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Black holes and Buchdahl stars are identified respectively by ΦðRÞ ¼ 1=2; 4=9, where gtt ¼ 1–2ΦðRÞ
for a spherically-symmetric static metric. We investigate the maximum force for black holes
and Buchdahl stars when one of the participating objects is charged and/or rotating while the
other is neutral and nonrotating. It turns out that the maximum force between two Schwarzschild
objects is universal, given in terms of the fundamental constant velocity of light and the gravitational
constant in general relativity (GR) in the usual four-dimensional spacetime. In general this feature
uniquely picks out the pure Lovelock gravity (having only one Nth order term in action which includes
GR in the linear order N ¼ 1) and the dimensional spectrum, D ¼ 3N þ 1, where N is degree of the
Lovelock polynomial action.
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I. INTRODUCTION

In Newtonian gravity, there is no upper bound on force
which goes on increasing as the distance between the
objects decreases, and in the limit of the point particles it
diverges. In general relativity (GR), on the other hand, as
body becomes more and more compact it turns into a
black hole—the black hole horizon forms that provide
the lower bound on the separating distance. It could then
define the maximum value that a force between any two
objects can physically attain. It has been computed
in various situations; the maximum force or tension
between two equal mass static uncharged Schwarzschild
black holes touching each other at the horizon [1,2] is
given by

Fmax ¼ c4=4G; ð1Þ

where c is the velocity of light and G is the Newtonian
gravitational constant. This would in turn define the
maximum power attainable in any physical system as

Pmax ¼ cFmax ¼ c5=4G: ð2Þ

This is known as the so-called Dyson luminosity [3], or
some multiple of it to account for geometrical factors
Oð1Þ. This limits maximum possible luminosity in gravi-
tational or indeed any other forms of radiation that an
isolated system may emit, [4,5]. Schiller has further
proposed and surmised that the existence of a maximum

force implies GR1 just as maximum velocity characterizes
special relativity. Recently Schiller [9] also proposed tests
for the maximum force and power. There have been
several computations of maximum force in different
settings [10,11] and also of maximum entropy emission
[12]. All this would have important implications on the
cosmic censorship conjecture [13–15].
Further let us write the maximum force in Planck units in

D spacetime dimensions which would read as

Fpl ¼ G2=ð2−DÞ
D cð4þDÞ=ðD−2Þhð4−DÞ=ð2−DÞ; ð3Þ

which is free of the Planck’s constant h if and only if
D ¼ 4. In four spacetime dimension, it is solely given in
terms of the fundamental constant velocity of light and the
gravitational constant, and is free of everything else.
Thus, the bound is universal except for the dimensionality

of spacetime and it is expected to remain true even when
quantum gravity effects are included or in full theory of
quantum gravity. It also turns out that it remains unaltered
when the cosmological constant Λ is included [2].
Further also note that the ratio of magnetic moment to

angular momentum is also free of the Planck’s constant h
[16]. This indicates something fundamental and natural
about these nonquantum universal units that is unique to

*nkd@iucaa.in

1This is not exactly true as it turns out that pure Lovelock
theory as well as Moffat’s gravity theory [6] do admit maximum
force. What is true, however, is the fact [7] that the existence of
maximum force bound in terms of only the fundamental constant
velocity of light and the gravitational constant, does lead to pure
Lovelock gravity inD ¼ 3N þ 1, which includes GR at the linear
order N ¼ 1, where N is degree of the Lovelock polynomial
action [8].
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four dimensional spacetime [17]. This bound however does
not exist in the Newtonian gravity [18], where point masses
can approach arbitrarily close to each-other and the inverse-
square gravitational force can then become arbitrarily large.
It is the formation of an event horizon around these mass
points in GR that is responsible for the maximum force
bound. It is the inverse square law that makes it universal,
free of black hole masses, and only given in terms of c and
G. This is how the dimensionality of spacetime,D ¼ 4 gets
singled out in GR, and in general D ¼ 3N þ 1 in pure
Lovelock theory which includes GR for N ¼ 1 [19].
In astrophysics and cosmology, besides black holes

which mark the limiting configuration, there are other
compact objects of interest and consequence like massive
compact stars or large-scale configurations. For a static
object with perfect fluid interior there is well-known
Buchdahl compactness bound [20] which is obtained for
a fluid distribution under the very general conditions that
density and isotropic pressure are positive and the former
is decreasing outwards, and it is matched at the boundary
with the Schwarzschild vacuum metric. The bound turns
out to be

