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We construct a new type of Chandrasekhar transformation in Kerr spacetime using the different tortoise
coordinate, which is useful for exact analysis to study the Teukolsky equation with arbitrary frequency.
We also give the interpretation of our transformation using the formalism of the quantum Seiberg-Witten
geometry.
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I. INTRODUCTION

The direct observation of gravitational waves by LIGO
andVirgo [1] has opened a new era of cosmology. The binary
system such as the black hole merger is a good object to
observe the gravitational waves, where the theoretical
calculation is also possible. One of the methods for the
calculation of the gravitational waves radiated from the
binary system is the black hole perturbation theory [2],
which is in particular useful for the case of the extrememass-
ratio inspiral (EMRI). In this formalism, we have to solve the
linearized Einstein equation in the black hole spacetime.
Fortunately, itwas found that the separationof thevariables is
possible for particular gauges. For the Schwarzschild space-
time, the two equations for the radial variable have been
obtained: the Regge-Wheeler equation [3] and the (radial)
Teukolsky equation [4]. Those equations are derived from the
same linearized Einstein equation but with the different
gauges, and hence it is expected that there is a relation
between the Regge-Wheeler and the Teukolsky equation,
originated by the gauge transformation. The explicit one-to-
one correspondencewas found by Chandrasekhar [5], called
the Chandrasekhar transformation. For the Kerr spacetime, it
is not knownhow toobtain theRegge-Wheeler-type equation
directly from the linearized Einstein equation, and only the
Teukolsky equation is obtained. Hence some Regge-
Wheeler-type equations [6–8] are proposed using the
Chandrasekhar(-like) transformation from the Teukolsky
equation. The Chandrasekhar transformation is also known
as an example of the Darboux transformation [9–11].
Mathematically, the Regge-Wheeler and the Teukolsky

equations belong to the confluent Heun’s equation (CHE)
[12], which has two regular singularities and one irregular
singularity. CHE also has the so-called accessory param-
eter, which cannot be reproduced from the local leading
behavior of the solution. Due to the existence of the

accessory parameter, solving the equation globally is very
difficult and so far some local behaviors of the solutions
around the regular singularities are mainly studied.
Moreover, the solution which is regular at the origin is
recently implemented in Mathematica. For the global
solution, the expression as the series of the hypergeometric
functions [12], corresponding to the solution of the
Teukolsky equation with the low-frequency expansion,
have just been established [13,14].
Recently, CHE has also been found as the differential

equation associated with the quantum Seiberg-Witten
geometry [15–17] in supersymmetric gauge theories.
Moreover, due to AGT (Alday-Gaiotto-Tachikawa) corre-
spondence [18,19], the same equation can also be regarded
as the BPZ (Belavin-Polyakov-Zamolodchikov) equation
in two-dimensional conformal field theory [20]. This
correspondence is helpful to study the solution to
the Regge-Wheeler and the Teukolsky equations beyond
the low-frequency approximation. It is also found that the
Chandrasekhar(-like) transformation in the Schwarzschild
spacetime can be interpreted as the exchange of the mass
parameters [21,22]. Before that it has already been known
that this exchange of the parameters is regarded as a
particular integral transform [23,24]. Performing the inte-
gral transform needs to know the global behavior of the
function. On the other hand, since the Chandrasekhar(-like)
transformation just consists of the function itself and
its derivative, one can easily find the local behavior
(around the regular singularities, in particular) of the
transformed function. In this paper, we will consider a
new Chandrasekhar(-like) transformation in the Kerr space-
time, which can be interpreted as the transform of the mass
parameters the quantum Seiberg-Witten geometry.
Moreover, it would also help to study the problem with
arbitrary frequency.1
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1If the frequency is high enough, the analysis using the
geometrical optics is available.
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The reminder of this work is organized as follows: in
Sec. II, we review the Chandrasekhar transformation,
which is extended from the original work by introducing
a constant parameter for later convenience. In Sec. III, we
consider the new Chandrasekhar(-like) transformation in
the Kerr spacetime. In Sec. IV, we interpret our new
transformation as the change of the parameters in CHE
using the formalism of the quantum Seiberg-Witten geom-
etry. Section V is devoted to summary and discussion.

