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A wave pulse (be it a gravitational wave or a light wave) undergoes anomalous dispersion in a vacuum in
flat spacetimes with an even number of spatial dimensions even if all the frequencies move at the same
speed. Such an anomalous dispersion does not occur in spacetimes with an odd number of spatial
dimensions. We study various gravity theories and show that dispersion-free propagation is possible in even
number of spatial dimensions if the background is not the Minkowski but the de Sitter spacetime and the
gravity theory is massive gravity with a tuned mass in terms of the cosmological constant. Mass and the
cosmological constant conspire to get rid of the anomalous dispersion and restore Huygens’s principle.
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I. INTRODUCTION

Recently [1] it was shown that the wave equation of a

massive Klein-Gordon field with a tuned mass m = \/K
in a (2+ 1)-dimensional de Sitter spacetime, with a
positive cosmological A allows dispersionless propagation.
Namely, an initial wave pulse does not broaden and change
shape when it propagates in this background. This result, a
prirori, is counterintuitive since it is well known that wave
pulses in even spatial dimensions undergo anomalous
(dimension-dependent) dispersion even if all modes propa-
gate at the same speed [2]; and massive wave equations in
all dimensions show (regular) dispersion as there is always
propagation inside the light-cone due to the fact that the
group velocity depends on the wave number of the
individual waves constructing the pulse. But it turns out
that these two effects help each other eliminate the
anomalous dispersion in certain cases.

The result of [1] was inspired by two works: in [3] it was
shown that adding one more timelike dimension to the
(2 + 1) flat spacetime, namely, considering a massless
wave equation in a (2 + 2)-dimensional world, one has
the possibility of dispersion-free propagation. This is rather
surprising since we know that adding a spacelike dimension
removes the anomalous dispersion, but even an extra
timelike direction, albeit physically so removed from a
spacelike direction, seems to do the job of removing the
anomalous dispersion. Even though spacetimes with fwo
time dimensions appear in theoretical physics [4], one
would feel much pleased if an experimental effective model

femelaltas @kmu.edu.tr
‘ercan kilicarslan @usak.edu.tr
*bekin@metu.edu. tr

2470-0010,/2022/105(6)/064027(11)

064027-1

appears to have two time directions. This indeed happens in
some hyperbolic metamaterials [5,6]: in a nondispersive,
nonmagnetic, uniaxial anisotropic metamaterial (which
can be constructed in a lab) the extraordinary (nontrans-
verse) component of the electric field obeys a massless
Klein-Gordon wave equation in a flat (2 4 2)-dimensional
spacetime. In [3] this massless wave equation with constant
coefficients in Cartesian coordinates was shown to be
equivalent to a modified wave equation with time-
dependent coefficients. Then this modified wave equation
was shown to allow particular initial wave pulses to
propagate without dispersion in vacuum. The modified
wave equation introduced in [3] is somewhat ad hoc and
the initial data chosen is rather specific. An explanation was
given in [1]: it was shown that the modified wave equation
exactly corresponds to a massive scalar field in a (2 4 1)-
dimensional de Sitter spacetime with a tuned mass.
Therefore the mentioned hyperbolic metamaterial acts like
a (2 + 1)-dimensional de Sitter background and dispersion-
free propagation is possible for a generic wave pulse if the
mass is tuned to the cosmological constant.

In this work, building on these considerations, we give a
detailed account of propagation of massless and massive
gravity waves in generic D = d + 1 dimensions. These
waves will be gravity waves defined in the weak field limit.
It will turn out that in de Sitter backgrounds, massive fields
with tuned masses allow dispersion-free propagation gen-
eralizing the results of [1].

The layout of the paper is as follows: In Sec. II, we study
the D dimensional massless gravity (general relativity)
in some detail to set up the formalism and to see the
anomalous dispersion in the behavior of the spacetime
Green’s functions. In Sec. III, Fierz-Pauli massive gravity
is studied in a flat spacetime background. In Sec. IV,

© 2022 American Physical Society


https://orcid.org/0000-0002-4112-980X
https://orcid.org/0000-0002-0792-9010
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.105.064027&domain=pdf&date_stamp=2022-03-14
https://doi.org/10.1103/PhysRevD.105.064027
https://doi.org/10.1103/PhysRevD.105.064027
https://doi.org/10.1103/PhysRevD.105.064027
https://doi.org/10.1103/PhysRevD.105.064027

ALTAS, KILICARSLAN, and TEKIN

PHYS. REV. D 105, 064027 (2022)

D dimensional quadratic gravity is studied in a flat
spacetime background; and in Sec. V, 2 4+ 1 dimensional
topologically massive gravity is studied. In Sec. VI, 2 + 1
dimensional new massive gravity and massive Klein-
Gordon fields in a D-dimensional de Sitter background
are studied. The computations are straightforward but
rather lengthy; we have provided some of the details of
the computations in the Appendixes A and B.

