
Model systematics in time domain tests of binary black hole evolution

Shilpa Kastha ,1,2 Collin D. Capano,1,2,3 Julian Westerweck,1,2 Miriam Cabero,4 Badri Krishnan,1,2,5 and Alex B. Nielsen6
1Albert-Einstein-Institut, Max-Planck-Institut für Gravitationsphysik,

Callinstraße 38, 30167 Hannover, Germany
2Leibniz Universität Hannover, 30167 Hannover, Germany

3Department of Mathematics, University of Massachusetts, Dartmouth, Massachusetts 02747, USA
4Department of Physics and Astronomy, The University of British Columbia,

Vancouver, British Columbia V6T 1Z4, Canada
5Institute for Mathematics, Astrophysics and Particle Physics, Radboud University,

Heyendaalseweg 135, 6525 AJ Nijmegen, Netherlands
6Department of Mathematics and Physics, University of Stavanger, NO-4036 Stavanger, Norway

(Received 22 December 2021; accepted 28 February 2022; published 24 March 2022)

We perform several consistency tests between different phases of binary black hole dynamics; the inspiral,
the merger, and the ringdown on the gravitational wave events GW150914 and GW170814. To perform these
tests we excise the data explicitly in the time domain to avoid any spectral leakage between the different
phases using gating and inpainting method.We estimate the posterior distributions on the mass and spin of the
initial black holes and the final black hole separately and independently from the different phases in
frequency-domain. We also compute the initial areas of the two individual black holes and the final area from
the parameters describing the remnant black hole. This facilitates a test of Hawking’s black hole area theorem.
We use different waveform models to quantify systematic waveform uncertainties for the area increase law
with the two events. We find that these errors may lead to overstating the confidence with which the area
theorem is confirmed. For example, we find > 99% agreement with the area theorem for GW150914 if a
damped sinusoid consisting of a single mode is used at merger to estimate the final area. This is because this
model overestimates the final mass. Including an overtone of the dominant mode decreases the confidence to
∼94%; using a full merger-ringdown model further decreases the confidence to ∼85–90%. We find that
comparing the measured change in area to the expected change in area yields a more robust test, as it also
captures over estimates in the change of area. We find good agreement with GR when applying this test to
GW150914 and GW170814.
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I. INTRODUCTION

The first observation of gravitational waves (GWs) by
the two detectors of the Laser Interferometer Gravitational-
wave Observatory (LIGO), GW150914 [1], was inferred to
be produced by two merging black holes (BHs) with
masses ∼36 M⊙ and ∼29 M⊙ at a luminosity distance
of ∼400 Mpc. Following the first detection, several others
[2–13] have also been detected during the three observing
runs of the LIGO-Virgo detectors to date. During the
second observing run, GW170814 was detected coherently
by the Advanced Virgo detector along with the two
Advanced LIGO detectors. GW170814 [6] was produced

by two BHs with masses 30þ5.7
−3.0 M⊙ and 25.3þ2.8

−4.2 M⊙ at a
luminosity distance of 540þ130

−210 Mpc.
These observations have enabled tests of the predictions of

Einstein’s general relativity (GR) in a highly nonlinear and
relativistic regime produced by compact binary mergers
[14,15]. Several tests of GR have been developed for these
recent GW detections, including parametrized tests of GR
waveforms [16–25], parametrized tests of the multipolar
structure of binaries [24,26], tests of the parametrized post-
Einsteinian formalism [19,27], inspiral-merger-ringdown
(IMR) consistency tests [28], and tests of black hole no-hair
theorem [29–32].
The frequency-domain IMR consistency test is rou-

tinely performed on GWevents detected by the LIGO and
Virgo detectors [14]. This test checks the consistency of
the low frequency part of the observed signal with the
high-frequency part. Results are presented in terms of the
differences of the final mass and final spin inferred from
the two different parts. These values are computed using
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extrapolations based on GR models parametrized in terms
of the individual black hole masses and spins. Results to
date are consistent with these differences being zero,
implying that the GR based models are consistent with
the data.
A related test uses measurements of the initial and final

black holes’ parameters as a check of the black hole area
increase law. This law states that within classical general
relativity, assuming the null energy condition and cosmic
censorship, the area of a black hole horizon can never
decrease. This was first shown by Hawking [33,34] and
was later generalized to include non-differentiable event
horizons and a cosmological constant [35]. Quasilocal
versions of this law, which do not require cosmic censor-
ship are also known [36–38]. Any stationary, astrophysical
black hole is completely described by the Kerr metric in
terms of its mass M and angular momentum J if the black
hole no-hair theorem holds. The corresponding horizon
area is A ¼ 8πM2ð1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − χ2

p
Þ, where χ ¼ J=M2 is the

dimensionless spin of the black hole. For a binary black
hole coalescence, the area theorem states that the final area
Af of the merged black hole will be larger than the
combined area (A1 þ A2) of the two initial black holes,

A1 þ A2 ≡ Ai < Af: ð1Þ

It is additionally expected that sufficiently removed from
the dynamical regime, i.e., at very early or late times, these
black holes will be well described by the stationary Kerr
metric.
Following [39], a concrete proposal for a test of the area

increase law was proposed in [40]. The test consists of
independent analyses of the early inspiral and the final
ringdown stages, leading respectively to independent esti-
mates of the initial and the final masses and spins of the
binary. This test is carried out in the time domain, meaning
that a portion of the strain data around the merger is excised
in the time domain to separate the inspiral and ringdown
phases. The data segment around the merger is excised in
estimating the parameters, since a violation of the area
theorem is perhaps most likely to occur near the merger of
the two black holes where the spacetime is highly dynamical.
These estimates are then used to obtain the areas of the
individual BHs using the Kerr formula. To demonstrate the
method, the authors used a simulated GW150914-like binary
black hole signal and found that the area theorem could be
confirmed at 75% probability.
Recently, Ref. [41] has explored the validity of the area

