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Three recent articles have claimed that it is possible to, at least in theory, either set up positive energy warp
drives satisfying theweak energy condition (WEC), or at the very least, to minimize theWEC violations. These
claims are, at best, incomplete since the arguments as presented only assert but do not prove the existence of
one set of timelike observers, the comoving Eulerian observers, who see relatively “nice” physics. While these
particular observers might arguably see a positive energy density, the WEC requires all timelike observers to
see positive energy density. Therefore, one should carefully revisit this issue. A more careful analysis shows
that the situation is actually much grimmer than advertised—within the framework adopted by those three
papers all physically reasonable warp drives will certainly violate the WEC, and both the strong and dominant
energy conditions. Under plausible subsidiary conditions the null energy condition is also violated.While warp
drives are certainly interesting examples of speculative physics, the violation of the energy conditions, at least
within the framework of standard general relativity, is unavoidable. Even in modified gravity, physically
reasonable warp drives will still violate the purely geometrical null convergence condition and the timelike
convergence condition which, in turn, will place very strong constraints on any modified-gravity warp drive.
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I. INTRODUCTION

Three recent articles [1–3] have argued for the existence
of “physically reasonable” positive-energy warp drive
configurations, either satisfying the weak energy condition
(WEC), or minimizing violations thereof. (See also the
series of articles [4–8].) These claims are in sharp contrast
to the 25 year old consensus opinion that at least some
energy condition violations are necessary for the generation
of warp fields [9–29].
Specifically, known results already include the following:
(i) Alcubierre warp drives have long been known to

violate the WEC [9] and have, more recently, been
shown to also violate the null energy condition
(NEC) [29].

(ii) Natário zero-expansion warp drives have long been
known to violate the WEC [10].

(iii) Generic Natário warp drives are known to violate the
dominant energy condition (DEC) [15] and have
also been shown to violate either the strong energy
condition (SEC) or the WEC [10].

We shall strengthen these well-known results below, first
showing that the Natário zero-expansion warp drives also
violate the SEC and the NEC, and then ultimately showing
that generic Natário warp drives (including the variants
discussed in Refs. [1–3]) violate the WEC and under
plausible subsidiary conditions also violate the NEC.
How, then, is this result compatible with the various

rather bold claims made in Refs. [1–3]? (And, for that
matter, various parts of the popular press.) The key
observation is that WEC requires all timelike observers
to see positive energy density, whereas the analyses of
Refs. [1–3] at best only investigate the energy density as
seen by one class of timelike observers (the comoving
Eulerian observers). Thus the claims made in Refs. [1–3]
are at best grossly incomplete, and in many key specific
details, wrong.
To set the stage, in Sec. II we shall first discuss the

kinematics of generic Natário warp drive spacetimes and
then calculate the relevant spacetime curvature (Riemann,
Ricci, and Einstein tensors) in Sec. III. Assuming standard
general relativity, we calculate in Sec. IVall the components
of the generic Natário warp-field stress-energy tensor. In
Sec. V, we then provide a number of general results
regarding the implications of the point-wise energy con-
ditions and relate them to the null and timelike convergence
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conditions in Sec. VI. With those preliminaries out of the
way, the actual proof of energy condition violations in
generic Natário warp-field spacetimes will be straightfor-
ward (Sec. VII). We conclude with some comments on the
possibility of either moving beyond Einstein gravity, or the
possibility of further generalizing the notion of warp-field
spacetimes. Nevertheless, within the context of standard
Einstein gravity, we emphasize that in physically reasonable
warp field spacetimes energy condition violations are utterly
unavoidable and must be squarely faced. In the appendices,
we discuss various technical issues arising in recent papers
concerning themselves with warp drives: Appendix A deals
with a confusion over the precise meaning of spherical
symmetry in warp space-times. Appendix B points to
misunderstandings regarding coordinate transformations.
Appendix C addresses issues of differentiability and related
technical issues. Finally, Appendix D lists further technical
oversights small and large of recent publications.

II. WARP DRIVE KINEMATICS

The generic Natário warp drive line element we shall
consider is the following [10]:

ds2 ¼ −dt2 þ δijðdxi − viðx; y; z; tÞdtÞ
× ðdxj − vjðx; y; z; tÞdtÞ: ð2:1Þ

Natário calls this a “warp drive spacetime.” Both the vector
viðx; y; z; tÞ and its derivatives are assumed to be smooth
and bounded [10]. This line element is sufficiently general
to cover well over 99% of the relevant literature, and the
very few exceptions in the extant literature will be explicitly
discussed later on in Appendix B. Certainly the models
discussed in Refs. [1–3] fall into this generic Natário
framework.
The line element represents a decomposition of the

metric in the sense of the Arnowitt-Deser-Misner
(ADM), (3þ 1) split [30–36], with unit lapse N → 1, a
flow vector vi ¼ −ðshift vectorÞ, and a flat spatial 3-metric
gij ¼ δij. The sign flip on the shift vector is traditional in a
warp drive context and inspired by the notion of “flow”
rather than “shift.”Accordingly, we shall speak of the “flow
vector” rather than the “shift vector.” (See also the tradi-
tional usage in the “analogue spacetime” program [37–41].)
The explicit metric components are

gab¼
�−ð1−v2Þ −vj

−vi δij

�
; gab¼

� −1 −vj

−vi δij−vivj

�
: ð2:2Þ

The metric signature is manifestly −þþþ, while space-
time indices such as a; b;… run from 0 to 3, and spatial
indices such as i; j… run from 1 to 3. At large spatial
distances we want the spacetime to be asymptotically flat,

(that is, asymptotically Minkowski or at worst asymptoti-
cally Schwarzschild).
The most natural boundary conditions to impose are that

viðx; y; z; tÞ → 0 at spatial infinity. One could alternatively
impose viðx; y; z; tÞ → vi�ðtÞ at spatial infinity, with vi�ðtÞ
some function of time only. This would still be asymp-
totically Minkowski, but with new spatial coordinates
xi → x̄i ¼ xi −

R
vi�ðtÞdt. This would be useful, for in-

stance, if one wishes to adopt a coordinate system moving
with the warp bubble. But there is certainly no loss of
generality in enforcing viðx; y; z; tÞ → 0 at spatial infinity.
Indeed there is a very important issue of physics hiding

here—physically we want the warp bubble (for at least part
of the time) to be “moving” with respect to the “fixed
stars”—otherwise the construction is physically uninterest-
ing. Motion between the warp bubble and the fixed stars
can be achieved thusly: either by choosing coordinates such
that viðx; y; z; tÞ → 0 at spatial infinity (so the fixed stars
are “at rest”) while the warp bubble has explicit time
dependence, or alternatively, by choosing coordinates
where the warp bubble (the central region of the spacetime)
is time independent and the fixed stars are in motion
viðx; y; z; tÞ → vi�ðtÞ at spatial infinity.
Furthermore, we want the warp bubble to be physically

well localized; we do not wish to have to accelerate the
entire universe to get an interesting warp field. On the
other hand, demanding that the flow vector have compact
support (while mathematically convenient) is physically
unnecessarily restrictive. For our purposes it will be more
than sufficient for us to demand that the flow field falls
off sufficiently rapidly near spatial infinity so that we
can integrate by parts. The key point in proving NEC
violations (and so implicitly proving violations of WEC,
SEC, and DEC) is the significantly weaker condition that
gradients of the flow field tend to zero at spatial infinity.
We shall expand on this point more extensively in the
discussion below.
Following Natário, we shall also demand that the flow

field (and hence the metric) be sufficiently smooth and
bounded. At the very worst we shall allow Israel-Lanczos-
Sen “thin-shell” distributional contributions to the Riemann
tensor. Such assumptions are completely standard and
implicit in the extant literature. Specifically, we shall
demand that the flow v⃗ (and hence the metric) be C2− at
worst, that is, piecewise twice differentiable, with at worst
discontinuous first derivatives. Then the Christoffel sym-
bols are C1− at worst, that is, piecewise once differentiable
with at worst step-function discontinuities. Then the
Riemann tensor is C0 at worst, piecewise continuous with
at worst delta-function contributions.
Finally, we emphasize the need for at least some

subsidiary conditions to be applied to the generic
Natário metric (2.1) in order to distinguish a warp drive
from, for instance, the Painlevé-Gullstrand version of
Schwarzschild spacetime. The line element (2.1) is
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sufficiently general and explicit to be physically interest-
ing as a warp drive exemplar, but some subsidiary
conditions would still be desirable.
Because the spatial 3-slices are intrinsically flat, and the

lapse is unity, the only nontrivial physics hides in the
extrinsic curvature of the spatial 3-slices, for which we have
the particularly simple result,

Kij ¼ vði;jÞ: ð2:3Þ

In order to prevent the warp field being trivial (Minkowski
space), we will demand that there is at least one point in
spacetime where the extrinsic curvature is nonzero.
Let us define na ¼ −∇at ¼ ð−1; 0; 0; 0Þa. Then we have

na ¼ gabnb ¼ −gat ¼ ð1; viÞ. Thus na is future pointing. It
is actually a future-pointing 4-velocity normal to the
spatial 3-slices: gabnanb ¼ −1 ¼ gabnanb. Observers with
4-velocity na are often called “Eulerian.” In some sense
(see discussion below) they “go with the flow”; they are
“comoving.” Furthermore, the Eulerian observers na ¼
−gab∇bt are, in fact, timelike geodesics. This is a simple
consequence of the fact that the warp spacetimes are unit
lapse, as follows:

nb∇bna ¼ gacnb∇b∇ct ¼ gacnb∇c∇bt ¼ gacnb∇cnb

¼ 1

2
gac∇cðnbnbÞ ¼

1

2
gac∇cð−1Þ ¼ 0: ð2:4Þ

The warp drive spacetime is by construction globally
hyperbolic, and at each and every instant in time “t” the
Eulerian observers are 4-orthogonal to the flat spatial slices
—so the Eulerian observers define a zero-vorticity con-
gruence of timelike geodesics that by construction cannot
have any focussing points.1

