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For a stationary, axisymmetric, asymptotically flat, ultracompact [i.e., containing light rings (LRs)]
object, with a Z2 north-south symmetry fixing an equatorial plane, we establish that the structure of
timelike circular orbits (TCOs) in the vicinity of the equatorial LRs, for either rotation direction, depends
exclusively on the radial stability of the LRs. Thus, an unstable LR delimits a region of unstable TCOs (no
TCOs) radially above (below) it; a stable LR delimits a region of stable TCOs (no TCOs) radially below
(above) it. Corollaries are discussed for both horizonless ultracompact objects and black holes. We illustrate
these results with a variety of exotic stars examples and non-Kerr black holes, for which we also compute
the efficiency associated with converting gravitational energy into radiation by a material particle falling
under an adiabatic sequence of TCOs. For most objects studied, it is possible to obtain efficiencies larger
than the maximal efficiency of Kerr black holes, i.e., larger than 42%.
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I. INTRODUCTION

The discovery that quasars are powerful extragalactic
radio sources [1] raised the intriguing question of how
their luminosities are produced. Eventually, supermassive
black holes (BHs) emerged as the widely acknowledged
engines for such extreme energy outputs [2], due to their
deep gravitational potential wells. This was a turning
point in the history of BHs, which slowly started to be
considered as realistic physical objects by the wider
astrophysics community.
The paradigmatic General Relativity BH, described by the

Kerr metric [3], has an equatorial innermost stable circular
orbit (ISCO), below which material particles trapped in the
BH’s potential well are expected to plunge into the horizon.1

Thus, computing the energy per unit mass of a particle at the
ISCO, EISCO, gives an estimate of the rest mass to radiation
energy conversion by the BH. The rationale is that a particle
in, say, an equatorial thin accretion disk, moves towards
smaller and smaller stable timelike circular orbits (TCOs)
losing angular momentum (due to turbulence in the disk) and
converts its energy into radiation (by heating up), starting off
at a large radius until it reaches the ISCO, from which it
plunges into the BH. Thus, the efficiency

ϵ≡ 1 − EISCO; ð1Þ

provides an estimate of the energy conversion into radiation
by particles spiraling down the BH’s potential well.2 The
first mention of efficiency was done by Shakura and
Syunyaev [4]. For a Kerr BH, the efficiency increases
monotonically as one increases its spin. For the nonspinning
case (Schwarzschild), ϵ ∼ 5.7%, whereas for the extremal
Kerr case it reaches ϵ ∼ 42% [5,6]. Such dramatic rest mass
to radiation energy conversion, well above that observed in
typical nuclear reactions (which is smaller than 1%),
explains why BHs could source powerful luminosities like
those observed in quasars.
The estimates just quoted for ϵ rely on the structure of

stable TCOs around Kerr BHs. How does this structure
change for more generic BHs or even for horizonless
compact objects? This is a timely question, in view of the
ongoing BH astrophysics precision era, triggered by gravi-
tational wave detections [7,8], horizon scale electromagnetic
observations [9–12] amongst other observational develop-
ments that impact on our knowledge of strong gravity
systems. Within the goal of testing the Kerr hypothesis,
i.e., that (near equilibrium) astrophysical BHs are well
described by the Kerr metric, it becomes instructive to
consider more general models of BHs, motivated by gravi-
tational theories beyond General Relativity or matter models
beyond the standard model of particle physics, as well as
consider their phenomenology, in particular concerning ϵ.
In this paper, we shall investigate the structure of TCOs

around a generic class of equilibrium BHs or even
horizonless, but sufficiently compact (i.e., ultracompact),
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1This in contrast with the analogous Keplerian problem,

wherein stable circular orbits are admissible at any radius.

2This simple estimate ignores the energy conversion during the
plunge.
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objects that could imitate BHs in some observables. For
this purpose, we start off from two recent theorems on the
existence and structure of light rings (LRs), i.e., null
circular orbits around compact objects. First, it was shown
by using a topological argument that for a stationary,
axisymmetric, asymptotically flat, four-dimensional hori-
zonless compact object that can be smoothly deformed
into flat spacetime, LRs always come in pairs, one being
stable and the other unstable [13]. Secondly, an adaptation
of the same sort of topological argument, established that
stationary, axisymmetric, asymptotically flat, four-dimen-
sional BHs always have, at least, one (unstable) LR [14].
With this starting point, in the first part of this paper, we
shall show that for any given ultracompact object, i.e., any
object with LRs, possessing also a (north-south) Z2

symmetry, the structure of the LRs determines, to a large
extent (but not fully), the structure of the TCOs on its
equatorial plane (Secs. II and III). This allows us to
establish a simple picture, identifying a small set of
building blocks, whose combinations compose the struc-
ture of the equatorial TCOs around a generic equilibrium
ultracompact object, cf. Figs. 1–3. We note that we shall
study the structure of TCO by looking into the radial
stability of the orbits. A more complete study of the full
stability shall be left for a subsequent work.
The study of the full stability of TCOs has been already

considered in the literature for the case of static (spherical
or axisymmetric) spacetimes. In particular, Vieira et. al.
[15] (see also the references therein) have shown that, for
such Ricci-flat spacetimes, the sum of the radial and
angular epicyclic frequencies squared on the equatorial
plane, measured by an observer at infinity, vanishes at the
LRs. This implies that, for either an unstable or a stable
LR, in its adjacent region supporting TCOs one of the

epicyclic frequencies squared must be negative, leading
always to an unstable region of TCOs. Dropping the Ricci
flatness assumption, Vieira et. al. [15] were still able to
show that the aforementioned sum of the radial and
angular epicyclic frequencies squared is always positive
if the strong energy condition is obeyed.
Then, in Sec. IV we illustrate these generic structures

of TCOs by considering a sample of models of alternative
BHs (to the Kerr solution) and horizonless ultracompact
objects, also computing their efficiency. These general-
ized models unveil an ambiguity related to the proper
definition of the efficiency parameter for objects with
a more complex structure of TCOs, that we shall discuss.
Amongst the explicit examples considered, there are
several family of bosonic scalar and vector stars
[16–23], as well as two different families of “hairy”
BHs [24–26]. In Sec. V we present a closing discussion
about our results. Throughout this paper we shall use
geometrized units, G ¼ c ¼ ℏ ¼ 1.

II. CIRCULAR GEODISICS ON THE
EQUATORIAL PLANE

We assume a stationary, axisymmetric, asymptotically
flat, (1þ 3)-dimensional spacetime, ðM; gÞ, describing an
ultracompact object. ðM; gÞ may, or may not, have an
event horizon. Our description is theory agnostic; we do
not assume ðM; gÞ solves any particular model.
Let the two Killing vectors associated to stationarity

and axisymmetry be, respectively, fη1; η2g. Then, a
theorem by Carter guarantees that (due to asymptotic
flatness), ½η1; η2� ¼ 0, i.e., the Killing vector fields com-
mute [27]. Consequently, a coordinate system adapted to
both Killing vectors can be chosen; ðt; r; θ;φÞ, such that
η1 ¼ ∂t; η2 ¼ ∂φ. In addition, we assume that the metric:
(i) admits a north-south Z2 symmetry; and (ii) is circular.
For asymptotically flat spacetimes, circularity implies that
the geometry possesses a two-space orthogonal to fη1; η2g
(c.f. theorem 7.1.1 in [28]). Thus g admits the discrete
symmetry ðt;φÞ → ð−t;−φÞ.
The spherical-like coordinates (r, θ) in the orthogonal

two-space are assumed to be orthogonal (which amounts
to a gauge choice). If an event horizon exists, another
gauge choice guarantees the horizon is located at a
constant (positive) radial coordinate r ¼ rH; thus the
exterior region is rH < r < ∞. If not, the radial coordinate
spans Rþ