theorem in the time domain and presented observational
evidence that actual GW150914 data is consistent with the
theorem with a probability of 97% when they do not excise
the merger and 95% when they excise 3 ms of the merger.
They also provide an estimate of the same by truncating the
inspiral at different times before the peak amplitude and find

that the different measurements support the area theorem
with probabilities within 88%–97%.
In this paper we apply the test proposed in [40] to two GW

events, GW150914 and GW170814. To test the area theorem
or the IMR consistency between different phases of the
waveform, we need each of these different phases (inspiral/
ringdown) to have reasonable signal-to-noise ratio (SNR) to
perform the parameter estimations. We choose GW150914
as it has a high network-SNR of ∼24 [1,2], with a ringdown
SNR ∼ 8.5 [42] 3 ms after the merger. The estimation of the
ringdown SNR is based on the result in Ref. [42] (see Fig. 5
of Ref. [42]), where, among the several ringdown analyses of
the GW150914, only those results were consistent with
general relativity when the start time was chosen to be 3 ms
(or later) after the merger. Furthermore, previously, in
Ref. [43], with a simulated GW150914-like system, similar
results were shown. The other event, GW170814, showed
some support for a deviation from GR in initial analyses
(ΔMf=M̄f showed a second peak at higher values away
from zero; see Fig. 2 of [14]). To explore the validity of the
area theorem we choose GW170814 as our second candi-
date event.
We separately analyze the data segment before a trunca-

tion time, removing later data, to obtain the initial para-
meters. Similarly, the data before a truncation time are
removed, and the remainder is analyzed to estimate the final
parameters of each event. The truncation times may be
chosen differently between the pre- and post-truncation
analyses such that the merger phase is excluded. We employ
various waveform models for estimating the parameters to
show the effect of waveform systematics on the constraints
of the area increase law. We show that ignoring higher
overtones in the ringdown waveform model leads to over-
estimation of the final mass. This yields an inconsistency
between the estimated parameters from the pre- and post-
truncation analyses, but perversely results in a better agree-
ment with the area theorem. A positive change in area, while
obeying the area increase law, may still disagree with GR
predictions if the area increase is too large. We use the ratio
between the measured and the expected change of area,
R ¼ ðAmeasured

f − Ameasured
i Þ=ðAexpected

f − Ameasured
i Þ, as a mea-

sure here. For a perfect measurement, obeying GR predic-
tions, R ¼ 1. However, in the presence of noise, we expect
R to follow a Gaussian distribution with unit mean. In order
to quantify the agreement of our results with GR, we also
compute the mismatch, CR. It denotes the probability of
R lying within the range symmetric about the median of the
R-distribution, extending to R ¼ 1. For GW150914, we find
CR ¼ 6.5% when we avoid 26 ms of data around the
merger. Although, for GW170814, we obtain a better
measurement yielding CR ¼ 2.7% when ∼13 ms of data
is avoided around the merger.
This paper is organized as follows. In Sec. II we

explain the method adopted here to excise the data and
perform parameter estimation. In Secs. III and IV we
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develop the different pretruncation and post-truncation
analyses. In Sec. V we discuss our results for the inspiral-
merger-ringdown consistency test and in Sec. VI for the
test of the area theorem. Our concluding remarks are
presented in Sec. VII.

II. DATA PREPARATION AND
PARAMETER ESTIMATION

The gravitational wave strain, hðtÞ, observed by a
detector can be schematically written as

hðt − t0Þ ¼ Fþðα; δ;ψÞhþðt − t0;ϕ0Þ ð2Þ

þF×ðα; δ;ψÞh×ðt − t0;ϕ0Þ; ð3Þ

where Fþ;× are the antenna pattern functions of the
detector. The right ascension, α, and declination, δ, define
the sky-location of the source in a geocentric coordinate
system and the polarization angle, ψ , defines the relative
orientation of the wave frame with respect to the geo-
centric coordinate system [44,45]. t0 is the arrival time of
the signal at the detector and ϕ0 is the phase at t0. hþðtÞ
and h×ðtÞ are the two independent polarizations of the GW
signal, given by

hþðtÞ ¼ AþðtÞ cosΦðtÞ; ð4Þ

h×ðtÞ ¼ A×ðtÞ sinΦðtÞ; ð5Þ

where Aþ;× are slowly varying amplitudes and ΦðtÞ is a
rapidly varying phase.
To estimate the source parameters of a GW signal present

in a given data stream, sðtÞ, we use Bayesian inference. We
first consider a model for the signal h within GR, para-
metrized by the source properties such as masses, spins etc.,
fM1; χ1;…g≡ ϑ⃗. According to Bayes’ theorem, the prob-
ability distribution of the model parameters given the data
sðtÞ, pðϑ⃗js; hÞ (known as the posterior distribution) is
proportional to the likelihood, Lðsjϑ⃗; hÞ, of observing the
data given ϑ⃗ multiplied by a prior distribution, pðϑ⃗Þ, on the
parameters representing the allowed range and expected
distribution on ϑ⃗. For a network of N gravitational-wave
detectors d, the likelihood function is given by [46,47]