From the metric line element one can easily read off a
suitable choice of cotetrad: The timelike covector is simply

ðe0̂Þa ¼ ð1; 0; 0; 0Þa ¼ na; ð2:5Þ

while the spatial cotriad is

ðe1̂Þa ¼ ð−vx; 1; 0; 0Þa; ðe2̂Þa ¼ ð−vy; 0; 1; 0Þa;
ðe3̂Þa ¼ ð−vz; 0; 0; 1Þa: ð2:6Þ

The corresponding tetrad is then easily determined: The
timelike leg is

ðe0̂Þa ¼ ð1; vx; vy; vzÞa ¼ na; ð2:7Þ

while now the spatial triad is particularly simple

ðe1̂Þa ¼ ð0; 1; 0; 0Þa; ðe2̂Þa ¼ ð0; 0; 1; 0Þa;
ðe3̂Þa ¼ ð0; 0; 0; 1Þa: ð2:8Þ

This implies that, in the comoving orthonormal basis, for
any T0

2 tensor,

Xâb̂ ¼ eâaeb̂
bXab ¼

�X0̂ 0̂ X0̂ ĵ

Xî 0̂ Xî ĵ

�
¼

�Xnn Xnj

Xin Xij

�

¼
�Xabnanb Xajna

Xiana Xij

�
: ð2:9Þ

This is why objects such as Xnn ¼ Xabnanb ¼ X0̂ 0̂ and
Xni ¼ Xaina ¼ X0̂ î are so important. Subject to this
choice of coordinates and tetrad, for the covariant spatial
components we have the particularly simple result
Xî ĵ ¼ Xij. We will often use this observation to simplify
formulae by suppressing the “hats” when they are not
critical to understanding.
Similarly, for any fully covariant T0

4 tensor one has
Xâ b̂ ĉ d̂ ¼ eâaeb̂

beĉced̂
dXabdc. Then for any tensor that has

the same symmetries as the Riemann tensor it suffices to
calculate

X0̂ î 0̂ ĵ ¼ Xninj ¼ nanbXaibj; X0̂ î ĵ k̂ ¼ Xnijk ¼ naXaijk;

Xî ĵ k̂ l̂ ¼ Xijkl: ð2:10Þ

Some specific examples of the generic warp drive
spacetime are as follows:

Alcubierre warp field [9]: The original Alcubierre warp
field [9], taken to be moving in the z direction with
constant velocity v�, is given by

viðx; y; z; tÞ ¼ ð0; 0; 1Þiv�fð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ ðz − v�tÞ2

q
Þ:

ð2:11Þ

Here, fð0Þ ¼ 1, and fð∞Þ ¼ 0.
This was rapidly generalized [9] to a time-dependent

velocity for the warp bubble

viðx; y; z; tÞ

¼ ð0;0;1Þiv�ðtÞf
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ y2 þ
�
z−

Z
v�ðtÞdt

�
2

s �
:

ð2:12Þ

Note these specific models are “spherically symmetric.”
More on this point below.

1Everett [11] takes the point of view that one might take this
warp drive metric as a local notion only, thus avoiding the global
hyperbolicity conditions of the original Alcubierre spacetime,
and uses that to construct closed timelike curves (CTCs). This
introduces a whole new level of complexity related to global
causality and “chronology protection,” of which more anon.
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Despite repeated assertions in Ref. [2], there is
absolutely no difficulty in making the velocity of the
warp bubble time dependent.

Natário zero-expansion warp field [10]: The Natário
zero-expansion warp drive simply sets ∇ · v⃗ ¼ 0. Note
that the second half of Natário’s 2001 paper [10]
focuses on this zero-expansion warp field, whereas the
first half of that paper deals with the generic Natário
warp field spacetime of Eq. (2.1). When mentioning
Natário’s warp field, it is therefore important to make
explicit which of these two specific warp drives one is
referring to.

Lentz/Fell-Heisenberg zero-vorticity warp field [1,3]:
The Lentz/Fell-Heisenberg zero-vorticity warp drive
uses a purely gradient flow v⃗¼∇Φ, implying
ω⃗ ¼ ∇ × v⃗ ¼ 0.

Thus the generic warp drive line element (2.1), introduced
by Natário in [10], covers all three of these specific cases,
and many more, and is sufficiently general to cover almost
all of the relevant literature.

III. WARP-FIELD CURVATURE

The spacetime curvature for warp drive spacetimes is
relatively easily determined via a specific application of the
ADM formalism [30–36].

A. Riemann tensor

The Gauss-Codazzi equations would, in general, imply2

Rî ĵ k̂ l̂ ¼ ð3ÞRî ĵ k̂ l̂ þ Kî k̂Kĵ l̂ − Kî l̂Kĵ k̂: ð3:1Þ

However, since our 3-geometry is flat, we have
ð3ÞRî ĵ k̂ l̂ → 0, and because of our choice of spatial triad
we can dispense with the hats. So for warp drive spacetimes
we simply have

Rijkl ¼ KikKjl − KilKjk: ð3:2Þ

The Gauss-Mainardi equations imply3

Rnijk ¼ Raijkna ¼ Kij;k − Kik;j ¼ vði;jÞ;k − vði;kÞ;j ¼ v½j;k�;i:

ð3:3Þ

The remaining components of the Riemann tensor do not (to
our knowledge) seem to have a special name and are a little
trickier to calculate. In the present context, to explicitly
calculateRninj one could either use brute force (e.g., MAPLE),

or appeal to a simplification of the ADM formalism,4 or use
the general commutator identity,

½∇a;∇b�nc ¼ −Rd
cabnd; ð3:4Þ

suitably projected onto spatial and normal n directions.
One finds

Rninj ¼ Raibjnanb ¼ −LnKij þ ðK2Þij: ð3:5Þ

Here LnKij is the Lie derivative of the extrinsic curvature,
where _Kij ¼ ∂tKij, and

LnKij ¼ _Kij þ vk∂kKij þ ∂ivkKkj þ ∂jvkKik: ð3:6Þ

Also,

ðK2Þij ¼ Kikδ
klKlj: ð3:7Þ

We can rewrite the Lie derivative as

LnKij ¼ _Kij þ vk∂kKij þ ∂ ½ivk�Kkj þKik∂ ½jvk� þ 2ðK2Þij;
ð3:8Þ

implying

LnKij ¼ na∂aKijþ ∂ ½ivk�KkjþKik∂ ½jvk� þ 2ðK2Þij: ð3:9Þ

Therefore,

Rninj ¼−na∂aKij− ∂ ½ivk�Kkj −Kik∂ ½jvk�− ðK2Þij: ð3:10Þ

B. Ricci tensor

Performing suitable contractions, for the Ricci tensor,
we find

Rnn ¼ −LnK − trðK2Þ; ð3:11Þ

where LnK is the Lie derivative of K ¼ Kijδ
ij ¼ trðKÞ,

the trace of the extrinsic curvature. That is LnK ¼ _Kþ
vi∂iK ¼ na∂aK, so we also have

Rnn ¼ −na∂aK − trðK2Þ: ð3:12Þ
Furthermore,

Rni ¼ Kij;kδ
jk − K;i: ð3:13Þ

In view of the fact that in this context spatial indices are
always raised and lowered using Kronecker deltas, we can
and shall often simplify notation by contracting over two
indices down and writing

2See, for instance, Eq. (2.92) of Gourgoulhon [31].
3See, for instance, Eq. (2.101) of Gourgoulhon [31], special-

izing to Kij ¼ vði;jÞ.

4For instance, use Eq. (3.43) of Gourgoulhon [31], specializing
to N → 1, and flipping the sign of the Lie derivative term to
account for ðflowÞ ¼ −ðshiftÞ.
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Rni ¼ Kij;j − K;i: ð3:14Þ

Finally, for the spatial components,

Rij ¼ LnKij þ KKij − 2ðK2Þij; ð3:15Þ

which can be recast as

Rij ¼ na∂aKij þ KKij þ ∂ ½ivk�Kkj þ Kik∂ ½jvk�: ð3:16Þ

Alternatively,

Rij ¼ ∂aðnaKijÞ þ ∂ ½ivk�Kkj þ Kik∂ ½jvk�: ð3:17Þ

Then for the Ricci scalar R ¼ −Rnn þ δijRij, we have

R ¼ 2LnK þ K2 þ trðK2Þ: ð3:18Þ

Here, in full, trðK2Þ ¼ ðK2Þijδij ¼ Kijδ
ikδjlKkl, though

we can and shall often simplify notation by writing
trðK2Þ ¼ KijKij, implying contraction on the repeated
down indices.