0 (0 ≤ r < ∞Þ. Under such choices, grθ ¼ 0,
grr > 0, and gθθ > 0 (outside the possible horizon). The
ðr; θÞ coordinates match the standard spherical coordi-
nates asymptotically (r → ∞); thus, θ ∈ ½0; π�,
φ ∈ ½0; 2π½, and t ∈� −∞;þ∞½. The rotation axis, i.e.,
the set of fixed points of η2, is θ ¼ f0; πg; the equatorial
plane, i.e., the set of fixed points of the Z2 symmetry, is
θ ¼ π=2. Outside the possible horizon, causality requires

FIG. 1. Structure of the equatorial TCOs around the MSCO and
ISCO. (Top panel) The MSCO is determined by the largest radius
at the threshold of the stability condition, cf. (15). In principle this
equation can have several radial solutions, so that the ISCO could
also be determined by the smallest radius of the same condition,
cf. (19). As we shall see in an example below, the latter could be at
the origin, so that the yellow region of unstable TCOs is absent.
(Bottom panel) The ISCO can, alternatively, be determined by
threshold condition for the absence of any circular orbits, cf. (18).
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gφφ ≥ 0. Thus, our generic metric, which has signature
ð−;þ;þ;þÞ, is3

ds2 ¼ gttdt2þ 2gtφdtdφþ gφφdφ2þ grrdr2þ gθθdθ2: ð2Þ

Observe that outside a possible horizon, wherein the
coordinate system is valid,

Bðr; θÞ≡ g2tφ − gttgφφ > 0; ð3Þ

which follows from the condition detð−gÞ > 0 together
with a positive signature for the ðr; θÞ sector of the metric.
Another combination of interest, as it will become clear
below, is

Cðr; θÞ≡ ðg0tφÞ2 − g0ttg0φφ; ð4Þ

where the prime denotes the derivative with respect to the
radial coordinate. As we shall see, there are ultracompact
objects for which this quantity becomes negative in the
domain of outer communication. This impacts in the structure
of circular geodesics.
Test particle motion in the generic geometry (2) is ruled

by the effective Lagrangian (dots denote derivatives with
respect to an affine parameter, which is proper time in the
timelike case),

2L ¼ gμν _xμ _xν ¼ ξ; ð5Þ

where ξ ¼ −1; 0;þ1 for timelike, null, and spacelike
geodesics, respectively. The equatorial plane is a totally
geodesic submanifold, wherein the effective Lagrangian
simplifies to,

2L ¼ gttðr; θ ¼ π=2Þ_t2 þ 2gtφðr; θ ¼ π=2Þ_t _φ
þ grrðr; θ ¼ π=2Þ_r2 þ gφφðr; θ ¼ π=2Þ _φ2 ¼ ξ: ð6Þ

Dropping (for notation ease) the explicit radial dependence
of the metric functions, and introducing the two integrals of
motion associated to the Killing vectors, the energy, E, and
the angular momentum, L, are

−E≡gtμ _xμ¼gtt_tþgtφ _φ; L≡gφμ _xμ¼gtφ_tþgφφ _φ; ð7Þ

and the Lagrangian can be recast as

2L ¼ −
Aðr; E; LÞ

BðrÞ þ grr _r2 ¼ ξ; ð8Þ

where

Aðr; E; LÞ≡ gφφE2 þ 2gtφELþ gttL2; ð9Þ

and BðrÞ is the function in Eq. (3) restricted to θ ¼ π=2.
This suggests introducing an effective potential VξðrÞ as

VξðrÞ≡ grr _r2 ¼ ξþ Aðr; E; LÞ
BðrÞ : ð10Þ

Then, a particle follows a circular orbit at r ¼ rcir if and
only if the following two conditions are simultaneously
obeyed throughout the orbit

VξðrcirÞ ¼ 0 ⇔ Aðrcir; E; LÞ ¼ −ξBðrcirÞ; ð11Þ

and

V 0
ξðrcirÞ ¼ 0 ⇔ A0ðrcir; E; LÞ ¼ −ξB0ðrcirÞ; ð12Þ

where prime denotes radial derivative and we have used
(11) to obtain the last equation in (12). Moreover, the
radial4 stability of such a circular orbit is determined by the
sign of V 00

ξðrcirÞ, which reads, upon using (11) and (12),

V 00
ξðrcirÞ ¼

A00ðrcir; E; LÞ þ ξB00ðrcirÞ
BðrcirÞ : ð13Þ

Then,

V 00
ξðrcirÞ > 0 ⇔ unstable; V 00

ξðrcirÞ < 0 ⇔ stable: ð14Þ

As such the transition between stable and unstable
circular orbits will be determined by V 00

ξ ¼ 0. In the
Kerr family, for TCOs and for each rotation direction,
there is only one radius for which V 00

−1 ¼ 0. For a generic
ultracompact object there may be more solutions. Thus,
we define the location of the marginally stable circular
orbit (MSCO)

V 00
−1ðrMSCOÞ ¼ 0 ∧ V 000

−1ðrMSCOÞ < 0: ð15Þ

The MSCO should be understood as the stable circular
orbit with the smallest radius that is continuously connected
to spatial infinity by a set of stable TCOs. For objects that
only have one solution satisfying the condition (15) (such
as the Kerr case), MSCO corresponds to the well-known
innermost stable circular orbit (ISCO). However, for more
generic (non-Kerr) objects, a more intricate structure of
TCOs may be present, with other regions of stable TCOs
that are not continuously connected to spatial infinity by a
set of stable TCOs. In such cases, we can define the ISCO,
which will be different from the MSCO.3In the following we shall consider that the radial coordinate is

a faithful measure of the distance to the central object. That is,
that as r increases then, say, the circumferential radius of
equatorial orbits of η2 also increases.

4Henceforth, all mentions to stability shall be understood as
radial stability.
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To motivate the definition of the latter, we observe that
along circular geodesics, the angular velocity (as measured
by an observer at infinity) is

Ω ¼ dφ
dt

¼ _φ
_t
¼ −

Egtφ þ Lgtt
Egφφ þ Lgtφ

: ð16Þ

If Ω is real, circular orbit are possible (timelike, null, or
spacelike). Then, in a stationary, but not static, spacetime one
distinguishes between prograde/retrograde orbits, which are
corotating/counter-rotating with the spacetime. The angular
velocity, energy, and angular momentum of the former
[latter] are denoted as ðΩþ; Eþ; LþÞ ½ðΩ−; E−; L−Þ� and
depend on rcir. If, however,

CðrÞ < 0; ð17Þ

where, CðrÞ is the function in Eq. (4) restricted to θ ¼ π=2,
then Ω is not real and no equatorial circular geodesics exist
(of any causal character)—cf. Eq. (22), and Eq. (A10) in the
Appendix. This possibility, if it occurs, typically arises close
to the center of the ultracompact object as shown in the
examples below. Then, an ISCO could emerge which is
different from the MSCO defined above. We thus define the
location of the ISCO as the smallest r for which

CðrISCOÞ ¼ 0; ð18Þ

in case this corresponds to a TCO and occurs in the domain
of outer communication; or else, the smallest r for which

V 00
−1ðrISCOÞ ¼ 0 ∧ V 000

−1ðrISCOÞ < 0; ð19Þ

in case there is more than one radial solution of (19). The
ISCO is determined by either (18) or (19), whatever is
smaller.
Below we shall give examples wherein an ISCO arises

from (18) and other examples where it arises from (19)
(and ISCO ≠ MSCO).

