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We consider disformal transformations in a subclass of Horndeski theory in which a scalar field is
kinetically coupled to the Einstein tensor. We apply a disformal transformation on a seed hairy black hole
solution of this theory and we show that there is a transition of a black hole to a wormhole. We also show
that the null energy condition is violated in the wormhole configuration and we study the stability of the
wormhole solution by calculating the time evolution of scalar perturbations in this geometry.
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I. INTRODUCTION

Disformal transformations were discussed by Bekenstein
[1] in an attempt to describe gravitation with two geom-
etries. The need of introducing two geometries came from
the requirement that one of these describes gravitation,
while the other defines the geometry in which matter
describes the gravitational dynamics. This approach is very
helpful if one wants to describe modified gravity theories
like scalar-tensor theories. In order to be consistent with
various tests of general relativity (GR), the dynamics of the
geometry are to be described by a Riemannian metric gμν,
while one has to introduce a relation between gμν and the
physical geometry on which matter propagates introducing
a new Riemannian metric

ds2 ¼ ĝμνdxμdxν

≡ ðgμνAðϕÞ þ L2BðϕÞ∂μϕ∂νϕÞdxμdxν; ð1:1Þ

where L is a length scale, to describe the gravitational
dynamics. The physical metric gμν and the matter metric ĝμν
are related by a conformal and a disformal transformation.
In [1] there was a presentation of the physical meaning of

the relation of the two metrics in (1.1). When B ¼ 0 a
conformal transformation connects the two metrics. This
transformation leaves all shapes invariant and stretches
equally all spacetime directions. When B ≠ 0 a disformal
tranformation is present and its effect is that, the stretch in
the direction parallel to ∂μϕ is by a different factor from
that in the other spacetime directions, which distorts the
shapes of the geometry. One has to use the metric ĝμν from

the start to see the physical context which is introduced by
the disformal transformation.
Disformal transformations were used in the study of

various scalar-tensor gravity theories like the Horndeski
theory [2]. In [3] it was shown that disformal transforma-
tions, for a subset of Horndeski Lagrangian, play a similar
role to conformal transformations for scalar-tensor theories.
Disformal transformations were used in higher-order sca-
lar-tensor Horndeski theories to study the stability of these
theories, and the absence of ghosts [4,5]. Cosmological
perturbations were studied in these theories [6], and it was
shown that both scalar and tensor perturbations on the flat
isotropic cosmological background are invariant under the
disformal transformation. Cosmological conformal invari-
ance of physical observances was discussed in [7].
In scalar-tensor theories the disformal coupling to matter

was studied in [8] and compact objects were found.
A model in a massless scalar-tensor theory was presented,
and the spontaneous scalarization of slowly rotating com-
pact objects was investigated due to the disformal coupling.
The possibility to use disformal field redefinitions to
generate new hairy spherically symmetric exact solutions
for quadratic DHOST [9,10] theories were investigated in
[11]. This work was further extended in [12] by applying a
disformal transformation to known static or stealth scalar
field seed solutions of GR and the disformal images of such
seeds that describe black hole horizons, wormhole throats,
or horizonless geometries were discussed. In [13] the
disformation of the stealth Kerr black hole solution in
DHOST theories was studied.
In [14] the no-hair theorem was evaded and hairy black

holes were found in bimetric scalar-tensor theories, where
the two metrics were connected by conformal and dis-
formal transformations as in (1.1). In this study the
parameters were set as A ¼ L2 ¼ 1 and B was considered
to be a constant independent of the scalar field ϕ. A scalar
field coupled to the physical metric gμν was considered and
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an electromagnetic field coupled to the matter metric ĝμν
was also introduced. Solving the field equations it was
shown that the theory admits hairy black hole solutions
with regular scalar field on and outside the horizon. Since
the disformal factor B is a coupling constant, it defines an
effective cosmological constant and the spacetime can be
asymptotically flat, dS or AdS. Also the thermodynamics
of the hairy black hole solution was studied.
In scalar-tensor theories the presence of matter para-

metrized by the scalar field may violate the no-hair theorem
and hairy black hole solutions can be generated in which
the matter is distributed outside the horizon of the black
hole. One typical configuration is described by a hairy
black hole solution of a subclass of the Horndeski theory
[15]. Motivated by the Bekenstein’s observation [1] that the
disformal transformations leads to different stretch of
spacetime directions and also distorts shapes, in this work
we would like to investigate if disformal transformations
can disform the matter distribution of the hairy black hole
and a new configuration is formed, a wormhole. To see that
we have to show that the horizon of the black hole is
transformed to a throat and the new matter distribution
violates the energy conditions. To do that we follow [12]
and we perform the disformal transformation

gμν → ĝμν ¼ Ω2ðΦ; XÞgμν þWðΦ; XÞ∂μΦ∂νΦ; ð1:2Þ

where Φ is the corresponding scalar field of the Horndeski
subclass and X ¼ ∇μΦ∇μΦ. Then we will show that there
is a critical parameter which controls the disformal trans-
formation of the considered black hole to a wormhole. We
will also study the null energy conditions and the time
evolution of scalar perturbations in the shifting geometry.
The work is organized as follows. In Sec. II the hairy

black hole solution with a scalar field kinetically coupled to
Einstein tensor is reviewed. In Sec. III, we discuss the
generation a wormhole solution by a disformal trans-
formation. In Sec. IV, we test the null energy condition
of the wormhole solution we found. In Sec. V we study the
stability of the disformed geometry by studying scalar
perturbations and finally in Sec. VI we present our
conclusions.

