðu; vÞ ∈ T PðMÞ × T PðMÞ,

Θ̂abuavb ¼ ðΠa
cucÞ∇̂ΠðvÞla ¼ ðua þ ðlcucÞkaÞ∇̂ΠðvÞla

¼ uaðΠb
dvdÞ∇̂bla þ ðlcucÞka∇̂ΠðvÞla

¼ uaðvb þ ðldvdÞkbÞ∇̂bla þ ðlcucÞkaðχadvdÞ
¼ ð∇̂blaÞuavb þ uaðldvdÞðkb∇̂blaÞ
þ ðlauaÞkbðχbdvdÞ: ð4:16Þ

The rotation 1-form ω̂ ∈ T �
PðMÞ is defined in such a way

that its action on any vector f ∈ T PðMÞ is given via

ω̂afa ≡ −kaðχabfbÞ: ð4:17Þ

Then using (4.17) in (4.16), we obtain

Θ̂abuavb ¼ ð∇̂blaÞuavb þ ðlbkc∇̂claÞuavb − ðlauaÞðω̂bvbÞ:
ð4:18Þ

Now, since ua and va are arbitrary, one finds after
rearranging,

∇̂alb ¼ Θ̂ba þ ω̂alb − lað∇̂klbÞ: ð4:19Þ

The above expansion (4.19) of the spacetime covariant
derivative of the null normal is going to be of significant
practical interest to us.
Let us look at some properties of the rotation 1-form.

Using the basic definition (4.17), it can very easily be
verified that

ω̂aka ¼ 0 and ω̂ala ¼ κ − kaTa: ð4:20Þ

Combining (4.2) and (4.19), we have

χab ¼ Θ̂a
b þ ω̂bla: ð4:21Þ

Let us now proceed to obtain an expression of the rotation
1-form. We begin by noticing that for any vector
f ∈ T PðMÞ, we have

ω̂afa ¼ −kaχabfb ¼ −kaΠb
dfd∇̂bla

¼ −kaððδbd þ kbldÞfdÞ∇̂bla

¼ −kaðfb þ kbðldfdÞÞ∇̂bla

¼ −ðkb∇̂albÞfa − ðkbðkc∇̂clbÞlaÞfa: ð4:22Þ

This allows us to have

ω̂a ¼ −ðkb∇̂albÞ − lakbð∇̂klbÞ: ð4:23Þ

The above equation stands as a working definition of the
rotation 1-form. However, we will soon come up with other
expressions of this rotation 1-form that will be useful
later on.
The Hajicek 1-form Ω̂ ∈ T �

PðStÞ is defined as the
projection of the rotation 1-form onto the cotangent space
of St,

Ω̂a ≡ qbaω̂b: ð4:24Þ

Following the above definition, we have for any vector
v ∈ T PðMÞ,

Ω̂ava ≡ ðqbaω̂bÞva ¼ ω̂aðqabvbÞ: ð4:25Þ

Using the fact that qab ¼ Πa
b þ lakb, we have

Ω̂ava ¼ ω̂aððΠa
b þ lakbÞvbÞ ¼ ω̂aðΠa

bvbÞ þ ðω̂alaÞkbvb
¼ ω̂ava þ ðκ − kaTaÞðkbvbÞ: ð4:26Þ

In the above, we have used the fact that ω̂aðΠa
bvbÞ ¼ ω̂ava

precisely via the property of the extended Weingarten map
as shown in (4.6). This allows us to have a relationship
between the rotation 1-form and the Hajicek 1-form as

ω̂a ¼ Ω̂a − κka þ ðkbTbÞka: ð4:27Þ

From the dual formulation of the Frobenius theorem for
the null normal l, we have upon using (4.19),

dl ¼ dρ ∧ l ¼ ð∂alb − ∂blaÞdxa ⊗ dxb

¼ ð∇̂alb − ∇̂bla þ TcablcÞdxa ⊗ dxb

¼ ðΘ̂ba − Θ̂ab þ ω̂alb − ω̂bla þ ð∇̂klaÞlb − ð∇̂klbÞla
þ TcablcÞdxa ⊗ dxb: ð4:28Þ

Using (4.8), we have the antisymmetric part of the extended
second fundamental form as
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Θ̂ba − Θ̂ab ¼ qcaqdbðð∇̂cld − ∇̂dlcÞ þ ðkbqca − kaqcbÞTcÞ:
ð4:29Þ

Using the fact on account of the dual formulation of the
Frobenius theorem, i.e., ð∂alb−∂blaÞ¼ð∂aρÞlb−ð∂bρÞlaÞ,
we have

Θ̂ba − Θ̂ab ¼ qcaqdbTfdclf þ ðkbqca − kaqcbÞT c: ð4:30Þ

This allows us to have

dl ¼ ðqcaqdbTfdclf þ ðkbqca − kaqcbÞTc þ Tcablc þ ω̂alb

− ω̂bla þ ð∇̂klaÞlb − ð∇̂klbÞlaÞdxa ⊗ dxb: ð4:31Þ

Using the definition of the projection tensor qab ¼ δab þ
lakb þ kalb and a few lines of simple algebra it can be
shown that

qcaqdbTfdclfþðkbqca−kaqcbÞT cþTcablc

¼ðTcdalckdÞlb− ðTcdblckdÞla: ð4:32Þ

This finally results in the fact that

dl ¼ ðω̂alb − ω̂bla þ ð∇̂klaÞlb − ð∇̂klbÞla þ ðTcdalckdÞlb
− ðTcdblckdÞlaÞdxa ⊗ dxb: ð4:33Þ

Provided we define a 1-form T ≡ ðTcdalckdÞdxa, we can
succinctly via (4.33) express the exterior derivative of the
null normal as

dl ¼ ω̂ ∧ l þ ð∇̂klÞ ∧ l þT ∧ l

¼ ðω̂þ ð∇̂klÞ þTÞ ∧ l: ð4:34Þ

The comparison of the above relation with dl ¼ dρ ∧ l
provides a relationship between the scalar field ρ and the
rotation 1-form,

∂aρ ¼ ω̂a þ ∇̂kla þ Tcdalckd; ð4:35Þ

which is arbitrary up to a term proportional to la.
Let us proceed to derive another expression of the

rotation 1-form. For that, notice that the exterior derivative
of the auxiliary null normal k via (3.30) can be simply
expressed as

dk ¼ 1

2N2
d

�
ln

�
N
M

��
∧ l: ð4:36Þ

Since the auxiliary null normal k does not satisfy the dual
formulation of the Frobenius theorem it can be interpreted
that the hyperplane orthogonal to the auxiliary null normal
is not integrable. From the definition (4.17) of the rotation
1-form, we have any vector v ∈ T PðMÞ,

ω̂ava ¼ −kaðχabvbÞ ¼ −kaðHχabΠb
cvcÞ

¼ −ka∇̂ΠðvÞla ¼ −kaðΠb
cvcÞ∇̂bla

¼ laðΠb
cvcÞð∇̂bkaÞ: ð4:37Þ

From the relation of the exterior derivative of the auxiliary
null normal, we have from (4.36),

∂akb − ∂bka ¼ ð∇̂akb − ∇̂bka þ Tc
abkcÞ

¼ 1

2N2

�
∂a ln

�
N
M

�
lb − ∂b ln

�
N
M

�
la

�
;

⇒ ∇̂bka ¼ ∇̂akb þ Tc
abkc −

1

2N2

�
∂a ln

�
N
M

�
lb

− ∂b ln

�
N
M

�
la

�
: ð4:38Þ

Employing (4.38) in (4.37), we end up having

ω̂ava ¼ laΠb
cvc

�
∇̂akb þ Tc

abkc

−
1

2N2

�
∂a ln

�
N
M

�
lb − ∂b ln

�
N
M

�
la

��

¼ laΠb
cvc∇̂akb þ laΠb

dvdTc
abkc

¼ laðδbc þ kblcÞvc∇̂akb þ laðqbd − lbkdÞvdTc
abkc

¼ ðlb∇̂bkaÞva þ Tcdbkcldqdava: ð4:39Þ

Thus we finally retrieve an alternative and useful expres-
sion of the rotation 1-form ω as

ω̂a ¼ ðlb∇̂bkaÞ þ Tbcdkblcqda: ð4:40Þ

The above formula allows us very easily to verify the
relations (4.20).

C. The deformation rate tensor

The deformation rate tensor χ̂ab essentially quantifies the
rate at which the metric of the 2-surface St changes as we
evolve along the null generators. Following [75], the
deformation rate tensor is defined as

χ̂ab ¼
1

2
qiaqjb£lqij: ð4:41Þ

Using the definition (2.20) of the Lie derivative of the
metric tensor gab along the null generators l, it is quite easy
to notice that

χ̂ab ¼
1

2
qcaqdbð∇̂cld þ ∇̂dlc þ ðTcfd þ TdfcÞlfÞ: ð4:42Þ
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Then using (4.8), the deformation rate tensor can be also be
expressed as

χ̂ab ¼
1

2
ðΘ̂ab þ Θ̂baÞ þ

1

2
ðqcakb þ qcbkaÞTc

þ 1

2
qcaqdbðTcfd þ TdfcÞlf: ð4:43Þ

A point worthwhile to notice is that in the presence of
torsion in ðM;g; ∇̂Þ, the second fundamental form Θ̂ab and
the deformation rate tensor χ̂ab are not equivalent. Contrary
to the extended second fundamental form Θ̂ab, in general
the deformation rate tensor is by definition both symmetric
and orthogonally transverse to the space spanned by l
and k,

χ̂abla ¼ 0 ¼ χ̂ablb and χ̂abka ¼ 0 ¼ χ̂abkb: ð4:44Þ

We can in fact perform an irreducible decomposition of the
deformation rate tensor in terms a symmetric trace part and
a traceless symmetric part,

χ̂ab ¼
1

2
qab θ̂l

ðdÞ
þ ðl;dÞσab; ð4:45Þ

where θ̂l

ðdÞ
is the outgoing expansion scalar and ðl;dÞσab is the

traceless shear tensor corresponding to the null congruence

l. The reason as to why θ̂l

ðdÞ
is called the expansion scalar is

because it represents the fractional rate of change of the
area element of the transverse spacelike 2-surface St as we
move along the null generators l. We will prove this result
shortly in Sec. VI [see Eq. (6.6)]. The trace of the
deformation rate tensor is given by

θ̂l

ðdÞ
¼ gabχ̂ab ¼

1

2
qcd£lqcd ¼

1

2
qcd£lgcd

¼ 1

2
qcdð∇̂cld þ ∇̂dlc þ ðTcfd þ TdfcÞlfÞ

¼ 1

2
ðgcd þ lckd þ kcldÞð∇̂cld þ ∇̂dlc þ ðTcfd þ TdfcÞlfÞ

¼ ∇̂ala þ Tala − κ ¼∇ala − κ: ð4:46Þ

In the above, we have used (4.41) and (4.42). In the spirit of
(4.19) we will find it beneficial to expand the spacetime
covariant derivative of the null normal la in terms of the
deformation rate tensor. To that extent using (4.43) and
(4.30), we can provide a relationship between the defor-
mation rate tensor and the extended second fundamental
form,

χ̂ab ¼ Θ̂ba þ kaqcbTc þ qcaqdbKfcdlf: ð4:47Þ

Finally, upon using (4.19), we get our desired expression
relating the covariant derivative of the null normal la with
the deformation rate tensor,

∇̂alb ¼ χ̂abþ ω̂alb − laðki∇̂ilbÞ− kaqcbTc−qcaqdbKfcdlf:

ð4:48Þ

D. Transversal deformation rate tensor

Much like the deformation rate tensor we can also look
for the projection (onto the transverse spacelike surface St)
of the Lie derivative of the metric qab, however now in a
direction transverse to H. This transverse direction is
provided by the auxiliary null vector field k. We define
the transversal deformation rate tensor as

Ξ̂ab ≡ 1

2
qcaqdb£kqcd: ð4:49Þ

Using the properties of the Lie derivative of the metric gab
and the fact that qabla ¼ qabkb ¼ 0, the transversal defor-
mation rate tensor can be expressed as

Ξ̂ab ¼
1

2
qcaqdb£kgcd

¼ 1

2
qcaqdbð∇̂ckd þ ∇̂dkc þ ðTcfd þ TdfcÞkfÞ: ð4:50Þ

From (4.36), in the index notation, we have

ð∂akb − ∂bkaÞ ¼ ð∇̂akb − ∇̂bka þ TcabkcÞ

¼ 1

2N2
∂a

�
ln

N
M

�
lb −

1

2N2
∂b

�
ln

N
M

�
la:

ð4:51Þ
Using (4.51) for the covariant derivative of the auxiliary
field in (4.50), we have

Ξ̂ab ¼
1

2
qcaqcb

�
2∇̂dkc þ

1

2N2
∂a

�
ln

N
M

�
lb

−
1

2N2
∂b

�
ln

N
M

�
la − Tfcdkf þ Tcfdkf þ Tdfckf

�
;

¼ qcaqdbð∇̂dkc þ KfdckfÞ: ð4:52Þ
As is evident from its definition (4.49), the transversal
deformation rate tensor is symmetric and orthogonal to the
space spanned by the vectors l and k, i.e.,