A. TCOs

For timelike particles, ξ ¼ −1, condition (11) together
with (16), determine the energy and angular momentum for
circular orbits in terms of the angular velocity as

E� ¼ −
gtt þ gtφΩ�ffiffiffiffiffiffi

β�
p

����
rcir
; L� ¼ gtφ þ gφφΩ�ffiffiffiffiffiffi

β�
p

����
rcir
; ð20Þ

where we have defined

β� ≡ ð−gtt − 2gtφΩ� − gφφΩ2
�Þjrcir ¼ −Aðrcir;Ω�;Ω�Þ:

ð21Þ

Then, the remaining condition (12) yields Ω� in terms of
the derivatives of the metric functions at rcir

Ω� ¼
�
−g0tφ �

ffiffiffiffiffiffiffiffiffiffi
CðrÞp

g0φφ

�
rcir
: ð22Þ

This confirms that the angular velocity ceases to be real
when CðrÞ < 0.
Asymptotically, TCOs are essentially Keplerian, and

thus stable. Then, as already anticipated in the previous
subsection, two important orbits amongst the TCOs
emerge; the MSCO and the ISCO. For Kerr-like objects,
both orbits are one and the same, and they lie at the
threshold of the stability condition (15), V−1

00ðrMSCOÞ ¼ 0,
and that is continuously connected by stable TCOs to
spatial infinity. Thus, it is determined by

ðg00φφE2
� þ 2g00tφE�L� þ g00ttL2

�ÞjrMSCO ¼ ðg2tφ− gttgφφÞ00jrMSCO :

ð23Þ

In generic ultracompact objects, however, and as illustrated
in the examples below, there may be further disconnected
regions with stable TCOs closer to the center of the
compact object. In particular, rather than ending at a
transition to a region of unstable TCOs, they can end at
a limiting orbit below which no circular geodesics are
possible (with CðrÞ < 0). Thus, the ISCO can occur at the
threshold of this region, which is given by Eq. (18):

CðrISCOÞ ¼ ½ðg0tφÞ2 − g0ttg0φφ�rISCO ¼ 0; and

V 00
−1ðrISCO þ jδrjÞ < 0; ð24Þ

where jδrj ≪ 1. An illustration of the structure of TCOs
around the MSCO and ISCO is shown in Fig. 1. We remark
that below we will see ultracompact objects where both
MSCO and ISCO are present.

B. Light rings

For lightlike particles, ξ ¼ 0, circular orbits are LRs.
Condition (11) is a quadratic equation for the inverse
impact parameter,

σ� ≡ E�
L�

; ð25Þ

i.e., it reads

AðrLR; σ�; σ�Þ ¼ ½gφφσ2� þ 2gtφσ� þ gtt�LR ¼ 0; ð26Þ

with the solutions (for prograde, σþ, and retrograde,
σ−, LRs),

σ� ¼
�−gtφ � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

g2tφ − gttgφφ
q
gφφ

�
LR

: ð27Þ

The second condition (12), on the other hand, yields
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½g0φφσ2� þ 2g0tφσ� þ g0tt�LR ¼ 0: ð28Þ

This determines LR’s radial coordinate and cannot be
solved if (17) holds. The stability of the LRs is evaluated
by checking the sign of V 00

0ðrLRÞ given by (13); explicitly

V 00
0ðrLRÞ ¼ L2

�

�
g00φφσ2� þ 2g00tφσ� þ g00tt

g2tφ − gttgφφ

�
LR

: ð29Þ

The sign is determined by the numerator; if it is positive
(negative) the motion is unstable (stable).

III. TIMELIKE CIRCULAR OBJECTS
IN THE VICINITY OF LIGHT RINGS

We now assume the existence of a LR (which, from the
last section, requires CðrLRÞ ≥ 0).5 Then, we wish to
determine if TCOs exist in its immediate neighborhood
and whether they are stable or unstable.

A. Allowed region

First, we connect the description of timelike and null
orbits. The connection amounts to observe that LRs are
determined by

β�jLR ¼ 0; and noting that Ω�jLR ¼ σ�: ð30Þ

Indeed, from (21), the condition β� ¼ 0 becomes equiv-
alent to (26) and (28) is solved by virtue of (22).
The function β� will guide us in the connection between

LRs and TCOs.6 From the continuity of β�—see the
Appendix for more details—one expects that (generically)
in the neighborhood of the LR (r immediately above or
below rLR) β� may become negative. In that case the
energy and angular momentum (20) of a timelike particle
along such a putative circular orbit becomes imaginary;
such a region will not contain TCOs (rather it will have
spacelike circular orbits).
We will show now that, for either rotation sense, there is

always one side in the immediate vicinity of a LR, wherein
TCOs are forbidden, whose relative location with respect to
the LR depends solely on the stability of the latter.

Assume a LR exists7 at r ¼ rLR� such that β�ðrLR� Þ ¼ 0.
The first-order Taylor expansion of β� around the LR reads

β�ðrÞ ¼ β0�ðrLR� ÞδrþOðδr2Þ; ð31Þ

where δr≡ r − rLR� . Thus, the sign of β� in the vicinity of
the LR is determined by δr and

β0�jLR ¼ −2½Ω0
�ðgtφ þ Ω�gφφÞ�LR; ð32Þ

where we have made use of (28) [or equivalently (22)].
Explicitly computing Ω0

� [from the quadratic equation
leading to (22)],

Ω0
�jLR ¼ −

1

2

�
g00tt þ 2g00tφΩ� þ g00φφΩ2

�
g0tφ þ Ω�g0φφ

�
LR

¼ð29Þ − 1

2

V 00
0ðrLR� Þ
L2
�

�
g2tφ − gttgφφ
g0tφ þΩ�g0φφ

�
LR

: ð33Þ

Thus, we can rewrite Eq. (32) as

β0�ðrLR� Þ ¼ V 00
0ðrLR� Þ
L2
�

�
gtφ þΩ�gφφ
g0tφ þΩ�g0φφ

ðg2tφ − gttgφφÞ
�
LR

: ð34Þ

Using Eqs. (26) and (28) to simplify this result, the first-
order Taylor expansion of β� can be finally written as

β�ðrÞ ¼
V 00
0ðrLR� Þ
L2
�

�ðg2tφ − gttgφφÞ3
ðg0tφÞ2 − g0ttg0φφ

�
1=2

LR

δrþOðδr2Þ: ð35Þ

Thus, the sign of β� is determined by the signs of V 00
0ðrLR� Þ

(stability of the LR) and δr (upper or lower neighborhood
of the LR). It follows that in the vicinity of:
(a) an unstable LR (V 00

0ðrLR� Þ > 0), β�ðrÞ < 0 in the
region below the LR, i.e., r < rLR� ⇔ δr < 0, wherein
no TCOs are thus possible. No obstruction exists for
TCOs on the other side.

(b) a stable LR (V 00
0ðrLR� Þ < 0), a symmetric reasoning

holds. Thus, no TCOs are possible in the region above
the LR, i.e., r > rLR� ⇔ δr > 0.

B. Stability

It is possible to extend further this analysis and deter-
mine the stability of the TCOs that occur in the neighbor-
hood of the LR. We will now show that the region above
(below) an unstable (stable) LR always harbors unstable
(stable) circular orbits.
To consider the stability of TCOs we examine V 00

−1ðrÞ.
Using the definitions of energy and angular momentum,
Eq. (20), we can write

5The case CðrLRÞ ¼ 0 is rather special; although it may be
realized in the examples below it corresponds to a zero measure
set in the space of solutions. We will further comment on it below,
but for now, we shall assume the generic case CðrLRÞ > 0.