II. CHANDRASEKHAR TRANSFORMATION

We first review about the general procedure of the
Chandrasekhar transformation [5]. Let the function XðxÞ
satisfy the differential equation

½Λ−Λþ − VXðxÞ�X ¼ 0; ð2:1Þ

where the differential operators Λ� are defined by

Λ� ¼ d
dx

� ipðxÞ: ð2:2Þ

Then the Chandrasekhar transformation [5] is given by

Y ¼ FX þ GΛþX; ð2:3Þ

where F is taken to be

F ¼ α−1VX; ð2:4Þ

with constant α, and G is some function of x to be
determined later. Acting Λ− to the both hand sides of
(2.3) gives

Λ−Y ¼ AX þ BΛþX; ð2:5Þ

where A and B are defined by

A ¼ F0 − 2ipF þGVX; ð2:6Þ

B ¼ F þ G0; ð2:7Þ

and the prime denotes the derivative with respect to x.
Again, acting Λþ to the both hand sides of (2.5) and
eliminating X gives

ΛþΛ−Y −
A0

A
Λ−Y − αBY

¼
�
Aþ B0 þ 2ipB − αBG −

B
A
A0
�
ΛþX: ð2:8Þ

In order to make the above be the closed equation for Y, we
require that the right-hand side of (2.8) should vanish,
namely

G ¼ α−1
�
2ipþ A

B
−
A0

A
þ B0

B

�
: ð2:9Þ

Then Y satisfies

ΛþΛ−Y −
A0

A
Λ−Y − αBY ¼ 0: ð2:10Þ

Finally, by multiplication transformation Y ¼ HỸ, we will
obtain the desired form of the differential equation. For
example, when we chooseH ¼ A

1
2, the differential equation

for Ỹ becomes

½ΛþΛ− −VY �Ỹ ¼ 0; VY ¼ B−
H00

H
− 2ip

H0

H
þ 2

�
H0

H

�
2

;

ð2:11Þ
which has a similar form as (2.1), but the order of Λþ and
Λ− is reversed.
Let us recapitulate the procedure of the transformation

for the case of the Schwarzschild spacetime. In this
background, X is assumed to satisfy the Regge-Wheeler
equation [3] in the frequency domain

��
r − 2M

r
d
dr

�
2

þ ω2 − VRWðrÞ
�
X ¼ 0: ð2:12Þ

VRWðrÞ ¼
�
1 −

2M
r

��
lðlþ 1Þ

r2
−
6M
r3

�
; ð2:13Þ

on the other hand the (radial) Teulkolsky equation [4] with
spin s ¼ −2 in the frequency domain is

�
ðr2 − 2MrÞ d2

dr2
− 2ðr −MÞ d

dr
þ UTðrÞ

�
R ¼ 0; ð2:14Þ

UTðrÞ¼
�
1−

2M
r

�
−1
½ðωrÞ2−4iωðr−3MÞ�−ðl−1Þðlþ2Þ:

ð2:15Þ

Here r is the standard radial coordinate, ω is the frequency
of the gravitational waves, M is the mass of the black hole,
and l denotes the multipole which takes the value
l ¼ 2; 3;… By introducing the dimensionless coordinate
z ¼ r

2M, the Regge-Wheeler equation (2.12) and the
Teukolsky equation (2.14) can be rewritten as

��
z−1

z
d
dz

�
2

þ ϵ2−
�
1−

1

z

��
l2þ l
z2

−
3

z3

��
X¼ 0: ð2:16Þ

zðz−1Þd
2R
dz2

− ð2z−1ÞdR
dz

þ
�

z
z−1

ðϵ2z2−2iϵð2z−3ÞÞ− ðl2þ l−2Þ
�
R¼ 0; ð2:17Þ
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where ϵ is the dimensionless frequency parameter
defined by

ϵ ¼ 2Mω: ð2:18Þ

We will use the tortoise coordinate

z� ¼ zþ lnðz − 1Þ; ð2:19Þ

as our variable x. The differential operators Λ� (2.2) are
taken to be

Λ� ¼ d
dz�

� iϵ ¼
�
1 −

1

z

�
d
dz

� iϵ: ð2:20Þ

Using Λ�, the Regge-Wheeler equation (2.16) can be
rewritten in the form of (2.1) with