II. MASSLESS GRAVITY IN D =d + 1 DIMENSIONS

As it will be our guiding theory, we shall study the D
dimensional massless gravity in some detail. Here we will
give the background expansions of the relevant tensors
that will also appear in various massive gravity theories
studied in other sections. In (d + 1) dimensions, the
Einstein-Hilbert action reads

1= Zi/dd“x,/——gle. (1)
K

To compute the Green’s function of the linearized theory
around the flat spacetime, let us expand the action up to the
second order in the metric fluctuations using

G = g;w + Th;uw (2)

where 7 is a small expansion parameter, g,, denotes the flat
background spacetime metric in some coordinates. The
inverse metric yields

g =G —th* + ?hhy + O(7?). (3)

One also has the expansion of the square root of the
determinant of the metric as

vr——\/—< 4ot +T%Uﬁ—2@»>, ()

where hfw = h,, W**. Expansion of the metric yields an
expansion of tensors that depends on the metric. In
particular, the scalar curvature at the desired order becomes

(R, )

R=R+17(R) + 5

where the first and the second order terms can be found
to be

— "R,
— 20

(R)) = g*(R,,)"

(R)® = g"(R,,)? WWM%W%W<®

The Ricci tensor at the first order can be computed to be

where V# denotes the background metric compatible
covariant derivative and [ := vﬂv". So the linearized
scalar curvature becomes

(R)V =V, V,h?* —Oh — WR,,, (8)

while the second order Ricci tensor is more complicated:

(R = V,(I7,) =V, (I5,) ) + 2(17,) M ()
=20 ()™, ©)

where (I}, (1) denotes the first order Christoffel connection
that reads as

l

— G (Vyhy, + Vb, =V, h,).  (10)

viup p v

('9,)® is the second order Christoffel connection of which
the explicit form is not needed. Now we can expand the
Einstein-Hilbert action (1) as

I=T1+7(DHY 4+ —(N?. (11)

After making use of the above results, the second order
term boils down to

(0 =5 [ a5y (R) =2 (R,

- 1.
+ 20" hR,, +h <R)(') +ZR(h2 - 2%)) . (12)

This expression is valid for a generic background metric; let
us now consider the flat spacetime with Cartesian coor-
dinates and take g, =17,, V, =0, and R,,=0=R.
Then (12) becomes

1
(%) =5 [ d#1a( (R)® = 2R+ R,
(13)
which, making use of the linearized Einstein tensor
1_ 1, -
(Gﬂl/)(1> = (R;w)(l) _EgﬂD(R)<1) _Eh;wR
1
= (R;w)(l) _Eg;w(R)(l)v (14)

reduces to
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! _
(D@ = [ d*'x(7*(R,)? = 20(G,,) ).

2k (15)

One can proceed in a gauge-invariant way, but here we
impose the harmonic gauge to simplify the ensuing
expressions. Then assuming

1
a,,h'; = Eﬁgh, (16)
the linearized Einstein tensor becomes

1
(G/w)(l) = Z (”ﬂunaﬁ ~ Nuallup — nﬂﬁ’/lua)azha/j' (17)

Dropping the boundary terms, in the harmonic gauge, one
has 3*(R,,)® = n**(G,,)"V), and (15) reduces to

1
(@ =5 / e (G V. (18)
This can be written as
1
(0% =4 [ Oy, (19
K
with the formally self-adjoint operator given as
1 2
O/waﬁ(x) = _5 ('7/41/77(1/} = Nuallup — nﬂﬂnua)a . (20)

Green'’s function is the inverse of the operator O,,,,4, under
the assumed (sufficient decay at infinity) boundary con-
ditions, hence one must solve the equation