C. Einstein tensor

Using Gab ¼ Rab − 1
2
Rgab, we find

Gnn ¼
1

2
ðK2 − trðK2ÞÞ; ð3:19Þ

Gni ¼ Kij;j − K;i; ð3:20Þ

and the somewhat messier result that

Gij ¼ LnKij þ KKij − 2ðK2Þij
−
�
LnK þ 1

2
K2 þ 1

2
trðK2Þ

�
δij: ð3:21Þ

Equivalently, (and more explicitly)

Gij ¼ na∂aKij þ KKij þ ∂ ½ivk�Kkj þ Kik∂ ½jvk�

−
�
na∂aK þ 1

2
K2 þ 1

2
trðK2Þ

�
δij: ð3:22Þ

IV. WARP-FIELD STRESS-ENERGY TENSOR

In this section, we use the standard Einstein equations
Gab ¼ 8πTab and analyze the density, flux, and spatial
components of the stress-energy.

A. Density

In the Eulerian orthonormal basis, using (3.19), for the
density we have

ρ ¼ Gnn

8π
¼ 1

16π
ðK2 − trðK2ÞÞ: ð4:1Þ

(Everyone agrees with this. This is the quantity that Lentz
[1] and Fell-Heisenberg [3] eventually try to force to be
positive. This is the only quantity Bobrick-Martire [2]
explicitly calculate.) Now it is a mathematical identity that
for any 3 × 3 matrix

K2 − trðK2Þ ¼ 2trðcofðKijÞÞ: ð4:2Þ

That is, K2 − trðK2Þ is twice the trace of the cofactor matrix
of the 3 × 3 matrix Kij. This is most easily established by
diagonalizing the 3 × 3 matrix. So in (3þ 1) dimensions
the Eulerian energy density is intimately related to the
cofactor matrix of the extrinsic curvature. This is the “hidden
geometric structure” alluded to by Fell-Heisenberg in
Ref. [3], a curiosity which is unfortunately less useful than
one might hope.
In the present context we have the fully explicit result

ρ ¼ 1

16π
ððvi;iÞ2 − vði;jÞvði;jÞÞ: ð4:3Þ

It is straightforward to rewrite this as a spatial divergence
plus a negative semidefinite contribution,

ρ ¼ 1

16π
f∂iðvivj;j − vjvi;jÞ − v½i;j�v½i;j�g: ð4:4Þ

In terms of the vorticity ωi ¼ ϵijkv½j;k�, this becomes

ρ ¼ 1

16π

�
∂iðvivj;j − vjvi;jÞ −

1

2
ðωiωiÞ

�
; ð4:5Þ

or even

ρ ¼ 1

16π

�
∇ · fv⃗K − ðv⃗ · ∇Þv⃗g − 1

2
ðω⃗ · ω⃗Þ

�
: ð4:6Þ

That is, for the generic warp field, the Eulerian energy
density is always the sum of a 3-divergence plus a quantity
that is negative semidefinite. We will have occasion to
repeatedly use this result in subsequent discussions.

B. Flux

For the flux, in the Eulerian orthonormal basis, using
(3.20) we have

fi ¼
Gni

8π
¼ 1

8π
ðKij;j − K;iÞ ¼

1

16π
ðvi;jj − vj;jiÞ

¼ 1

16π
ð∇2vi − ∇ið∇ · v⃗ÞÞ: ð4:7Þ

That is
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fi ¼
1

16π
ð∇ × ð∇ × v⃗ÞÞi: ð4:8Þ

(Everyone agrees with this. Note that in the Lentz/Fell-
Heisenberg [1,3] framework v⃗ ¼ ∇Φ is a gradient, so this
comoving Eulerian flux is identically zero.)

C. Spatial stresses

Finally, using (3.21), the spatial stresses are given by the
3 × 3 matrix,

Tij ¼
Gij

8π
¼ 1

8π

�
LnKij þ KKij − 2ðK2Þij

−
�
LnK þ 1

2
K2 þ 1

2
trðK2Þ

�
δij

�
: ð4:9Þ

So for the average pressure, which we define to be
p̄ ¼ 1

3
Tijδ

ij, and noting that

ðLnKij þ KKij − 2ðK2ÞijÞδij ¼ LnK þ K2 − 2trðK2Þ
−KijLnδ

ij ¼ LnK þ K2; ð4:10Þ

we find

p̄ ¼ 1

3
Tijδ

ij ¼ 1

24π

�
−2LnK −

1

2
K2 −

3

2
trðK2Þ

�
: ð4:11Þ

It is furthermore useful to note that

ρþ 3p̄ ¼ −
1

4π
ðLnK þ trðK2ÞÞ; ð4:12Þ

and that

ρþ p̄ ¼ 1

24π
ð−2LnK þ K2 − 3trðK2ÞÞ: ð4:13Þ

These quantities will soon be seen to be useful when
investigating violations of the SEC and NEC, respectively.
It is sometimes useful to also note that

∇ana ¼ ∂ana ¼ K; ð4:14Þ

and so write

LnK ¼ na∇aK ¼ ∇aðKnaÞ − K2; ð4:15Þ

whence,

p̄ ¼ −
1

24π

�
2∇aðKnaÞ −

3

2
K2 þ 3

2
trðK2Þ

�
: ð4:16Þ

Equivalently,

p̄ ¼ ρ −
1

12π
∇aðKnaÞ: ð4:17Þ

That is, for the generic warp field, the average spatial
pressure equals the energy density plus a 4-divergence. We
will have occasion to repeatedly use this result in sub-
sequent discussions.
For completeness we point out that the trace-free part of

the 3 × 3 spatial stress tensor, ðTijÞtf ¼ Tij − 1
3
p̄δij, can be

computed in terms of the trace-free part of the extrinsic
curvature, ðKijÞtf ¼ Kij − 1

3
Kδij.

We find

ðTijÞtf ¼
1

8π
fna∂aðKijÞtf þ KðKijÞtf þ ∂ ½ivk�ðKkjÞtf

þ ðKikÞtf∂ ½jvk�g: ð4:18Þ

That is

ðTijÞtf ¼
1

8π
f∂a½naðKijÞtf � þ ∂ ½ivk�ðKkjÞtf þ ðKikÞtf∂ ½jvk�g:

ð4:19Þ

Overall, we see that the generic Natário line element
(2.1) is sufficiently simple to permit detailed and explicit
calculations, while being sufficiently general to encompass
almost all physically interesting warp drive spacetimes.

V. ENERGY CONDITIONS

The (classical point-wise) energy conditions are con-
straints one places on the stress-energy as a way of keeping
unusual physics somewhat under control. The energy
conditions all correspond, in some sense, to demanding
that for some class of observers the energy density be non-
negative. Standard definitions are [31–33,42–48] as
follows:

NEC.—For all null vectors ka we demand Tabkakb ≥ 0.
WEC.—For all timelike vectors Va we demand
TabVaVb ≥ 0.

SEC.—For all timelike vectors Va we demand
ðTab − 1

2
TgabÞVaVb ≥ 0.

DEC.—For all future-pointing timelike vectors Va and
Wa we demand TabVaWb ≥ 0.

(The DEC, in particular, has a number of equivalent
formulations [45].)
The standard linkages between energy conditions are

[31–33,42–48]

DEC ⇒ WEC ⇒ NEC; ð5:1Þ

SEC ⇒ NEC; ð5:2Þ
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but

WEC ⇎ SEC. ð5:3Þ

Despite claims made in early versions of [3], the WEC is
not the weakest of the energy conditions.
Some examples of the subtleties involved are
(i) A positive cosmological constant (positive vacuum

energy density) satisfies the NEC and WEC, but not
the SEC.

(ii) A negative cosmological constant (negative vacuum
energy density) satisfies the NEC and SEC, but not
the WEC.

(iii) Massive scalar fields, (classical minimally coupled,
with positive kinetic energy, and positive mass
squared so that they are not tachyonic), satisfy the
NEC and WEC but can violate the SEC. For
example, the standard scalar inflaton field of cos-
mological inflation satisfies the NEC and WEC but
violates the SEC.

(iv) Classical Maxwell electromagnetism satisfies all the
usual energy conditions.

These examples suggest some caution when interpreting
the physical significance of the energy conditions [49–58].
There are indications that the NEC and WEC can be

violated on microscopic (quantum) scales [59–77],
though they seem to be satisfied by (reasonable) matter
on macroscopic scales. In contrast the SEC appears to be
observationally violated on the largest cosmological
scales [51–57].
While for the purposes of this paper we will be focussing

on applying these point-wise energy conditions specifically
to warp drive spacetimes, it should be noted that these
energy conditions also have direct applications to singu-
larity theorems, positive-mass theorems, traversable worm-
holes [78–87], topological censorship, and chronology
protection [88–92].
Other less commonly used energy conditions are
TEC.—trace energy condition: ρ − 3p ≥ 0. Mainly
of historic interest [49,50]. Believed to be violated
deep in the cores of neutron stars. Definitely violated
by (hypothetical) “stiff matter” ρ ¼ p, where
ðspeed of soundÞ ¼ ðspeed of lightÞ.

FEC.—flux energy condition: for all timelike observers
Va, the flux Fa ¼ TabVb is either timelike or null
[59,60].
(FEC is a weakening of DEC; that is,

DEC ⇒ FEC.)
Averaged energy conditions (typically averaged along
timelike or null geodesics) are weaker than their
corresponding point-wise counterparts. The most
useful of the averaged energy conditions is typically
the averaged NEC, where one averages the NEC along

timelike geodesics using an affine parametrization
[43,71–77].