6This function can be regarded as proportional to the mass
squared of the particle along the corresponding circular orbit; thus
it is positive, zero, and negative, for TCOs, null circular orbits and
spacelike circular orbits. 7One can consider either a prograde or retrograde LR or both.
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V 00
−1ðrÞ ¼

g00ttðgtφ þ Ω�gφφÞ2 − 2g00tφðgtt þ Ω�gtφÞðgtφ þ Ω�gφφÞ þ g00φφðgtt þ Ω�gtφÞ2
β�ðg2tφ − gttgφφÞ

−
ðg2tφ − gttgφφÞ00
g2tφ − gttgφφ

: ð36Þ

V 00
−1ðrLR� Þ diverges, since β�ðrLR� Þ → 0 features in the

denominator of the first term. Thus, we need to understand
with which sign it diverges (and we can ignore the finite
second term).
Approaching the LR from the side wherein TCOs are

allowed (β� > 0), the denominator of the first term inEq. (36),
is positive [recall (3)]. Hence, β�ðg2tφ − gttgφφÞ > 0 and the
sign of the term is dictated by the numerator.
Considering now the numerator of the first term in

Eq. (36), Using similar manipulations as before and using
Eq. (29), the numerator can be written, at r ¼ rLR� , as

g00ttðgtφ þΩ�gφφÞ2 − 2g00tφðgtt þΩ�gtφÞðgtφ þ Ω�gφφÞ
þ g00φφðgtt þΩ�gtφÞ2

¼ V 00
0ðrLR� Þ ðg

2
tφ − gttgtφÞ2

L2
�

: ð37Þ

Thus, the sign of the numerator is dictated by V 00
0ðrLR� Þ.

We concluded that, when approaching the LR from the
allowed region V 00

−1ðrLR� Þ → þ∞ if the LR is unstable
(V 00

0ðrLR� Þ > 0), and V 00
−1ðrLR� Þ → −∞ if the LR is stable

(V 00
0ðrLR� Þ < 0). In short:

(a) Near an unstable LR, V 00
0ðrLR� Þ > 0, the allowed region

for TCOs harbours unstable orbits—Fig. 2 (top panel).
(b) Near a stable LR, V 00

0ðrLR� Þ < 0, the allowed region for
TCOs harbours stable orbits—Fig. 2 (bottom panel).

C. Generality

The analysis above has two interesting corollaries.
First, it was shown in [13] that for asymptotically flat

stationary and axisymmetric horizonless ultracompact

objects, that can be smoothly deformed into flat spacetime,
LRs come in pairs with one stable and one unstable LR.
The proof presented above shows that, for such objects with
a Z2 symmetry, the region between the LRs has no TCOs.
Otherwise, there would be a subregion between the LRs
wherein β� > 0, which would imply, by continuity, two
points with β� ¼ 0, i.e., another pair of LRs; see Fig. 3
(top panel).
A second corollary applies to BHs. It has been shown

that a stationary, axisymmetric, and asymptotically flat
black hole always has (at least) one unstable LR in each
sense of rotation [14]. This statement, together with our
proof, imply that the region between the event horizon and
the unstable LR is always a region without TCOs. This
follows from a similar argument to that presented before for
horizonless objects. As in the previous paragraph, this can
be easily established by contradiction, and relying on the
continuity of β�; see Fig. 3 (bottom panel).

IV. ILLUSTRATIONS AND EFFICIENCY

As discussed in the Introduction, the efficiency of a given
compact object can be understood as the amount of
gravitational energy which is converted into radiation as
a timelike particle falls down from infinity. If one assumes
that all radiation escapes towards infinity, then the effi-
ciency is computed as the difference between the energy
per unit mass measured at infinity and at the ISCO, as given
by (1). This definition of efficiency is only an approxima-
tion; the real efficiency should take into account how much
of the converted radiation effectively reaches infinity and
how much falls back into the BH. However, this simple
estimate provides an intuition about the magnitude of the
process. Moreover, it provides a simple estimate to com-
pare different models to the Kerr BH, which has a maximal
efficiency of 42%, probing if alternative models of compact
objects could produce even larger energy conversions.
To compute the efficiency, cf. Eq. (1), we need to

compute the energy of the TCO at the ISCO. For Kerr
BHs, the location of the ISCO is unambiguous; there is
only one solution of (15) (for each rotation direction) and
no solution of (18), thus the ISCO is the same as the
MSCO. However, for more generic models, there can be
several disconnected regions with stable TCOs—see e.g.,
[20,24,29]. For those objects, the ISCO is no longer the
same as the MSCO.
The rationale that the efficiency is related to the energy

conversion by particles moving along a continuous sequence
of stable TCOs, from large distances until the last stable
TCO, suggests the efficiency should be computed on that last

FIG. 2. Structure of the equatorial TCOs in the vicinity an
unstable (top panel) and stable (bottom panel) LR.
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stable TCO that is continuously connected by a sequence of
stable TCOs to infinity. This corresponds to MSCO and the
corresponding efficiency is denoted by ϵMSCO. In parallel, we
shall also consider an alternative efficiency computed at the
ISCO, denoting the corresponding efficiency by ϵISCO. As
we shall see

ϵISCO ≥ ϵMSCO: ð38Þ

In the following we will analyze the efficiency of several
stationary, axisymmetric, and asymptotically flat spinning
horizonless compact objects (that we shall generically refer
to as “stars”) as well as of spinning BHs. The examples
include: mini-boson stars [16,17], gauged boson stars [18],
axionic boson stars [19,20], Proca stars [21–23], Kerr BHs
with synchronized axionic hair [24], and BHs of the shift-
symmetric Horndeski theory (Einstein-scalar-Gauss-Bonnet
BHs) [25,26]. The selected configurations are representative
in each case. Also, they correspond to alternative models in
and beyond GR theories that are well motivated, with
extensive literature discussing various features of the sol-
utions. A nonexhaustive list of references, beyond the
original papers cited above, is given by the following works
[30–39].
For completeness, let us briefly comment on how the

considered configurations have been found. For both stars
and BHs, the same methodology has been used to obtain
the solutions. In each case, one starts with the action of the
theory and obtained first the equations of motion. That is,
after defining an appropriate ansatz, we have computed
the set of partial differential equations for the metric (and
matter fields), together with the corresponding boundary
conditions. Unfortunately, in all cases, no analytical
solutions are known to exist. Therefore, for all models,
the solutions were found by employing a professional
numerical solver [40,41], which uses a Newton-Raphson
method. A detailed aspects of these aspects can be found

in the papers where the solutions were initially reported,
see e.g., Ref. [42]. Once the (numerical) components of
the metric are known, one can do various physical and
phenomenological studies.
With the knowledge learned from the previous sections,

we have considered the stability of TCOs for all solutions in
all mentioned examples, and investigated in which regions
of the spacetime it was possible to have stable TCOs
(V 00

−1 < 0), unstable TCOs (V 00
−1 > 0), no TCOs (β� < 0),

or no circular orbits at all (Ω� ∈ C). For solutions that
possess LRs, we also computed their radii, by solving
Eq. (28) together with Eq. (27), as well as their stability,
Eq. (29). With all regions defined, we have analyzed their
boundaries, mainly the boundaries between regions of
stable and unstable TCOs, as well as, between regions
without any circular orbits and stable TCOs. At each
boundary of interest, we have computed the energy of
such circular orbit together with the efficiency.

A. Stars

All star solutions discussed herein are only known
numerically (no analytic form is known, although in some
cases perturbative expansions are possible, e.g., [26]). The
solutions are computed specifying an ansatz for the metric
and remaining fields. For the problem at hand, however, we
only need the metric. Thus, we shall only specify the ansatz
metric, which is the same for all stars considered, and reads

ds2 ¼ −e2F0dt2 þ e2F1ðdr2 þ r2dθ2Þ

þ e2F2r2sin2θ

�
dφ −

W
r
dt

�
2

; ð39Þ

where F0, F1, F2, and W are ansatz functions that depend
solely on the radial and colatitude coordinates ðr; θÞ. The
correspondence with the ansatz (2) is