VX ¼
�
1 −

1

z

��
l2 þ l
z2

−
3

z3

�
: ð2:21Þ

In [5], Chandrasekhar chose α ¼ 1 and then the function F
is just VX, and chose G in (2.3) as

G ¼ 2z − 3

z2
þ 2iϵ: ð2:22Þ

Then A and B are computed from (2.6) and (2.7) as

A ¼ 3

z4

�
1 −

1

z

�
2

;

B ¼
�
1 −

1

z

��
l2 þ l − 2

z2
þ 3

z3

�
; ð2:23Þ

One can confirm that (2.9) is indeed satisfied. The differ-
ential equation (2.10) for Y becomes

ΛþΛ−Yþ
2ð2z−3Þ

z2
Λ−Y−

�
1−

1

z

��
l2þ l−2

z2
þ 3

z3

�
Y¼0:

ð2:24Þ

Finally (2.24) can be rewritten into the Teukolsky
equation (2.17) by the multiplication transformation
Y ¼ z−3R. Thus the Chandrasekhar transformation is

R ¼ z3
�
VXX þ

�
2z − 3

z2
þ 2iϵ

�
ΛþX

�

¼ z2fΛþf−1ΛþzX; ð2:25Þ

where f ¼ 1 − z−1.

III. NEW TRANSFORMATION
IN KERR SPACETIME

Now we consider a similar Chandrasekhar-like trans-
formation for the Teukolsky equation in Kerr spacetime.
We use the conventional Boyer-Lindquist radial coordi-
nate r. The outer and the inner horizons in this coordinate
are located at

r ¼ r� ¼ M �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2

p
; ð3:1Þ

where a is the Kerr parameter. The limit a → 0 corresponds
to the Schwarzschild spacetime. The Teukolsky equation in
Kerr spacetime with the spin s ¼ −2 in the frequency
domain [4] is given by

Δ
d2R
dr2

− 2ðr −MÞ dR
dr

þ UTR ¼ 0; ð3:2Þ

UT ¼ K2 þ 4iðr −MÞK
Δ

− 8iωr − λ; ð3:3Þ

where λ is the eigenvalue of the equation, which approaches
to l2 þ l − 2 in a → 0 limit. Δ and K are defined by

Δ ¼ r2 − 2Mrþ a2 ¼ ðr − rþÞðr − r−Þ; ð3:4Þ

K ¼ ðr2 þ a2Þω − am: ð3:5Þ

Here m can take the integer values with −l ≤ m ≤ l. In
order to make the structure of the equation simpler, we
introduce the dimensionless coordinate z by2

z ¼ r − r−
rþ − r−

: ð3:6Þ

By this transformation the regular and the irregular singu-
larities r ¼ r−; rþ;∞ of the Teukolsky equation are
mapped into z ¼ 0; 1;∞, respectively. The Teukolsky
equation in terms of the z-coordinate becomes

zðz − 1Þ d
2R
dz2

− ð2z − 1Þ dR
dz

þ
�
k2 þ 2ið2z − 1Þk

zðz − 1Þ − 4ik̃ − λ

�
R ¼ 0; ð3:7Þ

where k and k̃ are given by

k ¼ Aϵz2 þ Bϵzþ C; k̃ ¼ dk
dz

¼ 2Aϵzþ Bϵ; ð3:8Þ

A ¼ rþ − r−
2M

; B ¼ r−
M

; C ¼ r−ϵ − am
rþ − r−

: ð3:9Þ

2We assume that Kerr black hole is nonextremal, i.e., a < M.
The extremal case (a ¼ M) should be considered separately.
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Note that under the limit a → 0, the above quantities
behave as

k→ ϵz2; k̃→ 2ϵz; A→ 1; B;C→ 0: ð3:10Þ
Since it is not known how to obtain the Regge-Wheeler-

type equation in Kerr spacetime directly from the linearized
Einstein equation, we here consider the Chandrasekhar-like
transformation from the Teukolsky equation. As the inde-
pendent variable x we use the coordinate z� (2.19) defined
from (3.6). Note that in Kerr spacetime, z� is different from
the conventional tortoise coordinate z�� defined by

z�� ¼ zþ 2Mrþ
ðrþ − r−Þ2

lnðz − 1Þ − 2Mr−
ðrþ − r−Þ2

ln z

¼ zþ 1þA
2A2

lnðz − 1Þ − 1 −A
2A2

ln z: ð3:11Þ

In literature [6–8], z�� is used as the independent variable,
since d=dz�� is the Killing vector field for the gravita-
tional wave radiation. However, the differential equation
using z�� has the apparent singularities at z¼ð−1þA�
i