Lðsjϑ⃗; hÞ ∝ exp

�
−
1

2

XN
d¼1

hsd − hdðϑ⃗Þ; sd − hdðϑ⃗Þi
�
; ð6Þ

where sd is the data in the dth detector (assuming the noise to
be uncorrelated, stationary and Gaussian) and hd is the
waveform model (or template). Here, the noise-weighted
inner product is defined as [46,47]

hajbi ¼ 2Re
Z

fhigh

flow

ãðfÞb̃�ðfÞ þ ã�ðfÞb̃ðfÞ
SðdÞn ðfÞ

df; ð7Þ

where SðdÞn ðfÞ is the noise power spectral density (PSD) of
the dth detector and ãðfÞ and b̃ðfÞ are frequency domain
representations of the time-domain data. We use PyCBC
INFERENCE[48] to evaluate Eq. (6) over the large, multi-
dimensional parameter space defining the waveform
model. To sample the parameter space we use the
dynesty [49] and parallel-tempered emcee [50,51] sto-
chastic samplers. Marginalizing the resulting distribution
yields measurements on individual parameters.
Our aim is to analyze separately the early and late parts of

the signal to investigate the consistency between the different
phases, and to explore the validity of the area theorem. In
order to perform these analyses, we excise portions of the
templates, keeping a desired time segment intact to perform
the parameter estimation. As observed in Ref. [40], merely
excising times from the template can lead to biases unless a
corresponding part of the signal is also removed from the
data. Hence, both the template and the signal need to be
excised while performing parameter estimation. We accom-
plish this by doing “gating and in-painting” [9,29]. In this
method, we zero-out (“gate”) the residual sd − hdðϑ⃗Þ over
times to be excised, then add a component to the gated times
such that the contribution of these times to the likelihood is
zero (“in-painting”). This removes biases that arise due to the
convolution of the inverse covariance of the detector noise
with the residual. The end result is the pretruncation analysis
is independent of the post-truncation analysis.
Since the sky location affects the arrival time of the signal

in the detectors, the specific time for the gating changes with
respect to different sky locations. If the sky location is varied
during the analysis, the truncated template favors those sky
locations that include more of the signal. This results in an
estimation of the parameters shifted from their true values
[40]. To avoid this, here we consider a fixed sky location. In
order to fix the values for α and δ, we first perform the
parameter estimation analysis on the full data stream, using
the complete inspiral-merger-ringdown signal. We then use
the corresponding maximum likelihood values for the sky
location in the area-theorem analysis. Using slightly different
values within the range of the posterior distributions on α
and δ does not affect our final conclusions.

III. PRETRUNCATION ANALYSIS

In this section we focus on measuring the initial para-
meters from the early part of the data. To model the
gravitational-wave signal in the early to late inspiral regime,
we use three waveform models: IMRPhenomPv2 [52,53],
which models precessing binaries; IMRPhenomXPHM
[54,55], which models precessing binaries with higher
modes; and NRSur7dq4 [56], which also models precessing
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binaries with higher modes, mass ratios q ≤ 6, and spin
magnitudes χ1, χ2 ≤ 0.8.
For the pre-truncation analysis, we excise the residual

after a desired time (“gate-start-time”) and perform the
sampling on the remaining data segment. While the trunca-
tion can be started at any time within the inspiral regime,
earlier truncation times lead to posterior distributions yield-
ing worse constraints on the estimated parameters due to
decreasing SNR of the remaining signal. We choose two
different gate-start-times in our analysis. In the first case, we
use the merger time, tm (obtained when the parameter
estimation performed with the complete data set) as the
truncation time. For GW150914, we base the merger time on
the estimate in [15], while for GW170814 we use the results
from [2], as explained in more detail in the respective
sections.
In the second case we use the time corresponding to the

hybrid minimum energy circular orbit (hybrid MECO),
thmeco [57]. The hybrid MECO depends on the mass ratio
and the spins of the black holes. It corresponds to a time
earlier than tm, which can be considered as the end of the
inspiral phase for comparable mass binaries, but before
the peak amplitude GW emission. Here the hybrid MECO
time is computed using the maximum likelihood values
for the masses and the spins of the individual black holes
from the full IMR analysis.
In the parameter estimation performed here, we use

uniform priors on merger time and the source-frame com-
ponent masses. For the different analyses we use different
prior ranges on the component masses. We keep the interval
between the minimum and the maximum values of the
component masses sufficiently large so that the posteriors
have negligible values on the prior boundaries.
We also assume a distance prior uniform in comoving

volume assuming a flat ΛCDM cosmological model. For the
spins, we use uniform priors for the magnitude of the spin
and isotropic for the orientation. We numerically marginalize
over polarization. From each of the inspiral analyses we
obtain the posterior distributions on the individual masses
and spins. Finally, using the fitting formula in Refs. [58–60],
we convert the initial masses and spins to the final mass and
spin posterior.

IV. POST-TRUNCATION ANALYSIS

After the two individual black holes merge, the remnant
is expected to settle down to a final stable black hole during
the ringdown phase. Similar to the pretruncation analysis,
we perform post-truncation analyses using the GW signal
emitted during this merger and postmerger phase. As
opposed to the previous analysis, here we excise the
residual all the way up to the analysis start-time (“gate-
end-time”) to perform sampling on the data segment after
the gate-end-time to obtain the posterior distribution on the
final parameters.

We preform two sets of post-truncation analyses. In
one, we use the late part of the same IMR waveform
models as in the pretruncation analysis to obtain the
posterior distribution on the masses and the spins. Using
the fitting formula in Refs. [58–60] we then convert the
component-object posteriors to a distribution on the final
mass and spin of the remnant BH. For these cases we use
similar priors as in the pre-truncation analyses: uniform
priors on merger time and the source-frame component
masses, and a distance prior uniform in comoving volume.
For the spins, the priors are uniform in magnitude of the
spin and isotropic for the orientation. We also numerically
marginalize over polarization.
In the second set of post-truncation analyses we use

damped sinusoids as the signal model. The signal emitted
during this postmerger phase is conventionally called the
“ringdown” signal and can be decomposed into a sum of
exponentially damped sinusoids [61]. The gravitational
waveform for the ringdown can be schematically written in
terms of spin-weighted spheroidal harmonics as