Ξ̂abla ¼ 0 ¼ Ξ̂ablb and Ξ̂abka ¼ 0 ¼ Ξ̂abkb: ð4:53Þ
Just like for the case of the null generators, it would be of

great practical interest for us to calculate the spacetime
covariant derivative of the auxiliary null vector field k. This
quantity is again a well-defined quantity, thanks to the null
foliation of the spacetime ðM;g; ∇̂Þ in the neighborhood of
H. For this, we will just have to manipulate the part
qcaqbd∇̂dkc in the expression (4.52) for Ξ̂ab:
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qcaqdb∇̂dkc ¼ðδcaþ lckaþkclaÞðδdbþ ldkbþkdlbÞ∇̂dkc

¼ðδcaþ lckaÞð∇̂bkcþkbðld∇̂dkcÞþ lbðκd∇̂dkcÞÞ
¼ ∇̂bkaþkbðld∇̂dkaÞþ lbðkd∇̂dkaÞþkaðlc∇̂bkcÞþkakblcðld∇̂dkcÞþkalblcðkd∇̂dkcÞ
¼ ∇̂bkaþkb½ω̂a−Tcdfkcldqfa�þ lbðkd∇̂dkaÞ−kakcð∇̂blcÞ−kakbkcðld∇̂dlcÞþkalblcðkd∇̂dkcÞ
¼ ∇̂bkaþkbω̂aþ lbð∇̂kkaÞ−kakcðΘ̂cbþ ω̂blc− lb∇̂klcÞ−kakbkcðκlcþTcÞ−kalbkcðkd∇̂dlcÞ−kbTcdfkcldqfa

¼ ∇̂bkaþkbω̂aþ lbð∇̂kkaÞþkaω̂bþ κkakb−kakbkcTc−kbTcdfkcldqfa

¼ ∇̂bkaþkbω̂aþ lbð∇̂kkaÞþkaΩ̂b−kbTcdfkcldqfa: ð4:54Þ

For the above result, we have used (4.40) in the fourth line,
(4.19) in the fifth line, and (4.27) in the seventh line.
Putting the value of qcaqbd∇̂dkc as obtained in (4.54) into
(4.52) and rearranging, we obtain our desired quantity, i.e.,
the covariant derivative of the auxiliary null normal in terms
of the transversal deformation rate tensor,

∇̂akb ¼ Ξ̂ab − Ω̂akb − kaω̂b − laðki∇̂ikbÞ
þ kaTcdfkcldqfa − qcaqdbKfcdkf: ð4:55Þ

In the same way, the transversal deformation rate tensor can
be decomposed into a symmetric trace part and a symmetric
traceless part,

Ξ̂ab ¼
1

2
qabθ̂k

ðdÞ
þ ðk;dÞσab: ð4:56Þ

The trace of the transversal deformation rate tensor is the
expansion scalar corresponding to the auxiliary k congru-
ence. Again, as we will show later that the trace is truly the
expansion scalar in the sense that it quantifies the fractional
rate of change of the area element of St as we move along k.
The ingoing expansion scalar corresponding to the aux-
iliary null vector field, via (4.52) is then given by

θ̂k

ðdÞ
¼ gabΞ̂ab ¼ qcdð∇̂dkc þ KfdckfÞ

¼ qcd∇̂dkc þ
1

2
ðgcd þ lckd þ kcldÞðTdfc þ TcfdÞkf

¼ ðqcd∇̂dkcÞ þ Taka − Tdcfkdlckf: ð4:57Þ

E. The projected deviation tensor

Till now, we have discussed three kinematical second
rank tensors that are of interest to us. They are the extended
second fundamental form Θ̂ab, the deformation rate tensor
χ̂ab and the transversal deformation rate tensor Ξ̂ab. As we
shall see, all these quantities will be very relevant in the
analysis of providing our advertised thermodynamic inter-
pretation as applied to H. There also exists another second
rank tensor called the deviation tensor that we wont require

for our thermodynamic interpretation. In Appendix A we
provide a detailed derivation of the NRE corresponding to
the null generators l without the assumption of the geodesic
constraint (4.11). To corroborate our results with the
existing literature [46] we would require the construction
of the deviation tensor and its relation to the extended
second fundamental form. In this section, we end our
discussion of the kinematics of the null hypersurface by
describing the deviation tensor or effectively its projected
part. On the outset, let us mention that the discussion of the
deviation tensor does not require a foliation of ðM;g; ∇̂Þ
by a family of null hypersurfaces and their subsequent
slicing by a stack of spacelike surfaces. All we actually
require is a congruence of null trajectories (not necessarily
geodesic or autoparallel) and build upon the premise that
the deviation vector field η is Lie transported along the null
congruence. The deviation vector essentially measures the
deviation between two neighboring null trajectories. The
above condition means

½η; l� ¼ 0: ð4:58Þ

In index notation this translates to

la∂iη
a − ηi∂ila ¼ 0;

li∇̂iη
a ¼ ηið∇̂ila þ Ta

jil
jÞ≡ ηiBa

i: ð4:59Þ

Here Ba
i is called the deviation tensor which measures the

failure of the deviation vector to be parallel transported
along the null congruence. This is given by

Bai ¼ ∇̂ila þ Tajilj: ð4:60Þ

The auxiliary null vector field ka to such a null congruence
is as usual defined via the relations laka ¼ −1 and
kaka ¼ 0, with the projection tensor onto a two-
dimensional spacelike cross section of the null congruence
being qab ¼ gab þ lakb þ kalb. We can easily verify that
the deviation tensor is not orthogonal to both la and ka as
seen from
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Babla ¼ −Tb; Bablb ¼ κla þ Ta;

Babka ¼ −la∇̂bka þ Taibkali and

Babkb ¼ kb∇̂bla þ Taiblikb: ð4:61Þ

We will project the deviation tensor onto the transverse
spacelike 2-surface of the null congruence to define the
projected deviation tensor B̂ab,

B̂ab ≡ qcaqdbBcd: ð4:62Þ

Opening up the projection tensors qab¼ðδabþ lakbþkalbÞ
in (4.62), a few lines of simple algebra lead us to

B̂ab ¼ Bab þ lbkdBad þ lakcBcb þ lalbkckdBcd

þ Takb − Tbka þ ðlakb − lbkaÞκcTc: ð4:63Þ

Next, using the relation (4.60) and (4.40) in the above, we
obtain

B̂ab ¼ ∇̂bla þ Takblk þ ðTakb − TbkaÞ þ ðlakb − kalbÞT ckc

− laω̂b þ lbðki∇̂ilaÞ þ ðTakjlkkjÞlb þ laTikbkilk

þ lalbðTikjkilkkjÞ: ð4:64Þ

The above relation relates the spacetime covariant deriva-
tive of the null normal with the projected deviation tensor.
Finally using (4.19) in (4.64), we end up deriving a
relationship between the projected deviation tensor and
the extended second fundamental form,

Θ̂ab ¼ B̂ab − Takblk − ðTakb − kaTbÞ − ðlakb − kalbÞTckc

þ ðTaijkiljÞlb − laTpqrkplqqrb: ð4:65Þ

We can again perform an irreducible decomposition of the
projected deviation tensor into a symmetric trace part, a
symmetric traceless part and an antisymmetric part,

B̂ab ¼
1

2
qab θ̂l

ðBÞ
þ ðl;BÞ ˆσab þ ðl;BÞ ˆωab: ð4:66Þ

Computing the trace of the projected deviation tensor we
obtain

θ̂l

ðBÞ
¼ gabB̂ab ¼ qabB̂ab

¼ ðgab þ lakbkalbÞ½∇̂bla þ Tacblc�
¼ ∇̂ala − κ þ Tala: ð4:67Þ

We notice that θ̂l
ðBÞ

¼ θ̂l

ðdÞ
and hence the trace of the projected

deviation tensor also quantifies the expansion scalar of the
null congruence.

V. DYNAMICS OF THE NULL HYPERSURFACE H
PROVIDED BY Ĝabkalb

Now that we have provided the details for the kinematics
of the null surface H, we will begin discussing the
dynamics of it. The null generator l provides a notion of
evolution in time [75] since la ¼ dxa

dt and is hence associated
with the time vector t. By dynamics we mean to investigate
the Lie derivative along l of the relevant kinematical
quantities introduced in the previous section. Our aim will
be focused on one particular projection component of the
Einstein tensor analog in ðM;g; ∇̂Þ, i.e., Ĝab. This is
because we will see later that different projections of Ĝab
will lead to dynamics of these kinematic quantities. Let us
decompose the vector Ĝa

blb into its subsequent compo-
nents along the basis vectors l, k and eA of T PðMÞ,

Ĝa
blb ¼ ϕ1la þ ϕ2ka þ ϕAeaA; ð5:1Þ

with ϕ1 ¼ −Ĝablakb, ϕ2 ¼ −Ĝablalb and ϕÃ ¼
ðĜablbqacÞecA. It has been shown in the literature, at least
for Riemannian manifolds, that all these three projection
components can be provided physical interpretations. The
projection component Gablalb is related to the rate of
change of the outgoing expansion scalar along the null
congruence l and is known as the null Raychaudhuri
equation [41,75]. On the other hand, Gablaqbc leads to
the Damour-Navier-Stokes equation (for Einstein gravity)
under the membrane paradigm [37,80], whereas Gablakb

leads to a thermodynamic identity (structurally familiar to
the first law of thermodynamics) established under a certain
physical process involving the null surface H. It is a
worthwhile exercise to extend the formalism to a spacetime
ðM;g; ∇̂Þ involving torsion and study the physical inter-
pretations (if possible) for such projection components. The
case for the NRE corresponding to the null generators l in a
metric compatible, general affine spacetime ðM;g; ∇̂Þ has
already been considered in [46]. However, under the
umbrella of this 3þ 1 perspective of null foliation we

also rederive the NRE for the outgoing expansion scalar θ̂l
ðdÞ

in Appendix A and compare it with previous results. Here,
we will study only the projection component Ĝabkalb and
see what interpretation(s) can be alluded to it.
Let us begin with the projection component Ĝablakb. In

doing so, we will first derive the evolution equation along l
of the transversal deformation rate tensor. Then we will

proceed to find the evolution rate of the expansion scalar θ̂k
ðdÞ

along the null generators. This will then provide our
starting point towards a thermodynamic interpretation that
can be attributed to the relevant projection component. At
the outset let us establish the fact that the dynamics of
Ĝablakb will be studied entirely keeping the geodesic
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constraint (4.11) in mind. We will use the fact that Ta ¼ 0
in all subsequent analysis. Under the geodesic constraint, as
we have discussed at the end of section IVA, that the null
generators of H are both autoparallel and geodesic. To
proceed, we start with the Ricci identity established on the
manifold of the transverse spacelike 2-surface ðSt; q; D̂Þ,
where D̂ is the spatial covariant derivative compatible with
q, i.e., D̂aqbc ¼ 0. So for any spatial vector v ∈ T PðStÞ,

½D̂a; D̂b�va ¼ ð2ÞR̂abva − ð2ÞTd
abD̂dva; ð5:2Þ

where ð2ÞR̂ab and ð2ÞTa
bc are the two-dimensional Ricci and

torsion tensors established respectively on ðSt; q; D̂Þ. Let us
first take on the left-hand side (lhs) of (5.2). We show (via a
detailed calculation in Appendix B) that

½D̂a; D̂b�va ¼ D̂aðD̂bvaÞ − D̂bðD̂avaÞ

¼ ½ð θ̂l
ðdÞ

− qcdTcfdlfÞqmb − χ̂mb þ qcbqdmKfcdlf�ðks∇̂mvsÞ

þ ½ðθ̂k
ðdÞ

− qcdTcfdkfÞqmb − Ξ̂m
b þ qcbqdmKfcdkf�ðls∇̂mvsÞ

þ qmbqlsqptR̂
s
plmvt þ qcbqdsqmfTf

cdð∇̂mvsÞ: ð5:3Þ

Looking at the (rhs) of (5.2) we have on account of
ð2ÞTa

bc being a tensor defined on the transverse two-
dimensional space St,

ð2ÞR̂abva − ð2ÞTd
abD̂dva

¼ ð2ÞR̂abva þ ð2ÞTd
baqmdqasð∇̂mvsÞ

¼ ð2ÞR̂abva þ qcbqdað2ÞTf
cdqmfqasð∇̂mvsÞ

¼ ð2ÞR̂abva þ qcbqdsqmf
ð2ÞTf

cdð∇̂mvsÞ: ð5:4Þ

Incidentally, it can be proven that the complete projection
of the spacetime torsion onto the two-dimensional trans-
verse space St is equivalent to the intrinsic torsion estab-
lished in ðSt; q; D̂Þ, i.e.,

qcbqdsqmfTf
cd ¼ qcbqdsqmf

ð2ÞTf
cd: ð5:5Þ

For the detailed derivation of this see Appendix C. Upon
equating the lhs and the rhs of (5.2) via the relations (5.3)
and (5.4) respectively, and using (5.5), we end up having

− ½ð θ̂l
ðdÞ

−qcdTcfdlfÞqmb− χ̂mbþqcbqdmKfcdlf�ðva∇̂mkaÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
expression1