II. BLACK HOLE SOLUTION WITH A SCALAR
FIELD KINETICALLY COUPLED TO

EINSTEIN TENSOR

In this section we review the static hairy black hole
solution found in the scalar-tensor theory in which the
scalar field is kinetically coupled to the Einstein tensor.
This theory is a subclass of the Horndeski theory, which is a
general scalar-tensor theory with the property that the
variation of the scalar field yields second order differential
equations. For the sake of completeness, we note that the
full Lagrangian is given by

L ¼
Xi¼5

i¼2

Li;

L2 ¼ KðΦ; XÞ;
L3 ¼ −G3ðΦ; XÞ□Φ;

L4 ¼ G4ðΦ; XÞRþ G4;X½ð□ΦÞ2 − ð∇μ∇νΦÞ2�:
L5 ¼ G5ðΦ; XÞGμν∇μ∇νΦ

−
1

6
G5;X½ð□ΦÞ3 − 3□Φð∇μ∇νΦÞ2 þ 2ð∇μ∇νΦÞ3�;

ð2:1Þ

where X ¼ ∇μΦ∇μΦ. The particular subset of the
Horndeski theory we are considering involves nontrivial
L2¼KðΦ;XÞ¼−εX and G4ðΦ; XÞ ¼ ð8πÞ−1 þ η

2
X terms.

Our action reads

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
R
8π

− ðεgμν þ ηGμνÞ∂μΦ∂νΦ
�
; ð2:2Þ

where gμν is a metric, g ¼ detðgμνÞ, R is the scalar
curvature, Gμν is the Einstein tensor, Φ is a real massless
scalar field and η is a parameter of nonminimal kinetic
coupling with the dimension of length-squared. The ε
parameter equals �1. In the case ε ¼ þ1, we have a
canonical scalar field with positive kinetic term, while the
case ε ¼ −1 corresponds to a phantom scalar field with
negative kinetic term.
Variation of the action (2.2) with respect to the metric gμν

and the scalar fieldΦ provides the following field equations

Gμν ¼ 8π½εTμν þ ηΘμν�; ð2:3aÞ

½εgμν þ ηGμν�∇μ∇νΦ ¼ 0; ð2:3bÞ

where

Tμν ¼ ∇μϕ∇νΦ −
1

2
gμνð∇ΦÞ2; ð2:4Þ

Θμν¼−
1

2
∇μΦ∇νΦRþ2∇αΦ∇ðμϕRα

νÞ

þ∇αΦ∇βΦRμανβþ∇μ∇αΦ∇ν∇αΦ

−∇μ∇νΦ□Φ−
1

2
ð∇ΦÞ2Gμν

þgμν

�
−
1

2
∇α∇βΦ∇α∇βΦþ1

2
ð□ΦÞ2−∇αΦ∇βΦRαβ

�
:

ð2:5Þ

A static spherically symmetric black hole solution to the
theory was found in [15], where it was considered that the
scalar field of the theory depends only on the radial
coordinate. The solution yielded the constraint that
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εη < 0, which led to the definition of the following
parameter

lη ¼ jεηj1=2: ð2:6Þ

In terms of the metric

ds2 ¼ −gttðrÞdt2 þ grrðrÞdr2 þ gθθðrÞdΩ2; ð2:7Þ

the black hole solution corresponds to gθθðrÞ ¼ r2 with
r ∈ ð0;þ∞Þ and yields the following metric components

gttðrÞ ¼ −
�
3

4
þ r2

12l2η
−
2m
r

þ lη
4r

arctan

�
r
lη

��

¼ −
1

4
FðrÞ; ð2:8aÞ

grrðrÞ ¼
ðr2 þ 2l2ηÞ2

ðr2 þ l2ηÞ2FðrÞ
; ð2:8bÞ

where FðrÞ ¼ ½3þ r2

3l2η
− 8m

r þ lη
r arctanð rlηÞ�, while the scalar

hair of the theory reads

X ¼ −
ε

8πl2η

r2

r2 þ l2η
: ð2:9Þ

An important part of the solution is that it does not fix the
value of ε, as can be seen from (2.9). The only constraint of
the solution is that εη < 0, which is absorbed by the kinetic
coupling definition (2.6). In [15] a canonical scalar field
was considered and the equations of motion were indeed
satisfied by ε ¼ −1, as long as εη < 0. However, since Φ is
solely dependent on the radial coordinate, then the vector
∂μΦ is spacelike, which yields the result that ε ¼ −1, i.e.,
the considered black hole is indeed generated by a phantom
scalar field. For the sake of a general analysis on this, we
chose not to fix the value of ε. The non-minimal coupling
constant sources an asymptotic AdS spacetime as can be
seen from the term ∼ r2

12l2η
in the tt metric component. We

also note that this solution reproduces the Schwarzschild
black hole in the limit of lη → þ∞, therefore the geometry
can be understood as a hairy black hole generalization of
the Schwarzschild spacetime with effective AdS-asymp-
totics, when the spin-0 degree of freedom also acquires
dynamics from the kinetic mixing with the graviton, i.e.,
the Gμν∂μΦ∂νΦ term.
At the linearized level, it was shown in [16] that, because

of the asymptotic AdS-like boundary, which serves as a
perfect reflector for incident scalar waves generated by
scalar perturbations of a test scalar field, an effective
potential is generated outside the horizon of the black hole
trapping the incident scalar waves. Then it was found that
the ringdown signal of the black exhibit successively

damped echoes, indicating the stability of the black hole.
Then calculating gravitational perturbations it was shown
[17] that this hairy compact object is stable under axial
perturbations.