1
Ouap(¥)G* (x.) =3 (3155 + 85754 (x=). (21)
which, in the momentum space, reads as

- - 1
Ouap(P)G(p) =5 (3155 + 8485). (22)
O,u.4p can be obtained from (20) by replacing 9, with ip,
to get
~ p2
O,ul/a/}(p) = 7 (’7[41/’711[)’ ~ Nualup — 77;4/)’711/(1)' (23)

Then the solution satisfying (22) is

. 1 2]7(1/}17/17
G (p) =55 <;7%1ﬁf et ——— ) (24)

The position space Green’s function can be obtained from
the Fourier transform

Gaﬂ/lr 1 — dd+1p —ip-(x—x’)Ga[)’ﬂr 25
(.X,X ) (2”)d+1 e (p)’ ( )
which reads
1 2 aff At
Gaﬂ}n’(x’ X) = -3 (;,Iall,lﬂr + P — ;7 771 )
dd+lp —ip-(x—x' 1
X/(zﬂ)dﬂe pi( )?. (26)

We are looking for the retarded Green’s function, the poles
should be displaced as such, and the result of the integral
depends on the number of dimensions. For d > 2, defining
t:=t—1r and r:= |[X — X|, one arrives at (see Appendix A
for details)

G Ui p 20
apir(y — al,,ft ar
(t.r) 2(’7’7 o d—l)
[0 oo
7] d1 0(t=r) .
2(’l[) (=529, IJ(t;Tr)Z' for evend.

(27)

For odd d, the Green’s function is nonzero only for null
separation and hence there is no tail inside the light cone.
On the other hand, for even d, even though the Green’s
function is peaked around the null separation due to the
appearance of the function \/ﬂ%_rz there is a tail inside the
light cone. Hence, even a delta-function initial wave is
dispersed and one has anomalous dispersion of gravita-
tional waves. Note that, among the odd spatial dimensions,
d = 3, our world is special since only for this dimension,
there is no derivative on the delta function, hence the delta
function pulse at + =0 remains a delta function, only
shifted to a new location, at all points and for all times.

I11. FIERZ-PAULI MASSIVE GRAVITY
IN D =d +1 DIMENSIONS

The linearized Fierz-Pauli action, that has W

degrees of freedom in a flat spacetime background, is

1 1
z_ﬂ/mwﬁimww%+&wam

m2

).

The field equations coming from this action

— 8,0, h + %@ha’lh - (28)

62hﬂy - aﬂayhﬁ - 8/18,/1;1 +0,0,h + n;lyﬁaaﬁh"l - r]mﬁzh
=m? (h/w - nﬂvh) (29)

can be recast as three equations
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(0* = m?)h,, =0,

H

v =0,  h=0. (30)

The action (28) up to boundary terms reads

I = %{ / VX O, (x) 1P, (31)
with
O () = 5 (e + ) (O = m2)
+0ap(0,0, = 1 (07 = m?)) + 1,040
2 0+ B, 4 1,0, + 1)

(32)

Following the steps in the previous section verbatim, one
arrives at the momentum space Green’s function

1

Gaﬂaﬁ — _
(p) 2(p* 4 m?)

<l,la0';,]/i/1 + ’,]a/li,]/fo _ %I,]a/f”zrl)
d b
(33)
in which we dropped the terms proportional to p* etc. as
they do not contribute to any calculation for which the
energy-momentum tensor is conserved (p?T,z = 0). Then
we have the position space Green’s function

1 2
G (x,4') = =5 (f?”‘”ﬂ“ = )

d+1 —ip(x—x)
% / (dgpei , (34)

zﬂ)dJrl p2+m2

Once again the results of this integral differ for odd and
even d (see Appendix B for discussion). For odd d, one has

afo. 1 ac a o 2 af ,.0.
GHhah(t.r) = —§<f7 W + nyl - n 1)
-1
L0 (L1 Y
2 2rrdr
x (JO (m\/t2 - r2)®(t - r)), (35)

where J, is the Bessel function. For example for d = 3,
one gets

1 2
Gt r) = =5 <’7“”'7“ + T =Sy >

3
Lo (1 d
2 2nrdr

x (JO (m 2 r2>®(t - r)). (36)

The derivative part yields

() (o))

B S8(t—r)Jy (m - r2) mo(t—r)J, (m

2_ rz)
2nr 2V — 2 )
(37)