− ½ðθ̂k
ðdÞ

−qcdTcfdkfÞqmb− Ξ̂m
bþqcbqdmKfcdkf�ðva∇̂mlaÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

expression2

þqmbqlsqpaR̂
s
plmva ¼ ð2ÞR̂abva: ð5:6Þ

Let us focus on expression 1. Again as usual using (4.55)
for the covariant derivative of the auxiliary null normal and
simplifying, we obtain

expression 1 ¼ va½χ̂mbΞ̂ma − ð θ̂l
ðdÞ

− qcdTcfdlfÞΞ̂ba

− qcbΞ̂d
aðKfcdlfÞ − χ̂cbqdaðKfcdkfÞ

þ ð θ̂l
ðdÞ

− qcdTcfdlfÞqcbqdaðKfcdkfÞ
þ qcbqdiqjaðKfcdlfÞðKhijkhÞ�: ð5:7Þ

Analogously, for expression 2, we use (4.48) and simplify
to yield

expression 2 ¼ va½Ξ̂m
bχ̂ma − ðθ̂k

ðdÞ
− qcdTcfdkfÞχ̂ba

− qcbχ̂daðKfcdkfÞ − Ξ̂i
bqjaðKhijlhÞ

þ ðθ̂k
ðdÞ

− qcdTcfdkfÞqibqjaðKhijlhÞ
þ qcbqdiqjaðKfcdkfÞðKhijlhÞ�: ð5:8Þ

Adding up both the expressions (5.7) and (5.8) in (5.6), we
end up having the expression of the two-dimensional Ricci
tensor in terms of the four-dimensional spacetime quan-
tities (since va is arbitrary),
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ð2ÞR̂ab ¼ qmbqlsqpaR̂
s
plm þ ½ðχ̂mbΞ̂ma þ Ξ̂m

bχ̂maÞ − ð θ̂l
ðdÞ

− qcdTcfdlfÞðΞ̂ba − qcbqdaKfcdkfÞ

− ðθ̂k
ðdÞ

− qcdTcfdkfÞðχ̂ba − qcbqdaKfcdlfÞ − ðqcbΞ̂d
a þ qdaΞ̂c

bÞKfcdlf

− ðqcbχ̂da þ qdaχ̂cbÞKfcdkf þ ðqcbqdiqja þ qibqjcqdaÞðKfcdlfÞðKhijkhÞ�: ð5:9Þ

Now, we focus on the term qmbqlsqpaR̂
s
plm of (5.9). After some routine computations (see Appendix D), it can be

shown that

qmbqlsqpaR̂
s
plm ¼ qmbqpaQ̂rmspkrls þ qmbqpaR̂pm þ 2Ω̂aΩ̂b − ðΩ̂aP̂b þ P̂aΩ̂bÞ

− qmbqpalr∇̂r½2Ξ̂mp − ðqimqjp þ qipqjmÞðKhijkhÞ� þ qmbqpa½ð∇̂mω̂p þ ∇̂pω̂mÞ − ð∇̂mP̂p þ ∇̂pP̂mÞ�
− ðχ̂rbΞ̂ra þ χ̂raΞ̂rbÞ þ ðqjaχ̂ib þ qjbχ̂iaÞðKhijkhÞ þ ðqcaΞ̂d

b þ qcbΞ̂d
aÞðKfcdlfÞ

− ðΞ̂c
aqdb þ Ξ̂c

bqdaÞðTcfdlfÞ − ½qcbqjaqdi þ qcaqjbqdi�ðKfcdlfÞðKhijkhÞ
þ ½qjaqdbqci þ qjbqdaqci�ðTcfdlfÞðKhijkhÞ: ð5:10Þ

In the above, we have defined the quantity P̂a accordingly as

P̂a ≡ Tbcdkblcqda: ð5:11Þ

Obviously, the quantity P̂a is orthogonal to both la and ka and hence is defined on the 2-surface St. Converting the
spacetime covariant derivatives present in the above relation (5.10) to Lie derivatives along the null generator l, we obtain
from the above,

qmbqlsqpaR̂
s
plm ¼ qmbqpaQ̂rmspkrls þ qmbqpaR̂pm þ 2Ω̂aΩ̂b − ðΩ̂aP̂b þ P̂aΩ̂bÞ

− qmbqpa£l½2Ξ̂mp − ðqimqjp þ qipqjmÞðKhijkhÞ� þ ðχ̂arΞ̂r
b þ χ̂brΞ̂r

aÞ
þ D̂aðΩ̂b − P̂bÞ þ D̂bðΩ̂a − P̂aÞ − 2κΞ̂ab þ ðΞ̂c

aqdb þ Ξ̂c
bqdaÞðTcfdlfÞ

− ðqcaΞ̂d
b þ qcbΞ̂d

aÞðKfcdlfÞ þ ½qiaðκqjb − χ̂jbÞ þ qibðκqja − χ̂jaÞ�ðKhijkhÞ
− ½ðqiaqdb þ qibqdaÞqjc�ðTcfdlfÞðKhijkhÞ þ ½ðqcaqib þ qcbqiaÞqjd�ðKfcdlfÞðKhijkhÞ: ð5:12Þ

We relegate the details of the computation to Appendix D. Now all that remains to do is to put (5.12) into (5.9) to get to the
evolution equation of the transversal deformation rate tensor,

qmbqpa£lΞ̂mp−
1

2
qmbqpa£l½ðqimqjpþqipqjmÞðKhijkhÞ�

¼−
1

2
R̂abþ

1

2
qmbqpaQ̂rmspkrls

1

2
qmbqpaR̂pmþðχ̂arΞ̂r

bþ χ̂brΞ̂r
aÞþ

1

2
ðD̂aðΩ̂b − P̂bÞþ D̂bðΩ̂a− P̂aÞÞ−

�
κþ θ̂l

ðdÞ

2

�
Ξ̂ab

−
θ̂k

ðdÞ

2
χ̂abþ Ω̂aΩ̂b −

1

2
ðΩ̂aP̂bþ Ω̂bP̂aÞþ

1

2
½ðΞ̂c

aqdbþ Ξ̂c
bqdaÞþqcdΞ̂ab�ðTcfdlfÞ

þ 1

2
½θ̂k
ðdÞ
qcbqda −qcaΞ̂d

b −qcbΞ̂d
a −qcbΞ̂d

a −qdaΞ̂c
b�ðKfcdlfÞ

þ 1

2
½qiaðκqjb − χ̂jbÞþqibðκqja − χ̂jaÞþ θ̂l

ðdÞ
qibqja − χ̂ibqja− χ̂jaqibþqijχ̂ab�ðKhijkhÞ

−
1

2
½ðqiaqdbþqibqdaÞqjcþqcdqibqja�ðTcfdlfÞðKhijkhÞ−

1

2
ðqijqcbqdaÞðTihjkhÞðKfcdlfÞ

þ 1

2
½ðqcaqibþqcbqiaÞqjdþqcbqdiqjaþqibqjcqda�ðKfcdlfÞðKhijkhÞ: ð5:13Þ
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So we have arrived at the evolution equation for the
transversal deformation rate tensor in the metric compatible
general affine spacetime ðM;g; ∇̂Þ under the geodesic
constraint (Ta ¼ 0), i.e., the null geodesic generators of H
are parallel transported along themselves. In the absence of
torsion in the spacetime this equation matches with
Eq. (6.43) of [75].
Now that we have derived the evolution equation

of the transversal deformation rate tensor, we proceed to

study the evolution of the expansion scalar θ̂k
ðdÞ
. This would

enable us to provide the thermodynamic relation estab-

lished on H. To get to the evolution equation for θ̂k
ðdÞ
, all we

need to is to take the trace of the evolution equation
of the transversal deformation rate tensor (5.13). However
this can be avoided to the benefit of a shorter route that
involves taking the trace of (5.9) and (5.10) and then
combining them. The result of the trace computation leads
us to

−κðθ̂k
ðdÞ

− qijTihjkhÞ ¼
�
1

2
ð2ÞR̂þ lr∇̂rðθ̂k

ðdÞ
− qijTihjkhÞ − Ω̂aΩ̂a þ Ω̂aP̂

a − D̂aðΩ̂a − P̂aÞ

þ θ̂l

ðdÞ
ðθ̂k
ðdÞ

− qijTihjkhÞ − ðθ̂k
ðdÞ
qcd − Ξ̂cdÞðTcfdlfÞ − ðqdjqci − qcdqijÞðTcbdÞðKaijÞkalb

�

− ½Ĝab þ ð∇̂aTb − ∇̂bTaÞ þ ð∇̂i þ TiÞTi
ab�kalb: ð5:14Þ

All the relevant steps involved in the computation for the
trace leading up to (5.14) has been shown in Appendix E.
The above geometrical relation involves the directional

derivative of the ingoing expansion scalar θ̂k
ðdÞ

along the null
generator l being related to the component Ĝabkalb. It is in
this sense that the above equation can be referred to as the

NRE for θ̂k

ðdÞ
. Let us try to motivate the reason of this

particular choice of arranging the terms in (5.14). This will
be clearer when we proceed to provide a thermodynamic
interpretation to the above equation. Notice that all the
terms in the first squared parentheses for the rhs of (5.14)

except for lr∇̂rðθ̂k
ðdÞ

− qijTihjkhÞ contains geometrical

quantities that are defined on the transverse 2-surface St.
The terms in the second squared parentheses for the rhs of
(5.14) involves rather quantities defined for the spacetime
ðM;g; ∇̂Þ and are not restricted to St.

VI. THERMODYNAMIC INTERPRETATION
PROVIDED TO THE NRE (5.14) VIA VIRTUAL

DISPLACEMENT δλðkÞ
The relation (5.14) is geometrical in the sense that the

dynamics of the gravitational field equations have not made
their way into the relationship. At this junction, we have to
use the ECKS field equation corresponding to the metric
tensor. We will rather use the form given in (2.26). By using
this in (5.14), we have

−κðθ̂k
ðdÞ

− qijTihjkhÞ ¼
�
1

2
ð2ÞR̂þ lr∇̂rðθ̂k

ðdÞ
− qijTihjkhÞ − Ω̂aΩ̂a þ Ω̂aP̂

a − D̂aðΩ̂a − P̂aÞ

þ θ̂l

ðdÞ
ðθ̂k
ðdÞ

− qijTihjkhÞ − ðθ̂k
ðdÞ
qcd − Ξ̂cdÞðTcfdlfÞ − ðqdjqci − qcdqijÞðTcbdÞðKaijÞkalb

�

−
�
8πTðmÞ

ab þ 1

2
ð∇̂i þ TiÞð3Siab þ Saib þ SbiaÞ

�
kalb: ð6:1Þ

So finally we have arrived at the equation we desired. This
equation has the interpretation of a dynamical equation

governing the evolution of the expansion scalar θ̂k
ðdÞ

along
the null autoparallel (and hence geodesic) generators of an
integrable hypersurface H in the spacetime ðM;g; ∇̂Þ.

Before proceeding to interpret (6.1) as a thermodynamic
identity established on the generic null surface H, it is

necessary to convince ourselves that θ̂k
ðdÞ

indeed represents
the expansion scalar of the auxiliary null field k. Let us
represent the (in general) nonaffine parameter along the
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auxiliary null vector field to be λðkÞ. Hence we have
ka ¼ − dxa

dλðkÞ
. The crucial negative sign is because of the

fact that the auxiliary null field k is ingoing as opposed to
the null gnerators l which are outgoing. On account of the
determinant of the transverse metric of the 2-surface St
being a scalar density, we have

d
ffiffiffi
q

p
dλðkÞ

¼ 1

2

ffiffiffi
q

p
qAB

d
dλðkÞ

qAB ¼ −
1

2

ffiffiffi
q

p
qABki∇̂iðgabeaAebBÞ:

Therefore one finds,

−
1ffiffiffi
q

p d
dλðkÞ

ffiffiffi
q

p

¼ 1

2
qABgabebBðki∇̂ieaAÞ þ

1

2
qABgabeaAðki∇̂iebBÞ

¼ qABgabebBðki∇̂ieaAÞ: ð6:2Þ

Under the construction of the null hypersurfaceH, the basis
vectors feAg of the tangent space established on the 2-
surface St are Lie transported along the auxiliary null field,
i.e., ½k; eA� ¼ 0. This results in

ki∇̂ieaA ¼ eiA∇̂ika þ Ta
bckbecA: ð6:3Þ

Using (6.3) in (6.2), we obtain

−
1ffiffiffi
q

p d
dλðkÞ

ffiffiffi
q

p ¼ qABgabebBðeiAð∇̂ikaÞ þ Ta
dckdecAÞ

¼ qab∇̂akb þ qabTacbkb: ð6:4Þ

In the above, we have used the fact that qABeaAebB ¼ qab.
Upon using the relation (4.55) in (6.4), we obtain

−
1ffiffiffi
q

p d
dλðkÞ

ffiffiffi
q

p ¼ qabΞ̂ab − qcdKfcdkf þ qabTacbkc ¼ θ̂k

ðdÞ

ð6:5Þ

Hence we indeed verify that the ingoing expansion scalar

θ̂k

ðdÞ
represents the fractional rate of change of the 2-surface

area element
ffiffiffi
q

p
along the auxiliary null vector field k.