III. GENERATING A WORMHOLE SOLUTION
BY A DISFORMAL TRANSFORMATION

Motivated by the work in [12], we propose a way to
create a geometry that can interpolate between black hole,
regular black hole, one-way wormhole, i.e., a wormhole
geometry with the throat radius being equal to an event hori-
zon radius, and two-way wormhole solution. Performing
the disformal transformation (1.2) to the metric (2.7) we get

dŝ2 ¼ −Ω2ðΦ; XÞ 1
4
FðrÞdt2 þΩ2ðΦ; XÞ þWðΦ; XÞX

ðr2þl2ηÞ2
ðr2þ2l2ηÞ2 FðrÞ

dr2

þΩ2ðΦ; XÞr2dΩ2: ð3:1Þ

We note that the conditions for the disformal transforma-
tion to be an invertible map reads [12]

Ω ≠ 0; ð3:2Þ

Ω2 − XðΩ2ÞX − X2WX ≠ 0: ð3:3Þ

The presence or absence of black hole horizons can be
assessed by studying the norm of the Kodama vector,
∇μR∇μR, where R is the gθθ component of the metric.
In [12] it was argued that a black hole horizon corresponds
to single positive root, while a double root corresponds to a
wormhole throat. The norm of the Kodama vector asso-
ciated with the metric (3.1) reads

∇μR∇μR ¼ 4

ðr2þl2ηÞ2
ðr2þ2l2ηÞ2 FðrÞ

Ω2ðΦ; XÞ þWðΦ; XÞX
× ðΩΦðΦÞ0r2 þΩXðXÞ0r2 þΩ2rÞ2; ð3:4Þ

where prime denotes differentiation with respect to the
radial coordinate r. If any root to the second term of the
right hand side of the above equation exists, then this root
corresponds to a wormhole throat. However, since we wish
our resulting geometry to be able to interpolate between
different compact objects, this method will not do. Instead,
we would like to focus on the denominator of (3.4) and
choose an appropriate W function. Also, in order for the
black hole geometry to be able to be recovered, it will prove
useful to set the conformal factor Ω ¼ 1. Naturally, since
this choice does not cancel out the null hypersurface of the
event horizon, the existence of the event horizon needs to
become dependent on a new parameter, which we will
introduce. We recall that, for the (2.8a), (2.8b) solution,
X reads
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X ¼ −ε
8πl2η

r2

r2 þ l2η
; ð3:5Þ

which straightforwardly leads to

r2 ¼ −8πl4ηX
8πl2ηX þ ε

: ð3:6Þ

Keeping the shift symmetry of the theory, we can set the
dependence of W to be W ¼ WðXÞ. Our goal is to modify
the grr component of the metric to contain the term r2

r2−a2,
where a is a new parameter with dimensions of length
squared. According to (3.6), the appropriateW function can
easily be found to be

W ¼ −
1

X
þ 8πl4ηX

8πl4ηX þ a2ð8πl2ηX þ εÞ ; ð3:7Þ

which yields the following metric

ds̃2 ¼ −
1

4
FðrÞdt2 þ dr2

ðr2−a2Þ
r2

ðr2þl2ηÞ2
ðr2þ2l2ηÞ2 FðrÞ

þ r2dΩ2: ð3:8Þ

This metric describes a wormhole as long as the new
parameter a is larger than the event horizon of the under-
lying black hole solution. In order to see that more
concretely, let us perform a coordinate transformation to
cover the region r > a two times. This is easily done by the
choice x2 ¼ r2 − a2; x ∈ R, which yields ðdrdxÞ2 ¼ r2−a2

r2 and
our final metric reads

ds̃2 ¼ −
1

4
Fð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ a2

p
Þdt2 þ dx2

ðx2þa2þl2ηÞ2
ðx2þa2þ2l2ηÞ2 Fð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ a2

p
Þ

þ ðx2 þ a2ÞdΩ2: ð3:9Þ

This metric indeed interpolates between a black hole,
regular black hole, one-way wormhole, and two-way
wormhole solution as a grows from 0 to values larger
than rh, where rh is the event horizon of the underlying
black hole solution. We note that this is possible because
the gtt component, FðrÞ is a monotonically increasing
function and we can use the disformal transformation to
enforce that the metric components are positive definite. In
the case of a > rh, the x ¼ 0 hypersurface describes the
wormhole throat. On more mathematical grounds this result
can be understood as follows. Following [18], a traversable
wormhole throat, Σ, is a two-dimensional hypersurface of
minimal area taken in one of the constant-time spatial
slices. In order to compute the area, AΣ we make use of the
equation

AΣ ¼
Z ffiffiffiffiffiffiffi

gð2Þ
q

d2x; ð3:10Þ

under normal Gaussian coordinates gijdxidxj ¼ dn2þ
gabdxadxb. Then, in order for Σ to be a traversable
wormhole throat, the minimal area condition needs to be
satisfied, i.e.,

δAΣ ¼
Z

∂n

ffiffiffiffiffiffiffi
gð2Þ

q
d2x ¼ −

Z ffiffiffiffiffiffiffi
gð2Þ

q
TrðKÞδnd2x ¼ 0;

ð3:11Þ

δ2AΣ ¼ −
Z ffiffiffiffiffiffiffi

gð2Þ
q

ð∂nTrðKÞ − TrðKÞ2Þδnδnd2x ≥ 0;

ð3:12Þ

whereKab ¼ − 1
2
∂ngab denotes the extrinsic curvature of Σ.