As a cautionary example regarding application of the
energy conditions, note that all three of the recent Lentz [1],
Bobrick-Martire [2], and Fell-Heisenberg [3] articles
merely assert the existence of one subclass of timelike
observers for which the energy density is positive. This is
not enough to show that the WEC is satisfied. To explicitly
see a specific example of this behavior, let us work in an
orthonormal basis. Take ρ0 > 0 and Γ > 1, and consider
the following:

Tâ b̂ ¼ ρ0

2
664
1 0 0 0

0 −Γ2 0 0

0 0 −Γ2 0

0 0 0 −Γ2

3
775
âb̂

: ð5:4Þ

Then in the natural rest frame Vâ ¼ ð1; 0; 0; 0Þâ we have

ρ ¼ Tâ b̂V
âVb̂ ¼ ρ0 > 0. But a moving observer, with

4-velocity Vâ ¼ γð1; vniÞâ, where ni is any unit spatial
3-vector, will see an energy density

ρ ¼ Tâ b̂V
âVb̂ ¼ ρ0γ

2ð1 − Γ2v2Þ: ð5:5Þ

For a sufficiently rapidly moving but still subluminal
observer, with jvj > 1=Γ, the energy density will be seen
to be negative. So in this example the WEC is violated.
What Lentz [1], Bobrick-Martire [2], and Fell-Heisenberg
[3] should be doing is to also calculate all of the stress
components Tij. It is not enough for them to just focus on
Tnn and Tni.
Onewayof proceeding is to assume the stress-energy tensor

is of Hawking-Ellis type I, see Refs. [42–44,60,93–97],
and work with the Lorentz-invariant eigenvalues fρ; pig,
the Lorentz-invariant eigen-energy-density and principal pres-
sures, respectively.
Then it is a standard result that, in terms of the Lorentz-

invariant eigenvalues of a type I stress-energy tensor, one
has the two-way implications [42–44,60,93–97],

NEC ⇔ ρþ pi ≥ 0; ð5:6Þ

WEC ⇔ ρþ pi ≥ 0 & ρ > 0; ð5:7Þ

SEC ⇔ ρþ pi ≥ 0 & ρþ
X
i

pi > 0; ð5:8Þ

DEC ⇔ jpij ≤ ρ: ð5:9Þ

Unfortunately, we do not know a priori whether or not
the stress-energy for the warp drive is Hawking-Ellis type I,
in general, nor do the Eulerian observers typically diago-
nalize the stress-energy. So one has to be a little more
indirect. (A limited result is this: For the zero-vorticity warp
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drives, because the Eulerian observers see zero flux f⃗ ¼ 0,
the stress-energy is block diagonal, and so of Hawking-
Ellis type I. In particular, an even more limited and precise
result is this: For a zero-vorticity warp drive, since the
stress-energy is Hawking-Ellis type I, we explicitly have

TabVaVb ¼ γ2
�
ρþ

X
i

piβ
2
i

�

¼ γ2
�
ρð1 − β2Þ þ

X
i

½ρþ pi�β2i
�

¼ ρþ γ2
�X

i

½ρþ pi�β2i
�
: ð5:10Þ

Thus, by considering all possible physical values of the βi
(including relativistic values), we see that non-negative
Eulerian density plus the NEC implies the WEC—so for
checking the WEC in this situation, checking ρ ≥ 0 is
manifestly insufficient, one additionally needs to check the
NEC (ρþ pi ≥ 0) as well.)
In counterpoint, what the Eulerian observers do generi-

cally implement is a natural orthonormal frame in which

Tâ b̂ ¼
�
ρ fj
fi Tij

�
: ð5:11Þ

A. NEC

Let us first investigate what we can say about the NEC.
Let us take any two oppositely oriented null vectors
lâþ ¼ ð1;þliÞâ, and lâ

− ¼ ð1;−liÞâ, where li is any
arbitrary unit spatial 3-vector. Then the NEC would imply
both

Tâ b̂l
âþlb̂

� ¼ Tâ b̂ð1;þliÞâð1;þljÞb̂
¼ ρþ 2fili þ Tijlilj ≥ 0; ð5:12Þ

and

Tâ b̂l
â
−lb̂

− ¼ Tâ b̂ð1;−liÞâð1;−ljÞb̂
¼ ρ − 2fili þ Tijlilj ≥ 0: ð5:13Þ

Averaging over these two equations, for any unit spatial
3-vector

NEC ⇒ ρþ Tijlilj ≥ 0: ð5:14Þ

Note the implication is one way; effectively, one throws
away all information contained in the flux fi. In terms of
the eigenvalues of the 3-stress we have5

NEC ⇒ ρþminfλðTijÞg ≥ 0: ð5:15Þ

Now pick a triad li
A of three mutually orthogonal unit

vectors. Then for each member of the triad the NEC implies

ρþ Tijli
Al

j
A ≥ 0: ð5:16Þ

Now average over the three members of the triad,

ρþ Tij

�
1

3

X
A

li
Al

j
A

�
≥ 0: ð5:17Þ

Thence, noting that by construction
P

A l
i
Al

j
A ¼ δij,

we see

ρþ Tij

�
1

3
δij

�
≥ 0: ð5:18Þ

Defining, as usual, the average pressure as p̄ ¼ 1
3
Tijδ

ij,
(this works even if the 3-stress Tij is not diagonal),
we see that

NEC ⇒ ρþ p̄ ≥ 0: ð5:19Þ

As long as the 3-stress is even slightly anisotropic we
have minfλðTijÞg ≠ maxfλðTijÞg so that we deduce the
strict chain of inequalities,

minfλðTijÞg < p̄ < maxfλðTijÞg: ð5:20Þ

Thence, in the presence of anisotropies, we can make the
slightly stronger strict inequality involving the average
pressure p̄ that

NEC ⇒ ρþ p̄ > 0: ð5:21Þ

The implication is again one way. Note also that this
argument has nothing specific to do with warp drives, it is
purely a statement about how the NEC implies an easily
checked inequality that depends only on the existence of
some orthonormal basis. For our current purposes the point
is that it is relatively easy to pick a specific direction and
calculate Tijlilj, or to average over all directions and
calculate p̄.

B. WEC

Similar things can be said about the WEC, although now
one takes some 0 ≤ β < 1 and considers two oppositely
oriented timelike vectors Va

� ¼ γð1;�βliÞa. Then for any
unit 3-vector li, after averaging over the two orientations,

WEC ⇒ ρþ β2Tijlilj ≥ 0: ð5:22Þ

5For zero-vorticity warp drives one has the stronger equiv-
alence that NEC ⇔ ρþminfλðTijÞg ≥ 0.
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Then averaging over a triad of unit vectors, for all
0 ≤ β < 1, one has

WEC ⇒ ρþ β2p̄ ≥ 0: ð5:23Þ

By considering β ¼ 0 and the limit β → 1, one has

WEC ⇒ ρ ≥ 0 & ρþ p̄ ≥ 0: ð5:24Þ

The implication is again one way. And the point is that
Tijlilj and p̄ are relatively easy to calculate. As long as the
3-stress is even slightly anisotropic, we can make the slightly
stronger statement involving the average pressure p̄ that

WEC ⇒ ρ ≥ 0 & ρþ p̄ > 0: ð5:25Þ

C. SEC

The SEC can be phrased in terms of the so-called “trace-
reversed” stress-energy tensor Tab − 1

2
Tgab, as the condition

ðTab − 1
2
TgabÞVaVb ≥ 0, which in turn is equivalent to

enforcing TabVaVb ≥ 1
2
ðρ − 3p̄Þ. Then the SEC implies

ρþ β2Tijlilj ≥ ð1 − β2Þ 1
2
ðρ − 3p̄Þ: ð5:26Þ

This can be rearranged to

SEC⇒ ð1þ β2Þρþ 3ð1− β2Þp̄þ 2β2Tijlilj ≥ 0: ð5:27Þ

Averaging over the unit directions li, for all 0 ≤ β < 1, one
has

SEC ⇒ ð1þ β2Þρþ ð3 − β2Þp̄ ≥ 0: ð5:28Þ

By considering β ¼ 0 and the limit β → 1, one has

SEC ⇒ ρþ 3p̄ ≥ 0 & ρþ p̄ ≥ 0: ð5:29Þ

The implication is again one way. And the point is that
Tijlilj and p̄ are relatively easy to calculate. As long as the
3-stress is even slightly anisotropic, we can make the slightly
stronger statement involving the average pressure p̄ that

SEC ⇒ ρþ 3p̄ > 0 & ρþ p̄ > 0: ð5:30Þ

D. DEC

One version of the DEC, as reported by Hawking and
Ellis [42] [page 91], is formulated as the requirement that in
any orthonormal frame the energy density dominates all the
other components of the stress-energy tensor,

jTâ b̂j ≤ Tt̂ t̂: ð5:31Þ

In our language this would be

jfij ≤ ρ& jTijj ≤ ρ: ð5:32Þ

But, in particular, this implies

jp̄j ¼
				 13

X
i

Tii

				 ≤ 1

3

X
i

jTiij ≤ ρ: ð5:33Þ

That is

DEC ⇒ jp̄j ≤ ρ: ð5:34Þ
The implication is one way, but the inequality is particularly
clean and easy to work with. As long as the 3-stress is even
slightly anisotropic, we can make the slightly stronger
statement involving the average pressure p̄ that

DEC ⇒ jp̄j < ρ: ð5:35Þ

VI. TIMELIKE AND NULL CONVERGENCE
CONDITIONS

In applications the various energy conditions are, using
the Einstein equations, typically immediately converted
into purely geometrical convergence conditions, such as the
null convergence condition (NCC) and the timelike con-
vergence condition (TCC) [42–45]. Within standard gen-
eral relativity the NCC is equivalent to the NEC, and the
TCC is equivalent to the SEC.
NCC.—The NCC is the statement that for all null

vectors Rablalb ≥ 0.
TCC.—The TCC is the statement that for all timelike

vectors RabVaVb ≥ 0.
If one wishes to step outside the framework of standard

general relativity, then this adds a new level of speculative
physics to the mix, and then the distinction between
geometrical convergence conditions and dynamical energy
conditions might become important. However, it should
be emphasized that in many (but not all) modified theories
of gravity the equations of motion can be rearranged into
the form

ðEinstein tensorÞ ¼ ðsome “effective” stress-energy tensorÞ:
ð6:1Þ

Whenever this can be done, statements about the usual
energy conditions in Einstein gravity can be carried over to
statements about “effective” energy conditions in modified
gravity.