hþ þ ih× ¼
X
l;m;n

−2Slmnðι;φÞAlmneiðΩlmntþϕlmnÞ; ð8Þ

where the sum is over the various integer quantum
numbers, l ≥ 2, −l ≤ m ≤ l and n ≥ 0 denoting the
different quasinormal modes. ι is the inclination angle,
φ is the azimuthal angle of the black hole with respect to
the observer, and −2Slmnðι;φÞ are the spin-weighted
spheroidal harmonics. The spin-weighted spheroidal har-
monics reduce to the usual spin-weighted spherical
harmonics, Ylm for the nonspinning case. The various
mode amplitudes Almn and the phases ϕlmn depend on the
initial configuration of the binary and on the particular
theory of gravitation. In our analysis we use spheroidal
harmonics [29] and treat the mode amplitudes and the
phases as independent unknown parameters. The complex
frequencies Ωlmn consist of the quasinormal mode
frequencies (flmn) and the damping times (τlmn), which
can be determined from the Teukolsky equation [62,63].
The no-hair theorem states that all (flmn) and (τlmn) are
determined by only two quantities, the mass Mf and spin
χf of the black hole. Here, we use χf ∈ ð−0.99; 0.99Þ,
with positive or negative values referring to perturbations
that are co- or counterrotating with respect to the black
hole’s spin.
One can in principle vary many modes in the ringdown

analysis with Bayesian inference. However, this increases
the dimension of the parameter space leading to weaker
constraints on the measured parameters if the contribution to
the signal from additional modes is weak. Here we perform
two types of ringdown analyses for each event. First we
consider only the dominant fundamental mode, for which
l ¼ m ¼ 2 and n ¼ 0 (i.e., the [220] mode). Second,
we include one overtone of the dominant mode (i.e.,
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½220þ 221�), giving a signal template consisting of two
modes. In a similar study of GW150914 in Ref. [31], the
authors claimed the existence of the fundamental quasinor-
mal mode and one overtone associated with the dominant
angular mode (l ¼ m ¼ 2) with 3.6σ confidence.
In the ringdown analyses performed here, we vary the

following parameters: final mass Mf, final spin χf, A220,
ϕ220, and inclination ι in the single-mode 220 case, and add
two additional parameters A221 and ϕ221 when considering
the additional first overtone. We numerically marginalize
over the polarization ψ . Furthermore, we use different
analysis start times (or “gate-end-times”) for the ringdown
template. For each of these cases, the priors on final mass
and final spin are assumed to be uniform in the following
ranges

Mf ∈ ½10; 200Þ ð9Þ

χf ∈ ½−0.99;þ0.99Þ: ð10Þ

For A220, we choose a prior uniform in log10. We allow the
overtone amplitude, A221, to uniformly vary from zero to ten
times that of A220 when we start the analysis at the merger
time, tm. When starting the analysis at later times, we choose
a uniform prior so that A221 < A220.

V. CONSISTENCY BETWEEN INSPIRAL-
MERGER-RINGDOWN PHASES

Our results for GW150914 are summarized in Fig. 1. In
the left panel of Fig. 1, we compare the posterior distribu-
tions from the various pretruncation analyses performed with
different segments of the data and different waveform
models. The innermost contour refers to the full IMR

analysis performed using the complete data segment with
the NRSur7dq4 model. We find similar estimates with the
IMRPhenomXPHM and IMRPhenomPv2 models. For all
these cases we fix the sky location at α ¼ 1.252,
δ ¼ −1.224, the maximum-likelihood values from [64].
For the pretruncation analyses we consider two differ-

ent gate start times, after which the residual is excised for
each of the three waveform models. The first one is the
merger time tm, where we use the estimate from [15], 1,
126, 259, 462.423 s GPS time at the LIGO Hanford site.
Using the sky-location quoted above, this corresponds to
1, 126, 259, 462.411 s in geocentric GPS time. The second
one is the hybrid MECO time, thmeco ¼ 1; 126; 259;
462.388 s in geocentric GPS time, which is ∼23 ms
earlier than tm. Different waveform models provide
different constraints on both the final mass and final spin
parameters, but all of them are consistent with the full
IMR analysis.
For a fixed waveform model, we obtain better constraints

for the “gate-start-time” at tm (denoted by “IMR model
before tm”) compared to thmeco (“IMR model before thmeco”)
in left panel of Fig. 1). This is because later times include
signal power from the late inspiral regimes. The posterior
contours shrink and converge to the full IMR values as
more data are included. Comparing between different
waveform models, we find that the strongest constraints
are obtained with the NRSur7dq4 model.
The different post-truncation analyses are shown in the

right panel of Fig. 1. First, we consider the same waveform
models as in the pretruncation analyses, where we excise the
residual before thmeco, tm and tm þ 3 ms. We find that all
three waveformmodels provide consistent results for each of
the gate-end-times. Hencewe only show the posterior arising

FIG. 1. The 90% posterior contours of the redshifted final mass (detector frame) Mf and the final spin χf obtained from the various
pre- and post-truncation analyses for GW150914. In the left panel, we show the contours from the two pre-truncation analyses
performed with two gate-start-times, tm and thmeco using three different waveform models, IMRPhenomPv2, IMRPhenomXPHM and
NRSur7dq4. On the right panel, we show the final mass-final spin contours obtained using damped sinusoids with only the dominant
mode [220] and the dominant mode with one overtone ½220þ 221� at different analysis start times (or the “gate-end-times”) as the
representatives of the post-truncation analyses. We also show three post-truncation analyses with the NRSur7dq4 model for the three
“gate-end-times”, thmeco, tm, and tm þ 3 ms. The posterior contour arising from the full IMR analysis with NRSur7dq4 is shown by the
innermost contour. The full IMR contour is contained within the contours of all the truncated analyses.
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from the NRSur7dq4 model. As is evident from the figure,
the posterior distribution arising from choosing thmeco as
“gate-end-time” provides the most stringent constraints on
the parameters and the closest to the IMR values among
these three. This is expected since in this case we exclude
only the early inspiral segment of the data and include the
late inspiral, merger, and the ringdown phases.
Second, we perform the ringdown analysis as described in