Indeed, using the disformed line element, (3.9), we find
after some algebra that both the extremality condition,

TrðKÞ ¼ −
1

2
gab∂ngab

¼ −
1ð1þ sin2 θÞ
2ðx2 þ a2Þ ∂xðx2 þ a2Þ 1ffiffiffiffiffiffi

gxx
p ¼x¼0

0; ð3:13Þ

and the minimal area condition,

−∂nTrðKÞ ¼ −∂xTrðxÞ
1ffiffiffiffiffiffi
gxx

p

¼x¼0 4ða2 þ l2ηÞ2ð1þ sin2 θÞ
ða3 þ 2al2ηÞ2

gttð0Þ > 0; ð3:14Þ

are satisfied as long as the a parameter is greater than the
horizon radius.
One final note is that, similarly to the (2.8a), (2.8b) black

hole, which yields the Schwarzschild geometry in the limit
where the kinetic coupling becomes infinite, this solution
yields the bouncing solution of [19]

ds2 ¼ −
�
1 −

2mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ a2

p
�
dt2 þ dr2�

1 − 2mffiffiffiffiffiffiffiffiffi
x2þa2

p
�

þ ðx2 þ a2ÞdΩ2; ð3:15Þ

in the limit of lη → ∞, which has recently been the subject
of intensive study [20–27].
With the interpolating geometry we constructed at hand,

an interesting question is to find the action which can
potentially source these type of solutions. In this action, the
seed metric tensor, gμν, should be expressed in terms of the
disformed ĝμν. However, the metric ĝμν contains terms that
are contracted with the original seed metric gμν, namely the
term (3.7), and the resulting action would contain coupled
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terms of the two metrics. Away out of this is to analytically
express the original seed metric gμν in terms of the
disformed one, i.e. to find the inverse transformation,
which is usually a difficult, if not impossible task.
We move on to the discussion of the general setup of our

approach. The bouncing solution should be a solution to a
general action of the form

S ¼
Z

d4x
ffiffiffiffiffiffi
−ĝ

p R̂
8π

þ L̂m; ð3:16Þ

where L̂m denotes an arbitrary matter Lagrangian, which
may contain arbitrary curvature couplings. It is clear that
the equations of motion that (3.16) yields are of the known
form

Ĝμν ¼ 8πT̂μν: ð3:17Þ

Then, we can readily express the left-hand side of (3.17) in
terms of the original seed metric and find the form of the
stress energy tensor T̂μν, which sources the bouncing
solution. In particular, as we explain in detail in the
Appendix, we find that the connection receives a term
attributed to the disformal transformation,

Dμ
σν ¼

1

2ð1þWXÞ ½∇
μΦð∇νW∇σΦ

þ∇σW∇νΦþ 2W∇ν∇σΦÞ
þ∇σΦ∇νΦðW∇μΦ∇βΦ∇βW −∇μWð1þWXÞÞ�;

ð3:18Þ

while the left-hand side of (3.17) reads

ĜμνðĝÞ ¼ GμνðgÞ þ Sμνðg; ∂μΦÞ: ð3:19Þ

We stress that the right-hand side of (3.19) contains tensors
derived in terms of the original seed metric and the sourcing
Galileon field. As such, if we had an analytical expression
of the inverse transformation, one could readily find the
new stress energy tensor T̂μν

T̂μνðgðĝÞ; ∂μΦÞ ¼ GμνðgðĝÞÞ
8π

þ SμνðgðĝÞ; ∂μΦÞ
8π

¼ð2.3aÞ½εTμνðgðĝÞ; ∂μΦÞ þ ηΘμνðgðĝÞ; ∂μΦÞ�

þ SμνðgðĝÞ; ∂μΦÞ
8π

: ð3:20Þ

The above expression shows us that it is possible to derive
the bouncing solution from the original black hole solution
by upgrading the preexisting stress energy tensor with the
addition of a new tensor term Sμν.

From the above relation of the energy-momentum tensor,
(3.20), one can deduce that the wormhole solution we find
using the disformal transformation is indeed just a defor-
mation of the original black hole geometry we considered.
In accordance with our discussion on Bekenstein’s work [1]
in the Introduction, the gravitation is described by the
disformed metric ĝμν, while the stress-energy tensor is
described by the original physical seed metric gμν coupled
to the matter field of the theory. As such, we can express the
corresponding action in a qualitative manner

S ¼
Z

d4x
ffiffiffiffiffiffi
−ĝ

p �
R̂ðĝÞ
8π

þ
ffiffiffiffiffiffi−gp
ffiffiffiffiffiffi
−ĝ

p ðLNMDCðg; ∂μΦÞ

þ LDðg; ∂μΦÞ þ LCðg; ∂μΦÞÞ
�
; ð3:21Þ

where LNMDC is the matter Lagrangian of the original
theory, LD is a matter Lagrangian, whose variation yields
the last term of (3.20) and LC yields the constraint of the
matter field to be fixed to the original solution via an
appropriate Lagrangian multiplier. Finally, we note that
using the associated relation between the two metrics, we
can express the disformed volume form

ffiffiffiffiffiffi
−ĝ

p
d4x ¼ Ω3ðΩ2 þWXÞ1=2 ffiffiffiffiffiffi

−g
p

d4x; ð3:22Þ

in terms of the seed geometry via Sylvester’s determinant
theorem.