In the m — O limit, this last equation gives the expected
result 5(;;:); but (36) does not smoothly reduce to the
corresponding d =3 case of (27) due to the discrete
difference in the third terms in the first brackets. This is
the well-known van-Dam-Veltman-Zakharov discontinuity.
Generically, as expected, in flat space for nonzero m, there
is a tail inside the light cone and the retarded Green’s
function has support inside the light cone.
For even d, one has

1
oA
Gerend(1.7) = 3 (n""n’“ o - —n"” 11"‘)

RUEPNG i)

(38)

For d = 2, this yields

G(l[)’o'/l( t, r) — _% (7,](16’7/3/1 + 11{1/1’7/16 _ 7,](1/1’,]0'/1)

X ?cos (m - rZ) m (39)

T [2_r2

For the even d case, there is a support inside the light cone
and the Huygens’s principle is violated. These results are
expected in flat spacetime for massive fields.

IV. QUADRATIC CURVATURE GRAVITY
IN D =d +1 DIMENSIONS

We consider the following quadratic gravity action'

1
Lguaa = ﬂ/ d™'x\/=g(6R + aR?> + ,BR/%u), (40)

from which the second order action in the harmonic gauge
can be found to be

1
(IQUad)(2> = E/ dd+1xhﬂboﬂvaﬁ(x)haﬁv (41)

'We do not consider the Rim term, since at the end we would
like to study the particular 2 4 1 dimensional gravity for which
this term only shifts the parameters in the Lagrangian.
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where the inverse propagator is a fourth order operator

1
O/waﬁ(x) = ’/hwrlaﬂ ( (2(1 =+ ﬂ) 82 ) 82 - (2(1 + ﬂ)naﬁauavaz =+ E (”uarlvﬂ =+ rhlﬂnva) (6 + ﬂ82)82 (42)

From the Fourier transform of this operator, one can find the Green’s function in the momentum space following the similar
steps as in the second section. The Green’s function satisfying (22) reads in the momentum space as

- 1 1 4o +2p 1
Ga/Mr I al,,pr ar A af At AT B
(p) ( 26(1/1 W) O'(d—l)n 7 0'2(d—1)’7 PP )

1
p*—o/p
dad +p(d+1) . 4 a) 1

p

1 1 B
al,,pt ar A\ _ af At AT o
+<26(i717+n77) GdnnJrazdnpp)

+ (—717“”'7*’ - (43)
od(d—1) o*d(d—1) —

From the pole structure, one can read the masses of the excitations: there is a massless spin 2 particle, there is a massive spin

2 particle with a mass m(zj —% ¢ and there is a massive scalar mode with a mass m? = % A complimentary study of

these in (anti-)de Sitter spacetimes can be found in [7]: the masses get nontrivial contributions from the nonzero constant
curvature background. In generic D dimensions, this theory has a massive ghost [8] which only disappears for D = 3 in a
particular tuning of @ and # which we shall study in the next section.

To get the retarded Green’s function in the position space, we have to do the following integrals

Gaﬂ/l-t(x’ x/) — <_L (i’]aﬁl’]ﬁ‘[ + na-tnﬂl) +

ﬂaﬂ o 4a + 2p 7 5p / dd+1p e~ip(x=x)
20 (

od-1)" T TR2a-n" 20T p?
dd+1p e—ip(x—x’)
20)H pr = /B

1 1 ﬂ
+(— (’,]ainﬁr 4 narn/ﬂ) naﬁ }7/11 /17 P o /
20 od o*d (

1 dad ﬁ(d - ) ) / ild+1 e_ip()(—x/)
af,Ar | LT P\E T ) /17 b o
<6d(d 1) 0 d(d 1> (2 )d 1f 4ad4(:;(zy+l)

which again should be studied in odd and even d separately.
i: Odd d case

APAT 1 . T AT ¢ T + 2ﬂ T X 1 1 d (d_3)/2 6 t - r)
G (1,r) = (—%(W‘Anﬁ + 1) + i +42 " aﬂa‘> 1290 <_> |

o(d-1) (d- ) 2zrdr r
1 1 ﬂ 1 d\@n/2
al,,pr at A\ _ aﬂ AT i‘r A | _ /12 — 42 —
+ (20‘ (™ +n"n™) O'd T o*d 0 ) o )< 2ﬂrdr> Jo (mg rer )®(t r)
1 1 1 d\@-n/2
N N/ /) 9V 4 AtAfaa | - = , 2 _ 2 _ 4
<0'd(d— 1)’7 (i adm§}7 - ) 2®(t)< 2ﬂrdr> Jo (m3 o )G(t r): (43)

where we have used the explicit forms of the masses m, and m,. In particular for d = 3, one arrives at