Sec. IV. Here we choose two different start times for the
ringdown models, tm and tm þ 3 ms and for each of these,
we do a single mode [220] analysis with only the dominant
l ¼ m ¼ 2; n ¼ 0 harmonic and another with the dominant
harmonic and the first overtone ½220þ 221�, l ¼ m ¼ 2;
n ¼ 1. We find that at tm, the dominant mode [220] analysis
provides estimates with higher final mass and higher final
spin than the IMR result. The 90% posterior contours are
completely disjoint. This is expected: applying the ringdown
analysis too early leads to too low a ringdown frequency and
results in overestimating the final mass. However, including
the first overtone we recover estimates consistent with the
full IMR analysis. Starting both the single- and two-mode
analyses at 3 ms, we find that the dominant mode analysis
provides tighter constraints compared to the [220þ 221]
analysis.
We find no support in our posterior for final masses above

100 M⊙, but masses below 50 M⊙ are supported for the
quasinormal mode analysis after 3 ms with ½220þ 221�. We
also find that as we end the truncation at later times, the

remaining signal becomes quieter and the constraints on
final mass and final spin get broader. In comparison with
Isi et al. [41], we use the same merger time, tm ¼
1; 126; 259; 462.423 s GPS time at the Hanford detector
site, but perform the analysis with a different sky location
(see Ref. [31] for comparison). We find that changing the sky
location does not affect our final result. We also find similar
final mass and final spin estimates from the [220]-analysis at
tm and the ½220þ 221� analysis at tm þ 3 ms as quoted in
[41]. However, the estimates from the pretruncation analysis
carried out before tm with NRSur7dq4 differ from the results
quoted in [41]. In this particular case, we find the final mass
and final spin estimates to be ð1þ zÞMf ∼ 73.3þ9.3

−6.6 M⊙ and
χf ∼ 0.72þ0.08

−0.1 respectively.
We perform a similar set of analyses with GW170814 and

present our results in Fig. 2. We fix the sky-location
parameters of GW170814 to α ¼ 0.8, δ ¼ −0.8, the maxi-
mum likelihood values from the IMR analysis in [2]. We use
two truncation times to start or end the gating here, the
merger time tm and hybridMECO time thmeco. For the merger
time, we use the maximum likelihood value of the coales-
cence time tc from [2]. The hybrid MECO time is calculated
from thewaveformwith the maximum likelihood parameters
also from [2]. These are tm ¼ 1; 186; 741; 861.527 s and
thmeco ¼ 1; 186; 741; 861.5136 s in geocentric GPS time,
corresponding to tm ¼ 1; 186; 741; 861.531 s and thmeco ¼
1; 186; 741; 861.513 s at the Hanford detector site.

FIG. 2. The 90% posterior contours of the redshifted final mass (detector frame)Mf and the final spin χf obtained from the various pre-
and post-truncation analyses for GW170814. On the left panel we show the contours from the pretruncation analyses performed with two
gate-start-times, tm and thmeco using three different waveformmodels, IMRPhenomPv2, IMRPhenomXPHM and NRSur7dq4. On the right
panel we show the 90% posterior contours of the redshifted final mass (detector frame)Mf and the final spin χf obtained using the damped
sinusoids with only dominant mode [220] and the dominant mode with one overtone ½220þ 221� at the merger time tm as the
representatives of the post-truncation analyses for GW170814. We also show the results for the two post-truncation analyses with two
“gate-end-times”, tm and thmeco for IMRPhenomPv2, IMRPhenomXPHM and NRSur7dq4 waveform models. The ringdown contour is
larger when the 221 mode is included because inclusion of the overtone increases the dimension of the parameter space. The posterior
contour arising from the full IMR analysis with NRSur7dq4 waveform model is shown by the innermost solid black contour.
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The estimated final mass-final spin contours from the
pre-truncation analyses before each of the gate-times are
presented in the left panel of Fig. 2. We also show the IMR
results from the analysis of the full data segment with
NRSur7dq4 waveform model. This is found to be con-
sistent with all the different analyses.
In the case of the pre-truncation analyses, for a fixed gate-

start-time, the different waveform models provide very
similar results. The post-truncation analyses are presented
in the right panel of Fig. 2. Here we find that at fixed gate-
end-time, the NRSur7dq4 model provides the most stringent
constraints. In addition to these IMR waveform models we
show our estimates from the two ringdown analyses with the
[220] and the ½220þ 221� modes performed at tm in right
panel of Fig. 2. We find that both estimates are consistent
with the IMR values. However the analysis with only the
dominant mode provides better constraints on the parame-
ters. Due to the post-merger signal being quiet, we do not

find reasonable constraints on the final mass and final spin
for any analysis performed beyond tm and omit them in the
figure.

VI. AREA THEOREM

In this section we investigate the validity of the area
theorem from the estimated parameters described in the
previous sections. In Table I we report the 90% bounds on
the fractional change of the black hole horizon area,
ΔA ¼ ðAmeasured

f − Ameasured
i Þ=Ameasured

i , for the five (four)
different gate-times and three different waveform models
for GW150914 (GW170814). Here Ameasured

i ¼ Ameasured
1 þ

Ameasured
2 is computed using the initial component masses and

spins from the pretruncation analyses and Af is the final area
estimated from the post-truncation parameters. A graphical
representation of the same is provided in Fig. 3 for
GW150914 (left panel) and GW170814 (right panel). In

TABLE I. The median values and 90% bounds on the fractional change of the BH horizon areas with different IMR waveform models
at different truncation times. The first column corresponds to the different combinations of pre- and post-truncation analyses as indicated
by the various rows. Here “IMR model” indicates the different IMR waveform models used in parameter estimation, which is denoted in
the header of the remaining three different columns. The percentages of the posteriors that have positive change in area are given in
parentheses. For GW170814, due to low SNR (∼7) of the signal in post-truncation segment after tm, we find larger posterior bounds on
the parameters from IMRPhenomXPHM and IMRPhenomPv2 model, resulting in negative relative change in black hole horizon area.