VII. VIOLATION OF THE ENERGY CONDITIONS

Now consider the energy conditions in the warp drive
spacetimes. We shall provide a number of results, ulti-
mately demonstrating the generic violation of the NEC
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(thereby automatically implying violations of the WEC,
SEC, and DEC).

A. Alcubierre warp drive

The key defining characteristic of the Alcubierre warp
drive is that viðx; y; z; tÞ is always pointing in some fixed
direction, which can without loss of generality be taken to
be the z-direction ẑi ¼ ð0; 0; 1Þi. That is, take

viðx; y; z; tÞ ¼ vðx; y; z; tÞẑi: ð7:1Þ

(This is slightly more general than what Alcubierre actually
did [9]; but it is the best way of summarizing the key
aspects of the physics.) Then the extrinsic curvature is
simply

Kij ¼ ∂ðivẑjÞ ¼

2
64

0 0 1
2
∂xv

0 0 1
2
∂yv

1
2
∂xv

1
2
∂xv ∂zv

3
75: ð7:2Þ

Consequently,

K ¼ ẑi∂iv ¼ ∂zv; ð7:3Þ

while

ðK2Þij ¼
1

2
KKij þ

1

4
ð∂vÞ2ẑiẑj þ 1

4
∂iv∂jv; ð7:4Þ

and

trðK2Þ ¼ 1

2
K2 þ 1

2
ð∂vÞ2 ¼ 1

2
ð∂xvÞ2 þ

1

2
ð∂yvÞ2 þ ð∂zvÞ2:

ð7:5Þ

Then

ρ ¼ 1

16π
ðK2 − trðK2ÞÞ ¼ −

1

32π
ðð∂xvÞ2 þ ð∂yvÞ2Þ ≤ 0:

ð7:6Þ

But to have a nontrivial warp bubble, we must avoid the
situation where one has an everywhere flat Minkowski
space. So we need ðð∂xvÞ2 þ ð∂yvÞ2Þ > 0 somewhere in
the spacetime, and so ρ < 0 at those particular locations
and is at best zero everywhere else. Therefore, the
Alcubierre warp bubble definitely violates the WEC.
In his original article [9] Alcubierre also claims (without

proof), “In a similar way one can show that the strong
energy condition is also violated.” However, in a more
recent article by Alcubierre and Lobo [29], they explicitly

prove the stronger result that the Alcubierre warp drive
violates the NEC. (So the SEC, WEC, and DEC are all
definitely violated because the NEC is.)
Their proof is slightly tricky and depends (for a warp

bubble moving in the z direction) on the identity
Gzz ¼ 3Gnn < 0. This identity is established by explicit
computation, there does not seem to be an obvious geo-
metrical reason for it. From this geometrical identity we
have Tzz ¼ 3ρ < 0 in the comoving frame. Hence
ρþ Tzz ¼ 4ρ < 0 and the NEC is violated in all
Alcubierre warp drives.

B. Natário zero-expansion warp drive

The key defining characteristic of the Natário zero-
expansion warp drive is that the flow viðx; y; z; tÞ is zero
divergence: ∇ · v⃗ ¼ 0. (This is slightly more general than
what Natário actually did [10]; but it is the best way of
summarizing the relevant physics.) Then K ¼ 0 and from
(4.1) we have

ρ ¼ 1

16π
ðK2 − trðK2ÞÞ ¼ −

1

16π
trðK2Þ ≤ 0: ð7:7Þ

But to avoid a trivial warp drive the extrinsic curvature Kij

must be nonzero somewhere, and wherever Kij ≠ 0 we
have ρ < 0. So the Natário zero-expansion warp drive
definitely violates the WEC [10].
But, now extending Natário’s argument from the second

half of Ref. [10], we note that in this situation, from
Eq. (4.12), we also have

ρþ 3p̄ ¼ −
1

4π
trðK2Þ ≤ 0: ð7:8Þ

And the same nontriviality argument, as immediately
above, now shows that any Natário zero-expansion warp
drive also violates the SEC.
Furthermore, again extending Natário’s argument from

the second half of Ref. [10], now using Eq. (4.13) we note

ρþ p̄ ¼ −
1

8π
trðK2Þ ≤ 0: ð7:9Þ

And the same nontriviality argument again shows that any
Natário zero-expansion warp drive also violates the NEC.

C. Zero-vorticity warp drive

The key defining characteristic of the Lentz/Fell-
Heisenberg zero-vorticity warp drive is that the flow
viðx; y; z; tÞ is taken to be a gradient viðx; y; z; tÞ ¼∂iΦðx; y; z; tÞ [1,3]. (This is slightly more general than
what Lentz and Fell-Heisenberg actually did; but it is the
best way of summarizing the relevant physics.)
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Then

Kij ¼ Φ;ij; K ¼ ∇2Φ: ð7:10Þ

From (4.1) the comoving energy density is

ρ ¼ 1

16π
ðK2 − trðK2ÞÞ ¼ 1

16π
ðð∇2ΦÞ2 −Φ;ijΦ;ijÞ: ð7:11Þ

This no longer obviously violates the WEC, at least not as
seen by Eulerian observers. In view of Eq. (4.5), the energy
density is now a pure 3-divergence

ρ ¼ 1

16π
f∂iðΦ;iΦ;jj −Φ;jΦ;ijÞg: ð7:12Þ

In this class of zero-vorticity warp drives the comoving flux
is identically zero, fi ¼ 0. Unfortunately, the spatial parts
of the stress-energy Tij are still a bit of a mess; they do not
really simplify appreciably. (And one really needs to know
something about the spatial stresses Tij in order to say
anything more precise about the energy conditions.)
Fortunately, the average pressure is reasonably tractable.
From Eq. (4.13),

ρþ p̄ ¼ 1

24π
ð−2LnK þ K2 − 3trðK2ÞÞ

¼ 1

24π
ð−2Ln∇2Φþ ð∇2ΦÞ2 − 3Φ;ijΦ;ijÞ: ð7:13Þ

Now, given that we want our warp field to be localizable,
to not spread over and affect the whole spacetime, it is
natural to make the assumption that the flow field
viðx; y; z; tÞ ¼ ∂iΦðx; y; z; tÞ obeys some sort of fall-off
conditions at spatial infinity.
It is certainly more than sufficient if Ji ¼ ðΦ;iΦ;jj −

Φ;jΦ;ijÞ ¼ oðr−2Þ for large distances, which is in turn
certainly true if Φi ¼ oðr−1=2Þ, which is in turn certainly
true if the ADMmass is zero. Vanishing of the ADMmass is
certainly the case for Alcubierre’s warp drive, and also for
Natario’s zero-expansion warp drive, and is a first crude
approximation for well-localized warp fields. (We will
subsequently significantly weaken this condition.) If this is
the case, then it follows immediately thatZ

R3

ρd3x ¼ 0: ð7:14Þ

But then, if the warp field has positive energy density
anywhere, it must have negative energy density somewhere
else. This implies violations of the WEC somewhere on
each spatial slice. We shall subsequently be more specific
by invoking stronger arguments using much weaker fall-off
conditions.
Unfortunately, as we have previously argued, non-

negativity of the Eulerian energy density, ρ ≥ 0, is

insufficient to establish the WEC for a zero-vorticity
warp drive; one needs to check the NEC as well. The
spatial parts of the stress-energy Tij are still a bit of a
mess; they do not really simplify appreciably. (And one
really needs to know something about the spatial stresses
Tij in order to say anything more precise about the energy
conditions.) Fortunately, the average pressure is reason-
ably tractable. From Eq. (4.13),

ρþ p̄ ¼ 1

24π
ð−2LnK þ K2 − 3trðK2ÞÞ

¼ 1

24π
ð−2Ln∇2Φþ ð∇2ΦÞ2 − 3Φ;ijΦ;ijÞ: ð7:15Þ

The best way of proceeding seems to be to adapt, modify,
and extend a general argument that Natário applied to his
general class of warp drive spacetimes [10]. Let us do
this now.

D. Natário’s generic warp drive

1. WEC

We have already established that from Eq. (4.6) it
follows, in general, that

ρ ¼ 1

16π

�
∇ · fv⃗K − ðv⃗ · ∇Þv⃗g − 1

2
ðω⃗ · ω⃗Þ

�
: ð7:16Þ

Hence, with the strong fall-off conditions already men-
tioned, namely that the warp field is well localized, and that
gradients of vi → 0 sufficiently rapidly at spatial infinity, an
integration by parts impliesZ

ρd3x ¼ −
1

32π

Z
ðω⃗ · ω⃗Þd3x ≤ 0: ð7:17Þ

Again, if the warp field has positive energy density any-
where, it must have negative energy density somewhere
else. This already implies violations of the WEC some-
where on each spatial slice. (We shall establish stronger
results using weaker hypotheses below.)