Strictly along the lines of the previous analysis, its quite
straightforward to establish that

1ffiffiffi
q

p d
dλðlÞ

ffiffiffi
q

p ¼ qabχ̂ab ¼ θ̂l

ðdÞ
; ð6:6Þ

where λðlÞ ¼ t represents the nonaffine parameter for the
outgoing null generators l.
Finally, we arrive at the point where we discuss the

physical process under which a thermodynamic interpre-
tation can be alluded. The physical process is a virtual
displacement δλðkÞ along the auxiliary null vector field. The
notion of virtual displacement has been adopted from the
analysis in [30]. The virtual displacement basically shifts
our null hypersurface H along k. Consider the foliation of
ðM;g; ∇̂Þ in the neighborhood ofH by the null familyHu.
Let us suppose that H is stationed at the value of λðkÞ ¼ 0

and in the null family, there exists another surface at the
value of λðkÞ ¼ δλðkÞ. Of course, both of these null surfaces
are solutions of the Einstein-Cartan spacetime. The virtual
displacement is the physical process that shifts us from the
null surface at λðkÞ ¼ 0 to λðkÞ ¼ δλðkÞ. Let us multiply then
both sides of (6.1) with δλðkÞ along with a multiplicative
factor of 1

8π. We integrate the resulting equation on the two-
dimensional spacelike cross-section St ofH. This results in

−
Z
St

d2x
ffiffiffi
q

p �
κ

2π

�
1

4
θ̂k

ðdÞ
−
1

4
qijTihjkh

��
δλðkÞ

¼
Z
St

d2x
ffiffiffi
q

p 1

8π

�
1

2
ð2ÞR̂þ lr∇̂rðθ̂k

ðdÞ
− qijTihjkhÞ − Ω̂aΩ̂a þ Ω̂aP̂

a − D̂aðΩ̂a − P̂aÞ

þ θ̂l

ðdÞ
ðθ̂k
ðdÞ

− qijTihjkhÞ − ðθ̂k
ðdÞ
qcd − Ξ̂cdÞðTfdlfÞ − ðqdjqci − qcdqijÞðTcbdÞðKaijÞkalb

�
δλðkÞ

−
Z
St

d2x
ffiffiffi
q

p 1

8π

�
8πTðmÞ

ab þ 1

2
ð∇̂i þ TiÞð3Siab þ Saib þ SbiaÞ

�
kalbδλðkÞ ð6:7Þ

Let us now focus on the term in the lhs of (6.7). We can rewrite it as
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−
Z
St

d2x
ffiffiffi
q

p �
κ

2π

�
1

4
θ̂k

ðdÞ
−
1

4
qijTihjkh

��
δλðkÞ ¼

Z
St

d2x
κ

2π

� ffiffiffi
q

p 1ffiffiffi
q

p d
dλðkÞ

� ffiffiffi
q

p
4

�
þ ffiffiffi

q
p 1

4
qijTihjkh

�
δλðkÞ

¼
Z
St

d2x
κ

2π

�
δλðkÞ

d
dλðkÞ

� ffiffiffi
q

p
4

�
þ δλðkÞ

� ffiffiffi
q

p
4

qijTihjkh
��

¼
Z
St

d2xTðδλðkÞsnull þ δλðkÞstorÞ: ð6:8Þ

Here, we identify the temperature associated with the null
surface under the process of virtual displacement δλðkÞ to be
T ¼ ðκ=2πÞ. We postulate that the variation of the total
entropy density occurs from two contributions. First is the
entropygeneration termof the null surface itself. The entropy
density of the null surface H is proportional to the area
element

ffiffiffi
q

p
of the 2-surface St, i.e., snull ¼ ffiffiffi

q
p

=4.5 This part
of the entropy generation is purely due to the variation of
cross-sectional transverse area elements St as wemove in the
transverse k direction under thevirtual displacement. But this
not the end of the story. Due to the presence of nontrivial
torsion in the spacetime, there happens to be another entropy
generation term δλðkÞstor. In order to have anunderstanding for
the source of it, let us consider the following particular
torsion current Ti

h
jqij. Obviously the quantity qijTihjkh is

negative the component of this torsion current along the null
generators l. We here define the entropy variation under the
virtual displacement δλðkÞ due to presence of this nontrivial
torsion current Ti

h
jqij to be δλðkÞstor:

δλðkÞstor ¼ δλðkÞ

� ffiffiffi
q

p
4

qijTihjkh
�
: ð6:9Þ

Thuswe see that there exists two causes of entropy generation
under the virtual displacement δλðkÞ. One arises primarily due
to the variation of the transverse cross-sectional area element
St. The other arises due to a nontrivial torsion current flowing
along the null generators.Wewill have somethingmore to say
on this at the end of this section.
Having done this, let us now look at the first term in the

rhs of (6.7). We identify this term to be the variation of
energy δλðkÞE associated with the physical process of virtual
displacement δλðkÞ,

δλðkÞE ¼
Z
St

d2x
ffiffiffi
q

p
δλðkÞ

1

8π

�
1

2
ð2ÞR̂þ lr∇̂rðθ̂k

ðdÞ
− qijTihjkhÞ

− Ω̂aΩ̂a þ Ω̂aP̂
a − D̂aðΩ̂a − P̂aÞ

þ θ̂l

ðdÞ
ðθ̂k
ðdÞ

− qijTihjkhÞ − ðθ̂k
ðdÞ
qcd − Ξ̂cdÞðTcfdlfÞ

− ðqdjqci − qcdqijÞðTcbdÞðKaijÞkalb
�
: ð6:10Þ

We can in principle perform an integration over the non-
affine parameter λðkÞ of the auxiliary null field to provide an
expression of the energy associated with the two surface St,

E ¼
Z

dλðkÞ

Z
St

d2x
ffiffiffi
q

p 1

8π

�
1

2
ð2ÞR̂þ lr∇̂rðθ̂k

ðdÞ
− qijTihjkhÞ

− Ω̂aΩ̂a þ Ω̂aP̂
a − D̂aðΩ̂a − P̂aÞ

þ θ̂l

ðdÞ
ðθ̂k
ðdÞ

− qijTihjkhÞ − ðθ̂k
ðdÞ
qcd − Ξ̂cdÞðTcfdlfÞ

− ðqdjqci − qcdqijÞðTcbdÞðKaijÞkalb
�
: ð6:11Þ

Let us reiterate that our aim is to provide a thermodynamic
interpretation to the NRE (corresponding to the auxiliary
null field k) in analogy with the first law of thermody-
namics. That would be complete, if we have the liberty to
interpret the following expression to be the pressure term P:

P≡−
1

8π

�
8πTðmÞ

ab þ1

2
ð∇̂iþTiÞð3SiabþSaibþSbiaÞ

�
kalb:

ð6:12Þ

The force F conjugate to the physical process of virtual
displacement δλðkÞ is simply then the integral of the
pressure term over the transverse surface St,

F ¼
Z
St

d2x
ffiffiffi
q

p
P: ð6:13Þ

Now once this interpretation is allowed (we will try to
justify this shortly), the process of virtual displacement of
the null surface H along the auxiliary null field described
via (6.7) can be succinctly restated as

Z
St

d2xTðδλðkÞsnull þ δλðkÞstorÞ ¼ δλðkÞEþ FδλðkÞ: ð6:14Þ

The above interpretation is made possible only under a
virtual displacement of the null hypersurface H in the
transverse k direction. For details about the process of
virtual displacement see [30]. The virtual displacement is to
be thought of as a physical process that “virtually” shifts the
position of H from stationed at λðkÞ ¼ 0 to the position at
say λðkÞ ¼ δλðkÞ. The virtual work done under this process is

5Same identification of entropy has been done in [81] through
Noether prescription on a Killing horizon.
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FδλðkÞ. As a result of this an amount of energy δλðkÞE
sweeps through the null surface. The corresponding change
in the heat energy is

R
St
d2xTðδλðkÞsnull þ δλðkÞstorÞ.

Let us now describe the motivation behind the pressure
term (6.12). The pressure term contains the term−TðmÞ

ab kalb.
In the case of Einstein and Lanczos-Lovelock gravity, this
particular term has been consistently identified as the
pressure under the process of virtual displacement
[30,48,82]. For static spherically symmetric spacetimes,

this particular term has the value −TðmÞ
ab kalb ¼ Tr

r, which
has the interpretation of being the radial or the normal
pressure [15,82]. However, when dealing with the space-
time ðM;g; ∇̂Þ, we see that there are necessarily extra
terms in the pressure. Notice that there are quadratic terms
involving the torsion [and hence the modified torsion which
can then be related to the spin angular momentum tensor
via the field equation (2.23)]. For example consider the
following term in the pressure:

−
1

8π

1

2
Tið3Siab þ Saib þ SbiaÞkalb

¼ −8π
1

4
gacτacið3τiab þ τa

i
b þ τb

i
aÞkalb: ð6:15Þ

In arriving at the above relation, we have used (2.23) and the
fact that Ti ¼ 1

2
gacSaci ¼ 1

2
Saai. Such quadratic terms in the

spin tensor actually represent spin-spin contact interaction
and hence produce a correction to the matter energy-
momentum tensor [69]. Our definition of the pressure
involves such spin-spin interaction terms in addition to the
matter energy-momentum tensor. In addition to the energy-
momentun tensor and the spin-spin contact interaction terms
we also have a derivative of modified torsion tensors in the
pressure term, i.e., − 1

8π
1
2
∇̂ið3Siab þ Saib þ SbiaÞkalb ¼

− 1
2
∇̂iðτiab þ τa

i
b þ τb

i
aÞkalb. In [50], while analyzing

the thermodynamic interpretation provided to a generic null
surface (under virtual displacement) in general spacetimes
without any torsion, the authors described the notion
of a “gravitational pressure” defined as P ¼ − 1

8πGabkalb.
Hence for a generic null surface in Einstein gravity

P ¼ − 1
8πGabkalb ¼ −TðmÞ

ab kalb, i.e., the field equation gives
rise to the pressure term. In the same spirit, we identify the
pressure as− 1

8π ½Ĝabþð∇̂aTb−∇̂bTaÞþð∇̂iþTiÞTi
ab�kalb.

Once the ECKS equation (2.26) is used on this it actually
reduces to the value of the pressure (6.12). In addition to the
abovemotivation, there lies another reason behind the (not so
obvious) definition of energy term (6.10) and the work
function (6.12) under the virtual displacement. As already
mentioned in the endof previous section,we have partitioned

the NRE (for θ̂k

ðdÞ
) (5.14) in such a way, that the energy

contribution arises entirely from geometrical quantities
defined on the transverse submanifold St [in addition to

the scalar field lr∇̂rðθ̂k
ðdÞ

− qijTihjkhÞ]. Contrary to this, the
pressure term (leading to the work function) is entirely from
quantities defined in the manifold ðM;g; ∇̂Þ. In fact, it has
been explicitly shown [50] that at least for Einstein gravity
(with zero torsion), the covaraint expression of the energy
(6.11) reduces to expressions of energy for well-known
spacetimes. For example, the computation of (6.11) for the
Scharzschild metric gives us the mass term. It is in this spirit,
that the natural generalization of the energy term for a generic
H in RC spacetime follows.

A. Case of completely antisymmetric torsion

Let us now come to the important specific case of the
torsion being completely antisymmetric. Applications of
completely antisymmetric torsion tensor have been dis-
cussed in string and superstring theories [83]. For the case
of a string inspired gravitational theory, the Kalb-Ramond
field is identified with a completely antisymmetric torsion
background [84]. In the case of completely antisymmetric
torsion, the expressions in our thermodynamic analysis
simplify significantly. Firstly, the geodesic constraint (4.11)
no longer needs to be assumed but rather is a consequence
of total antisymmetry of the torsion tensor. Let us focus on
the NRE corresponding to the ingoing auxiliary null vector
field k, i.e., (6.1). The expression simplifies to

−κθ̂k
ðdÞ

¼
�
1

2
ð2ÞR̂þ lr∇̂rθ̂k

ðdÞ
− Ω̂aΩ̂aþ Ω̂aP̂

a − D̂aðΩ̂a − P̂aÞ

þ θ̂l

ðdÞ
θ̂k

ðdÞ
−
1

2
qdjqciScbdSaijkalb

�

−
�
8πTðmÞ

ab þ 1

2
∇̂ið3SiabÞ

�
kalb: ð6:16Þ

In the above, we have used the fact that for completely
antisymmetric torsion, Sabc ¼ Tabc and Kabc ¼ 1

2
Tabc.

Proceeding ahead with the process of virtual displacement,
we can attest the thermodynamic interpretation to this
specific case as well. The heat energy associated with the
process now is

Z
St

d2xTδλðkÞsnull; ð6:17Þ

where snull ¼
ffiffi
q

p
4
. Obviously, the entropy generation term

δλðkÞstor due to the torsion current component qijTihjkh

flowing along the null generators l ofH is zero owing to the
total antisymmetry of torsion. Hence under the virtual
displacement process the only change in the entropy
density occurs via the change in the transverse area elementffiffiffi
q

p
of H. The amount of energy flow along the null

hypersurface under such considerations is
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δλðkÞE ¼
Z
St

d2x
ffiffiffi
q

p
δλðkÞ

1

8π

�
1

2
ð2ÞR̂þ lr∇̂rθ̂k

ðdÞ
− Ω̂aΩ̂a

þ Ω̂aP̂
a − D̂aðΩ̂a − P̂aÞ þ θ̂l

ðdÞ
θ̂k

ðdÞ

−
1

2
qdjqciScbdSaijkalb

�
: ð6:18Þ

The corresponding identification of the pressure term under
such a process in the case of totally antisymmetric torsion
tensor is

P ¼ −
1

8π

�
8πTðmÞ

ab þ 1

2
∇̂ið3SiabÞ

�
kalb: ð6:19Þ

B. Notion of equilibrium for the null surface H
in ðM;g;∇̂Þ

Now, let us discuss the case of an equilibrium null
hypersurface Heq, i.e., we want a truly stationary descrip-
tion of our null surface/horizon. First of all, we would
require our theory to have nonpropagating torsion. The
Einstein-Cartan action AEC is given by (2.21),