FIG. 3. Structure of the equatorial TCOs for a stationary, axisymmetric, asymptotically flat, andZ2 symmetric; (top panel) horizonless
ultracompact object around its pair of LRs; (bottom panel) BH around its unstable LR. These illustrations are universal, regardless of the
direction of rotation of the LR and of the timelike particle.
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gtt ¼ −e2F0 þ e2F2W2sin2θ; grr ¼ e2F1 ;

gθθ ¼ e2F1r2; gφφ ¼ e2F2r2sin2θ;

gtφ ¼ −e2F2rWsin2θ: ð40Þ

For each family of star solutions we shall present four
plots. On the one hand, the top (bottom) two plots exhibit the
results for prograde (retrograde) orbits. On the other hand,
the left plots illustrate the structure of TCOs and LRs vs the
radial coordinate r (which is normalized for each family), in
the space of solution. For that, the specific solution is labeled
by the maximal value of the scalar field ϕmax (except for the
Proca stars). In this way, each horizontal line corresponds
exactly to one star solution. Then, for each plot there are four
different colored regions: in violet, we have a region in
which no (timelike, null or spacelike) circular orbits exits
(labeled No COs); in red, we have a region in which no
TCOs exist (labeled No TCOs); In yellow, the region of
unstable TCOs (labeled UTCOs); in green, the region of
stable TCOs (labeled STCOs). The plots also exhibit the
MSCO, ISCO, LRs, and a solid black horizontal line
representing the first solution for which MSCO ≠ ISCO.
In all cases, the results were found by extrapolation into the
continuum the data corresponding to a large number (from a
few hundreds to thousands) of individual points.
For all stars studied in this work, the structure of TCOs

close to LRs follows exactly the patterns deduced in the
previous section. In particular, they only possess a pair of
retrograde LRs, in which the LR with the largest (smallest)
radii is always unstable (stable). Then, the region above
(below) an unstable (stable) LR is a region of unstable
(stable) TCOs, and the region between the pair of LRs is a
region without TCOs.
Finally, the right plots exhibit the efficiencies ϵMSCO and

ϵISCO vs. ϕmax: ϵISCO is given by the solid red line, whereas
ϵMSCO is given by dashed green line. For convenience, we
keep also the same black solid line as in the left plots.

1. Mini-boson stars

Mini-boson stars are regular everywhere solutions of the
(complex-)Einstein-Klein-Gordon theory, where a massive
free scalar field Ψ is minimally coupled to Einstein’s
gravity. The action can be written as

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
R
16π

− gμν∂μΨ�∂νΨ − μ2Ψ�Ψ
�
; ð41Þ

where μ is the mass of the scalar field. These solutions can be
consider as a macroscopic version of a Bose-Einstein
condensate and were initially developed (in spherical sym-
metry) by Kaup [43] and Ruffini and Bonazzala [44]—see
also, e.g., [22,45]. Later, due to the efforts of Schunck and
Mielke [16] and Yoshida and Eriguchi [17], spinning
generalizations of the previous static solutions were found
—see also, e.g., [46].

Here we will consider three families of mini-boson stars
with two different values of the azimuthal harmonic index,
m ¼ f1; 2g, which appears in the scalar field ansatz,

Ψ ¼ ϕðr; θÞeiðmφ−ωtÞ; ð42Þ

where ϕ is a fr; θg dependent scalar field amplitude
and ω is the angular frequency of the scalar field. We
focus on the fundamental states only (even parity,
nodeless BSs).
For the m ¼ 1 solutions, the study of the efficiency was

already done in [29]. These authors, however, focused on
solutions for which MSCO ¼ ISCO. Here we will also
consider solutions for which MSCO ≠ ISCO and com-
pute ϵMSCO ≠ ϵISCO.
The right panels in Fig. 4 exhibit the efficiency for

prograde (top) and retrograde (bottom) TCOs for mini-
boson stars with m ¼ 1. In both cases, ϵISCO (red solid line)
increases monotonically with ϕmax reaching unity. In fact,
for very compact solutions, the gravitational potential can be
deep enough to yield efficiencies greater than one; truncating
these plots (and the upcoming ones) at ϵ ¼ 1 is, however,
enough to show that larger efficiencies than the ones found
for Kerr are attained. Such behavior is explained by the
increasingly smaller radii for the ISCO, which, in turn, leads
to progressively smaller energies for TCOs therein. This is
consistent with the results in [29] (in the region analyzed
therein).
Now consider ϵMSCO. In the case of prograde orbits,

MSCO ≠ ISCO only in the strong gravity regime, wherein
the solutions start to develop a small region of unstable
TCOs. Then, ϵMSCO ranges from ∼25% up to ∼30%. For
retrograde orbits, MSCO ≠ ISCO for lower values of ϕmax
than in the prograde case. Thus, for solution which are not
very compact (fairly small value of ϕmax), one can compute
ϵMSCO which is about ∼4% and stabilizes around this value
even for more compact solutions.
In Fig. 5 the same analysis as in Fig. 4 is repeated for

mini-boson stars with m ¼ 2. The overall structure of
TCOs and LRs as well as the efficiencies are very similar
as for the m ¼ 1 case. The most notorious difference is
that the region of unstable TCOs, both for pro- and
retrograde orbits, occurs for smaller value of ϕmax. For
prograde orbits (top), MSCO ≠ ISCO above ϕmax ∼ 0.18,
wherein, ϵISCO ∼ 66% and ϵMSCO ∼ 12%. For more com-
pact solutions, ϵMSCO increases monotonically until
∼35%, whereas ϵISCO reaches unity. For retrograde orbits
(bottom), MSCO ≠ ISCO for lower values of ϕmax. For
the first solution with ϵMSCO ≠ ϵISCO, ϵISCO ∼ 15%, and
ϵMSCO ∼ 2.5%. Increasing the compactness, these values
increase to around ϵMSCO ∼ 3.8% and ϵISCO ∼ 100%.

2. Adding scalar field self-interaction: Axion boson stars

Axion boson stars are solutions of the (complex)-
Einstein-Klein-Gordon theory where a massive complex
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scalar field Ψ with self-interactions is minimally coupled to
Einstein’s gravity. The action is

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
R
16π

− gμν∂μΨ�∂νΨ − VðjΨj2Þ
�
; ð43Þ

where VðjΨj2Þ denotes the self-interactions of the scalar
field. Assuming the ansatz (42) for the complex scalar field,
we can write the self-interaction potential based on the
QCD axion potential [47] to which we add a constant in
order to have asymptotically flat solutions,

VðϕÞ ¼ 2μ2afa
B

�
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4Bsin2

�
ϕ

2fa

�s �
; ð44Þ

where B is a constant defined by the quark masses,
B ≈ 0.22. The physical meaning of μa and fa can be easily
seen by performing an expansion of the potential around
ϕ ¼ 0,

VðϕÞ ¼ μ2aϕ
2 −

�
3B − 1

12

�
μ2a
f2a

ϕ4 þ…: ð45Þ

Thus, μa determines the mass of the axionlike particle,
while fa is related to the self-interaction quartic coupling.

We shall refer to μa and fa as the axionlike particle’s mass
and decay constant. As fa → ∞, mini-boson stars are
recovered.
The first study about these stars was presented in [19], for

the spherical case. A spinning generalization was presented
later in [20]. Here, to probe the effect of the self-interactions
on the structure of TCOs and ϵ�, we will consider two small
values of the decay constant, fa ¼ f0.03; 0.05g. The corre-
sponding results are presented in [20].
In Fig. 6 we consider fa ¼ 0.05—a more detailed

analysis of the structure of TCOs is done in [20]. We
can see that both the structure of TCOs and LRs, as well as
the efficiency follow similar patterns to the previous cases.
In particular, ϵISCO grows monotonically towards unity,
moving towards the strong gravity regime. For prograde
orbits, at the first solution when MSCO ≠ ISCO, ϵISCO ∼
59% and ϵMSCO ∼ 12%. After this solution, ϵMSCO

increases monotonically until ∼26%. For retrograde
orbits, at the first solution when MSCO ≠ ISCO, ϵISCO ∼
23% and ϵMSCO ∼ 3.3%. The latter remains approximately
constant for other solutions, with a local minimum of
ϵMSCO ∼ 3% at ϕmax ≈ 0.193 and ϵMSCO ∼ 3.8% for the
largest values of ϕmax.
Further decreasing fa (i.e., increasing the self-inter-

actions) introduces more convoluted features—Fig. 7.
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This family of axionic stars with fa ¼ 0.03 has the striking
feature that ϵISCO is not longer a monotonically increasing
function of ϕmax. In fact there are now solutions with
degenerated efficiencies, say with ϕmax ¼ ½0.229; 0.376�.
Apart from this novelty, ϵISCO still approaches unity for
large ϕmax.
Concerning ϵMSCO, in the prograde case, it emerges when