2. WEC or SEC

To improve on the preceding result for the WEC, and side
step the need for strong asymptotic fall-off conditions, note
that in Ref. [10], Natário presents a quite general argument to
the effect that in any generic warp spacetime, (Alcubierre,
Natário zero-expansion, and, yes, it even applies to Lentz/
Fell-Heisenberg zero-vorticity warp drives), there must be
violations of either the SEC or the WEC. (Or you have the
trivial case of Minkowski space.) See his Theorem 1.7.

3. SEC

Natário’s result can already be slightly improved in view
of our comments above: In any generic warp spacetime,
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(Alcubierre, Natário, and, yes, it even applies to Lentz/Fell-
Heisenberg), there must be violations of the SEC. (Or you
have the trivial case of Minkowski space.) We shall go into
some detail in order to localize where and when the SEC
violations take place.
The key point is that Eulerian observers define a zero-

vorticity congruence of timelike geodesics, that by con-
struction cannot have any focusing points. Now apply a
variant of the Raychaudhuri equation (timelike focusing
theorem) [42,98–104].
Explicit calculation has shown us, see Eq. (4.12), that for

any warp drive spacetime

ρþ 3p̄ ¼ −
1

4π
ðLnK þ trðK2ÞÞ: ð7:18Þ

Thus if the SEC holds (implying ρþ 3p̄ ≥ 0), we have

LnK þ trðK2Þ ≤ 0: ð7:19Þ
So

LnK ≤ −trðK2Þ: ð7:20Þ

Now split the extrinsic curvature into trace-free part Ktf
ij ¼

Kij − 1
3
Kδij and trace. Then

trðK2Þ ¼ tr

��
Ktf

ij þ
1

3
Kδij

�
2
�
¼ trð½Ktf �2Þ þ 1

3
K2 ≥

1

3
K2:

ð7:21Þ
Consequently, the SEC would imply

LnK ≤ −
1

3
K2: ð7:22Þ

So if K < 0, then it will be even more negative in the
future. Similarly if K > 0, then it must have been
even more positive in the past. Noting that, acting on
scalars, LnK ¼ Va∂aK ¼ dK=dτ, we see that the Eulerian
observers satisfy

dK
dτ

≤ −
1

3
K2: ð7:23Þ

Therefore,

−
1

K2

dK
dτ

≥
1

3
: ð7:24Þ

So

dK−1

dτ
≥
1

3
: ð7:25Þ

Pick any Eulerian observer, and pick some point τ0 on
that worldline. Integrating upwards, from τ ¼ τ0 to some
τ > τ0, we have

K−1ðτÞ ≥ Kðτ0Þ−1 þ
1

3
ðτ − τ0Þ: ð7:26Þ

So if Kðτ0Þ < 0, then there will be some finite proper time
increment, less than 3=jK0j, at which K−1 → 0− imply-
ing K → −∞.
Integrating downwards, from τ ¼ τ0 to some τ < τ0, we

have

K−1
0 ≥ KðτÞ−1 þ 1

3
jτ − τ0j: ð7:27Þ

That is,

K−1ðτÞ ≤ K−1
0 −

1

3
jτ0j: ð7:28Þ

So if Kðτ0Þ > 0, then there will be some finite proper time
decrement, less than 3=jK0j, at which K−1 → 0þ imply-
ing K → þ∞.
Either way, this is in contradiction to the fact that the

Eulerian observers define a zero-vorticity congruence of
timelike geodesics that by construction cannot have any
focusing points. So either K ≡ 0 identically, or whenever
Kðτ0Þ ≠ 0 somewhere for any arbitrary Eulerian observer,
the SEC fails somewhere in the interval

τ ∈
�
τ0 −

3

jKðτ0Þj
; τ0 þ

3

jKðτ0Þj
�
: ð7:29Þ

(Of course, we could relax the global condition in the
ADM-like split in the warp drive. However, this would
imply either the formation of singularities in a finite time
in the region of nonzero extrinsic curvature—meaning the
warp bubble would encounter it; or we would have to save
the situation by opting for CTCs [11], in many ways an
even worse situation for physics [88–92,105].)
Overall, this now gives us quite good control on where

and when the SEC violations take place. The special case
where K ≡ 0 identically reduces to the Natário warp drive,
for which we have already argued that the SEC fails (as
long as the extrinsic curvature Kij is not identically zero
everywhere in the spacetime).
Note that this argument for SEC violations does not

require any asymptotic conditions on the flow field at
spatial infinity.

4. NEC

For the NEC, we have already argued that the NEC
requires ρþ p̄ ≥ 0, and we have the explicit calculation
(4.13),

ρþ p̄ ¼ 1

24π
ð−2LnK þ K2 − 3trðK2ÞÞ: ð7:30Þ
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So the NEC would require

2LnK − K2 þ 3trðK2Þ ≤ 0: ð7:31Þ

But, in terms of the trace-free part of extrinsic curvature,
we have

trðK2Þ ¼ trð½Ktf �2Þ þ 1

3
K2: ð7:32Þ

So we can rewrite the NEC as

LnK ≤ −
3

2
trð½Ktf �2Þ: ð7:33Þ

That is, using LnK ¼ dK=dτ, and assuming the NEC,

dK
dτ

≤ −
3

2
trð½Ktf �2Þ ≤ 0: ð7:34Þ

Let usnow take amoment to further exploreEq. (7.34). The
τ here refers to the proper time along an Eulerian observer’s
trajectory. It represents, therefore, how a particular Eulerian
observer will see the trace of the extrinsic curvature where
they are located. Given the zero-vorticity nature of the
Eulerian observers’ congruence, it is known that at each
spacetime point one and only one Eulerian observer will be
present. We might, therefore, associate an Eulerian observer
to each point on a constant-time spatial slice.
Keeping this in mind, let us now follow a particular

Eulerian observer who is initially sitting in a flat region far
away from the warp bubble. Given the already mentioned
fall-off conditions for warp drives, we have thatKij tends to
zero at spatial infinity. Therefore, as long as the observer is
sufficiently distant from the warp bubble, Kij will be as
close to zero as the particular fall-off conditions allow.
Without any loss of generality, we might pick such an

observer to be in the region traversed by the warp drive as it
moves from a certain origin to a specific destination—also
assumed to be sufficiently far away. In this particular
scenario, the extrinsic curvature as seen by such an
observer must start and end up with values which approach
zero at spatial infinity—since they start and finish in an
almost flat space.
Let us now return to Eq. (7.34). It tells us that, as long as

the NEC is satisfied in the generic Natário warp drive
spacetime, the trace of the extrinsic curvature can never
increase. How does this apply to the particular Eulerian
observer above?
In the situation just described, the trace as seen by the

particular Eulerian observer will naturally start arbitrarily
close to zero since they are in an approximately flat space. In
this way, once the warp drive passes, it can either decrease or
stay the same. If it stays the same, then we have only two
possible explanations: either a zero expansion warp drive
passed by or no warp drive passed at all. Since we already

proved the violation of the NEC for the zero expansion warp
drive case separately, let us now focus on the other
hypothesis, namely, that K decreases. Now, again, two
possibilities arise: K becomes negative or K becomes even
closer to zero than it was in the asymptotically flat region.
Independently of the case, after the warp drive passes and
proceeds sufficiently far away, the observer will return to an
asymptotically flat region, meaning that K increases as it
returns to its original value.6 This, however, is not allowed if
the NEC is always satisfied, as given by Eq. (7.34). This
proves that the violation of the NEC is a necessary condition
for the spacetime to “restore its asymptotics” after a warp
drive passes through a particular point.
A delicate point must be discussed before this proof is

called closed and complete: the question regarding what
happens to such a geodesic Eulerian observer when a warp
drive reaches them. Is the observer’s trajectory disturbed by
the warp drive? Is this geodesic dragged along so that it
never leaves the bubble again? Gladly, all of these questions
were already addressed in a paper by Pfenning and Ford
[106], where they analyzed the effect of the passage of a
constant velocity warp bubble on an Eulerian observer. Any
observer passing through the bubble wall7 but not reaching
a flat interior will behave in the following way: As the front
wall of the bubble reaches such Eulerian observers, their
trajectory acquires a “coordinate acceleration” in the
direction of the bubble, relative to observers at large
distances.8 For a while, this is followed by a movement
with nearly constant speed, shown to be always smaller
than the bubble’s speed. These observers then finally
decelerate, being left at rest as the bubble continues to
go forward. In this way, while being displaced in space
along the trajectory of the bubble, no momentum is
transferred to these observers during the “collision.”
Therefore, such Eulerian observers who were at rest before
the arrival of the warp drive will finish as Eulerian
observers at rest after the bubble passes. Another more
recent study [27] extended these results to warp drives with
nonconstant velocities. An illustration of the Eulerian
observers’ worldlines in this argument for the violation
of the NEC can be found in Fig. 1.9

Let us summarize this argument again: Eulerian observers
initially at rest, which eventually “collide” with the bubble
wall—without, however, entering possible flat regions inside
the warp bubble—will exit the bubble and will again reenter
the asymptotically flat space behind the bubble. The

6We still have to assume that any contribution to Kij from the
warp drive is sufficiently localized.

7We have to assume a wall of finite size—but then again a wall
of infinitesimal size would render the metric distributional and
thus unsuitable for standard general relativity, anyhow.

8The Eulerian observers are geodesic, so the 4-acceleration is
identically zero.