AEC¼
1

16π

Z
V

ffiffiffiffiffiffi
−g

p
R̂

¼ 1

16π

Z
V

ffiffiffiffiffiffi
−g

p ½Rþ2∇iTi−TaTaþKimjKmij�: ð6:20Þ

We see that this gravitational action does not contain
second derivatives of the torsion term. Hence, in such
theories, the torsion field itself does not propagate.
However the torsion can indirectly propagate through some
other field with which it is coupled. For instance, here the
torsion is carried by the propagation of gab. In principle,
whatever be the case, for a truly stationary description of
our null hypersurface, we would require any torsion current
flowing along the null surfaceH to be zero. The first among
such a nontrivial torsion current is Tabclalc. Setting this to
zero implies our geodesic constraint (4.11). In fact, when
considering the case of a Killing horizon (a stationary
equilibrium description of the horizon), such a torsion
current needs to be eliminated for removing inequivalent
definitions of surface gravity [46]. The second among such
torsion current that we need to consider for our purposes is
Tihjqij. The component of this torsion current flowing
along the null surface (i.e., along the null generators l is
precisely qijTihjkh). We should demand for this component
to vanish in order to have a stationary description of the null
surface/horizon. In fact, the authors of [46] have shown that
only the geodesic constraint (4.11) is required to prove the
zeroth law of black hole mechanics for a Killing horizon
established in ðM;g; ∇̂Þ. They do not demand specifically
the requirement that qijTihjkh be zero as well for the Killing
horizon. In order to prove the zeroth law, the authors

consider the specific case of a Killing horizon having a
bifurfaction 2-surface. However, not all stationary horizons
have a bifurcation 2-surface. Here we postulate that for a
true stationary and hence equilibrium notion of a Kiling
horizon, we require both the conditions Tabclalc ¼ 0 and
qijTijhkh ¼ 0 to be simultaneously implemented. These
two constraints represent our equilibrium conditions. For
such a Killing horizon established in the spacetime
ðM;g; ∇̂Þ, the surface gravity and hence the temperature
is constant over the horizon. Moreover the outgoing

expansion scalar θ̂l

ðdÞ
of the null generators vanish by

definition for a Killing horizon. Now if we perform a
virtual displacement process for such a Killing horizon,
then the thermodynamic interpretation becomes quite clear.
The variation of the entropy due to the torsion term, i.e.,
δλðkÞstor is by default zero under our equilibrium conditions.
Since the temperature is constant over the Killing horizon,
while considering (6.14), we can take T outside the
integral. We then identify the total change of the entropy
Snull of the null surface (Killing horizon) to be
δλðkÞSnull ¼

R
St
d2xδλðkÞsnull. We then finally have the

thermodynamic interpretation established on the Killing
horizon in ðM;g; ∇̂Þ under the virtual displacement δλðkÞ
to be

TδλðkÞSnull ¼ δλðkÞEþ FδλðkÞ: ð6:21Þ

The variation of the energy term is

δλðkÞE¼
Z
St

d2x
ffiffiffi
q

p
δλðkÞ

1

8π

�
1

2
ð2ÞR̂þ lr∇̂rθ̂k

ðdÞ
− Ω̂aΩ̂a

þ Ω̂aP̂
a− D̂aðΩ̂a−P̂aÞ

− ðθ̂k
ðdÞ
qcd− Ξ̂cdÞðTcfdlfÞ−qdjqciðTcbdÞðKaijÞkalb

�
:

ð6:22Þ

Similarly the pressure term for the virtual displacement of
the Killing horizon is

P≡−
1

8π

�
8πTðmÞ

ab þ1

2
ð∇̂iþTiÞð3SiabþSaibþSbiaÞ

�
kalb:

ð6:23Þ

Now, having discussed the physical interpretation of the
thermodynamic identity as applied to a generic hypersur-
face-orthogonal null surface (satisfying the geodesic con-
straint) in the spacetime ðM;g; ∇̂Þ and its relevant
specifications to the case of completely antisymmetric
torsion and the equilibrium case, we delve a little bit more
into the possible origins of the total entropy variation term.
In this regard it helps to compare our results with the
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interpretation provided in [46]. In this paper, the authors in
the context of a local causal horizon established in the
Riemann-Cartan spacetime ðM;g; ∇̂Þ assume an area-
entropy law, where they propose that the variation of the
entropy is proportional to the variation of the horizon cross-
section [see Eq. (69) of [46]]. However, as we have seen in
our case, w.r.t. (6.8), that the total variation of the entropy
density is due to the sum of two contributions. One is due to
the variation of the null surface/horizon cross section under
the virtual displacement δλðkÞ. The other is the entropy
generation term (6.9) due to the nonzero torsion current
qijTihj. One can surely think as to why there is no such
entropy generation term due to the torsion current in the
process involving the local causal horizons described in
[46]. To our understanding, this stems from the difference
in the processes involved. Even though there is no mention
of a virtual displacement process in [46], the entropy
variation in [46] as applied to local causal horizons is
surely due to some physical process (here that represents a
local constitutive relation of entropy balance law on the
local causal horizon). This physical process (involving
matter fluxes across the horizon) clearly shifts the local
causal horizon along its null generators l. As a result the

NRE corresponding to the outgoing expansion scalar θ̂l
ðdÞ

has
been used to compute the variation of the horizon cross
section.
Clearly, whatever the case may be, under the process of

varying the local causal horizons along their null gener-
ators, there does not arise the need for a torsion current of
the type qijTihj. However, the process that we are consid-
ering virtually shifts our null surface along the transverse
auxiliary null field k. The physical processes involved in
both of these considerations are very different. For our case,
as the NRE corresponding to the ingoing expansion scalar

θ̂k

ðdÞ
suggests, we have to very well take into consideration

the entropy generation term due to the torsion current
qijTihj. Setting the component of this torsion current along
the null generators to zero (along with the geodesic
constraint), which we have seen, represents our notion
of an equilibrium horizon.

VII. DISCUSSION AND CONCLUSION

The main aim of the present analysis was to investigate
whether the thermodynamic interpretation of gravitational
dynamics is possible in the presence of torsion in the
spacetime. We found that a particular projection of the
field equation of EC theory of gravity on a generic null
surface indeed provides a thermodynamic structure. The
idea was originally introduced in [30,76] based on an
infinitesimal virtual displacement along the auxiliary null
vector field. Since the original analysis was a noncovariant
one, we here followed the spirit of our earlier work [50] in

order to provide a covariant formalism for a torsion-full
spacetime.
In order to achieve this goal we first needed to visit the

problem of defining in a concrete sense both of the
kinematics and dynamics of the null surface H. Since
we did not find this topic which includes torsion (as far as
we are aware of), the same has been constructed first in this
paper. Here this had been dealt with in details following the
constructions done for the ambient torsionless spacetime
[75]. The case of the null hypersurface in the EC spacetime
is indeed important. The few salient features that separate a
generic hypersurface-orthogonal null surface H in EC
gravity from the one in say Einstein (torsion-free) gravity,
we encountered here, are the following.

(i) Since the ambient connection (∇̂) is not torsion-free,
we see that the connection D̂ compatible with the
spatial 2-metric q of the null surface is also non-
unique and not torsion-free.

(ii) Even in spite of the assumption of hypersurface
orthogonality of H in the RC spacetime, we found
that the twist vector does not vanish.

(iii) The relevant kinematical quantities are modified due
to the presence of torsion. In particular, the extended
second fundamental form (not symmetric) has only
k as the degeneracy direction and not l. The
extended second fundamental form and the defor-
mation rate tensor (symmetric) obviously are not
equivalent.

We studied the extrinsic geometry and the kinematics of H
in the RC spacetime in full generality. We obtained
important generalizations of the geometrical quantities in
the RC spacetime, viz. (extended) second fundamental
form, the Weingarten map, the rotation and Hajicek 1-
forms, the deformation and transversal deformation rate
tensors, and the projected deviation tensor. We then
imposed the geodesic constraint on the structure of H
while studying the dynamical evolution laws of the trans-
versal deformation rate tensor and the ingoing expansion
scalar. The geodesic constraint forces the null generators of
H to be both parallel transported along themselves as well
as extremal geodesic congruences. We precisely saw that
the evolution rate of the ingoing expansion scalar along the
null generators are indeed related to the projection com-
ponent Ĝabkalb that we are interested in.
Having extended this framework to the EC theory, we

then incorporated the dynamics of metric tensor through
equation of motion of gab. This provided one particular
projection of EC equation on our generic null surface. Then
following [30] we provided the process of virtual displace-
ment of H in the transverse auxiliary null vector direction.
This enabled us to interpret this evolution equation “sim-
ilar” to the first law of thermodynamics in a covariant
fashion. We saw the presence of a nontrivial torsion current
Ti

h
jqij leading to nonzero torsion current component

Tihjqijkh along the null generators. This led to an additional
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entropy generation term under the virtual displacement
process. The amount of energy flow across the null surface
under such process now contains additional terms depend-
ing on the nontrivial torsion tensor.
Similarly, the pressure term is not defined only with

respect to the matter energy-momentum tensor. It contains
suitable spin-spin contact interaction terms as well as
covariant derivatives of the torsion term. We mention that
the present thermodynamic interpretation is strictly based
on the geodesic constraint as our evolution equation was
derived within this condition. All of the analysis we saw
consequently reduces to the familiar form when we set the
torsion to zero, i.e., say for the Einstein gravity [50]. The
special case of the torsion field being completely antisym-
metric and its consequences were also discussed. Finally,
we commented upon the case of null surface H being in
equilibrium in the EC gravity theory.
Let us at this point discuss our approach to the viewpoint

of torsion. There have been predominantly two notions of
torsion. It can be considered either as a geometric field or
that of a background dynamical field. Here, in our analysis,
we have leaned onto the geometrical perspective. This is
quite evident in the way we factored the energy and work
done term under the virtual displacement δλðkÞ. In the NRE

(of the ingoing expansion scalar θ̂k
ðdÞ
) (5.14), we had factored

out the energy terms on the basis that they contained terms
purely defined on the two-surface St [along with the term

lr∇̂rðθ̂k
ðdÞ

− qijTihjkhÞ]. The work function contained terms
defined entirely on the four-dimensional manifold
ðM;g; ∇̂Þ. This thermodynamic interpretation provided
to Ĝabkalb through the virtual displacement essentially
takes this viewpoint from the very beginning that torsion is
a geometric field. It is only at the end once the dynamics of
the EC theory has been established [letting the torsion be
sourced by the spin angular momentum tensor (2.23)] that
we can also interpret the work function or rather the
pressure (6.12) in terms of the matter energy-momentum

tensor TðmÞ
ab and the spin angular momentum tensor τabc.

However we can right away begin with the viewpoint of
torsion being a dynamical background field. This viewpoint
lets the torsion terms be a part of an effective stress-energy
tensor Teff

ab. This effective stress-energy tensor is related to
the Riemannian Einstein tensor [see Eq. (2.5.10) of [69]],

Gab ¼ Rab −
1

2
gabR ¼ 8πðTðmÞ

ab þ UabÞ ¼ 8πTeff
ab; ð7:1Þ

where Uab contains terms quadratic in τabc and hence
represents spin-spin contact interaction terms.
Obviously owing to the Bianchi identity, the effective

stress-energy tensor is covariantly conserved with respect
to the Levi-Civita connection ∇. We in our approach did
not proceed with such consideration of an effective

stress-energy tensor [for the Riemannian spacetime
ðM;g;∇Þ] and went purely by the geometrical interpre-
tation. We could however have started with the dynamical
equation for ingoing Riemannian expansion scalar θk [50],