1 1
G (1, r) = <_ 5 (1 o) 4 5

apyie | 4a +22ﬁ’7,118/}5a 1 e@)st—r)
20 20

dr r

1 1 B N/ 1 d
(oA, pT at AN _ _— paf it P drafa \ N J 2 _ 2 Ot —
+<2a('7 W) = o =3 66) 2 ( 27rrdr> o(m V7 =)ot
1 12a + 4 o [ 1 d
| ap A 5 rafye \ N ) 2 _ 2 — 7). 4
<6011 (A 66 o 8) 2 2nrdr Jo (m“ rer )®(t r) (46)
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Again, due to the massive parts, as expected, there is propagation inside the light cone. Hence the quadratic gravity violates

the Huygens’s principle in a flat spacetime.
ii: Even d case

1
Gaﬂ/lr(t’ r) — (_% (naii,lﬂr + I’[m-l’]ﬂﬁ) +

da + 2 1 1 d\-2/20(t-
naﬂnlr_i_ a -+ ﬂ ”ﬁfaﬁaa>g®(t) (___) M

o(d-1) o*(d-1) 2zrdr 22
4 (215 (e + eenfh — ld P — Gﬁ Afapaa) o o) (_%%) (d-2)/2 cos(mg o r2> %
- <7ad(dl— ) ' + adlmi n“aﬁaa) %G(t) <—$%> o cos (ms r— r2) % (47)
In particular, for d = 2, one has
waLw-Qu—wwwtwwwh+1¢%W+4“+”3hwaﬁﬁg<o%%%%
+ <2]_6 (1P + ) — Zidﬂaﬂ”m s rll‘r@ﬁ@a) cos( \/7\/—> \/_r
B (21_0’7&[{’717 +%"mﬁ8a> 62%) ( sa T3p" ) \/t;iz (48)

A particular 2 4 1 dimensional model, the so-called new massive gravity (NMG) [9—11] is one of our main interests here.
So let us consider this theory. Choosing f = 1/m? and a = -3/ (8m2) and ¢ = —1, (48) yields

apir
G (1 r) =
4

There is propagation inside the light cone and hence NMG
in flat spacetime violates the Huygens’s principle. We shall
come back to the de Sitter version of this theory in Sec. VI.

V. TOPOLOGICALLY MASSIVE GRAVITY
The action for TMG is [12]

1
ITMG = /d3x\/ < n”””r‘/}
c 2 c A
X (9,/F ap + §F W{F ap y (50)

where #** is the 3D antisymmetric tensor. The action
yields the following field equations

1 1
EGIW—'_;CI‘V:O’ (51)
where C,, denotes the Cotton tensor given as

Co =1V (R = jonk). (52

i (1,,(1/177/31 + ”afnﬁ/l 2]1(1/)’]1/11 + ﬂf a/y’ aa)
T

_ L (na/lnﬂr + narnﬂi _ I,Iaﬁ,,l/lr + ﬁraﬁaa)

O(ne(r—r)
2=

M@(t)@(t — 7). (49)

2_p

|

which is symmetric, divergence-free, and traceless.
Linearization of the action around the flat spacetime yields
the inverse propagator

o

1
pvaf (.X) = _5( (nﬂv’/laﬂ ~MNualup — n/,tﬂ’/[ua)az

1
+@ (nydai/luﬂ + ’/lﬂaﬁnya + nvgarhdﬂ + nvaﬁrl}m>aaa2v
(53)

which in momentum space becomes

2
> p
Oap(p) = o (MusMap = Muallup = NupMlua)

2
P
- @ p}L (’7}4/1(1’71//)’ + ’Yﬂﬂ/ﬂ?ua + nyﬂrlnuﬁ + ’71/1/3’1;4(1) .

(54)

We obtain the momentum space propagator as
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~ K
G (p) = {16

+ 8Pk (P p’ p” + 0" pp?)