ϵISCO ∼ 26% and is ϵMSCO ∼ 5.9%. Then, it varies non-
monotonically; at ϕmax ≈ 0.274, ϵMSCO ∼ 12% (local maxi-
mum); at ϕmax ≈ 0.321, ϵMSCO ∼ 11% (local minimum); for
the larger ϕmax, ϵMSCO ∼ 32% (global maximum). For
retrograde orbits, ϵMSCO is more constant. It emerges when
ϵISCO ∼ 12%, with ϵMSCO ∼ 1.2%. Then, for ϕmax ≈ 0.247,
it reaches a local maximum, ϵMSCO ∼ 4%. Going further
into the strong-gravity regime, the efficiency is approx-
imately constant.

3. Gauged boson stars

Gauged boson stars can be thought as electrically
charged mini-boson stars. They are solutions of the (com-
plex-)Einstein-Klein-Gordon-Maxwell theory,

S¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
R
16π

−
1

4
FμνFμν−gμνDμΨ�DνΨ−μ2Ψ�Ψ

�
;

ð46Þ

where the electromagnetic tensor Fμν ≡ ∂μAν − ∂νAμ is
defined through the electromagnetic potential Aμ, and
Dμ ≡ ∂μ þ iqEAμ. There is a minimal coupling between
the electromagnetic sector and the scalar field through the
(gauge) covariant derivative Dμ, which introduces the
gauge coupling constant qE.
The first work on gauged boson stars was develop by

Jetzer and van de Bij [48] where they obtained spherically
symmetric solutions (see also [49]). The rotating generali-
zation was constructed later in a more general context in
[18], (see also [50,51] for results in a model with a self-
interacting scalar field).
The latter are found by using the same ansatz as in

Eq. (42), together with the Uð1Þ form A ¼ Aφdφþ Atdt
[18]. This implies that, as before, we have to specify the
azimuthal harmonic index m. Furthermore, we also need to
specify the gauge coupling constant qE. In this work we
will only consider gauged solution with m ¼ 1 and
qE ¼ 0.6; the latter choice illustrates the generic features
we have seen analyzing also other values of qE. Such
results are shown in Fig. 8. Overall we observe that the
description for miniboson stars with m ¼ 1 still apply for
this case. Being more specific, for the prograde case,
ϵISCO ∼ 16% (in contrast to ∼25% for mini-boson stars)
for the first solution for which ϵISCO ≠ ϵMSCO; then ϵMSCO
increases gradually until ∼24% (in contrast to ∼30% for
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FIG. 5. Same as Fig. 4 but for mini-boson stars with m ¼ 2.
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mini-boson stars). For the retrograde case, however, the
efficiency difference between gauged and ungauged boson
stars is unnoticeable.
The discussion made here prompts the conclusion that, at

least for the gauged boson stars reported in [18], the
presence of an electric charge does not influence signifi-
cantly either the structure of TCOs or the efficiency.

4. Proca stars

We now consider vector boson stars, known as Proca
stars. They are the horizonless and regular everywhere
solutions of the (complex)-Einstein-Proca theory, with the
following action,

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
R
16π

−
1

4
FμνF̄μν −

1

2
μ2PAμĀμ

�
; ð47Þ

where Fμν ¼ ∂μAν − ∂νAμ is the field strength written in
terms of the four-potential Aμ. The bar over the field strength
and four-potential, F̄μν and Āμ, corresponds to the complex
conjugate, while μP is the vector field mass. These stars were
first studied in [21], where both static and rotating numerical
solutions where discussed, together with their physical
properties and stability. The spinning solutions therein,
however, were excited states. The fundamental spinning
solutions were discussed in [46,52].

The Proca potential ansatz is

A¼
�
iVdtþH1

r
drþH2dθþ iH3 sinθdφ

�
eiðmφ−ωtÞ; ð48Þ

where V;H1; H2, and H3 are functions that only depend on
the ðr; θÞ coordinates, and m ∈ Zþ is the usual azimuthal
harmonic index. Given that there is an infinite number of
families of Proca stars with different values of m, in this
work we will only consider the family ofm ¼ 1 Proca stars
(and also excited solutions with one node in the radial
direction).
Since our bosonic field is now a vector, we can no longer

use ϕmax to label solutions. This is replaced by the maximal
value of the H1 function in the vector ansatz (48). As for
ϕmax for the previous stars, the H1 function also increases
monotonically moving from the dilute regime until the
strong gravity regime along the domain of existence of
Proca stars. Hence, each individual Proca solution has a
different value ofHmax

1 . Therefore, in Fig. 9, the structure of
TCOs and LRs is shown in a Hmax

1 vs. rμP plot (and
similarly for the efficiency ϵ).
Figure 9 exhibits clear differences between the vector

and scalar stars. A notorious one is the possibility of having
stable TCOs all the way to the center of the star. Thus,
ISCO has r ¼ 0. Then ϵISCO amounts to known the energy
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of the particle sitting at r ¼ 0. We see that such ϵISCO goes
from zero until close to unity as more compact stars are
considered, similarly to the scalar stars.
Concerning ϵMSCO, the sense of rotation plays a role. For

prograde orbits, there is no region of unstable TCOs. Thus
ϵISCO ¼ ϵMSCO. For retrograde orbits, however, unstable
TCOs can appear. In fact, there can even be several
disconnected regions of such orbits. Thus ϵMSCO presents
more than one discontinuity. The first discontinuity appears
when ϵISCO ∼ 40%, and ϵMSCO ∼ 21%. Then, ϵMSCO
increases slightly up to ϵMSCO ∼ 23% where the second
discontinuity appears, dropping further to ϵMSCO ∼ 4%. For
the remaining solutions on the strong gravity regime, it
decreases slowly down to ϵMSCO ∼ 3.8%.

B. BHs

Now we consider (non-Kerr) BH examples. Our illus-
trations, again, are numerical. The line element considered
in this work, which is common for the two families of BHs
discussed below, is

ds2 ¼ −e2F0N þ e2F1

�
dr2

N
þ r2dθ2

�
þ e2F2r2sin2θðdφ −WdtÞ2;

N ≡ 1 −
rH
r
; ð49Þ

where rH is the radial coordinate of the event horizon and,
as for the stars case, F0, F1, F2, andW are ansatz functions
that depends only on ðr; θÞ.
For the case of BHs, we choose to show the efficiency as

a function of the dimensionless spin, j ¼ J=M2 in the two
plots for each family of solutions. The left (right) plot
corresponds to prograde orbits (retrograde orbits).