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1−A2

p
Þ=2A (corresponding to r ¼ �ia), which makes

the analysis (in particular the discussion in the next section)
complicated. Here we use the coordinate z� since the
apparent singularities do not appear and also the resulting
equation is simpler. We take the differential operatorsΛ� as

Λ� ¼ d
dz�

� i
k
z2
¼
�
1−

1

z

�
d
dz

� i

�
AϵþBϵ

z
þ C
z2

�
: ð3:12Þ

Then the Teukolsky equation (2.17) is rewritten as

ΛþΛ−R −
2

z
Λ−R −

z − 1

z3
ð3ik̃þ λÞR ¼ 0: ð3:13Þ

By the multiplication transformation Y ¼ z−3R, the differ-
ential equation for Y becomes

ΛþΛ−Y þ 2ð2z − 3Þ
z2

Λ−Y

−
�
1 −

1

z

��
λ − 3iBϵ

z2
þ 3 − 6iC

z3

�
Y ¼ 0: ð3:14Þ

From the above, A and B can be read off as

A ¼ α−1c0
z4

�
1 −

1

z

�
2

;

B ¼ α−1
�
1 −

1

z

��
λ − 3iBϵ

z2
þ 3 − 6iC

z3

�
; ð3:15Þ

where c0 is constant. G is computed from (2.9) as

αG¼2ik
z2

þ2z−3

z2

þðc0−3þ6iCÞz−1

z3

�
λ−3iBϵþ3−6iC

z

�
−1
: ð3:16Þ

By choosing c0 ¼ 3–6iC, the above can be simplified as

αG ¼ 2ik
z2

þ 2z − 3

z2

¼ 2iAϵþ 2þ 2iBϵ
z

þ −3þ 2iC
z2

: ð3:17Þ

We take the ansatz for F as

F¼ α−1VX ¼
�
1−

1

z

��
λþβ−3iBϵ

z2
−
3−6iC
z3

�
: ð3:18Þ

The conditions (2.6) and (2.7) fix the constants α and β as

α ¼ 1 − 2
3
iC

1 − 2iC
; β ¼ 2ð1þ iBϵÞα−1: ð3:19Þ

VX is obtained as

VX ¼
�
1−

1

z

��
αλþ2þð2−3αÞiBϵ

z2
−
3−2iC
z3

�
: ð3:20Þ

Then the resulting differential equation for X is of the form

��
z− 1

z
d
dz

�
2

þp2 −
�
1−

1

z

��
λ̃þ 2

z2
−
3− 4iC

z3

��
X ¼ 0;

ð3:21Þ

where p ¼ k=z2 and λ̃ is defined by

λ̃ ¼ αλþ 3ið1 − αÞBϵ: ð3:22Þ

Note that (3.21) is reduced to the Regge-Wheeler equation
under the limit a → 0.
The behavior of the solution for the transformed equation

at the boundary and how it is related to that for the
Teukolsky equation can also be examined. The solution
of the Teukolsky equation (3.7) at the boundary behaves as

R ∼
�
Binz−1e−iAϵz� þ Boutz3eiAϵz� for z → ∞ðz� → ∞Þ;
B̄inz2ðz − 1Þ2e−iðϵþCÞz� þ B̄outeiðϵþCÞz� for z → 1ðz� → −∞Þ; ð3:23Þ
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where Bin, Bout, B̄in, and B̄out are all constant. On the other
hand, the solution of the transformed equation (3.21) at the
boundary behaves as

X ∼
�
Aine−iAϵz� þ AouteiAϵz� for z → ∞ðz� → ∞Þ;
Āine−iðϵþCÞz� þ ĀouteiðϵþCÞz� for z → 1ðz� → −∞Þ;

ð3:24Þ

where Ain, Aout, Āin, and Āout are all constant. From the
Chandrasekhar transformation (2.3) with Y ¼ z−3R, the
relations between these coefficients can be found as