_ 3iﬂk3pk(ﬂxappﬁpo— + ”Kﬂppapa + nkaapﬁpp + nk/iapapp))

8,Lt4 (’,Irlo'n/}/) + ’7(1/)],][)’(7) _ 6/12](2

(’7(1/)p/}p0' + ”/}/)papo' + ’,I(mp/)’p/) + ﬂ/i{rpap/)) 2/1

(n(l/)pﬁpﬁ + nﬁ/)papﬁ + ’,Iao'p/}p/) + nﬂﬁpapp)

= 6t p?pl p? p® — Ak, (P + P gy Pon)

1
+ F( =2p e + 20t (o + )

( b pP p° + n° p*p?)

+ 2K4pap/)’pppo' + iﬂ3Kp,< (’,IK{I/)W/}(F + 111([)’/)’1(10' + 7/]K{ml’]ﬂ/) + rlK/}(i,,,{l/))

+ iui p( pP p® + 0P pp? + 1 pP p? + P p?pr))

K'3

" 16u

+ l'MKPK(ﬂm/)Pﬁp” + nK/i/)papo' + nk(mpﬂpp + nKﬂﬂp{lp/)))

Applying the inverse Fourier transformation we obtain

Ga/}/m(t’ I’) — 16K - (16#47’](1/}7’]/}” -
U

+ 4/431('(11’(0[/)1’]/}5 + nk/}’pnaa + ”Kao-’,l/i/) + nK/)’o—nap)aK)

1
P2+ 2K

= (22 (0™ pP p® + PP p® p° + y* pP pP 4+ 0P p®pr) + 2k p®pf p* p°

8ﬂ4 (7,](1(7’,]/}/) + ;,]a/)},l/}o')

K
g SR+ 2 G )

1
_ ﬂSK(nkaprlﬂo‘ 4 nK/ipnan + nk(wr]ﬂp 4 ;,]K/izr;,]ap)ak) E

where, in the last expression, we dropped the terms which
vanish when the propagator is sandwiched between two
conserved sources. There is a single massive spin-2 mode
with only one degree of freedom since it is a parity
noninvariant theory. Once again there is a tail inside the
light cone and the Huygens’s principle is violated.

VI. NEW MASSIVE GRAVITY IN
DE SITTER SPACETIME

As mentioned in the Introduction, anomalous dispersion
can disappear in the 2 4+ 1 dimensional gravity in a curved
background. To understand this, let us consider a generic
quadratic gravity in a de Sitter background. This theory was
studied in detail in [13]. Here, we shall only quote the
pertaining details for our discussion. Generic three dimen-
sional quadratic action is

/ d*x\/=g ( (R —2A¢) + aR* + R’ ) (57)

Consider the linearization of this theory in a de Sitter
background given by the following metric

1

—_— 55
P>+ 4u? /i (55)

1 1

2_72
oo - r) ) (56)
2_p2
52

ds* = = (=df* + dx* + dy?), (58)

where the effective cosmological constant is

1 1

7= 0 Ga D (15 VI=8cA(a+5).  (59)

Defining the perturbations as

f2
gﬂl/ = ?nyu + h/un (60)

a rather long discussion given in [7,13] shows that for
generic a, ff, k there are three propagating degrees of
freedom. Two of these constitute the massive spin-2 field
with the mass

1 120 4
2 ___ 2 2 61
RTINS (61)

and the third degree of freedom is a spin-0 mode with the
mass
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B 1 4 (3a+p
" a3 P <8a i 3ﬁ> ' (62)

Let ¢ denote the spin-0 field, which arises as a gauge-
invariant object then its action is given as

8a+3 3.
I¢:( a—g ﬁ)/d3x|:%¢2

s rA GG

On the other hand, the two modes of the spin-2 field come
with the following action

1 3 2a 4
10:§/d3x[ﬁ;3( +0V?0) + ( —1—720( 7@) bﬂa}
(64)

To understand these modes, let us recall that a free scalar
field in this background with mass m has the action

I = —% / Pxy/G(0,DHD + mD?)

L I LS
= 2/dx{t[(b

Comparing this with (63) and (64), after scaling o as
c— ’%20 and similarly ¢ — ’“:;2245 one can read (62) from
(63) and (61) from (64). In the NMG Ilimit, that is
8a + 3 = 0 the ¢ field is infinitely massive and drops
out of the spectrum. One is left with a massive spin-2 field

with the mass

bﬂ3
+ (0;®)%] + = m*®? }

1 1
o _ b
my = Kﬂ+2f2' (65)

As shown in [1], a massive scalar field in de Sitter
spacetime with the tuned mass m = 1/¢ shows dispersion-
less propagation in 2 4 1 dimensions. One can easily see
this from the following construction: with the coordinate

change t = Ze™/’ and a(r) = e”/?, de Sitter metric
becomes

ds* = —d7* + a(7)*(dx* + dy?).