IV. TESTING OF THE ENERGY CONDITIONS

Under the simple expression of (3.17), it is possible to
test the possible violations of the null energy conditions as
the a parameter is increasing and the solutions shifts from
the original black hole to the two-way wormhole. In order
to simplify our calculations, we consider that the event
horizon of the original black hole is the null hypersurface
r ¼ 1. Therefore, we can express the mass parameter of the
black hole m in terms of the kinetic coupling lη as follows

m ¼ 1

24

�
9þ 1

l2η
þ 3lη arctan

�
1

lη

��
; ð4:1Þ

and consequently shrink the parameter space of our
geometry. As a test, we note that, as expected, the mass
parameter limits to 1

2
as lη → ∞, which is the Schwarzschild

black hole limit. In the figures below, we present the null
energy condition violations for different values of the throat
parameter a.
We first discuss the null energy condition (NEC) in the

case of the black hole when a is zero. To do so, we consider
a null vector n and test the violation of the null energy
condition
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T̂μνnμnν ≥ 0≡ Ĝμνnμnν ≥ 0; ð4:2Þ

via (3.20) (or equivalently (3.19) respectively). As can be
seen in Fig. 1, near the horizon the NEC is violated and the
violation is stronger for small kinetic coupling lη, while
away from the horizon of the black hole the NEC is
restored. We note that, according to Bekenstein [28],
minimally as well as nonminimally [29] coupled scalar
fields that produce an energy-momentum tensor that obeys
the energy conditions cannot be candidates for dressing a
black hole with scalar hair. Naturally, challenging this
assumption, one may in principle generate hairy black hole
solutions, as is the case in this work. We also note that, this
behavior of the NEC can be understood as follows. Because
at small kinetic coupling lη the gravitational attraction is
stronger, the kinetic energy of the scalar field should
balance this attraction force for a hairy black hole to be
formed. Away from the black hole horizon, the null energy
condition is weakly restored, i.e., Ĝμνnμnν → 0 as we
approach the radial asymptotics.

In the case that a is nonzero, we can see from Fig. 2 that
as the throat radius grows the violation of the NEC is
stronger, as expected. This means that the Sμν tensor (A11)
we derived in the Appendix, strongly violates the null
energy conditions, but the exotic matter is contained in the
wormhole vicinity. In the next section we test the pertur-
bations of the two-way wormhole solution under scalar
perturbation and compare the results to those of the original
black hole case. As a sidenote, we stress that we expect the
wormhole solution for low values of lη to be unstable under
gravitational perturbations, since the sourcing matter
becomes highly exotic in this case. On the other hand,
as it was shown in [17], the seed hairy black hole was found
to be stable under axial perturbations.

V. EVOLUTION OF SCALAR PERTURBATIONS
ON THE WORMHOLE GEOMETRY

In this section we study the time evolution of scalar
perturbations in our shifting geometry. This entails the
study of the propagation of a test scalar field in the vicinity
of the compact object under question. In particular, our goal
is to extract the Regge-Wheeler potential of the scalar
perturbations for different values of the throat radius a and
use the finite difference method, first proposed in [30], to
numerically solve the wave equation. In order to keep the
analysis as general as possible, we shall keep the metric
components in the form of

ds2 ¼ −fðxÞdt2 þ gðxÞdx2 þ ρ2ðxÞdΩ2; ð5:1Þ

where in the black hole case, the radial coordinate x ¼ r
and is positive definite, while the gθθ component is equal to
r2, as is the usual ansatz for spherically symmetric space-
times. In the wormhole case, x takes values in the range
ð−∞;þ∞Þ and the gθθ component is equal to x2 þ a2. The
Klein-Gordon equation of motion for a test massless scalar
fieldΨ in a spherically symmetric curved background reads

FIG. 2. Left: the violation of the null energy conditions in the one-way wormhole case for different values of the kinetic coupling.
Right: the violation of the null energy conditions in the two-way wormhole case for different values of the kinetic coupling.

FIG. 1. The violation of the null energy conditions in the black
hole case for different values of the kinetic coupling.
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1ffiffiffiffiffiffi−gp ∂μ½
ffiffiffiffiffiffi
−g

p
gμν∂νΨ� ¼ 0: ð5:2Þ

We choose the ansatz of Ψðt; x; θ;ϕÞ ¼ RðxÞYl
mðθ;ϕÞe−iwt

to disentangle the radial, angular, and temporal parts of the
field. Under this ansatz the Klein-Gordon equation of
motion is reduced to the

hðxÞ∂x½ρ2ðxÞhðxÞ∂xRðxÞ� þ ½w2 − lðlþ 1ÞfðxÞ�RðxÞ ¼ 0;

ð5:3Þ

where we set hðrÞ ¼
ffiffiffiffiffiffiffi
fðxÞ

pffiffiffiffiffiffi
gðxÞ

p and the l parameter denotes the

orbital state number of the test scalar field. Performing the
transformation to the tortoise coordinate x�, dx� ¼ dx

hðxÞ, we
simplify the above equation to

∂x� ½ρ2ðxÞ∂x�RðxÞ� þ ½w2 − lðlþ 1ÞfðxÞ�RðxÞ ¼ 0: ð5:4Þ

Finally, performing the substitution RðxÞ ¼ ψðxÞ
ρðxÞ, the radial

equation takes the following form

∂2ψðxÞ
∂x�2 þ ½w2 − VRWðxÞ�ψðxÞ ¼ 0: ð5:5Þ

As such, the explicit form of the Regge-Wheeler potential
reads

VRW ¼ lðlþ 1Þ fðxÞ
ρ2ðxÞ

þ 2fðxÞgðxÞ ∂2ρðxÞ∂x2 þ gðxÞ ∂fðxÞ∂x
∂ρðxÞ
∂x − fðxÞ ∂gðxÞ∂x

∂ρðxÞ
∂x

2gðxÞρ2ðxÞ :