M=R ≤ 4=9: ð4Þ

Let us identify with the limiting value, equality, the
Buchdahl star; i.e., M=R ¼ 4=9. Note that for black hole,
the compactness limit isM=R ¼ 1=2, which is absolute and
unique. This is because its boundary is null, defining the
event horizon and hence, is completely immune to other
conditions. A black hole with a null boundary is naturally
the most compact object. On the other hand a Buchdahl star
is the most compact nonhorizon object with a timelike
boundary. The Buchdahl bound can therefore be neither
absolute nor unique. It can vary with the choice of equation
of state, and anisotropy of pressure and energy conditions
[21–24]. In a recent interesting and insightful paper [25],
it has been shown that for realistic physical conditions of
causality and stability of fluid interior, the Buchdahl bound
is indeed always respected.
Since the Buchdahl star is the non–black hole’s most

compact object, it should be pertinent and interesting to
investigate the maximum force between two such objects.
That is what we wish to study in this paper. In addition we
also investigate the maximum force between two objects,
one of which is charged and/or rotating black hole or
Buchdahl star while the other is neutral and nonrotating.
Further, this investigation of maximum force for black
holes and Buchdahl stars would be carried over to pure
Lovelock gravity. In particular, it turns out that the
maximum force for Buchdahl stars is 8=9 th of the
maximum force for black holes.
It is remarkable that existence of a maximum force

between two black holes or Buchdahl stars, given entirely
in terms of the fundamental constant velocity of light

and the gravitational constant, uniquely singles out the pure
Lovelock theory in the dimensional spectrum,D ¼ 3N þ 1,
which includes GR for N ¼ 1 [19]. We have considered the
force between two equal mass Schwarzschild black holes
with their horizons touching. If the masses are not equal then
the force is bounded by the maximum bound obtained for
equal masses [17].2

The paper is organized as follows: In the next section we
shall characterize black holes and Buchdahl stars in terms
of the potential,ΦðRÞ, for radial motion, which in the static
case is gtt ¼ 1–2Φ. Then black holes and Buchdahl stars
are always defined by Φ ¼ 1=2; 4=9 respectively. In
Sec. III we study the maximum force for charged and/or
rotating objects; black holes or Buchdahl stars. Section IV
is concerned with pure Lovelock theory and investigation
of the maximum force for pure Lovelock objects. We
conclude with a discussion.

II. BLACK HOLES AND BUCHDAHL STARS

A static object is described by spherically symmetric
metric,

ds2 ¼ fðRÞdt2 − dR2=fðRÞ − R2dΩ2; ð5Þ

where dΩ2 is the metric on the unit sphere. Let us write
fðRÞ ¼ 1–2ΦðRÞ; the above metric describes a neutral
Shwarzschild object when ΦðRÞ ¼ M=R and a charged
Reissner-Nordström one for ΦðRÞ ¼ ðM −Q2=2RÞ=R.
Black holes and Buchdahl stars are identified by the

condition ΦðRÞ ¼ 1=2; 4=9, respectively. There is also
another insightful characterization [26]—the black hole
horizon is defined when the gravitational field energy is
equal to the nongravitational energy, and when it is half of
nongravitational energy it defines a Buchdahl star.
A black hole is defined by its event horizon which would

be given by ΦðRÞ ¼ 1=2. For a static Schwarzschild object,
we know ΦðRÞ ¼ M=R and ΦðRÞ ¼ 1=2 gives the black
hole horizon, R ¼ 2M. On the other hand a Buchdahl star is
identified by ΦðRÞ ¼ M=R ¼ 4=9. So black holes and
Buchdahl stars are characterized by ΦðRÞ ¼ 1=2; 4=9
respectively, and this is universal and holds good, in general,
for charged and rotating objects as well. Further, also note
that ðM=RÞBuch=ðM=RÞBH ¼ 8=9 is also universal [27]. We
shall generally work in the units with G ¼ c ¼ 1 which
would be restored in the expressions as and when required.
In the case of a charged object, ΦðRÞ ¼ M−Q2=2R

R
where the electric field energy Q2=2R lying exterior to
radius R is subtracted out frommassM. AgainΦðRÞ ¼ 1=2
gives the familiar charged black hole horizon, Rþ ¼
Mð1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − α2

p
Þ; α2 ¼ Q2=M2. On the other hand for

the Buchdahl star, ΦðRÞ ¼ 4=9 would give [26,28,29],

2If masses are unequal, F ¼ ðM0=MÞFmax < Fmax where
Fmax ¼ c4=4G.
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M=R ¼ 8=9