In these coordinates, the Fourier modes of the massive
graviton has the dispersion relation

) 1 k2

wi=-2 + m? + (66)
For m} = 1/¢?, the group velocity is independent of k.
Hence anomalous dispersion disappears. This corresponds

to the case kff = —2¢2. This is possible for A, = —27/¢°.
Note that, the bare cosmological constant is negative, but
the effective cosmological constant is positive.

One can easily generalize the discussion of the previous
section to generic D dimensions. Consider a massive scalar
field living in the background spacetime with the metric

D-1
ds? = —di* + a(r)? deidxi, a(r) = e,
Py
2A
H:=,l——F7—7— 67
(D-1)(D-2) (67)

Then the wave equation ((J —m?)® = 0 is solved by the
Fourier modes

ek, (68)

as long as the following equation is satisfied

f7(@) + wifi(z) =0, w} = mz_lz\((ll)):Zl))+a(r)2'

(69)

/2\(([) l)) the group velocity
_ Owy

9 = ¢ 1s independent of k and hence there is no

dispersion. For this case, the solution to (69) is given in
terms of the Bessel function of the first and second kinds as

F2l(r) = erd (ﬁ) + Y, <#) (70)

and a generic wave pulse can be constructed from the
superposition of these modes. Note that in [14] the same
result was reached but to make the proper comparison
the choice of H=1—- A = #

made in our expressmns.

Note that for the tuning m?> =

Z)

choice should be

VII. CONCLUSIONS

We studied the propagation of gravity waves in some
detail in flat and de Sitter spacetimes for massless and
massive gravity, quadratic gravity theories. It is quite well
known that in flat backgrounds, with odd number of spatial
dimensions (such as our Universe), there is no anomalous
dispersion in a vacuum, while for all even spatial dimen-
sions there is anomalous dispersion. So introducing one
spacelike dimension changes the propagation dramatically.
What has been a rather unexpected surprise was to see that

*We thank a conscientious referee for bringing this reference to
our attention.
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adding one timelike dimensions also removes anomalous
dispersion which was demonstrated in [3] for a particular
setting whose details have been given in [1]. In this work
we have studied the extensions of these considerations to
massive gravity theories; in particular we showed that for a
particular tuning of the mass in terms of the cosmological
constant, both scalar waves in D dimensional de Sitter
spacetime and new massive gravity in 2 4+ 1 dimensions
allow dispersion-free propagation and hence the Huygens’s
principle survives.
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APPENDIX A: MASSLESS INTEGRAL

Here, for completeness, we give some of the details of
the integrals that we used in the body of the text. We claim
no originality in these two Appendixes as these results can
be found in various forms in the literature [2,15-18]. We
used [19] for various integrals and relations.

Consider the mass free integral

dd+1p e—ip~(x—x’)
1, ==/(2ﬂ)d+1 I (A1)
P
which reads
ddp . [ de eipot
L= | EP ipr [P0 (A2
=S e
where we have defined 7:=X—X and f:=x°—x".

To obtain the retarded Green’s function, in carrying out
the p® integral, both poles are displaced in such a way that
they are located in the upper-half plane and contribute to
the integral. Hence the p° integral yields

i 0
eir't

o dp? sin(pt)
—_— = (1),
S ew

where ©(7) denotes the Heaviside step function and
p :=|p|. Then

(A3)

d?p . _sin(pt)
I, =0(t T A4
(=0l [ et (A4)
Assuming p - 7 = |p||F| cos §, and using
d?p = p®(sin0,)?2(sin0,)43...
X sin Hd_zdeldez....de_ldp (AS)

we obtain

h=e() [ 5 hsin(pnp
0

T

% /dgle—i|ﬁ|7|c056] (Singl)d—Z
0

x/d92....d@d_l(sinﬁz)d_3...Siné’d_z, (A6)

where
06y, By, (sin B sin6y = o (a7
/ Deeen d_l(sm 2) ... SIn d_z_T%I) ( )

is the solid angle in d — 1 dimensions for both the even and
odd dimensional cases. To evaluate the @, integral we use
the following formula

/ deeikr cos @ (sin 9)111—2
0

_ Jz <%) R (mT_1> T (k). (AS8)

Then we get
-d)2 ) : d—2Jd/2-1 (=pr)
1, = 0(1)(2n) dp sin(pt)p )T
(A9)

To complete the calculation, we need to compute the term
Jaja—1(=pr)/(=pr)4>~1. We use the identity [15]

Joal®) (_g) "J,(0)

xv+n x dx x¥

(A10)

Now, let us consider the even and odd dimensional cases
separately.