−κθðkÞ ¼
�
−2DaΩa −ΩaΩa þ θðlÞθðkÞ þ li∇iθðkÞ þ

1

2
2R

�

−Gabkalb: ð7:2Þ

This equation as usual relates the dynamical evolution of θk
with Gabkalb and other Riemannian quantities. Using the

fact that θ̂k
ðdÞ

¼ θk, we can certainly use the form of the
ECKS field equation (7.1) in (7.2). Then the process of
virtual displacement would on (7.2) have yielded for us
different energy variation and work done terms. The
pressure, as we can anticipate, would depend on the matter
energy tensor as well the spin-spin contact interaction
terms. The variation of energy term would also be different
from what had been obtained previously. Similarly looking
on the lhs of (7.2), we see that the entropy generation term
is purely due to the change in the cross-sectional area of the
null hypersurface under the virtual displacement. Under
this interpretation, there is no identification of an entropy
generation term due to a nonzero torsion current.
The question then naturally arises as to which interpre-

tation for the torsion field is correct. Is it good to consider it
a geometric field or would it be better if torsion acted as a
background field? This dilemma was also addressed in [46]
where the EC field equations were derived from a gener-
alized Clausius identity δQ ¼ TðdSþ dSiÞ applied to a
local Rindler horizon. In the paper [46], the authors
discussed that the internal entropy production term dSi
followed quite naturally when torsion was considered as a
geometric field. However if torsion was proposed as a
background dynamical field then such a term had to be
imposed by hand in an ad hoc fashion to recover the EC
equations. We also believe that our analysis is more
structured towards interpretation of torsion being a geo-
metric field. However, our stand on this issue is by no
means definitive and remains open to further scrutiny and
interpretation.
Another obvious projection component in the context of

the EC theory, that is not discussed in the analysis, is
Ĝablaqbc. We hope to return to this problem in a future
work [85]. We believe that our foray into this study of the
connection between gravitational dynamics and thermody-
namics in the case of EC gravity is indeed an interesting
one. We hope our present analysis will strengthen and
complement the existing literature on thermodynamic
interpretation of gravitational field equations and thereby
bolstering the emergent nature gravity even in the presence
of torsion.
An interesting question that crops up is whether our

results can be reproduced in the context of Poincare gauge
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theory (PGT) [60,66,86,87]. In PGT, the basic dynamical
variables are the vielbeins and the Lorentz spin connection,
rather than the metric and the general (metric compatible)
connection. Due to the metric compatibility condition, the
Lorentz spin connection is antisymmetric. Under PGT,
the translation field strength is related to the torsion and the
Lorentz field strength is related to the curvature tensor of
the spacetime. Here, both the matter energy momentum
tensor and the spin density tensor source the gravitational
field. Most importantly, PGT is formulated under the
geometrical structure of the RC spacetime. Our central
relationships (5.13) and (5.14), defining the evolution
dynamics of the transversal deformation rate tensor and
the ingoing expansion scalar are completely geometrical
(no use of gravitational field equations) and have been
derived in the backdrop of the RC spacetime. Hence it is
quite expected that these relations can also be exactly
derived in the framework of PGT (using veilbeins and
Lorentz spin connection as dynamical variables). However,
while deriving (5.13), we have used the geodesic constraint
Tb ¼ 0 [see Eq. (4.11)]. Since the torsion tensor is related
to the translation field strength in PGT, it would be quite
instructive to understand the geometric, physical, and
thermodynamic conditions the geodesic constraint imposes
on the translation field strength. Therefore the reformula-
tion of the whole discussion, so far we have done here, in
the language of PGT will be very interesting. For the
moment, we leave this for future study. Finally, there exist
many possibilities of the gravitational lagrangian under
PGT. Out of these, the EC and the teleparallel [86,88]
theories are well known and studied. We have here focused
exclusively on the thermodynamic interpretation under the

ECKS field equations. The EC theory is the simplest of
such cases of possible gravitational Lagrangians under
PGT. Here, torsion cannot propagate outside of matter
sources, i.e., in the absences of spin effects. Thereafter, we
aim to look at the teleparallel theory in a future work
as well.
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APPENDIX A: THE NULL RAYCHAUDHURI
EQUATION VIA THE 3+ 1 NULL

CONSTRUCTION

We can reap the benefit of foliation of the spacetime
ðM;g; ∇̂Þ in the neighborhood of H by the null family of
hypersurfaces to arrive at the NRE. The NRE determines

the dynamics of the outgoing expansion scalar θ̂l
ðdÞ

along the
null generator l. To arrive at the NRE we start from the null
Codacci identity established on H,

∇̂að∇̂blaÞ − ∇̂bð∇̂alaÞ ¼ R̂abla − Td
abð∇̂dlaÞ: ðA1Þ

Let us proceed to manipulate the first term on the lhs of
(A1) using the relation (4.19) and (4.46),

∇̂að∇̂blaÞ ¼ ∇̂aΘ̂a
b þ la∇̂aω̂b þ ω̂bð∇̂alaÞ − ð∇̂albÞðki∇̂ilaÞ − lb∇̂aðki∇̂ilaÞ

¼ ∇̂aΘ̂a
b þ la∇̂aω̂b þ ω̂bð θ̂l

ðdÞ
þ κ − TalaÞ − ðΘ̂ba þ ω̂alb − laðkj∇̂jlbÞÞðki∇̂ilaÞ − lb∇̂aðki∇̂ilaÞ

¼ ∇̂aΘ̂a
b þ la∇̂aω̂b þ ω̂bð θ̂l

ðdÞ
þ κ − TalaÞ − Θ̂baðki∇̂ilaÞ − lbðω̂aðki∇̂ilaÞ − ∇̂aðki∇̂ilaÞÞ: ðA2Þ

Let us now proceed with the second term in the rhs of (A1).
Again using the relation (4.19) and (4.46), we can similarly
show that

∇̂bð∇̂alaÞ ¼ ∇̂bð θ̂l
ðdÞ

þ κ − TalaÞ

¼ ∇̂bð θ̂l
ðdÞ

þ κÞ − lað∇̂bTaÞ − TaΘ̂ab

− ω̂bðTalaÞ þ lbðTaðki∇̂ilaÞÞ: ðA3Þ

Similarly, using (4.19) for the second term in the rhs of
(A1), we have

Td
abð∇̂dlaÞ¼TdabΘ̂adþTdabω̂

dla−Tdabldðkj∇̂jlaÞ: ðA4Þ

Finally, upon using the relations (A2), (A3), and (A4) in the
null Cadacci equation (A1) and simplifying, we end up
having

∇̂aΘ̂a
bþ la∇̂aω̂bþ ω̂bð θ̂l

ðdÞ
þκÞ− Θ̂baðki∇̂ilaÞ

−∇̂bð θ̂l
ðdÞ

þκÞþ lað∇̂bTaÞþTaΘ̂ab

− lb½ω̂aðki∇̂ilaÞ−∇̂aðki∇̂ilaÞþTaðki∇̂ilaÞ�
¼ R̂abla−TfabΘ̂af−Tfabω̂

flaþTfablfðkj∇̂jlaÞ: ðA5Þ

SUMIT DEY and BIBHAS RANJAN MAJHI PHYS. REV. D 105, 064047 (2022)

064047-24



To this end, we simply need to contract the previous equation (A5) with lb. Upon using the following relations,
ω̂ala ¼ κ − kaTa, Θ̂balb ¼ 0, Θ̂ablb ¼ qcaTc, and TaqcaTc ¼ TaTa þ ðTalaÞðkbTbÞ and simplifying the above contracted
(with lb) relation, we have

lb∇̂aΘ̂a
b þ lbðla∇̂aω̂bÞ þ ðκ − kaTaÞð θ̂l

ðdÞ
þ κÞ− lb∇̂bð θ̂l

ðdÞ
þ κÞ þ lblað∇̂bTaÞ þ TaTa þ ðTalaÞðkbTbÞ

¼ R̂ablalb − TfabΘ̂aflb þ Taðkj∇̂jlaÞ: ðA6Þ

Next, we manipulate the term lb∇̂aΘ̂a
b in the lhs of (A6). Using the fact that Θ̂a

blb ¼ qcaT c, we have upon using (4.19)

lb∇̂aΘ̂a
b ¼ ∇̂aðΘ̂a

blbÞ − Θ̂a
bð∇̂albÞ

¼ ∇̂aðqcaTcÞ − Θ̂a
bðΘ̂b

a þ ω̂alb − laðkj∇̂jlbÞÞ
¼ ∇̂aðTa þ ðkcTcÞlaÞ − Θ̂abΘ̂ba − ω̂aΘ̂a

blb

¼ ∇̂aTa þ ðla∇̂akcÞTc þ ðla∇̂aT cÞkc þ ðkcT cÞð θ̂l
ðdÞ

þ κÞ − ðTalaÞðkcT cÞ
− Θ̂abΘ̂ba − ω̂aTa − ðκ − kaTaÞðkcTcÞ: ðA7Þ

Upon using the relation of the rotation 1-form (4.40) in the
previous relation (A7) and simplifying, we end up with,

lb∇̂aΘ̂a
b ¼ ð∇̂aTaÞ− ðTabckalbÞTcþðla∇̂aTcÞkc

þðkcTcÞð θ̂l
ðdÞ

−TalaÞþ ðkaTaÞðkbTbÞ− Θ̂abΘ̂ba:

ðA8Þ

After this, we focus on the term lbðla∇̂aω̂bÞ in the lhs of
(A6) and use the fact that lbω̂b ¼ κ − kaTa along with the
implementation of (4.40)

lbðla∇̂aω̂bÞ ¼ la∇̂aðκ − kcTcÞ − ω̂bðla∇̂albÞ
¼ la∇̂aκ − 2ω̂aTa þ ðTabckalbÞTc

− kcðla∇̂aT cÞ − κ2 þ κðkaTaÞ: ðA9Þ

Adding (A8) and (A9) leads to, upon simplification,

lb∇̂aΘ̂a
b þ lbla∇̂aω̂b ¼ ∇̂aTa þ ðkbTbÞð θ̂l

ðdÞ
− TalaÞ

þ ðkaTaÞðkbTbÞ− Θ̂abΘ̂ba

þ la∇̂aκ − 2ω̂aTa − κ2 þ κðkaTaÞ:
ðA10Þ

Putting the above relation (A10) in (A6) and simplifying,
we get

∇̂aTa þ ðkaTaÞðkbTbÞ − Θ̂abΘ̂ba − 2ω̂aTa þ κ θ̂l

ðdÞ

− lb∇̂b θ̂l

ðdÞ
þ lblað∇̂bTaÞ þ TaTa

¼ R̂ablalb − TfabΘ̂aflb þ Taðkj∇̂jlaÞ: ðA11Þ

After this, we consider a further manipulation of the term
∇̂aTa using the relation (4.19),

∇̂aTa ¼ ∇̂aðTb
a
clblcÞ

¼ ð∇̂aTb
a
cÞlblc þ Tb

a
cð∇̂albÞlc þ Tb

a
clbð∇̂alcÞ

¼ ð∇̂aTb
a
cÞlblc þ TbaclcΘ̂ba þ TbaclbΘ̂ca

þ 2Taω̂a þ T cðkj∇̂jlcÞ: ðA12Þ

Putting the above relation (A12) in (A11) and further
simplifying leads us to

ð∇̂aTb
a
cÞlblc þ ðTabc þ Tcba þ TbacÞΘ̂ablc

þ ðkaTaÞðkbTbÞ − Θ̂abΘ̂ba þ κ θ̂l

ðdÞ
− lb∇̂b θ̂l

ðdÞ

þ lblað∇̂bTaÞ þ TaTa ¼ R̂ablalb: ðA13Þ

We should be careful not to assign (A13) as being
interpreted as the NRE. This is because we notice the
trace of the extended second fundamental form Θ̂ab is not

the true outgoing expansion scalar θ̂l
ðdÞ
. It would be better to

rewrite any Θ̂ab occurring in (A13) by the corresponding
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projected deviation tensor B̂ab or the deformation rate
tensor χ̂ab, since the trace of both of these tensors gives the

true outgoing expansion scalar θ̂l

ðdÞ
. This can be done by

the virtue of (4.65) or (4.47). However, here we will
progress with the projected deviation tensor in order to
corroborate our results with [46]. Using (4.65) through
some moderate but straightforward algebra, it can be
shown that

Θ̂abΘ̂ba ¼ B̂abB̂
ba − 2B̂ablcTbca þ ðTaibliÞðTbkalkÞ

þ ðTakaÞðTbkbÞ − 2TaTaiblikb: ðA14Þ

Using the symmetries of the torsion tensor, similar straight-
forward algebra shows that

lcðTabc þ Tcba þ TbacÞΘ̂ab

¼ −B̂ablcðTacb þ Tbca þ TcabÞ
þ TakblklcðTacb þ Tbca þ TcabÞ þ 2TcablcTakb

− 2ðTakaÞðTbkbÞ − 2TijbkiljTb: ðA15Þ
Combining the last two relations (A14) and (A15), we have
after some simplification,

lcðTabc þ Tcba þ TbacÞΘ̂ab − Θ̂abΘ̂ba

¼ −B̂abðTacb − Tbca þ TcabÞlc þ Ta
i
bliljðTajb þ TjabÞ

− B̂abB̂ba − 3ðTakaÞðTbkbÞ − 2TaTabckblc

− 2T cTabckalb þ 2TbTcbalcka: ðA16Þ
Putting (A16) in (A13), we obtain as a result

la∇̂a θ̂l

ðdÞ
¼ −R̂ablalb þ ð∇̂aTbacÞlblc þ κ θ̂l

ðdÞ
þ lblað∇̂bTaÞ þ TaTa

− B̂abðTacb − Tbca þ TcabÞlc þ liljTa
i
bðTajb þ TjabÞ − B̂abB̂ba

þ ½−2ðTakaÞðTbkbÞ − 2TakblcðTabc þ Tbca þ TcbaÞ�: ðA17Þ

As usual using (4.66) we have finally the NRE corresponding to a hypersurface-orthogonal null congruence,

la∇̂a θ̂l

ðdÞ
¼ −R̂ablalb þ ð∇̂aTbacÞlblc þ κ θ̂l

ðdÞ
þ lblað∇̂bTaÞ þ TaTa

− ðl;BÞ
ω̂abðTacb − Tbca þ TcabÞlc þ liljTa

i
bðTajb þ TjabÞ

−
1

2
ð θ̂l
ðdÞ
Þ2 − ðl;BÞ ˆσab

ðl;BÞ ˆσabþ ðl;BÞ ˆωab
ðl;BÞ

ω̂ab

þ ½−2ðTakaÞðTbkbÞ − 2TakblcðTabc þ Tbca þ TcbaÞ�: ðA18Þ

The above Eq. (A18) represents the evolution of the

outgoing expansion scalar θ̂l

ðdÞ
along the null congruence

l. Notice, that as of yet we have not imposed the geodesic
constraint and hence even though the congruence l is
geodesic, it not autoparallel. The present Eq. (A18) should
be matched with Eq. (66) of [46]. Equation (66) of [46] has
been written down for an affinely parametrized null
congruence (κ ¼ 0). Our Eq. (A18) matches exactly with
Eq. (66) of [46] except for the last terms in the squared
parentheses (i.e., the terms containing Ta). Even though the
authors of [46] claim that their Eq. (66) represents the NRE
in its full generality, we believe that they have missed the
terms in the square parentheses. Notice that the NRE (A18)
in this generality depends upon the auxiliary null vector
field k. This is somewhat a rather peculiar feature. This is
because, for our construction the auxiliary null vector is
uniquely defined. The auxiliary null field is transverse
to the null generator as well as being orthogonal to the
two-dimensional subspace St. This necessarily implies that

the evolution of the outgoing expansion scalar θ̂l
ðdÞ

along the
null generator l actually encodes information of a direction
that is transverse to the null generators and orthogonal to
the spacelike submanifold of H. It is quite an instructive
exercise to verify that if we decompose (A18) into its pure
Riemannian parts and the pure torsion terms on both sides
of the equation, we end up having the NRE for the outgoing
expansion scalar θl of H established in the Riemannian
spacetime ðM;g;∇Þ (provided with the Levi-Civita con-
nection∇). For arriving at the result, we make the following
observations based on the projected deviation tensor. It can
quite simply be established that