ð5:6Þ

Having the Regge-Wheeler potential we can use the time-
domain integration method [30] to calculate the temporal
response of linear massless scalar field perturbations on the
wormhole geometry. We will give a brief outline of
the method. By defining ψðx�; tÞ ¼ ψðiΔx�; jΔtÞ ¼ ψ i;j,
Vðxðx�ÞÞ¼Vðx�;tÞ¼VðiΔx�;jΔtÞ¼Vi;j, Eq. (5.5) takes
the form

ψ iþ1;j−2ψ i;jþψ i−1;j

Δx2�
−
ψ i;jþ1−2ψ i;jþψ i;j−1

Δt2
−Viψ i;j¼ 0:

ð5:7Þ

Then, by using as initial condition a Gaussian wave-packet

of the form ψðx�; tÞ ¼ exp ½− ðx�−cÞ2
2σ2

� and ψðx�; t < 0Þ ¼ 0,
where c and σ correspond to the median and width of the
wave-packet, we can derive the time evolution of the scalar
field ψ by

ψ i;jþ1 ¼ −ψ i;j−1 þ
�

Δt
Δx�

�
2

ðψ iþ1;j þ ψ i−1;jÞ

þ
�
2 − 2

�
Δt
Δx�

�
2

− ViΔt2
�
ψ i;j; ð5:8Þ

where the Von Neumann stability condition requires that
Δt
Δx�

< 1. The effective potential is positive and vanishes at
the null hypersurface of the one-way wormhole (but not at
the throat of the two way wormhole), however, it diverges
as one approaches the asymptotic spatial infinity for both
compact objects. This requires that ψ should vanish at
infinity, which corresponds to reflective boundary condi-
tions. To calculate the precise values of the potential Vi, we
integrate numerically the equation for the tortoise coor-
dinate and then solve with respect to the corresponding
radial coordinate. Various convergence tests were per-
formed throughout our numerical evolution, with different
integration steps and precision, to reassure the validity of
our ringdown profiles.
By applying the numerical procedure outlined above, we

calculate the temporal response of linear massless scalar
field perturbations on the discussed wormhole solutions.
In both cases, the perturbation response is obtained at a
position arbitrarily close to the throat.

A. Two-way wormhole

In Fig. 3 we demonstrate the behavior of a test scalar
field as it propagates in the two-way wormhole background
(3.9). The parameters are tuned in such a way that α > rh.
The most obvious effect is the emergence of echoes
following the initial quasinormal ringdown. This pattern
becomes more evident for any increment of the angular
momentum l, due to the fact that more energy is carried
away from the photon sphere (PS) when perturbed, result-
ing in a more oscillatory signal.
It is important to note that the echoes appear in this case,

not due to trapping of waves between the PS and the surface
of the compact object, but rather due to the asymptotic
nature of infinity. The gravitational scalar Φ introduces an
effective AdS boundary to our solutions, which servers as a
perfect reflector. Thus, the partially reflected waves from
the PS eventually mirror off the AdS boundary and
reperturb the PS. This procedure gives rise to a beating
pattern which is very similar to echoes from quantum
corrected compact objects [31,32].
In Fig. 4 we fixed the angular momentum and we vary

the kinetic coupling lη. The first thing we observe is that the
spacetime possesses a peak located at the throat of the
wormhole while asymptotically the effective potential
diverges. Such asymptotic divergence is basically the
imprint of the AdS-like nature of the spacetime. The
increase of lη, which acts as an effective cosmological
constant providing the AdS asymptotics to our solutions,
moves the effective AdS boundary further away from the
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throat, which could be explained from the fact that the
nonminimal coupling has dimensionality length squared.
As a result the perturbations reflected off the PS have to
travel a greater distance before they reach the reflective
AdS boundary and return to re-perturb the PS. Hence, any
increment of lη results in a delay of echoes.
In Fig. 5 the effect of the throat size α is illustrated. We

can see that both the oscillation (τr ¼ 1=ωr) and the
damping time (τi ¼ 1=ωi) of our signal are effected.
Evidently, this behavior stems from the shape of the
effective potential. As α increases less energy is carried
away from the PS leading to an increase in the oscillation
time. Moreover, the slope of the potential lessens, which
causes the increase in the damping time of the signal.
Finally, it is important to note that the amplitude of the

echoes does not decrease with time, a behavior which
indicates the absence of energy dissipation. Our test field
travels through the throat and into the second Universe only
to be reflected back from the second AdS boundary. This
absence of dissipation is an indication that our compact

object may possess normal modes of oscillations similar to
the ones found in [33–39]. However, a mode decomposi-
tion of the probe field to calculate these modes is a rather
challenging task due to the complicated form of the metric
components and is out of the scope of the present study.

B. One-way wormhole

In what follows, we set α ¼ rh in order for our compact
object (3.9) to describe a one-way wormhole with a null
throat. Figure 6 displays the evolution of a linear scalar
perturbation field on such a background. The temporal
response exhibits echoes, as in the two-way wormhole case
above, which follow the initial ringdown. In a similar
manner, the l ¼ 0 perturbations do not significantly excite
the PS of the compact object, thus the echoes are not as
oscillatory as the ones obtained for l > 0.
In Fig. 7 the effect of mass on the temporal response is

illustrated. As m grows the echoes are replaced by
quasinormal oscillations, while any further increment leads

FIG. 4. Effective potential (left) and time evolution (right) of scalar perturbations, with varying lη, of the two-way wormhole with
l ¼ 2, α ¼ 2, and m ¼ 0.1.