1. BHs with synchronized axionic hair

To illustrate the structure of TCOs and LRs for a non-Kerr
family of BHs that can exhibit large phenomenological
deviations from Kerr we consider BHs with synchronized
hair. We will consider the axionic model [24], which
contains in a particular limit the free scalar field model
[42,53]. Some results for the latter, concerning the efficiency,
were recently presented in [29].
BHs with synchronized axionic hair are stationary,

axisymmetric, regular everywhere on and outside the event
horizon, asymptotically flat solutions of the (complex-)
Einstein-Klein-Gordon theory—cf. Eq. (43). They can be
consider as the natural BH generalization of the axion
boson stars studied previously, thus the self-interaction
potential VðϕÞ follows the QCD axion potential, similar as
for stars case—cf. Eq. (44). In this work we will only
consider the BHs generalization of the axion boson stars
with fa ¼ 0.05.
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FIG. 7. Same as Fig. 4 but for axion boson stars with fa ¼ 0.03.
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BHs with synchronized axionic hair are composed of a
BH horizon surrounded by an axionic scalar field whose
angular frequency is synchronized with the angular
rotation of the horizon of the BHs. Such synchronization
can be written as ω ¼ mΩH, where ΩH is the angular
velocity of the horizon. If this synchronization is not met,
the scalar field cannot be in equilibrium with the BH.
This new family of BHs was first obtained in [24], where

the authors also studied some physical properties of the
solutions, as well as some phenomenological proprieties,
including the structure of TCOs, which can be quite different
from the one for Kerr. For solutions with a small amount of
hair, the structure is similar to the Kerr one. There is only one
unstable LR. Between the event horizon and the LR, there are
no TCOs. Between the LR and the ISCO, there are unstable
TCOs; and above the ISCO, there are stable TCOs. Thus, for
these solutions with a small amount of hair, ϵISCO ¼ ϵMSCO.
The results for solutions in this class (Kerr-like) are repre-
sented in light blue for both plots in Fig. 10. On the other
hand, very “hairy” solutions present a more convoluted
structure of TCOs. There are new disconnected regions of
unstable TCOs and forbidden for TCOs, where the latter
appear when the scalar field is compact enough to develop
extra LRs. Hence, we can have ϵISCO ≠ ϵMSCO. The results
for solutions in this class (non-Kerr-like) are represented in
dark blue color for both plots in Fig. 10.

In Fig. 10 we show ϵISCO for BHs with synchronized
axionic hair for prograde (left) and retrograde (right) orbits.
Both panels also include an inset plot showing the domain of
existence of these BHs in an angular momentum Jμ2a vsω=μa
diagram. Both in the main panels and insets, there are two
additional lines. The first one corresponds to no horizon limit;
the set of axion boson stars with fa ¼ 0.05. This (red solid)
line is known as the axion boson stars line. The second (blue
dashed) line corresponds to the no hair limit or Kerr limit of
the hairy BHs—the Kerr line. We have highlighted six
particular solutions, numbered 1 to 6, to allow an easier
mapping between the domain of existence and the effi-
ciency plot.
Figure 10 (left panel) shows there are prograde efficien-

cies ϵISCO arbitrarily close to the unity, exceeding greatly
the maximal efficiency of ∼42% (of the Kerr limit). The
solutions with the largest efficiencies correspond to sol-
utions in the strong gravity regime, where the ISCO occurs
for smaller radii, leading to larger ϵISCO. For non-Kerr-like
solutions—dark blue region—ϵMSCO can be as high as
∼60%, again, larger than the maximal efficiency for Kerr
BHs. For very non-Kerr-like solutions, ϵMSCO drops to
around ∼20% because a new region of unstable TCOs
develops, pushing MSCO outwards.
Figure 10 (right panel) addresses the retrograde case.

Efficiencies are rather smaller than in the prograde one,
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since both ISCO and MSCO occur at larger radii.
Additionally, a new disconnected regions of (no or unsta-
ble) TCOs develop for solutions with far less hair than for
the previous case, pushing MSCO outwards. Nevertheless,
retrograde efficiencies of ϵISCO ∼ 30% are possible, far
larger than those for the retrograde case in Kerr BHs.

2. Einstein-scalar-Gauss-Bonnet BHs

The goal of our final example is to stress that, in fact,
many models of non-Kerr BHs have small phenomeno-
logical differences with respect to the Kerr model. In
particular this applies to the efficiencies we have been
discussing. We will discuss Einstein-scalar-Gauss-Bonnet
BHs, which are asymptotically flat, regular everywhere
outside and at the event horizon, axisymmetric and sta-
tionary solutions of the Horndeski shift-symmetric theory.
This is a scalar-tensor theory, within the generic class of
Einstein-scalar-Gauss-Bonnet models given by

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
R −

1

2
∂μϕ∂μϕþ αfðϕÞR2

GB

�
; ð50Þ

where α is a dimensionful coupling constant, fðϕÞ is a
dimensionless coupling function, and R2

GB ≡ RαβμνRαβμν −
4RμνRμν þ R2 is the well known Gauss-Bonnet quadratic
curvature invariant. This class of models is, itself,

a subclass of all possible scalar-tensor theories with
second order equation of motion—Horndeski theory
[54]. To further specify which scalar-tensor theory we
will address, we impose that the coupling function is a
linear function of ϕ,

fðϕÞ ¼ ϕ: ð51Þ

This choice implies that this theory is shift symmetric, i.e.,
it is invariant under transformations of the type,

ϕ → ϕþ ϕ0; ð52Þ

where ϕ0 is an arbitrary constant. This follows from the
fact that, in four spacetime dimensions, the Gauss-Bonnet
term alone is a total divergence.
BHs solution within this theory were first obtained by

Sotiriou and Zhou [25,55]. In their work, they first showed
that the existing no-scalar-hair theorem for this theory can
be circumvented since one of the assumptions of the
theorem (finiteness of a certain current) can be violated.
Then, they obtained analytically, static perturbative solu-
tions (small values of α), as well as numerical static
solutions (large values of α). A similar work for the
spinning generalization of these solutions was reported
in [26].
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The structure of TCOs (not shown here) is always Kerr-
like. Thus, similarly to the solutions with small amounts of
hair in the previous family of hairy BHs, ϵISCO ¼ ϵMSCO.
In Fig. 11 we show the efficiency for Einstein-scalar-

Gauss-Bonnet BHs for prograde (left) and retrograde (right)
orbits. We also include insets showing the domain of
existence of these BHs in a dimensionless spin, j ¼
J=M2 vs α=M2 plot. Four additional lines are exhibited.
The first (green dotted) line is known as the critical line and
corresponds to the limit beyond which the (repulsive) Gauss-
Bonnet term prevents the existence of a horizon. The second
(black dashed) line corresponds to the set of extremal hairy
solutions with a vanishing Hawking temperature—the
extremal line. The third (blue dashed) line corresponds to
non-rotating BHs—the static line. Finally, a fourth (solid
red) line corresponds to Kerr BHs, in which α=M2 ¼ 0—the
Kerr line. Five particular solutions, numbered 1 to 5, are also
highlighted, to map their location in the domain of existence
and in the efficiency plot.
Figure 11 (left panel) shows that the efficiency of

Einstein-scalar-Gauss-Bonnet BHs is very similar to the
efficiency of Kerr BHs, for the same dimensionless spin, j.

The largest difference is (only) around ∼4%. For small j,
the Einstein-scalar-Gauss-Bonnet BHs have a larger effi-
ciency; but, for sufficiently large j, the reverse happens.
This sort of transition was already discussed in [26] (albeit
not for the efficiency). The right panel in Fig. 11 exhibits a
similar picture for retrograde orbits. The largest difference
is now (only) around ∼3% and occurs in the static limit,
j → 0. Increasing the spin, this difference monotonically
decreases. For large spins, there is almost no difference
between hairy and Kerr BHs in terms of efficiency. This
result is consistent with the discussion in [26].