B̂ab ¼ B̃ab þ ðKabc − TabcÞlc
þ ½laðKdbc − TdbcÞkdlc þ lbðKadc − TadcÞkdlc�
þ lalbðKcdf − TcdfÞkckdlf
þ ðTakb − kaTbÞ þ ðlakb − kalbÞðkiT iÞ; ðA19Þ
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where B̃ab ¼ qaiqbjð∇jliÞ is the projected deviation tensor
as computed for the null congruence l in the spacetime
ðM;g;∇Þ endowed with the Levi-Civita connection.
Taking the trace of (A19) on both sides leads to the fact
that the outgoing expansion scalars for the Riemann-Cartan
and the Riemannian versions are the same, i.e.,

θ̂l

ðdÞ
¼ θl ¼ ∇̂ala − κ þ Tala ¼ ∇ala − κ: ðA20Þ

Similarly, the shear torsions are related by

ðl;BÞ ˆσab ¼ ðl;BÞσab þ lalbðKcdf − TcdfÞkckdlf; ðA21Þ

where ðl;BÞσab ¼ B̃ðabÞ − 1
2
qabθl. For a hypersurface

orthogonal null congruence H generated by l in
ðM;g;∇Þ, we have the antisymmetric part of the projected
deviation tensor B̃ab to be zero, i.e., B̃½ab� ¼ 0 [41]. Hence,

ðl;BÞ ˆωab ¼ B̂½ab�
¼ Kacblc þ ðlaKdcb − lbKdcaÞkdlc
þ ðTakb − kaTbÞ þ ðlakb − kalbÞðkiT iÞ: ðA22Þ

Finally we would require the decomposition of the Ricci
tensor in ðM;g; ∇̂Þ in terms of the pure Riemannian
counterpart and pure torsion terms, i.e.,

R̂ab ¼ Rab þ ∇̂iKi
ba þ ∇̂bTa þ Ti

jbKj
ia

þ Ki
jaKj

bi þ TiKi
ba: ðA23Þ

Putting (A20), (A21), (A22), and (A23) in (A18), leads
upon simplification to the well-known NRE for θl,

la∇aθl ¼ −Rablalb þ κθl −
1

2
θ2l −

ðl;BÞσabðl;BÞσab: ðA24Þ

Finally, if we want to consider a system of hypersurface-
orthogonal autoparallel geodesic null congruence generat-
ing H, then we have to impose the geodesic constraint
Ta ¼ 0 in (A18). For this particular case then, we have

la∇̂a θ̂l

ðdÞ
¼ −R̂ablalb þ κ θ̂l

ðdÞ
−
1

2
ð θ̂l
ðdÞ
Þ2 − ðl;BÞ ˆσab

ðl;BÞ ˆσab

þ ðl;BÞ ˆωab
ðl;BÞ

ω̂ab− ðl;BÞ
ω̂abðTacb − Tbca þ TcabÞlc

þ liljTa
i
bðTajb þ TjabÞ

þ ð∇̂aTbacÞlblc þ lblað∇̂bTaÞ: ðA25Þ

The above equation under the geodesic constraint deter-

mines the evolution of the outgoing expansion scalar θ̂l

ðdÞ

along l and contains explicitly no knowledge of the
auxiliary null field k.

APPENDIX B: DERIVATION
OF THE RELATION (5.3)

Let us manipulate the first term, i.e., D̂aðD̂bvaÞ of (5.2),

D̂aðD̂bvaÞ ¼ qibqlk∇̂lðqmiqks∇̂mvsÞ
¼ qibqls∇̂lðδmi þ lmki þ kmliÞð∇̂mvsÞ þ qmbqlk∇̂lðδks þ lkks þ kklsÞð∇̂mvsÞ þ qmbqls∇̂l∇̂mvs:

¼ qibqlslmð∇̂lkiÞð∇̂mvsÞ þ qibqlskmð∇̂lliÞð∇̂mvsÞ þ qmbqlkksð∇̂llkÞð∇̂mvsÞ
þ qmbqlklsð∇̂lkkÞð∇̂mvsÞ þ qmbqls∇̂l∇̂mvs: ðB1Þ

Upon using (4.55) and (4.48) in (B1),we have

D̂aðD̂bvaÞ ¼ qibqlslm½Ξ̂li − qclqdiKfcdkf�ð∇̂mvsÞ
þ qibqlskm½χ̂li − qclqdiKfcdlf�ð∇̂mvsÞ
þ qmbqlkls½Ξ̂lk − qcl q

d
kKfcdkf�ð∇̂mvsÞ

þ qmbqlkks½χ̂lk − qclqdkKfcdlf�ð∇̂mvsÞ
þ qmbqls∇̂l∇̂mvs: ðB2Þ

The above expression can be very easily expressed as

D̂aðD̂bvaÞ ¼ ½Ξ̂sb − qcsqdbKfcdkf�ðlm∇̂mvsÞ
þ ½χ̂sb − qcsqdbKfcdlf�ðkm∇̂mvsÞ

þ ½ðθ̂k
ðdÞ

− qcdKfcdkfÞqmb�ðls∇̂mvsÞ

þ ½ð θ̂l
ðdÞ

− qcdKfcdlfÞqmb�ðks∇̂mvsÞ
þ qmbqls∇̂l∇̂mvs: ðB3Þ

Let us now deal with the second term D̂bðD̂avaÞ of (5.2),

D̂bðD̂avaÞ ¼ qmsqrb∇̂rðqim þ qsj∇̂ivjÞ: ðB4Þ
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Using an exactly similar analysis as was done for
D̂aðD̂bvaÞ, it can be verified that

D̂bðD̂avaÞ ¼ ½Ξ̂bs − qcbqdsKfcdkf�ðlm∇̂mvsÞ
þ ½χ̂bs − qcbqdsKfcdlf�ðkm∇̂mvsÞ
þ ½χ̂mb − qcbqdmKfcdlf�ðks∇̂mvsÞ
þ ½Ξ̂m

b − qcbqdmKfcdkf�ðls∇̂mvsÞ
þ qmbqls∇̂m∇̂lvs: ðB5Þ

Before proceeding forward let us list a few results
obtained from the properties of the torsion and contorsion
tensor,

ðqcbqdsKfcd − qdsqcbKfdcÞkf ¼ qcbqdsðKfcd − KfdcÞkf
¼ qcbqdsðTfcdkfÞ: ðB6Þ

ðqcbqdsKfcd − qdsqcbKfdcÞlf ¼ qcbqdsðTfcdlfÞ: ðB7Þ

Finally, subtracting (B5) from (B3) and utilizing the
symmetry of the deformation rate and transversal defor-
mation rate tensors along with (B6) and (B7) we have our
desired result (5.3).

APPENDIX C: PROOF OF EQ. (5.5)

Due to the presence of torsion in the ambient spacetime
ðM;g; ∇̂Þ, the submanifold ðSt; q; D̂Þ is not torsion free
with an intrinsic ð2ÞTa

bc present in it. For any two vectors
ðX;YÞ ∈ T PðStÞ ⊗ T PðStÞ, we have from the definition of
torsion as

ð2ÞTðX;YÞ ¼ D̂XY − D̂YX − ð2Þ½X;Y�; ðC1Þ

where ð2Þ½X;Y� ¼ ð2Þ£XY is the intrinsic Lie bracket
defined for the manifold ðSt; q; D̂Þ. In index notation, this
translates to

ð2ÞTa
bcXbYc ¼ XiD̂iYa − YiD̂iXa − ð2Þ£XYa: ðC2Þ

Now, since the vectors X and Y lie in the tangent space
established on St, the Lie bracket of these two vectors also
belongs to T PðStÞ. Following from the Frobenius theorem
[89], we have

ð2Þ½X;Y�a ¼ qab½X;Y�b: ðC3Þ

Expanding the above relation (C3), we have

XbD̂bYa − YbD̂bXa − ð2ÞTa
bcXbYc

¼ qab½Xc∇̂cYb − Yc∇̂cXb − Tb
cdXcYd�: ðC4Þ

Using the fact that X and Y are spatial tangent vectors on St,
we have as consequence, qabXc∇̂cYb ¼ XcD̂cYa and
qabYc∇̂cXb ¼ YcD̂cXa. Using these relations in (C4)
and simplifying, we obtain the following:

ð2ÞTa
bcXbYc ¼ Ta

bcXbYc þ lakdTdbcXbYc

þ kaldTdbcXbYc: ðC5Þ
From this, it follows that

ð2ÞTa
bcqbiqcjXiYj¼Ta

bcqbiqcjXiYjþ lakdTdbcqbiqcjXiYj

þkaldTdbcqbiqcjXiYj: ðC6Þ

From the above we can have

qfað2ÞTa
bcqbiqcjXiYj ¼ qfaTa

bcqbiqcjXiYj: ðC7Þ

Since all of the indices of the four-dimensional torsion
tensor have been projected onto the surface St we have
finally the result,

qcbqdsqmfTf
cd ¼ qcbqdsqmf

ð2ÞTf
cd ¼ ð2ÞTm

bs: ðC8Þ

APPENDIX D: DERIVATION OF THE
RELATIONS (5.10) AND (5.12)

We begin by noticing that

qmbqlsqpaR̂
s
plm ¼ qmbqpaðR̂pm þ R̂sprmlrks þ R̂sprmkrlsÞ:

ðD1Þ

Let us list a few relevant properties involving curvature
tensors in metric affine spacetime ðM;g; ∇̂Þ. Even though
the Riemann curvature tensor is antisymmetric in the first
two and the last two indices, it is not symmetric under
pairwise exchange,

R̂cdab¼ R̂abcdþQ̂abcd; where

Q̂abcd¼−
3

2
ð∇̂½bT jajcd�−∇̂½aT jbjcd�−∇̂½dT jcjab� þ∇̂½cT jdjab�

þTae½bTe
cd�−Tbe½aTe

cd�−Tce½dTe
ab� þTde½cTe

ab�Þ;
ðD2Þ

where jj indicates the enclosed index barred from anti-
symmetrization. Using the above property (D2) in (D1), we
obtain

qmbqlsqpaR̂
s
plm¼qmbqpaðR̂pmþlrðR̂sprmksÞ

þlrðR̂smrpksÞþQ̂rmspkrlsÞ: ðD3Þ

Using the Ricci identity (2.10) for the auxiliary vector field
k, we have
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qmbqlsqpaR̂
s
plm ¼ qmbqpaðR̂pm − lr∇̂r∇̂mkp þ lr∇̂m∇̂rkp − lrTd

rmð∇̂dkpÞ
− lr∇̂r∇̂pkm þ lr∇̂p∇̂rkm − lrTd

rpð∇̂dkmÞÞ þ qmbqpaQ̂rmspkrls

¼ qmbqpa½R̂pm− lr∇̂rð∇̂mkpÞ − lr∇̂rð∇̂pkmÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
A1

þ ∇̂mðlr∇̂rkpÞ þ ∇̂pðlr∇rkmÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
A2

− ð∇̂mlrÞð∇̂rkpÞ − ð∇̂plrÞð∇̂rkmÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
A3

− lrTd
rmð∇̂dkpÞ − lrTd

rpð∇̂dkmÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
A4

�

þ qmbqpaQ̂rmspkrls: ðD4Þ

Let us build on this calculation step by step. We first evaluate the projection of the quantity A1. Using (4.55) and the
symmetry of the transversal deformation rate tensor we obtain

qmbqpað−lr∇̂rð∇̂mkpÞ − lr∇̂rð∇̂pkmÞÞ ¼ −qmbqpalr½2∇̂rΞ̂mp − Ω̂mð∇̂rkpÞ − Ω̂pð∇̂rkmÞ
− ð∇̂rkmÞω̂p − ð∇̂rkpÞω̂m − ð∇̂rlmÞðki∇̂ikpÞ
− ð∇̂rlpÞðki∇̂ikmÞ þ ð∇̂rkmÞðTdepkdleÞ
þ ð∇̂rkpÞðTdemkdleÞ − ∇̂rððqcmqdp þ qcpqdmÞKfcdkfÞ� ðD5Þ

Upon this present relation (D5), we will use the autoparallel equation under the geodesic constraint, i.e., lb∇̂bla ¼ κla as
well as (4.40). Let us further introduce a notation to reduce the clutter of indices,