FIG. 3. Effective potential (left) and time evolution (right) of scalar perturbations, with varying l, of the two-way wormhole with
lη ¼ 10, α ¼ 2 and m ¼ 0.1.
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FIG. 6. Effective potential (left) and time evolution (right) of scalar perturbations, with varying l, of the one-way wormhole with
m ¼ 0.1 and lη ¼ 1. Parameter l has the usual effect. Increases the potential barrier which leads to more energy being extracted from the
PS, leading to signal with higher frequency.

FIG. 5. Effective potential (left) and time evolution (right) of scalar perturbations, with varying α, of the two-way wormhole with
l ¼ 2, lη ¼ 5, and m ¼ 0.1.

FIG. 7. Effective potential (left) and time evolution (right) of scalar perturbations, with varying m, of the one-way wormhole with
l ¼ 2 and lη ¼ 1.

DISFORMAL TRANSITION OF A BLACK HOLE TO A … PHYS. REV. D 105, 064025 (2022)

064025-9



to a single quasinormal ringdown followed by a late-time
tail. We conclude that this behavior stems from the shape of
the effective potential which decreases in amplitude as m
increases. This leads to an increasingly smaller region
where trapped modes can occur, and thus the quasinormal
ringing dominates over the echoes which are suppressed.
Any further increment of m results in the decreasing of the
damping time of the quasinormal ringing (see Fig. 8).
Moreover, note that the field settles down to a constant
nonzero value after the initial ringdown. Such a behavior is
also observed [17] when axial perturbations are present in
the black hole [15] spacetime. Moreover, in contrast to the
previous case, the echoes found here have significantly
smaller amplitudes when compared to the initial ringdown.
This pattern emerges because of the presence of an event
horizon at the would-be wormhole throat of our solution,
which changes drastically the boundary conditions of our
problem and introduces energy dissipation. Hence, such
compact objects respond to perturbations in a similar
manner to BHs, since any extra information indicating
the presence of a wormhole is locked behind the event
horizon.

VI. CONCLUSIONS

We studied the deformation of a black hole to a worm-
hole using disformal transformations. We considered the
metric described by a hairy black hole solution of a
subclass of the Horndeski theory in which the scalar field
is coupled kinetically to Einstein tensor as a seed physical
metric. Then, by applying a disformal transformation, we
get a disformed metric describing a wormhole geometry.
This metric interpolates between black hole, regular black
hole, one-way wormhole and two-way wormhole solution
depending on a critical parameter a which grows from zero
to values larger than the black hole event horizon, describ-
ing the wormhole throat. Calculating the energy-momen-
tum tensor of the wormhole geometry, we found that it is a

deformation of the energy-momentum tensor of the original
seed physical metric we considered.
We tested the possible violations of the null energy

conditions as the a parameter is increasing and the solutions
shift from the original black hole to thewormhole. Fixing the
event horizon of the original black hole to be the null
hypersurface r ¼ 1, we found that in the case that a is
nonzero as the throat radius grows the violation of the null
energy condition is stronger. We argued that the violation of
the null energy condition is due to the presence in the energy-
momentum tensor of the term that deforms of the energy-
momentum tensor of the original seed black hole solution.
Using the time evolution of scalar perturbations in our

shifting geometry, we studied the temporal response of
linear massless scalar field perturbations on the discussed
wormhole solutions. Our investigation indicates that sim-
ilar effects arise in the late-time ringdown for both compact
objects. After the initial ringdown, the test field response
exhibits echoes, with timescales proportional to the non-
minimal coupling constant lη. The beating pattern is similar
to echoes from quantum corrected BHs [32] even though,
the compact objects considered here do not contain any
quantum corrections. The effective AdS asymptotics of
both solutions, force the partially reflected waves from the
PS to mirror off the AdS boundary and reperturb the PS to
give rise to the observed echoes.
A main difference between the two compact objects is

the existence of a horizon on the one-way wormhole which
introduces energy dissipation resulting in echoes whose
amplitude decreases with time, in contrast to the two-way
wormhole setup. Mathematically this is understood by the
drastic change in the boundary conditions imposed on the
scattering problem. Regarding the two-way wormhole, the
constancy of the amplitude of echoes may be an indication
of the existence of normal oscillation modes, as well as
potential instabilities, similar to that found in [40].
We expect that the gravitational perturbations of the

metric would give us decisive information on the stability

FIG. 8. Effective potential (left) and time evolution (right) of scalar perturbations, with varying m, of the one-way wormhole with
l ¼ 2 and lη ¼ 1.
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of the geometry we found, which we leave it for feature
work. It would also be interesting to extend this study in the
case that the physical seed metric is the one discussed in
[41] which is also a hairy black hole solution of the same
subclass of the Horndeski theory with a scalar field
kinetically coupled to Einstein tensor. The new feature
of this solution is that the scalar field is time dependent and
it would be interesting to study its effect on the disformal
deformation of this seed metric.