GW150914
ΔA=Ameasured

i
(NRSur7dq4)

ΔA=Ameasured
i

(IMRPhenomXPHM)
ΔA=Ameasured

i
(IMRPhenomPv2)

IMR model before tm-Damped Sinusoid [220] after tm 1.03þ0.66
−0.58 ð99.7%Þ 0.99þ0.69

−0.66 ð99.2%Þ 0.830.74−0.82ð95.1%Þ
IMR model before tm-Damped Sinusoid [220þ 221] after tm 0.46þ0.61

−0.48 ð94.3%Þ 0.43þ0.63
−0.52 ð91.3%Þ 0.31þ0.66

−0.60 ð79.3%Þ
IMR model before tm-Damped Sinusoid [220] after tm þ 3 ms 0.56þ0.66

−0.60 ð93.8%Þ 0.52þ0.68
−0.62 ð91.4%Þ 0.38þ0.73

−0.67 ð81.3%Þ
IMR model before tm-Damped Sinusoid [220þ 221] after tm þ 3 ms 0.29þ0.81

−0.64 ð74.6%Þ 0.250.83−0.64ð71.7%Þ 0.13þ0.85
−0.62 ð61.0%Þ

IMR model before tm-IMR model after tm 0.37þ0.54
−0.47 ð90.5%Þ 0.33þ0.59

−0.51 ð85.5%Þ 0.20þ0.61
−0.57 ð71.7%Þ

IMR model before tm-IMR model after tm þ 3 ms 0.37þ0.59
−0.52 ð86.6%Þ 0.31þ0.66

−0.58 ð80.0%Þ 0.18þ0.68
−0.59 ð67.6%Þ

IMR model before thmeco-Damped Sinusoid [220] after tm 1.1þ0.94
−0.85 ð98.6%Þ 1.08þ0.98

−0.99 ð96.3%Þ 0.76þ1.12
−1.01 ð85.2%Þ

IMR model before thmeco-Damped Sinusoid [220þ 221] after tm 0.51þ0.81
−0.64 ð90.1%Þ 0.49þ0.83

−0.73 ð87.2%Þ 0.25þ0.92
−0.73 ð67.7%Þ

IMR model before thmeco-Damped Sinusoid [220] after tm þ 3 ms 0.6þ0.87
−0.73 ð90.6%Þ 0.58þ0.90

−0.81 ð87.7%Þ 0.32þ1.01
−0.77 ð70.0%Þ

IMR model before thmeco-Damped Sinusoid [220þ 221] after tm þ 3 ms 0.4þ0.78
−0.63 ð83.6%Þ 0.29þ1.02

−0.74 ð71.4%Þ 0.06þ1.09
−0.66 ð54.4%Þ

IMR model before thmeco-IMR model after tm 0.410.73−0.61ð86.4%Þ 0.38þ0.78
−0.68 ð82.3%Þ 0.16þ0.86

−0.67 ð61.7%Þ
IMR model before thmeco-IMR model after tm þ 3 ms 0.4þ0.78

−0.63 ð83.6%Þ 0.36þ0.85
−0.72 ð78.0%Þ 0.12þ0.93

−0.67 ð59.0%Þ
GW170814

IMR model before tm-Damped Sinusoid [220þ 221] after tm 0.52þ1.12
−0.95 ð77.3%Þ 0.45þ1.1

−0.90ð74.9%Þ 0.671.21−1.05ð81.3%Þ
IMR model before tm-Damped Sinusoid [220] after tm 0.63þ0.81

−0.87 ð87.8%Þ 0.55þ0.81
−0.83 ð85.5%Þ 0.8þ0.86

−0.99 ð90.4%Þ
IMR model before tm-IMR model after tm 0.16þ0.66

−0.46 ð71.8%Þ −0.33þ0.67
−0.41 ð17.4%Þ −0.231.15−0.47ð31.9%Þ

IMR model before thmeco-IMR model after tm 0.17þ0.71
−0.59 ð69.1%Þ −0.35þ0.75

−0.42 ð19.1%Þ −0.311.17−0.45ð27.6%Þ
IMR model before thmeco-Damped Sinusoid [220þ 221] after tm 0.49þ1.26

−0.96 ð74.7%Þ 0.40þ1.29
−0.93 ð70.8%Þ 0.521.29−1.01ð74.7%Þ

IMR model before thmeco-Damped Sinusoid [220] after tm 0.62þ0.93
−0.94 ð83.9%Þ 0.53þ0.97

−0.94 ð79.6%Þ 0.66þ0.94
−1.02 ð83.5%Þ
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these figures we only provide the results obtained using
combinations of NRSur7dq4 and the quasinormal mode
model for different data segments.
For GW150914 we obtain a 99% agreement with the

area theorem when NRSur7dq4 waveform model before tm
is the pretruncation model and a single [220] damped
sinusoid after tm as the post-truncation model. The agree-
ment reduces to 98% when the pretruncation analysis is
limited to times before thmeco. This high agreement with the
area theorem is due to the fact that the single [220] damped
sinusoid model after tm overestimates the final mass and
final spin, and hence overestimates the final area.
A weaker constraint ∼94% on the validity of the area