P̂a ≡ Tbcdkblcqda: ðD6Þ

Finally simplifying (D5), we have

qmbqpað−lr∇̂rð∇̂mkpÞ − lr∇̂rð∇̂pkmÞÞ ¼ −qmbqpalr∇̂r½2Ξ̂mp − ðqcmqdp þ qcpqdmÞðKfcdkfÞ�
þ 4Ω̂aΩ̂b − 3P̂aΩ̂b − 3Ω̂aP̂b þ 2P̂aP̂b: ðD7Þ

Proceeding to the next term in (D4), and using lr∇̂rkp ¼ ω̂p − P̂p, we have

qmbqpað∇̂mðlr∇̂rkpÞ þ ∇̂pðlr∇̂rkmÞÞ ¼ qmbqpaðð∇̂mω̂p þ ∇̂pω̂mÞ − ð∇̂mP̂p þ ∇̂pP̂mÞÞ: ðD8Þ

Proceeding on to the spatial projection of the term A3, we again as usual use the relations (4.55) and (4.48) and simplify to
have

qmbqpað−ð∇̂mlrÞð∇̂rkpÞ − ð∇̂plrÞð∇̂rkmÞÞ ¼ −χ̂rbΞ̂ra − χ̂raΞ̂rb − 2Ω̂aΩ̂b þ ðΩ̂aP̂b þ Ω̂bP̂aÞ
þ ½qjaχ̂ib þ qjbχ̂ia�ðKhijkhÞ þ ½qcaΞ̂d

b þ qcbΞ̂d
a�ðKfcdlfÞ

− ½qcbqdiqja þ qcaqdiqjb�ðKfcdlfÞðKhijkhÞ: ðD9Þ

Similar analysis on the spatial projection of term A4 leads us to

qmbqpað−lrTd
rmð∇̂dkpÞ − lrTd

rpð∇̂dkmÞÞ ¼ −ðΞ̂c
aqdb þ Ξ̂c

bqdaÞðTcfdlfÞ − 2P̂aP̂b

þ ðΩ̂aP̂b þ Ω̂bP̂aÞ þ ðqdbqjaqci þ qdaqjbqciÞðTcdflfÞðKhijkhÞ: ðD10Þ

Adding up (D7), (D8), (D10), and (D10) in (D4) and proceeding to simplify, we have our result (5.10).
Notice that in (5.10), there exists the term qmbqpalr∇̂rð2Ξ̂mpÞ. We will convert the covariant derivative into a Lie

derivative term along the null generator to go ahead towards our construction of the evolution equation of the transversal
deformation rate tensor. It is quite easy to show that
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£lΞ̂mp ¼ li∂iΞ̂mp þ Ξ̂mi∂pli þ Ξ̂ip∂mli

¼ lr∇̂rΞ̂mp þ Ξ̂i
mð∇̂pliÞ þ Ξ̂i

pð∇̂mliÞ þ Ξ̂s
pðTsimliÞ þ Ξ̂s

mðTsipliÞ: ðD11Þ

Projecting the Lie derivative along the null generator l of the transversal deviation rate tensor £lΞ̂mp onto the spatial cross-
section St, we the use (4.48) and simplify to have

−2qmbqpalr∇̂rð2Ξ̂mpÞ ¼ −2qmbqpa£lΞ̂mp þ 2½Ξ̂c
aqdb þ Ξ̂c

bqda�ðTcfdlfÞ
× 2ðχ̂aiΞ̂i

b þ χ̂biΞ̂i
aÞ − 2½qcaΞ̂d

b þ qcbΞ̂d
a�ðKfcdlfÞ: ðD12Þ

There also exists the term qmbqpalr½∇̂rðqimqjp þ qipqjmÞðKhijkhÞ� in (5.10). In a similar fashion, following (D11) and
(D12), we want to convert the covariant derivative into a Lie derivative term. After a few lines of simple algebra, we have

qmbqpalr½∇̂rðqimqjp þ qipqjmÞðKhijkhÞ� ¼ qmbqpa£l½ðqimqjp þ qipqjmÞðKhijkhÞ�
− ½ðqjaqdb þ qjbqdaÞqic þ ðqiaqdb þ qibqdaÞqjc�ðTcfdlfÞðKhijkhÞ
− ½χ̂iaqjb þ χ̂ibqja þ χ̂jaqib þ χ̂jbqia�ðKhijkhÞ
þ ½ðqcaqjb þ qcbqjaÞqid þ ðqcaqib þ qcbqiaÞqjd�ðKfcdlfÞðKhijkhÞ: ðD13Þ

We have one more transformation to do. We consider the sixth term of the rhs of (5.10), i.e., qmbqpa½ð∇̂mω̂p þ ∇̂pω̂mÞ−
ð∇̂mP̂p þ ∇̂pP̂mÞ�. We aim to convert the spacetime covariant derivatives into spatial derivatives. Notice that P̂a acts on
the tangent space of St and hence is spatial 1-form. Hence upon using the relation ω̂a ¼ Ω̂a − κla under the geodesic
constraint, we have

qmbqpa½ð∇̂mω̂p þ ∇̂pω̂mÞ − ð∇̂mP̂p þ ∇̂pP̂mÞ� ¼ qmbqpa½ð∇̂mΩ̂p þ ∇̂pΩ̂mÞ − κð∇̂mkpÞ − κð∇̂pkmÞ�
− ðD̂aP̂b þ D̂bP̂aÞ: ðD14Þ

Upon using (4.55) in the above Eq. (D14), we have

qmbqpa½ð∇̂mω̂p þ ∇̂pω̂mÞ − ð∇̂mP̂p þ ∇̂pP̂mÞ� ¼ D̂aðΩ̂b − P̂bÞ þ D̂bðΩ̂a − P̂aÞ − 2κΞ̂ab

þ κðqibqja þ qiaqjbÞðKhijkhÞ: ðD15Þ

At the end of this, finally using (D12), (D13), and (D15) in (5.10), we obtain, after some simplification, our desired
result (5.12).

APPENDIX E: DERIVATION OF THE RESULT (5.14)

Let us for the benefit of the reader list the individual traces of the terms in the rhs of (5.10).
(1) gabqmbqpaQ̂rmspkrls ¼ qbdQ̂abcdkalc.
(2) gabqmbqpaR̂pm ¼ R̂þ ðR̂ablakb þ R̂abkalbÞ.
(3) −gabqmbqpalr∇̂r½2Ξ̂mp−ðqimqjpþqipqjmÞðKhijkhÞ�¼−2lr∇̂rðθ̂k

ðdÞ
−qijTihjkhÞ.

(4) gabð2Ω̂aΩ̂aÞ ¼ 2Ω̂aΩ̂a.
(5) −gabðΩ̂aP̂b þ P̂aΩ̂bÞ ¼ −2Ω̂aP̂

a.
(6) gabqmbqpa½ð∇̂mω̂p þ ∇̂pω̂mÞ − ð∇̂mP̂p þ ∇̂pP̂mÞ� ¼ 2D̂aðΩ̂a − P̂aÞ − 2κðθ̂k

ðdÞ
− qijTihjkhÞ.

(7) −gabðχ̂rbΞ̂ra þ χ̂raΞ̂rbÞ ¼ −2Ξ̂abχ̂
ab.

(8) gabðqjaχ̂ib þ qjbχ̂iaÞðKhijkhÞ ¼ 2χ̂ijTihjkh.
(9) gabðqcaΞ̂d

b þ qcbΞ̂d
aÞðKfcdlfÞ ¼ 2Ξ̂cdTcfdlf.

(10) −gabðΞ̂c
aqdb þ Ξ̂c

bqdaÞðTcfdlfÞ ¼ −2Ξ̂cdTcfdlf.
(11) −gab½qcbqjaqdi þ qcaqjbqdi�ðKfcdlfÞðKhijkhÞ ¼ −2qcjqdiðKfcdlfÞðKhijkhÞ.
(12) gab½qjaqdbqci þ qjbqdaqci�ðTcfdlfÞðKhijkhÞ ¼

2qdjqciðTcfdlfÞðKhijkhÞ.
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Adding up the traces we have

gabðqmbqlsqpaR̂
s
plmÞ ¼ qbdQ̂abcdkalc þ R̂þ ðR̂ablakb þ R̂abkalbÞ − 2lr∇̂rðθ̂k

ðdÞ
− qijTihjkhÞ

þ 2Ω̂aΩ̂a − 2Ω̂aP̂
a þ 2D̂aðΩ̂a − P̂aÞ − 2κðθ̂k

ðdÞ
− qijTihjkhÞ − 2Ξ̂abχ̂

ab þ 2χ̂ijTihjkh

− 2qcjqdiðKfcdlfÞðKhijkhÞ þ 2qdjqciðTcfdlfÞðKhijkhÞ: ðE1Þ

Now we have to take the trace of (5.9) and put the value of gabðqmbqlsqpaR̂
s
plmÞ from (E1). That leads us to, upon

simplification,

−κðθ̂k
ðdÞ

− qijTihjkhÞ ¼
1

2
ð2ÞR̂ −

1

2
qbdQ̂abcdkalc −

1

2
R̂ −

1

2
ðR̂ablakb þ R̂abkalbÞ − Ω̂aΩ̂a þ Ω̂aP̂

a

þ lr∇̂rðθ̂k
ðdÞ

− qijTihjkhÞ − D̂aðΩ̂a − P̂aÞ þ θ̂l

ðdÞ
ðθ̂k
ðdÞ

− qijTihjkhÞ − ½θ̂k
ðdÞ
qcd − Ξ̂cd�ðTcfdlfÞ

− ½qdjqci − qcdqij�ðTcfdlfÞðKhijkhÞ: ðE2Þ

Onwards, using the symmetries of the tensor Q̂abcd, we go on to compute the quantity qbdQ̂abcdkalc. The tensor Q̂abcd like
the curvature tensor is antisymmteric in the first and the second pair of indices. We have hence upon using the symmetries of
Q̂abcd,

qbdQ̂abcdkalc ¼ gbdQ̂abcdkalc − Q̂abcdkakclbld: ðE3Þ

From (D2), we see that all the individual terms inside the expression for Q̂abcd is antisymmetric in either a and c or b and d.
Hence Q̂abcdkakclbld vanishes. Hence,

qbdQ̂abcdkalc ¼ −
3

2
gbdkalcð∇̂½bT jajcd� − ∇̂½aT jbjcd� − ∇̂½dT jcjab� þ ∇̂½cT jdjab�

þ Tae½bTe
cd� − Tbe½aTe

cd� − Tce½dTe
ab� þ Tde½cTe

ab�Þ

¼ −
3

2
gbdkalcð−∇̂½aT jbjcd� þ ∇̂½cT jdjab� − Tbe½aTe

cd� þ Tde½cTe
ab�Þ: ðE4Þ

Upon expanding the antisymmetric parts, we have

−
3

2
gbdkalcð−∇̂½aT jbjcd� þ ∇̂½cT jdjab�Þ ¼ kalcð∇̂aTc − ∇̂cTa þ ∇̂dTd

acÞ;

−
3

2
gbdkalcð−Tbe½aTe

cd� þ Tde½cTe
ab�Þ ¼ kalcðgbdðTbeaTe

cd − TbecTe
adÞ þ TeTe

acÞ: ðE5Þ

Hence we have as a result,

qbdQ̂abcdkalc ¼ ½ð∇̂aTb − ∇̂bTaÞ þ ∇̂iTi
ab þ ðTi

eaTe
bi − Ti

ebTe
aiÞ þ TiTi

ab�kalb: ðE6Þ

However, owing to the symmetry property of the torsion tensor, it is quite easy to see that

Ti
eaTe

bi − Ti
ebTe

ai ¼ 0: ðE7Þ

Hence we have

qbdQ̂abcdkalc ¼ ½ð∇̂aTb − ∇̂bTaÞ þ ð∇̂i þ TiÞTi
ab�kalb: ðE8Þ
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Next, we will deal with the term ðR̂ablakb þ R̂abkalbÞ ¼
ðR̂ab þ R̂baÞkalb in (E2). Following simply the definition of
the Riemann-curvature tensor in the spacetime ðM;g; ∇̂Þ,
we have for the Ricci tensor,

R̂ba ¼ R̂ab þ ð∇̂aTb − ∇̂bTaÞ þ ð∇̂i þ TiÞTi
ab: ðE9Þ

Using the above relation (E9) and the fact that
R̂ ¼ −gablakbR̂, we obtain

−
1

2
ðR̂ablakb þ R̂abkalbÞ −

1

2
R̂

¼ −
�
Ĝab þ

1

2
ð∇̂aTb − ∇̂bTaÞ þ

1

2
ð∇̂i þ TiÞTi

ab

�
kalb;

ðE10Þ

where as usual we have Ĝab ¼ R̂ab − 1
2
gabR̂. Using the

relations (E10) and (E8), we have

−
1

2
qbdQ̂abcdkalc −

1

2
ðR̂ablakb þ R̂abkalbÞ −

1

2
R̂

¼ −Ĝabkalb − ½ð∇̂aTb − ∇̂bTaÞ þ ð∇̂i þ TiÞTi
ab�kalb
ðE11Þ

Let us then rewrite (E2) using (E11) and hence end up with
the relation (5.14).
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la relativité généralisée (première partie), Ann. Sci. de
l’École Normale Supérieure 3e série 40, 325 (1923).
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