1. Odd d case

We have x = —prin (A10). Let v = —1/2, then one has
n=(d-1)/2 and we use

2
J_1)2(z) = s

Jap-1(=P") _ 4 (acay2 1 1 d\@h2
WZZ / 71'( )/ P —2—7”5 Cos(pr).

(Al1)

to arrive at

(A12)

Then 7, integral reduces to
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dp sin(pt) cos(pr)'

T 2rrdr p

1 1 d\@-12
1= to (- 2)

0\8

(A13)

In order to take the p integral one needs [19]

o ) ) /2, a>b>0
/dx sin(ax) cos(bx) =S /4, a=b>0 (Al4)
X
0 0, b>a>0.
Using these one ends up with
1 1 d\@4=3/28(t—r)
I, =— - . Al
! 47r®(t)< 2nr dr) r (AL5)

2. Even d case

We have x = —pr in (A10). Let » = 0, then one has
n=(d-2)/2 and (A10) yields

Jur(=pr 1 d \@-2)
i (=pr) _ p<2—d>/2< ) Jo(=pr),

(—pr)>t rd(—pr)
(A16)
where
e . Z2k
Jo(2) = ;(—1) e (A17)

One has Jo(—z) = Jy(z), then we obtain

Jajp-1(=pr) i aaf 1 d\@22
(—pr)a21 = (2m) =22 p? “3ardr Jo(=pr).

(A18)

Substituting this in (A9) we get

1 1@ L d)lr dp si J
(. (1) T oardr psin(pt)Jo(=pr),

0\8

(A19)

and we end up with

1 d>(d—2>/2 Ot—r) (A20)

1
I = — -
: 2n®(t)< 2zrdr po

—r

We can summarize the results as follows [2,16,17]

dd+1p e—ip(x—x’)
1_/(2ﬂ)d+1 pz

LO(1) (=5 2)d=3)/2 =) for odd d,
_ = G (A21)

- 0(1) (- A dy(d=2)/2 Ot=r) . for evend.

22

APPENDIX B: MASSIVE INTEGRAL

Let us consider the following integral

B dd+1p e—ipv(x—x’)
I = Q) 2w

(B1)

Similar steps in the previous section yields

_, sin(ty/p? + m?)

I, = ©(1)(2x) / dpp?
0

Jaja-1(=pr)
X e ——

—pr) T ")

Now we need to consider the odd and even d separately.

1. Odd d case
Using the identity (A12) the /, integral reduces to

1 I AN G
k=200 (‘%E)

= sin(ty/ p? + m?)
p

X ———-cos(pr). B3
o P oD B
In order to take the p integral we use
¥ sin(pVx* + a?) cos(bx)
dx 5 5
x“+a
0
_{ﬂJO(a\/pz—bz)/l O<b<p, a>0 (B4)
0, b>p>0,a>0

and we arrive at

1 1 d\@1/2 5 5

(BS)
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2. Even d case

Using (A18) we get

1 1 4\@-2p2 " psin (t\/ﬁz + m2>
L=—00)|-—— dp
2n 2nrdr

where

Jo(pr). (B6)

p sin (t\/ﬁz + m2) cos (m - rz)

/oo dpJo(pr)

Then one obtains

1
I=—0{)|—-———
> 2 ()( 2rrdr

We can summarize the results as follows [18]

= | —X -
2 (zﬂ.)dJrl p2+m2

d—l)/2@(t —r)Jo (m\/ - r2) . for oddd,

/ dd+1p e—ip(x—x’) %®(l‘><— #%
(d=2)/2 cos(mVP—r?)

=g o) (B7)
—2)/2 cos( mVt* — r?
! d>(d Y S<—tz)®(t—r). (BS)

t2

(B9)
= O —r):

— for evend.
—r
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