theorem is obtained when the pretruncation analysis is
carried out before tm with the post-truncation analysis being
the simple ringdown analyses with [220þ 221] at tm and
just [220] at tm þ 3 ms (see the second and the third entry in
Table I). These two estimates are slightly lower than the
results in Isi et al. [41]. Here, in the pretruncation analysis
before tm, the prior ranges on the component masses
(uniform between 11 M⊙ − 120 M⊙) are chosen to ensure
that the posteriors have negligible support at the prior
boundaries. Using tighter priors (uniform between
17 M⊙ − 76 M⊙, which excludes some part of posterior
on the component masses), we find improved constraints on
the area theorem, up to∼97%, as found in Ref. [41]. We also
find that using uniform priors on the component masses
provides similar results if we use uniform priors on total
mass and mass ratio, as was done in Ref. [41]. To be precise,
we find that the difference in the prior distribution function
(whether uniform on component masses or uniform in total
mass and mass ratio) does not greatly affect our result, but
that a larger prior boundary weakens the constraints on the
area theorem.
As might be expected, an earlier truncation time (thmeco)

for the pretruncation analysis or a later truncation time

(3 ms) for the post-truncation analysis gives weaker
constraints on the area change.
Comparing different waveform models, we find much

stronger constraints on the area theorem for GW150914
using NRSur7dq4 or IMRPhenomXPHM than using
IMRPhenomPv2. This may be due to the fact that
NRSur7dq4 and IMRPhenomXPHM models include
subdominant modes, whereas IMRPhenomPv2 does not.
For comparison, we also provide a similar study on

GW170814 data (see Table I). Compared to the
GW150914 results, we find weaker bounds on the area
theorem for GW170814. This is due to fact that
GW170814 has a quieter post-merger signal. When the
pretruncation analysis is extended only until thmeco, we
find that IMRPhenomPv2 provides similar constraints to
NRSur7dq4. On the other hand, when the pretruncation
analysis is extended until the merger, the IMRPhenomPv2
analysis provides a stronger bound. We also find a
negative change in black hole area when we use
IMRPhenomPv2 or IMRPhenomXPHM in the post-
truncation analyses after tm. Due to lower SNR (∼7)
for the post-truncation data segment, we obtain larger
posterior bounds on the final mass, having support from
very low masses (as low as ∼20 M⊙). This leads to a
negative change in the BH horizon area.
In order to test the consistency of our results with the actual

(positive) change of area predicted by GR, we plot the ratio
between the measured change and the expected change
in area, R ¼ ðAmeasured

f − Ameasured
i Þ=ðAexpected

f − Ameasured
i Þ,

for GW150914 and GW170814 in Fig. 4. The expected
final area, Aexpected

f is computed by converting the initial para-

meters (used to compute Ameasured
i ) from the pre-truncation

analyses to the final parameters assuming GR. All the
pretruncation analyses are performed before thmeco to com-
pletely avoid the merger regime. For demonstration purposes

FIG. 3. Fractional change in the black hole horizon area, ΔA=Ameasured
i , due to the BBH merger [GW150914 on the left and

GW170814 on the right] for different pre- and post truncation analyses performed with NRSur7dq4 or the damped sinusoid models.
The change in the area is denoted by ΔA ¼ ðAmeasured

f − Ameasured
i Þ with Ameasured

i being the initial area inferred using the parameters from
the pretruncation analysis and Ameasured

f is the final area measured with the estimated parameters form the post-truncation analysis.
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here we have only used NRSur7dq4 as the IMR model in all
of the pretruncation analyses.
If the GR prediction is true, we expect R to be exactly 1

for a perfect measurement. Due to statistical uncertainties,
the probability distribution on R is expected to be a
Gaussian with mean equal to one. The priors on masses
and spins used for the different pre- and post-truncation
analyses are equivalent to a prior distribution onR that can
be both negative as well as a positive, with R > 4
corresponding to a violation of the conservation of energy
(see the black solid and the blue dashed lines in Fig. 4).
For GW150914, the post-truncation analysis using the

[220] damped sinusoid mode starting at tm produces a
probability distribution on R peaking at a value greater
than 1. Consistently, for this particular case we find a better
agreement with the area theorem (∼99% [see Table I]). This

is expected, as the area theorem only requires the final area
to be larger than the initial area, so the agreement is
improved when the distribution for final area is shifted to
higher values. The final mass and spin are overestimated for
this case as seen in the right panel of Fig. 1, resulting in
overestimating the final area, with the bias visible in Fig. 4.
On the other hand, when we consider the first overtone

with the dominant mode after tm þ 3 ms, we find a shift in
the distribution to the opposite direction and the agreement
with the area theorem drops. To quantify the agreement
with GR, we also quote the mismatch, CR for each of the
curves in Fig. 4 in Table II. Here the mismatch CR denotes
the probability of getting R within the range of values
symmetric about the median value of R, extending to R ¼ 1
for each of the curves. To be precise, CR denotes the area
under the curve bounded by R ¼ 1 and symmetric around

FIG. 4. Ratio of the measured and the expected change in black hole horizon area, R ¼ ðAmeasured
f − Ameasured

i Þ=ðAexpected
f − Ameasured

i Þ,
for GW150914 (left) and GW170814 (right). Here, Ameasured

i is the initial area inferred using the parameters obtained from the
pretruncation analysis. Shown are results using the NRSur7dq waveform model at different “gate-start-times,” as indicated in the
legend. The measured final area Ameasured

f is computed from the post-truncation analysis, using either damped sinusoids ([220],

[220þ 221]) or the NRSur7dq waveform model. The expected final area Aexpected
f is computed by converting the initial parameters from

the pretruncation analysis (used to compute Ameasured
i ) into expected final mass and spin via fits to GR waveforms [58–60]. The vertical

black dashed line denotes the ideal scenario when the expected and the measured change of area are the same. We have also plotted the
two different prior distributions used by the blue dashed and the black solid lines.

TABLE II. Mismatch CR for the recovery of R ¼ 1 using the various pre- and post-truncation analyses for
GW150914 and GW170814. Lower value of the mismatch CR, denotes greater agreement with GR predictions. The
IMR model used here is NRSur7dq.