9Very nice illustrations of this can also be found in [107].
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monotonicity implied by Eq. (7.34) then implies a violation
of the NEC somewhere along these Eulerian trajectories. It
is, therefore, proven that any warp drive in the generic
Natário form will inevitably violate the NEC as it moves
through spacetime.
Note that this proof for NEC violations uses only the fact

that warp drive contributions are sufficiently localized—
without any need to assume zero ADMmass or to invoke an
integration by parts.

VIII. DISCUSSION AND CONCLUSIONS

We have now demonstrated that all members of the
general class of warp drives defined by Natário [10] violate
the NEC. This significantly extends previously known
results. This argument applies, in particular, to all three of
the Alcubierre [9], Natário zero-expansion [10], and Lentz/
Fell-Heisenberg zero-vorticity [1,3] warp drives, and also
(for slightly different reasons) to the model warp drives
considered by Bobrick-Martire [2]. Because the NEC is
violated, then so are the WEC, SEC, and DEC.
Consequently, insofar as one wishes to continue to

entertain the possibility of warp drives as a real physical
phenomenon, one has no choice but to face the violation of
the energy conditions head on. Several possibilities arise:
(i) modify the theory of gravity, (ii) modify the definition
of warp drive, (iii) modify the energy conditions,
(iv) appeal to macroscopic quantum physics, (v) allow
for singularities or CTCs (time travel). None of these
options are particularly palatable. All of these options have
serious drawbacks. Thus it is our melancholy duty to report
that none of the recent claims of positive-mass physical
warp drives survive careful inspection of the proffered
arguments.
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APPENDIX A: SPHERICALLY SYMMETRIC
WARP DRIVES

“Spherically symmetric” warp drives date back to the
original article by Alcubierre [9]. Specifically, let us
reconsider the explicit line element (2.12) and rephrase
it as

ds2 ¼ −dt2 þ dx2 þ dy2 þ ðdz − v�ðtÞfðrsðx; y; z; tÞÞdtÞ2;
ðA1Þ

where we set

rsðx; y; z; tÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ ðz − z�ðtÞÞ2

q
;

z�ðtÞ ¼
Z

v�ðtÞdt; ðA2Þ

and enforce both fð0Þ ¼ 1 and fð∞Þ ¼ 0. This represents a
spherically symmetric warp bubble, centered on the moving

FIG. 1. Illustration of the key step for the proof of the violation of the NEC, viewed from the perspective of the bubble’s center.
Eulerian observers as depicted here will be present in any warp drive. They will see a trace of the extrinsic curvature K that is in violation
of its monotonicity as predicted by the NEC. Eulerian observers entering a flat inner region will remain there as long as the bubble
persists.
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point ð0; 0; z�ðtÞÞ, with a shape function fðrsÞ that depends
only on the Euclidean distance from the moving center.
We emphasize that while the warp bubble is spherically
symmetric the spacetime is not—there is certainly a
preferred axis due to the direction of motion of the warp
bubble. (Hence the warp bubble is spherically symmetric,
but the spacetime is only “spherically symmetric.”) At large
spatial distances ds2 → −dt2 þ dx2 þ dy2 þ dz2, the usual
representation of Minkowski space, while at the center of the
warp drive, is

ds2 → −dt2 þ dx2 þ dy2 þ ðdz − v�ðtÞdtÞ2: ðA3Þ

Consider now the coordinate transformation,

t̃ ¼ t; x̃ ¼ x; ỹ ¼ y; z̃ ¼ z − z�ðtÞ; ðA4Þ

which is designed to bring the warp bubble “to rest.” Then

dt̃¼dt; dx̃¼dx; dỹ¼dy; dz̃¼dz−v�ðtÞdt; ðA5Þ

and the line element becomes

ds2¼−dt̃2þdx̃2þdỹ2þðdz̃þv�ðtÞ½1−fðrsÞ�dt̃Þ2; ðA6Þ

where now rs ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x̃2 þ ỹ2 þ z̃2

p
is time independent.

At the center of the warp bubble we now have
ds2 → −dt̃2 þ dx̃2 þ dỹ2 þ dz̃2, the usual representation
of Minkowski space, while at spatial infinity it is now the
outside universe that is streaming by with velocity −v�ðtÞ.
At spatial infinity the line element becomes

ds2 → −dt̃2 þ dx̃2 þ dỹ2 þ ðdz̃þ v�ðtÞdt̃Þ2: ðA7Þ

This is again Minkowski space, but now in “moving
coordinates.” Note the “conservation” of relative motion—
either spatial infinity is standing still and the bubble is
moving, or the bubble is standing still and spatial infinity
is moving [9,10].
If one wishes to make the walls of the warp bubble thin,

(but still of finite thickness), this is a choice, not a necessity,
then one might pick

fðrsÞ ¼
8<
:

1 rs ≤ rinner;

smooth rs ∈ ½rinner; router�;
0 rs ≥ router:

ðA8Þ

If one makes this choice, then one needs to enforce router >
rinner to keep the metric continuous. A discontinuity in the
metric leads to delta functions in the Christoffel symbols,
squares of delta functions in the Riemann tensor, and cubes of
delta functions in the Bianchi identities. Even when working
with the Israel-Lanczos-Sen thin-shell formalism (the junc-
tion condition formalism) one needs to keep the metric

piecewise differentiable, C1−, since then the Christoffel
symbols at worst contain step functions and the Riemann
tensor and Bianchi identities at worst contain delta functions.
The reason for being so explicit is that in Ref. [2] the

authors present a deeply flawed discussion of spherically
symmetric warp drives. In their implementation of spheri-
cally symmetric warp drives the warp bubble is certainly at
rest, but in addition their choice of asymptotic boundary
conditions also forces the warp bubble to be at rest with
respect to spatial infinity. This defeats the whole purpose of
a warp drive.
Furthermore, these authors take the interior of the warp

bubble to be a portion of flat Minkowski space, the wall of
the warp bubble to be a non-negative density barotropic and
isotropic fluid, and the exterior region to be a portion of
Schwarzschild spacetime. They then attempt to apply the
Tolman-Oppenheimer-Volkov (TOV) equation to the bub-
ble wall. But under the set of assumptions they are
imposing (zero pressure at the inner edge of the bubble
wall, zero pressure at the outer edge of the bubble wall,
non-negative energy density within the bubble wall, and a
barotropic equation of state) the unique solution to the TOV
equation is the trivial solution pðrÞ ¼ 0 ¼ ρðrÞ, and the
mass of the exterior region must be zero. Thus their specific
model (as presented in [2]) just reduces, globally, to flat
Minkowski space—it is not a warp drive.
These authors [2] also assert that both Alcubierre [9]

and Natário [10] must necessarily “truncate” their warp
fields, forcing them to be exactly Minkowski space, at
some finite distance from the center of the warp bubble.
This is simply not an accurate reflection of what is
actually done in those references [9,10]. Specifically, in
Alcubierre’s original article [[9] Eq. (6)] the concrete
realization of the shape function fðrsÞ he chooses, see
Eq. (A8), uses tanh functions and so does not have
compact support. In this terminology, Alcubierre sets
rinner ¼ 0 and router ¼ ∞, which is certainly not a trunca-
tion. Unfortunately, this terminology of “truncation” has
been uncritically adopted by subsequent authors [3].
The authors of [2] also assert in passing, see their

section (5.2), that the Alcubierre warp drive [9] does not
satisfy the continuity equations. They also assert that the
velocity of the Alcubierre warp bubble cannot be time
dependent, claiming a violation of the conservation of
momentum. These statements are both false and seem to
arise (at best) from adopting a naive Newtonian viewpoint.
What Alcubierre has actually done is to “reverse engineer”
the warp drive—once one writes down a suitable metric (at
least C1−, piecewise differentiable), one simply calculates
the Einstein tensor to find what the stress-energy is that
would be required to support that spacetime geometry. The
continuity equation is automatically enforced via the Bianchi
identities, and there is no difficulty in making the velocity of
the Alcubierre warp bubble time dependent. (Reference [3]
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seems to repeat this error in their discussion. Reference [1] is
more careful in this regard, setting the 3-velocity of their
model warp bubble constant for simplicity, but without
making any claim as to necessity.)
Overall, while the idea of a “spherically symmetric”

warp drive is certainly well defined and useful, the specific
implementation of this notion in Ref. [2] is not a successful
one and is not useful.

APPENDIX B: WARP DRIVES BEYOND THE
GENERIC NATÁRIO FRAMEWORK

There are two somewhat more general warp drive space-
times that do not fall into Natário’s general classification [10]
and are incompatible with the Alcubierre, Natário, and
Lentz/Fell-Heisenberg warp drives. These more general
warp drives are obtained by either relaxing the condition
that the lapse be unity (so Nðx; y; z; tÞ ≠ 1), or relaxing the
condition that the spatial slices be flat (so gij ≠ δij). See
Ref. [29], which discusses the case N ≠ 1 and Ref. [17],
which permits the spatial slices to be conformally flat
gij ¼ e2θðx;y;z;tÞδij rather than Riemann flat.
Unhelpfully, in Appendices A.1 and A.2 of Ref. [2] those

authors incorrectly claim that both of these more general
spacetimes can, by a coordinate transformation, be brought
into Alcubierre form. The simplest way to see that both
these claims are wrong is to set the flow vector to zero. The
claims made in Appendices A.1 and A.2 of Ref. [2] then
reduce to the claims that the line elements,

ds2 ¼ −Nðx; y; z; tÞ2dt2 þ dx2 þ dy2 þ dz2; ðB1Þ

and

ds2 ¼ −dt2 þ e2θðx;y;z;tÞfdx2 þ dy2 þ dz2g; ðB2Þ

are actually Riemann flat. This is manifestly incorrect. What
has gone wrong? The transformations these authors invoke
are just not coordinate transformations. For a transformation
dxa → dx̄a ¼ Jabdxb to actually be a coordinate transfor-
mation the critical requirement is that Ja½b;c� ¼ 0.
(Additionally, one would want detðJabÞ ≠ 0, except on sets
of measure zero.) While the transformations made in
Appendices A.1 and A.2 of Ref. [2] satisfy the determinant
condition, they fail the more basic Ja½b;c� ¼ 0 condition; they
are simply not coordinate transformations.
For our purposes then it means that the nonunit lapse

and van den Broeck warp drive spacetimes cannot simply
be dismissed out of hand. There are other problematic
issues with both of these models, but they are physically
different from the Natário class [10] (unit lapse, spatially
flat 3-geometry) and must be directly addressed using
different techniques.