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ð8=9Þα2

p ; ð6Þ

which is, ðM=RÞBuch ¼ ð8=9ÞðM=RÞBHðα2 → ð8=9Þα2Þ.
It was rather straightforward to define potential in the

static case because of spherical symmetry while it is not so
for the axially-symmetric rotating case. In this case we have
to filter out the inherent frame-dragging effect by consid-
ering the potential for axial motion, which entirely lies in
the t–r plane. It would then involve only gravitational
contribution of rotation. It can be easily seen from the Kerr
metric in the standard Boyer-Lindquist coordinates,

ds2 ¼ Δ
ρ2

dτ2 −
ρ2

Δ
dR2 − ρ2dθ2

−
sin2θ
ρ2

½ðR2 þ a2Þdϕ − adt�2; ð7Þ

where

dτ ¼ dt − asin2θdϕ; Δ ¼ R2 − 2MRþ a2;

ρ2 ¼ R2 þ a2cos2θ: ð8Þ

Then ΦðRÞ for the axial motion would be given by

ΦðRÞ ¼ MR
ðR2 þ a2Þ ¼

M=R
1þ β2ðM=RÞ2 ; β2 ¼ a2=M2:

ð9Þ

Now ΦðRÞ ¼ 1=2 yields the familiar Kerr black hole
horizon, Rþ ¼ Mð1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − β2

p
Þ, while for the rotating

Buchdahl star, ΦðRÞ ¼ 4=9 gives

M=R ¼ 8=9

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ð8=9Þ2β2

p

¼ ð8=9ÞðM=RÞBHðβ2 → ð8=9Þ2β2Þ: ð10Þ

Generalizing to a Kerr-Newman charged and rotating
object described by the above metric with Δ ¼ R2−
2MRþ a2 þQ2, we shall similarly have

ΦðRÞ ¼ MR −Q2=2
ðR2 þ a2Þ ¼ M=R − ðα2=2ÞðM=RÞ2

1þ β2ðM=RÞ2 : ð11Þ

Then ΦðrÞ ¼ 1=2 gives the familiar Kerr-Newman black
hole horizon, Rþ ¼ Mð1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − α2 − β2

p
Þ, while for the

corresponding Buchdahl star where ΦðRÞ ¼ 4=9 we have

M=R ¼ 8=9

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ð8=9Þα2 − ð8=9Þ2β2

p

¼ ð8=9ÞðM=RÞBHðα2 → ð8=9Þα2; β2 → ð8=9Þ2β2Þ:
ð12Þ

Note that a spherically-symmetric metric, Schwarzschild
or Reissner-Nordström, describes a general static object
which could be a black hole or a non–black hole object
like a Buchdahl star. In contrast, strictly speaking the Kerr
metric describes only a rotating black hole and not a
rotating object in general. A rotating object would, in
general, be deformed due to rotation and would have
multipole moments. That is what the Kerr metric cannot
accommodate and hence it can only describe a black hole
which has no multipole moments—no hair. Despite vigo-
rous attempts over decades, there still does not exist a
proper metric describing a non–black hole rotating object;
therefore, one has to resort to the Kerr metric for the
description of a rotating Buchdahl star which should be
valid only in the first approximation. Despite this, the result
may however be indicative of a general behavior.
Thus, we have computed the compactness M=R expres-

sion for the various cases which we now use in the next
section to compute the maximum force in these cases.

III. MAXIMUM FORCE

We compute the force between two equal mass objects,
one of which is charged and rotating while the other is
neutral and nonrotating. Their boundaries touch along the
axis. The aim is to include only the gravitational contri-
bution of charge and rotation and not the electromagnetic
and spin-spin interactions. We shall find the contributions
of charge and rotation to the maximum force.
Differentiating ΦðRÞ in Eq. (11) we obtain

F ¼ M2

R2

1 − α2M=R − β2M2=R2

ð1þ β2M2=R2Þ2 : ð13Þ

Now the maximum force between two equal mass black
holes, one of which is Kerr-Newman and the other
Schwarzschild, touching each other at the horizon on the
axis, θ ¼ 0, for which M=R ¼ ð1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − α2 − β2

p
Þ−1,

would be given by

FmaxðKN − BHÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − α2 − β2

p

2ð1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − α2 − β2

p
Þ − α2

¼ 4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − α2 − β2

p

2ð1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − α2 − β2

p
Þ − α2

× FmaxðSch − BHÞ; ð14Þ

where FmaxðSch − BHÞ ¼ c4=4G when α2 ¼ β2 ¼ 0.
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For the Reissner-Nordström and Kerr black holes it will
respectively read as follows:

FmaxðRN − BHÞ ¼ 4

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − α2

p

ð1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − α2

p
Þ2
FmaxðSch − BHÞ;

ð15Þ
and

FmaxðKerr−BHÞ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffi
1−β2

p

1þ
ffiffiffiffiffiffiffiffiffiffiffiffi
1−β2

p FmaxðSch−BHÞ: ð16Þ

Their counterparts for the Buchdahl stars would be
obtained by multiplying by ð8=9Þ2 and writing α2 →
ð8=9Þα2, β2 → ð8=9Þ2β2 in the above expressions; i.e.,

FmaxðKN − BuchÞ ¼ ð8=9Þ2FmaxðKN − BHÞðα2 → ð8=9Þα2; β2 → ð8=9Þ2β2Þ
¼ 4FmaxðKN − BHÞðα2 → ð8=9Þα2; β2 → ð8=9Þ2β2ÞFmaxðBuchÞ; ð17Þ

where FmaxðBuchÞðα2¼β2¼0Þ¼ð8=9Þ2FmaxðSch−BHÞ¼
ð8=9Þ2c4=4G.
In particular, the maximum force for charged and

rotating Buchdahl stars would read, respectively, as
follows:

FmaxðRN − BuchÞ ¼ 4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ð8=9Þα2

p

2ð1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ð8=9Þα2

p
Þ − α2

× FmaxðBuchÞ; ð18Þ

and

FmaxðKerr − BuchÞ ¼ 4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ð8=9Þ2β2

p

2ð1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ð8=9Þ2β2

p
Þ

× FmaxðBuchÞ; ð19Þ

where FmaxðBuchÞ¼ð8=9Þ2FmaxðSch−BHÞ¼ð8=9Þ2c4=G.
For α2 ¼ 1, it reduces to FmaxðRN − BuchÞ ¼

ð4=5ÞFmaxðBuchÞ. Similarly for rotating Buchdahl stars
with β2 ¼ 1, we would have FmaxðKerr − BuchÞ ¼ 4

ffiffiffiffiffi
17

p
=

ð9þ ffiffiffiffiffi
17

p ÞFmaxðBuchÞ ≈ ð8=13ÞFmaxðBuchÞ. It is interest-
ing to note that extremality for Buchdahl stars is over-
extremality for black holes. The maximum force vanishes
for extremal values which are α2 ¼ 1, β2 ¼ 1 for Reissner-
Nordström and Kerr black holes, respectively. These values
are fine for Buchdahl stars and give a nonvanishing value
for the maximum force. For Buchdhal stars, the corre-
sponding extremal values are α2 ¼ 9=8, β2 ¼ ð9=8Þ2.
Note that ðM=RÞBuch ¼ ð8=9ÞðM=RÞBHðα2 → ð8=9Þα2;

β2 → ð8=9Þ2β2Þ, and the maximum force is given in terms
of M=R—that is why the maximum force in the two cases
is similarly transformed. The maximum force is indepen-
dent of mass but it does depend upon the charge to mass,
α2 ¼ Q2=M2, and spin to mass, β2 ¼ a2=M2 ratios.

IV. LOVELOCK GRAVITY

In a D-dimensional spacetime, gravity can be described
by an action functional involving arbitrary scalar functions
of the metric and curvature, but not derivatives of curvature.
In general, variation of such an arbitrary Lagrangian would
lead to an equation having fourth-order derivatives of the
metric. For them to be of second order, the gravitational
Lagrangian, L, is constrained to be of the following
Lovelock form [8],

L¼
X

lim
N
αNLN ¼αN

1

2N
δa1b1a2b2…anbn
c1d1c2d2…:cndn

Rc1d1
a1b1

Rc2d2
a2b2

…:Rcndn
anbn

;

ð20Þ

where δpq:rs…. is the completely antisymmetric determinant
tensor. Note that N ¼ 1, 2 respectively correspond to the
familiar linear Einstein-Hilbert Lagrangian and the quad-
ratic Gauss-Bonnet Lagrangian, which is given by