Ain ¼ −4A2ϵ2αζ−1Bin; ð3:25Þ

Aout ¼ ð−4A2ϵ2Þ−1αBout; ð3:26Þ

Āin ¼ 2αζ−1½1 − 2iðϵþ CÞ�½1 − iðϵþ CÞ�B̄in; ð3:27Þ

Āout ¼
i
2
ðϵþ CÞ−1½1 − 2iðϵþ CÞ�−1B̄out: ð3:28Þ

Here the constant ζ is given by

ζ ¼ α−1ðλ̃ − 3iBϵÞðλ̃þ 2 − iBϵÞ − 6iAð1 − 2iCÞϵ; ð3:29Þ

which is reduced to ðl − 1Þlðlþ 1Þðlþ 2Þ − 6iϵ under the
limit a → 0. The relations (3.25)–(3.28) imply that at each
boundary the “in” mode and the “out” mode are not mixed
under the Chandrasekhar transformation. Then the boun-
dary condition for no energy inflow in the Teukolsky
equation Bin ¼ B̄out ¼ 0 is mapped to that in the trans-
formed equation Ain ¼ Āout ¼ 0 unless the frequency ϵ is
equal to the zeroes or the poles of the coefficients in (3.25)
and (3.28). Therefore, we can conclude that the spectra of
the quasinormal modes in the Teukolsky equation and those
in the transformed equation coincide generically.

IV. COMPARISON WITH QUANTUM
SEIBERG-WITTEN GEOMETRY

As well as in the Regge-Wheeler and the Teukolsky
equations, the (confluent) Heun’s equation also appears in
the quantization of the Seiberg-Witten curves in super-
symmetric gauge theories. For example in N ¼ 2 super-
symmetric SU(2) gauge theory coupled with three matter
hypermultiplets in the fundamental representation of the
gauge group, the quantum Seiberg-Witten geometry gives
the following differential equation [17,19–22]

�
ℏ2

d2

dz2
þ qðzÞ
z2ðz − 1Þ2

�
ΨðzÞ ¼ 0; ð4:1Þ

where ℏ is the quantization parameter (hereafter chosen as
unity) and qðzÞ is the quartic polynomial of z as

qðzÞ ¼ Â0 þ Â1zþ Â2z2 þ Â3z3 þ Â4z4; ð4:2Þ

Â0 ¼ −
ðm1 −m2Þ2

4
þ ℏ2

4
;

Â1 ¼ −E −m1m2 −
m3Λ3

8
−
ℏ2

4
;

Â2 ¼ Eþ 3m3Λ3

8
−
Λ2
3

64
þ ℏ2

4
;

Â3 ¼ −
m3Λ3

4
þ Λ2

3

32
;

Â4 ¼ −
Λ2
3

64
: ð4:3Þ

Here m1, m2, and m3 are the masses of the matter hyper-
multiplets, E is a moduli parameter and Λ3 is the dynamical
scale. For generic choice of the parameters, (4.1) is the form
of CHE. Note that the symmetry under the exchange
between m1 and m2 is manifest because qðzÞ is unchanged,
on the other hand the symmetry under the exchange
between m3 and another mass is not manifest3 and the
form of the differential equation is changed. However
the origin of the parameters suggests that they describe
the same physics, and hence there has to exist some
correspondence between them. By this reason, we will
use the above parametrization (4.3) instead of the standard
parametrization [12] of CHE. For the relation between
these parametrizations, see [20].
The Regge-Wheeler equation and the Teukolsky equation

can be mapped as the form of (4.1) by the multiplication
transformation. In the case of Schwarzschild spacetime, the
correspondence of the parameters are given by4

ℏ ¼ 1; Λ3 ¼ 8iϵ; E ¼ −lðlþ 1Þ þ 2ϵ2 −
1

4
;

m1 ¼ −2þ iϵ; m2 ¼ 2þ iϵ; m3 ¼ iϵ; ð4:4Þ

for the Regge-Wheeler equation (2.16) and

ℏ ¼ 1; Λ3 ¼ 8iϵ; E ¼ −lðlþ 1Þ þ 2ϵ2 −
1

4
;

m1 ¼ −2þ iϵ; m2 ¼ iϵ; m3 ¼ 2þ iϵ; ð4:5Þ

for the Teukolsky equation (2.17). By comparing (4.4) and
(4.5) one can find that the only difference is the exchange
betweenm2 andm3. And as expected, the solutions to those
two equations are related by the Chandrasekhar transforma-
tion (2.25). In the Teukolsky equation in Kerr spacetime, the
correspondence of the parameters are computed as

3In the solution with low frequency expansion [13], this
symmetry becomes manifest [14].