APPENDIX C: SOME DEFECTIVE
WARP DRIVES

Some of the recently proposed warp drive spacetimes are
defective for other reasons.
For instance, in the first explicit example in Ref. [3] the

velocity potential Φ is certainly C0 but is only piecewise
differentiable, C1−. That is, the flow v⃗ ¼ ∇Φ is discon-
tinuous, which implies that the metric is discontinuous.
This then leads to delta functions in the Christoffel
symbols, squares of delta functions in the Riemann tensor,
and cubes of delta functions in the Bianchi identities. This
is mathematically and physically not viable.
In their second explicit example, Eq. (9) of versions 1

and 2 and Eq. (11) of versions 3 and 4 of Ref. [3], the
velocity potential Φ is C∞, except possibly at the center of
the spacetime, but suffers other problems. If one takes
r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p
, then even at its most general their

velocity potential is of the qualitative form

Φðx; y; zÞ ¼ Fðr; σðx; y; zÞÞ þ v�z: ðC1Þ

Then,

v⃗ ¼ ∇Φðx; y; zÞ ¼ ∂rFðr; σðx; y; zÞÞr̂
þ ∂σFðr; σðx; y; zÞÞ∇σ þ v�ẑ: ðC2Þ

But then, in their specific example, they do the equivalent
of setting σðx; y; zÞ → 1, and v� → 0, thereby enforcing
spherical symmetry. That is Φðx; y; zÞ → Fðr; 1Þ, which is
a function of r only. But then

v⃗ ¼ ∇Φ →
∂Fðr; 1Þ

∂r r̂: ðC3Þ

So their flow vector is always pointing radially outwards/
inwards. This is simply not viable for describing a warp
drive spacetime.
Oddly enough, consider Φðx; y; zÞ ¼ 2

ffiffiffiffiffiffiffiffiffi
2mr

p ¼
2

ffiffiffiffiffiffiffi
2m

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z24

p
, so that

v⃗ ¼ ∇Φðx; y; zÞ ¼
ffiffiffiffiffiffiffi
2m

p ðx; y; zÞ
ðx2 þ y2 þ z2Þ3=4 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ y2 þ z2
p

s
r̂:

ðC4Þ

This is the Schwarzschild spacetime (in Painlevé-Gullstrand
form, converted to Cartesian coordinates). This is not a warp
drive spacetime.
Similarly, consider Φðx; y; zÞ ¼ ðx2þy2þz2Þ

2l so that

v⃗ ¼ ∇Φ ¼ ðx; y; zÞ
l

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p
l

r̂: ðC5Þ
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This is the de Sitter spacetime (in Painlevé-Gullstrand form,
converted to Cartesian coordinates, withΛ ¼ 3=l2). This is
not a warp drive spacetime.
But the central issue is this: Even if you pick a flow

vector of the form

v⃗ ¼ fðrÞr̂þ v�ẑ; ðC6Þ

which at least has a hope of representing a moving warp
bubble, then calculating and checking the non-negativity
of the Eulerian energy density ρ by itself tells you next
to nothing regarding satisfaction of the WEC. To test
satisfaction of the WEC one would need to calculate all
of the principal pressures pi and then check whether all of
the combinations ρþ pi were non-negative.
In Ref. [1] the claim is made that the author can self-

consistently find a warp drive configuration that is sourced
by a perfect fluid plasma (satisfying theWEC and so also the
NEC) plus electromagnetic Maxwell stress-energy (satisfy-
ing all of NEC, WEC, SEC, and DEC). So if this claim were
to be true, if these models truly were solutions of the Einstein
equations with the specified source, one would have a warp
drive spacetime satisfying the NEC, which we have just
shown to be impossible. What has gone wrong? The point
here is that the author of [1] has not actually solved the
Einstein equations, he has only solved part of the Einstein
equations—for the density, flux, and trace of the stress. This
is not enough to obtain a valid solution of the Einstein
equations—the author would also need to consider the
remaining trace-free part Tij − 1

3
ðTklδ

klÞgij of the stress
tensor.

APPENDIX D: FINAL CONSIDERATIONS
REGARDING RECENT WARP DRIVE

PROPOSALS

We would like to conclude by explicitly explaining (if
not yet mentioned) why each of the recent warp drive
proposals have failed in their claims.
Starting with [1], the author has claimed to have found a

warp drive solution which would not violate the WEC. This
is actually an incorrect claim since the author has never
actually solved the Einstein equations. By imposing a warp
drive metric, it is clear from Eqs. (3.19), (3.20), and (3.21)
that all of the components of the energy momentum tensor
are already determined, without much freedom to play
around. This is called a reverse engineering process. Once
you define your metric, your energy momentum tensor
follows directly from it. The author, however, imposes not
only the metric, but also an energy momentum tensor—
therefore imposing both sides of the Einstein equations
without ever verifying if they are indeed an equation or not.
Hence, they have not only not found a solution which
satisfies the WEC, they have not found a solution at all.
Proceeding with [2], their warp drives are divided into two

classes: “general spherically symmetric warp drives,” which

we already discussed in Appendix A, and “axisymmetric
warp drives with a general internal region,” in which they
have not found any metric satisfying the WEC. In this way,
their only “warp drive” which satisfies the WEC is actually
not a warp drive metric at all. It is a static spherically
symmetric spacetime, therefore, being reduced to either
Minkowski or Schwarzschild. Furthermore, their claims
about Alcubierre’s warp drive requiring negative energy
due to the “artificial” matching rate for the clocks inside and
outside the warp drive follows directly from their rediscovery
of the existence of time delays in Schwarzschild spacetimes,
which they believe to be a warp drive.
Finally, in [3], their main issue reduces to “proving” the

WEC by calculating the energy density for a unique class of
observers—the Eulerian observers. As mentioned already,
to prove the WEC one needs to prove that the energy
density is positive for all timelike observers and proving
only for one class of observers simply does not prove
anything. Furthermore, the specific examples provided by
them have a great deal of problems, as already explained
in Appendix C.
The series of articles by Santos-Pereira, Abreu, and

Ribeiro [4–8] has other issues. Specifically:
(i) Their perfect fluid warp drives (dust, nonzero

pressure, nonzero pressure with cosmological con-
stant) are just Riemann-flat Minkowski space in
disguise.

(ii) Their anisotropic fluid warp drive (“parametrized
perfect fluid” warp drive) is less trivial, but is still
seriously diseased.

(iii) Their charged dust warp drive is less trivial, but is
still seriously diseased. (Among other things, the
calculation of energy density is deeply flawed,
confusing T00 and T00.)

(iv) Their “cosmological” warp drive is not cosmo-
logical.

We shall go into some detail in an attempt to make the
situation clear and transparent.
The earliest paper [4] analyzes the Alcubierre warp drive

with a stress-energy that is pure comoving Eulerian dust.
Now this is a very strong constraint, and one quickly
deduces that the energy density of the dust is zero. This
means that the entire stress-energy tensor is identically
zero; so one is looking for vacuum solutions of the Einstein
equations for an Alcubierre warp drive. But the set of
vacuum solutions in an Alcubierre warp drive framework is
extremely limited—in fact, once one completely satisfies
all the Einstein equations the only such solution is
Riemann-flat Minkowski space (which, viewed as a warp
drive, is trivial).
The anisotropic fluid (parameterized perfect fluid) stud-

ied in [5] has the defect that once one completely satisfies
all the Einstein equations the warp drive is infinitely wide in
the transverse directions—so it is not a warp “bubble,” the
warp field stretches all the way across the universe in the y
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and z directions; one is trying to accelerate an entire “slab”
of spacetime in the x direction. Furthermore, the Eulerian
energy density, flux, and pressure in the direction of motion
are zero; the pressures transverse to the direction of motion
are equal and possibly nonzero—this would then certainly
violate the DEC.
For the charged dust solution of [6] there is a technical

error in identifying the energy density. The physically
interesting quantity is ρ ¼ T00 ¼ Tabð−1; 0; 0; 0Þa
ð−1; 0; 0; 0Þb, where the 4-covector ð−1; 0; 0; 0Þa is always
timelike and future pointing (it is in fact the 4-velocity
of an Eulerian observer). In contrast, the quantity
T00 ¼ Tabð1; 0; 0; 0Það1; 0; 0; 0Þb is not physically interest-
ing since the 4-vector ð1; 0; 0; 0Þa is timelike only for a
limited range of warp velocities; in fact, this 4-vector

becomes spacelike exactly when the warp bubble motion
becomes superluminal.
For the cosmological solution of [7] the attempt at

including a cosmological constant is at best a redefinition
of terms in the stress-energy tensor. For instance, the
definition of Einstein tensor adopted in [7] is not the
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