L2 ≡ LGB ¼ ð1=2ÞðRabcdRabcd − 4RabRab þ R2Þ: ð21Þ

Lovelock’s Lagrangian is a sum over N, where each term
is a homogeneous polynomial in curvature and has an
associated dimensionful coupling constant, αN . Moreover,
the complete antisymmetry of the δ tensor demands
D ≥ 2N, or it would vanish identically. Even for D ¼
2N the Lagrangian reduces to a total derivative. Therefore,
Lovelock’s Lagrangian, LN , is nontrivial only in dimen-
sion D ≥ 2N þ 1.
Lovelock theory is the most natural and quintessential

higher-dimensional generalization of GR with the remark-
able property that the field equations continue to remain
second order in the metric tensor despite the action being a
homogeneous polynomial in the Riemann tensor.
A particular case of interest is that of the pure Lovelock

which has only one Nth-order term in the Lagrangian
without a sum over lower orders in the action and the
equations of motion. It distinguishes itself by the property
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that gravity is kinematic in all critical odd D ¼ 2N þ 1
dimensions. It is well known that GR is kinematic in D ¼
2 × 1þ 1 ¼ 3 in the sense that Riemann is entirely given in
terms of Ricci and hence a nontrivial vacuum solution
cannot exist. Similarly for Lovelock theory, Lovelock-
Riemann [30,31] is entirely determined by the correspond-
ing Ricci in all D ¼ 2N þ 1, and hence therefore no
vacuum solution can occur. Pure Lovelock theory thus
universalizes the kinematic property to all critical odd D ¼
2N þ 1 dimensions.
Pure Lovelock gravity is kinematic in all critical odd

D ¼ 2N þ 1 and a nontrivial vacuum solution cannot exist
unless D ≥ 2N þ 2. Finally, variation of the Lagrangian
with respect to the metric, for pure Lovelock theories, leads
to the following second-order equation,

−
1

2Nþ1
δa1b1a2b2…anbn
c1d1c2d2…:cndn

Rc1d1
a1b1

Rc2d2
a2b2

…:Rcndn
anbn

¼ 8πGTab: ð22Þ

Since no derivatives of curvature appear, this equation is
of second order in the derivatives of the metric tensor.
Although not directly evident, the second-order derivatives
also appear linearly and the equations are therefore quasi-
linear, thereby ensuring unique evolution.
Another property that singles out pure Lovelock is the

existence of bound orbits around a static object [32]. Note
that, in GR, bound orbits exist around a static object only in
D ¼ 4. In view of these remarkable features, it has been
argued that pure Lovelock is an attractive gravitational
equation in higher dimensions [33].
As with the Schwarzschild solution for GR, there exists

an exact solution for a pure Lovelock black hole [34], and it
is given by Eq. (5), with

ΦðRÞ ¼ GM
Rn ; n ¼ ðD − 2N − 1Þ

N
; ð23Þ

where G is the gravitational constant appropriate for the
corresponding dimension and Lovelock degree N. Clearly,
D ≥ 2N þ 2 for nontrivial vacuum solutions, and the black
hole horizon is given by

ΦðRÞ ¼ GM
Rn ¼ 1

2
; ð24Þ

yielding the horizon, Rn
H ¼ 2GM=c2.

The force between two neutral static pure Lovelock
black holes with their horizons touching would be given by

F ¼ n
GM2

Rnþ1
H

: ð25Þ

This would not be independent of black hole masses
unless n ¼ ðD − 2N − 1Þ=N ¼ 1; i.e., D ¼ 3N þ 1. Then
the maximum force takes the same value as for GR in
D ¼ 4; i.e.,

FmaxðBHÞ ¼
c4

4G
: ð26Þ

With n ¼ 1 (equivalently D ¼ 3N þ 1Þ, a Buchdahl star
is identified by ΦðRÞ ¼ 4=9 and the maximum force
between two equal mass Buchdahl stars is

FmaxðBuchÞ ¼ ð8=9ÞFmaxðBHÞ; ð27Þ

where FmaxðBHÞ ¼ c4=4G.
The pure Lovelock analog of force in Planck units [7]

would read as

Fpl ¼ G2=ð2−DÞcð4þDÞ=ðD−2Þhð3Nþ1−DÞ=ð2−DÞ; ð28Þ

which would be free of h if and only if D ¼ 3N þ 1.
The property that the maximum force is universal and is

equal to c4=4G uniquely picks out pure Lovelock theory in
D ¼ 3N þ 1, which includes GR for N ¼ 1 and D ¼ 4.