V. DISCUSSION AND FINAL REMARKS

In this work, we have shown that for stationary,
axisymmetric, and asymptotically flat compact objects
with a Z2 symmetry, the existence of equatorial LRs leads
to a specific structure for equatorial TCOs, independently
of the direction of rotation. Such structure is entirely
determined by the stability of the LR: for an unstable
LR, the region radially immediately above (below) the LR
has unstable TCOs (no TCOs)—cf. Fig. 2 (top panel); for a
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stable LR, the region radially immediately above (below)
the LR has no TCOs (has stable TCOs)—cf. Fig. 2
(bottom panel).
As a corollary of this result, for a horizonless object that

possesses one unstable LR and another stable LR at a
smaller radius than the first, for either sense of rotation, the
region between the LRs has no TCOs—cf. Fig. 3 (top
panel). Radially immediately above (below) the unstable
(stable) LR, there are unstable (stable) TCOs. This implies
that it is possible to have stable TCOs closer to the object
itself than the LR; thus, a potential ISCO may occur at a
smaller radius than the LR. However, one needs to clarify if
the motion on such region is perturbatively stable in a
direction perpendicular to the equatorial plane.
As another corollary, for asymptotically flat equilibrium

BHs, which generically have an unstable LR for either
rotation sense [14], the region between the event horizon
and the unstable LR contains no TCOs—cf. Fig. 3 (bottom
panel). Since the LR is unstable, the region radially
immediately above has unstable TCOs; thus, for a BH,
the ISCO will always occur at a larger radius than this
unstable LR.
In the second part of this work, we have studied the

efficiency associated to the process of converting gravita-
tional energy into radiation by a material particle falling
under an adiabatic sequence of TCOs, for several stars and
BHs, namely, three different families of bosonic scalar stars
(mini, gauged, and axion boson stars), one family of
bosonic vector (Proca) stars and two different families of
hairy BHs (BHs with synchronized axionic hair and
Einstein-scalar-Gauss-Bonnet BHs).
Regarding the several families of bosonic scalar stars, we

found that the structure of TCOs is quite similar between
them. Moreover, their structure is also similar to that found
for some naked singularities—see Refs. [56–59]. The
efficiency ϵISCO computed at the ISCO, can grow arbitrarily
close to unity, both for pro- and retrograde orbits. Also, the

efficiency ϵMSCO, at the MSCO, has the largest values for
both stars without self-interactions (mini-boson and gauged
boson stars) and prograde orbits.
The family of bosonic vector stars presents a structure of

TCOs quite different from their bosonic scalar cousins. For
prograde orbits, stable TCOs can exist all the way until
r ¼ 0. Thus ϵISCO is computed at the origin and it increases
monotonically towards values close to 100% for stars in the
strong gravity regime. For retrograde orbits, more compact
stars develop regions of unstable and no TCOs; thus, the
efficiency ϵMSCO drops to small values, around ∼4%.
For BHs with synchronized axionic hair, we found that

new disconnected regions of unstable and no TCOs (beside
the ones that exist already for Kerr BHs) develop. Thus, the
efficiency ϵMSCO can drop; nevertheless, it is possible to have
solutions in which this efficiency for prograde orbits is much
larger than the one for Kerr BHs and even close to the unity.
In the case of retrograde orbits, the efficiency can not be
as high, but can, nonetheless, be higher than that for the
(retrograde) Kerr case.
Finally, concerning the family of Einstein-scalar-Gauss-

Bonnet BHs we found that the higher-order correction to
Einstein’s gravity which arise from the linear coupling
between the Gauss-Bonnet term and the scalar field has no
strong influence on the efficiency. For prograde orbits, the
efficiency is only slightly larger (smaller) than that of Kerr
BHs for the same j, when j is small (large). For retrograde
orbits, the efficiency of Einstein-scalar-Gauss-Bonnet BHs
is larger than their Kerr counterpart, but the difference
decreases almost to zero as j increases.
The study in this paper could also relate to gravitational

waves. Since the efficiency was initially associated with the
study of quasars in the center of supermassive BHs, where
the infalling matter could create an extremely luminous
active galactic nucleus, a natural follow up work would
be the study of extreme mass ratio inspirals (EMRIs) for
the several families of solutions studied in this work. The
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infalling particles will have a gravitational wave signal that
will chirp up to a cutoff frequency, which is determined by
the angular velocity of timelike particles at the ISCO. The
results found in such a study could, in principle, be used by
the LISA Collaboration in the future to help test the Kerr
hypothesis. In fact, as a teaser, a recent study showed that
Kerr BHs with scalar hair [53] can lead to very different
EMRIs than the Kerr geometry [60].
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APPENDIX: CIRCULAR MOTION OF
SPACELIKE GEODISICS

Consider the sameassumptions and symmetries discussed
at the beginning of Sec. II. In such spacetime, the effective
Lagrangian of a spacelike test particle can be written as

2L ¼ gμνx̄μx̄ν ¼ 1; ðA1Þ

where the bar denotes the derivative with respect to arc
length. Assuming that the motion occurs on the equatorial
plane, θ ¼ π=2, we can write the Lagrangian as

2L¼ gttðr;θ ¼ π=2Þt̄2 þ 2gtφðr;θ ¼ π=2Þt̄ φ̄
þ grrðr;θ ¼ π=2Þr̄2 þ gφφðr;θ ¼ π=2Þφ̄2 ¼ 1: ðA2Þ

Hereafter we will drop the radial dependence of the metric
functions to simplify the notation. Due to stationarity and
axial-symmetry, we can introduce the energy and angular
momentum of the spacelike particle,

−E≡gtμx̄μ¼gttt̄þgtφφ̄; L≡gφμx̄μ¼gtφ t̄þgφφφ̄: ðA3Þ

Rewriting the Lagrangian with these new quantities,

2L ¼ −
Aðr; E; LÞ

BðrÞ þ grrr̄2 ¼ 1; ðA4Þ

where, similar as before, Aðr; E; LÞ ¼ gφφE2 þ 2gtφELþ
gttL2 and BðrÞ ¼ g2tφ − gttgφφ. We can now introduce the
potential V1ðrÞ as

V1ðrÞ≡ grrr̄2 ¼ 1þ Aðr; E; LÞ
BðrÞ : ðA5Þ

To have a particle following a circular orbit at r ¼ rcir, both
the potential and its radial derivative must be null, hence,

V1ðrcirÞ ¼ 0 ⇔ Aðrcir; E; LÞ ¼ −BðrcirÞ; ðA6Þ

and

V 0
1ðrcirÞ ¼ 0 ⇔ A0ðrcir; E; LÞ ¼ −B0ðrcirÞ: ðA7Þ

Along such circular orbit, the angular velocity of the particle
(measured by an observer at infinity) is

Ω ¼ dφ
dt

¼ φ̄

t̄
¼ −

Egtφ þ Lgtt
Egφφ þ Lgtφ

: ðA8Þ

Solving the equation V1ðrcirÞ ¼ 0 together with the
equation for the angular velocity, we can write the energy
and angular momentum of the spacelike particle,

E� ¼ −
gtt þ gtφΩ�ffiffiffiffiffiffiffiffiffi

−β�
p

����
rcir
; L� ¼ gtφ þ gφφΩ�ffiffiffiffiffiffiffiffiffi

−β�
p

����
rcir
; ðA9Þ

where β� ≡ ð−gtt − 2gtφΩ� − gφφΩ2
�Þjrcir ¼ −Aðrcir;Ω;ΩÞ

is the same function defined for the timelike particle
case, Eq. (21).
Solving the second equation, V 0

1ðrcirÞ ¼ 0, together with
the previous results, we can compute the angular velocity of
the spacelike particle,

Ω� ¼
�
−g0tφ �

ffiffiffiffiffiffiffiffiffiffi
CðrÞp

g0φφ

�
rcir
: ðA10Þ

This is the same expression for the angular velocity as we
saw for timelike particles, Eq. (22).
From these results we can conclude that when circular

orbits are possible, i.e., CðrÞ ≥ 0, the only difference
between the circular motion of timelike and spacelike
particles resides on the energy and angular momentum, or
more precisely, on their dependency with the β� function.
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When β� > 0, it is possible to have timelike circular
orbits (TCOs) since both the energy and angular momen-
tum of the timelike particle are well defined, but one can
not have spacelike circular orbits, since the energy and
angular momentum of the spacelike particle are not well
defined. Likewise, when β� < 0 the opposite occurs; it is

not possible to have TCOs, but it is possible to have
spacelike circular orbits.
It is also possible to conclude that the transition of β�

from positive to negative values, and vice versa, is entirely
continuous, providing that we can have circular orbits,
i.e., CðrÞ ≥ 0.
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