4In the correspondence hereafter, there are three double
signs appear in general [20]. We have fixed these signs in our
convenience.
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ℏ ¼ 1; Λ3 ¼ 8iAϵ; E ¼ −λ− 2þ 2ϵ2 −
am
M

ϵ−
1

4
;

m1 ¼ −2þ iϵ; m2 ¼ iϵþ 2iC; m3 ¼ 2þ iϵ: ð4:6Þ

On the other hand, the correspondence of the parameters for
the differential equation (3.21) becomes

ℏ¼ 1; Λ3 ¼ 8iAϵ; E¼ −λ̃− 2þ 2ϵ2 −
am
M

ϵ−
1

4
;

m1 ¼ −2þ iϵþ 2iC; m2 ¼ 2þ iϵ; m3 ¼ iϵ: ð4:7Þ

By comparing (4.6) and (4.7), one can find that it is not only
the exchange between m2 and m3, but also 2iC is moved to
m1, and λ is replaced with λ̃. Note that the Regge-Wheeler-
type equation which has the parameters in (4.6) with the
exchange betweenm2 andm3 is given in [22]. However, that
equation is found just by the exchange of the parameters, not
by the Chandresekhar(-like) transformation.

V. SUMMARY AND DISCUSSION

In this paper, we have proposed the new kind of the
Chandrasekhar transformation for the Teukolsky equation
in Kerr spacetime, which reduces to the original work of
Chandrasekhar under the limit a → 0. The original
Chandrasekhar transformation had been obtained from
the point view of the gauge transformation for the linear-
ized Einstein equation. We could expect that our trans-
formation would have a similar origin, and it would be
interesting to find it. One can also find that obviously there
could be other transformation by different choices of the
variable x, the differential operators Λ� and the multipli-
cation transformation and the functions F and G. Well-
known examples are of course the (Chandrasekhar-)
Detweiler equation and the Sasaki-Nakamura equation
[6–8], where the tortoise coordinate (3.11) is used.
Instead, here we have used the coordinate z� defined by
(2.19) from (3.6), in order to keep the structure of the
singularities. We have obtained the differential equa-
tion (3.21), which is also reduced to the Regge-Wheeler
equation in the limit a → 0 as the (Chandrasekhar-)
Detweiler and the Sasaki-Nakamura equations are. The
extension to the case of different spins (the scalar waves

and the electromagnetic waves) [25–27] would also be
interesting. We have also considered the behavior of the
solution for the transformed equation at the boundary (far
infinity and the outer horizon) and have shown that the
spectra of the quasinormal modes in the transformed
equation are generically the same as those in the
Teukolsky equation. The explicit numerical evaluation of
the quasinormal modes and comparison with the results
from another method [20–22,28–31] would be interesting.
We have also given the interpretation of our transforma-

tion using the formalism which is recently proposed in the
study of supersymmetric gauge theories. The Regge-
Wheeler equation and the Teukolsky equation are examples
of CHE, which also appears as the wave equation for the
quantum Seiberg-Witten geometry. It turns out that our
transformation is more nontrivial than the exchange of the
mass parameters. Then at present there is no explanation
why the spectra has to be the same in the side of the quantum
Seiberg-Witten geometry andwemay have to considermore
nontrivial transformation as in [32,33].A similar analysis for
the (Chandrasekhar-)Detweiler equation and the Sasaki-
Nakamura equation would also be useful.
Another possible generalization is to include the cos-

mological constant. The Regge-Wheeler and the Teukolsky
equations in the background of the Kerr-de Sitter black hole
are examples of the Heun’s equation (HE) [34], which has
four regular singularities. Since HE does not have the
irregular singularity, it is slightly easier to handle it than
CHE. The local solution of HE is included inMathematica,
as well as that of CHE. Some problems about evaporation
and scattering are also discussed without approximation
[35,36]. These exact analyses would help to study the
problem with the arbitrary frequency, which is important
for application of the scattering of the gravitational
(electromagnetic or scalar) waves to more general cases.
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