V. DISCUSSION

Existence of maximum force depends upon occurrence of
a black hole horizon that marks the lower bound on distance
separation between the two black holes. Further, its inde-
pendence on the mass of black holes critically hinges on the
inverse square law which singles out four dimensions in GR.
For the inverse square law, the potential should be 1=R,
which in GR could only happen for D ¼ 4 because the
potential is 1=RD−3. In contrast, in pure Lovelock gravity it is
1=Rn [34], wheren¼ðD−2N−1Þ=Nwhichwould be unity
forD ¼ 3N þ 1 [19]. That is, the force would be the inverse
square for D ¼ 4; 7; 10;… respectively for linear GR,
N ¼ 1, quadratic Gauss-Bonnet, N ¼ 2, cubic, N ¼ 3,
and so on. Therefore, the force would be the inverse square
for the entire dimensional spectrum, D ¼ 3N þ 1.
We could paraphrase this general result along the lines of

Bertrand’s theorem of classical mechanics as follows:
“The property that maximum force for uncharged static

black hole and Buchdahl star is entirely given in terms of
the fundamental constant velocity of light and the gravi-
tational constant, uniquely picks out pure Lovelock gravity
in the dimensional spectrum D ¼ 3N þ 1.”
In pure Lovelock gravity it is universal and also free of

the Planck’s constant in D ¼ 3N þ 1 as we have seen in
Eqs. (3) and (28). This indicates that this is a purely
classical result which would remain true even when
quantum gravity effects are included or in the full theory
of quantum gravity. It indicates something fundamental and
natural about these nonquantum universal units which is
unique to D ¼ 4 in GR, and in general to D ¼ 3N þ 1 in
pure Lovelock gravity.
It is well known that GR is kinematic in three dimension

because Riemann is entirely given in terms of Ricci, and
that no nontrivial vacuum solution exists. Pure Lovelock
gravity universalizes this property which is kinematic
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(Lovelock-Riemann is given in terms of Lovelock-Ricci
and no nontrivial pure Lovelock vacuum solution could
occur) in all critical odd D ¼ 2N þ 1 dimensions [30,31].
The action Lagrangian contains only one Nth-order term
without summing over lower orders. There are several
interesting features of pure Lovelock gravity; for example,
bound orbits, which exist only forD ¼ 4 in GR, could exist
in the dimensional window 3N þ 1 ≤ D ≤ 4N [32,33]. The
existence of a maximum force given entirely in terms of c
and G adds yet another distinguishing property for pure
Lovelock gravity. We have argued elsewhere [33] that the
pure Lovelock equation is perhaps the right gravitational
equation in higher dimensions.
We have evaluated themaximum force for black holes and

Buchdahl stars having charge and/or rotation. It is interesting
to note how the compactness ratio,M=R, and the maximum
force transform in going from one to the other. That is, the
compactness ratio, ðM=RÞBuch ¼ ð8=9ÞðM=RÞBH, andmaxi-
mum force, FmaxðBuchÞ ¼ ð8=9Þ2FmaxðBHÞ with α2 →
ð8=9Þα2 and β2 → ð8=9Þ2β2. In particular, for the neutral
static Buchdahl star, ðM=RÞBuch ¼ ð8=9ÞðM=RÞBH ¼ 8=9×
1=2 ¼ 4=9 and FmaxðBuchÞ ¼ ð8=9Þ2FmaxðBHÞ where
FmaxðBHÞ ¼ c4=4G. For an uncharged static Buchdahl star,
the compactness ratio is scaled relative to a black hole by the
factor 8=9, while the maximum force by its square, and α2

and β2 are similarly scaled, respectively.

Also note that the same factor (8=9) is the ratio between
square of their escape velocities; i.e., ðvBuch=vBHÞ2 ¼ 8=9
and this is universal [27] as it is the same for charged and/or
rotating objects as well. Further, it turns out that like the
black hole [35], nonextremal charged Buchdahl stars also
cannot be extremalized. This is because the parameter
window for particles reaching the star pinches off as the
extremality is approached. This is exactly parallel to what
happens for a black hole. Thus black holes and Buchdahl
stars share many similar features.
Maximum force or maximum luminosity could be

computed for non–black hole object (Buchdahl star),
because it has, like a black hole, a bound on M=R.
Observationally, luminosity of any phenomenon involving
compact stars would always be bounded by ð8=9Þ2 of black
hole luminosity. The most remarkable feature is that the
bound is given in terms of the fundamental constant
velocity of light and the gravitational constant.
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