GW150914 CR (NRSur7dq4)

IMR model before thmeco-Damped Sinusoid [220] after tm 67.8%
IMR model before thmeco-Damped Sinusoid [220þ 221] after tm 27.6%
IMR model before thmeco-Damped Sinusoid [220] after tm þ 3 ms 6.5%
IMR model before thmeco-Damped Sinusoid [220þ 221] after tm þ 3 ms 42.3%
IMR model before thmeco-IMR model after tm 47.5%
IMR model before thmeco-IMR model after tm þ 3 ms 44.6%

GW170814
IMR model before thmeco-IMR model after tm 61.2%
IMR model before thmeco-Damped Sinusoid [220] after tm 2.7%
IMR model before thmeco-Damped Sinusoid [220þ 221] after tm 7.9%
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the median value. Lower values of CR refer to higher
accuracy in recovery of the GR estimates. We find that
excluding the merger and starting the post-truncation
analysis with [220] at tm þ 3 ms provides a better agree-
ment with GR having CR ∼ 6.5% as compared to other
cases where we use different waveform models (IMR
model or the damped sinusoids with [220þ 221]) after
tm or tm þ 3 ms.
A similar study for GW170814 is also given in Fig. 4 and

Table II. As opposed to the GW150914 result, here we find
that the dominant mode post-truncation analysis recovers
the GR value with greater accuracy, with the mismatch only
CR ¼ 2.9%. As opposed to this, using the NRSur7dq
model for the post-truncation analysis leads to lower
agreement with GR.

VII. CONCLUSION

In this paper we provide an extensive study on the
validity of Hawking’s area theorem and the consistency of
different phases of the compact binary signal using
GW150914 and GW170814 data. We investigate how
the different waveform models, various prior distributions,
and use of different data segments affect the final results.
We observe that uniform priors on component masses or
the total mass and mass ratio yield similar results.
For both GW150914 and GW170814, different waveform

models provide different constraints on both the final mass
and final spin parameters, but all of them are consistent with
the full IMR analysis except one. The ringdown analysis of
GW150914 at tm considering only the dominant mode
overestimates the final mass and final spin for the remnant
black hole. However, considering one additional overtone
provides consistent bounds when compared to the result
obtained by analysing the full data segment using IMR
waveform models. In the case of GW170814, we find that
the dominant mode analysis and the [220þ 221] mode
analysis give consistent bounds.
We observe that the different choices for the excision of

data and for the waveform models introduce significant
systematic errors in the measurements of the validity of
the area theorem. In the case of GW150914, for various
combinations of excised data, the probability of the
validity of the area theorem varies in the range
∼74%–94% when we use the NRSur7dq4 waveform
model in the pretruncation analysis. Using instead the
waveform model IMRPhenomXPHM, the range drops by
∼3%, to ∼71%–91%. IMRPhenomPv2 leads to an even
broader range from 54% to 85%.
In Ref. [40], a study of a similar test of the area theorem

was presented based on a simulated GW150914-like signal.
This study used IMRPhenomPv2 for the inspiral and a
[220] damped sinusoid for the ringdown, finding support
for the validity of the theorem of ∼74%. Our analysis of the
GW150914 data shows a similar result of ∼70% when

using the corresponding waveform model choices (see 9th
row on the 4th column of Table I).
When considering different waveform models along with

the different choices of data duration, the probability on the
validity of the area theorem varies in the range 54%–94%.We
also see that using a damped sinusoid as the waveform model
for the post-truncation analysis improves the probability by
∼10% on average as compared to one of the updated IMR
waveform models. We also see that if we apply the ringdown
analysis with the dominant mode [220] at tm for GW150914,
we get a lower ringdown frequency. This overestimates the
final mass, making an area theorem test biased in a direction
that likely overstates the agreement, with the probability
being ∼99%. For this reason, we believe the ratio of the
measured change in area to the expected change R, and the
associated mismatchCR, to be a better metric for determining
the consistency of the signal with GR. This yields weaker
agreement with GR for the [220] ringdown analysis at tm, for
which CR ∼ 67%. This is expected, since a ringdown with
only the [220] is not thought to be good model of the signal at
merger. For comparison, the [220þ 221] ringdown analysis
at tm þ 3 ms yields CR ∼ 6.7%.
For GW170814, various data durations used in the

analyses lead to larger uncertainty on the probability values
as compared to GW150914. For NRSur7dq4 it ranges in
between 71%–87%. However, for IMRPhenomXPHM and
IMRPhenomPv2 it varies from 17%–85% and 27%–90%,
respectively. To compare between a damped sinusoid and an
IMR waveform model for the post-truncation analysis, we
find that the damped sinusoid improves the probability of a
positive change in area by ∼15% as compared to the case
where the IMR model is NRSur7dq4. But the improvement
could be as high as ∼60% when the IMR models used are
IMRPhenomXPHM or IMRPhenomPv2. The similar find-
ings are reflected in Table II through the values ofCR. In this
case the best case scenario is obtained using an IMR model
before thmeco and the [220] mode analysis after tm, for which
CR ¼ 2.7%. However, using IMR model to analyze the
post-truncation segment after tm, CR drops to ∼61%.
These large systematic uncertainties highlight the need for

binary black hole observations across a longer time period
than is possible with current generation detectors. This
should become possible in the 2030s with the launch of
the space-based Laser Interferometer Space Antenna (LISA)
[65] and the beginning of ground-based “3G” detectors, such
as Cosmic Explorer (CE) [66] and Einstein Telescope (ET)
[67].With a sensitive frequency band of 0.1–100 mHz, LISA
will be able to detect binary black holes ∼ a year before their
merger are detected by ground-based detectors [25,68–74].
This should yield unprecedented precision measurements of
the fundamental laws governing black hole thermodynamics.
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