APPENDIX: DISFORMALLY TRANSFORMED
CURVATURE TENSORS

In this Appendix we present the transformation of the
various terms in the gravitational tensors under the dis-
formal transformation under consideration. The inverse of
the disformed metric can be readily given by the Sherman-
Morrison formula as

ĝμν ¼ 1

Ω2

�
gμν −

W
Ω2 þWX

∂μΦ∂νΦ
�
; ðA1Þ

where the indices of ∂μΦ∂νΦ were raised using the original
seed metric, gμν. Formula (A1) yields the obvious require-
ment that

Ω ≠ 0; ðA2Þ

Ω2 þWX ≠ 0: ðA3Þ

In addition, in order to satisfy the Lorentzian signature, the
following conditions must hold [3]

Ω2 > 0; ðA4Þ

Ω2 þWX > 0: ðA5Þ

The use of (A1) gives us the transformed Levi Civita
connection as follows

Γ̂α
μν ¼

1

2

�
1

Ω2

�
gαβ −

W
Ω2 þWX

∂αΦ∂βΦ
��

½ð∂νΩ2Þgβμ þ ð∂μΩ2Þgνβ − ð∂βΩ2Þgμν þΩ2ð∂νgβμ þ ∂μgνβ − ∂βgμνÞ

þ∂νW∂βΦ∂μΦþ ∂μW∂νΦ∂βΦ − ∂βW∂μΦ∂νΦþWð∂νð∂βΦÞ∂μΦþ ∂βΦ∂νð∂μΦÞÞ
þWð∂μð∂νΦÞ∂βΦþ ∂νΦ∂μð∂βΦÞÞ−Wð∂βð∂μΦÞ∂νΦ − ∂μΦ∂βð∂νΦÞÞ�:

For simplification, we set the conformal factor Ω ¼ 1. This greatly simplifies our calculations, since the differentiation of
the conformal factors vanishes. The result for the connection is found to be

Γ̂α
μν ¼ Γα

μν þDα
μν; ðA6Þ

where Dα
μν is the disformal term in the connection and reads

Dα
μν ¼

1

2
ĝαβð∂νW∂βΦ∂μΦþ ∂μW∂νΦ∂βΦ − ∂βW∂μΦ∂νΦÞ þ∇νð∂μΦÞ∂αΦ

W
1þWX

: ðA7Þ

Note that the metric term in (A7) is the disformed one, which under the constraint of Ω ¼ 1, readily gives us that
ĝμν ¼ ðgμν − W

1þWX ∂μΦ∂νΦÞ. A second important note here is that Dα
μν retains the symmetry of the Levi Civita connection

in its bottom two indices and is a tensor, as expected from the difference of the two connections. The simplicity of (A6)
means that we can easily find the rest of the gravitational tensors as follows

R̂ρ
σμν ¼ ∂μΓ̂ρ

σν − ∂νΓ̂ρ
σμ þ Γ̂ρ

κμΓ̂κ
σν − Γ̂ρ

κνΓ̂κ
σμ

¼ ∂μΓρ
σν þ ∂μDρ

σν − ∂νΓρ
σμ − ∂νDρ

σμ þ ðΓρ
κμ þDρ

κμÞðΓκ
σν þDκ

σνÞ − ðΓρ
κν þDρ

κνÞðΓκ
σμ þDκ

σμÞ
¼ ∂μΓρ

σν − ∂νΓρ
σμ þ Γρ

κμΓκ
σν − Γρ

κνΓκ
σμ

þ ∂μDρ
σν þ Γρ

κμDκ
σν − Γκ

σμDρ
κν − ∂νDρ

σμ − Γρ
κνDκ

σμ þ Γκ
σνDρ

κμ þDρ
κμDκ

σν −Dρ
κνDκ

σμ;
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from which we get

→ R̂ρ
σμν ¼ Rρ

σμν þ∇μDρ
σν −∇νDρ

σμ þDρ
κμDκ

σν

−Dρ
κνDκ

σμ: ðA8Þ

Using the fact that δαβ ¼ gαρgβρ is invariant under disformal
transformations, we find that the disformed Ricci tensor
reads

→ R̂σν ¼ Rσν þ∇μDμ
σν −∇νDμ

σμ þDμ
κμDκ

σν

−Dμ
κνDκ

σμ: ðA9Þ

Finally, contracting (A9) with the disformed metric we
have the following result for the Ricci scalar

R̂ ¼ Rþ∇μDμν
ν −∇νDμν

μ þDμ
κμDκν

ν −Dμ
κνDκν

μ

−
W∂σΦ∂νΦ
1þWX

ðRσν þ∇μDμ
σν −∇νDμ

σμ

þDμ
κμDκ

σν −Dμ
κνDκ

σμÞ: ðA10Þ

As such the Einstein tensor reads

Ĝμν ¼ R̂μν −
1

2
ĝμνR̂

¼ Rμν þ∇κDκ
μν −∇νDκ

μκ þDκ
λκDλ

μν −Dκ
λνDλ

μκ

−
1

2
ðgμν þW∂μΦ∂νΦÞ

�
Rþ∇κDκλ

λ −∇λDκλ
κ þDκ

σκDσλ
λ −Dκ

σλDσλ
κ

−
W∂σΦ∂λΦ
1þWX

ðRσλ þ∇κDκ
σλ −∇λDκ

σκ þDκ
ρκDρ

σλ −Dκ
ρλDρ

σκÞ
�
;

which finally yields that

Ĝμν ¼ Gμν þ Sμν; ðA11Þ

where

Sμν ¼ ∇κDκ
μν −∇νDκ

μκ þDκ
λκDλ

μν −Dκ
λνDλ

μκ −
1

2
W∂μΦ∂νΦR

−
1

2
ĝμν

�
∇κDκλ

λ −∇λDκλ
κ þDκ

σκDσλ
λ −Dκ

σλDσλ
κ

−
W∂σΦ∂λΦ
1þWX

ðRσλ þ∇κDκ
σλ −∇λDκ

σκ þDκ
ρκDρ

σλ −Dκ
ρλDρ

σκÞ
�
: ðA12Þ
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