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We show that Thurston geometries are solutions to a large class of 3D quadratic curvature theories,
where new massive gravity—which was studied by Flores-Alfonso et al. [Phys. Rev. Lett. 127, 061102
(2021)]—is a special case.
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Thurston’s conjecture [1] states that a three-manifold
with a given topology has a canonical decomposition into
eight manifolds with high symmetry—the so-called
Thurston geometries (TGs) [2–4]. Based on Hamilton’s
Ricci flow [5], which provides a way to deform a given
metric in the form of a generalized heat equation, Perelman
gave his celebrated proof [6,7]. Since many TGs are not
Einstein spaces, one might wonder if a “master theory” that
admits all TGs as solutions can be achieved by a modi-
fication of Einstein’s equation.
In a recent paper [8], it was reported that TGs are

solutions to new massive gravity (NMG) [9], where the
authors stated that, to the best of their knowledge, NMG is
the only 3D gravity theory with this property.1 In a previous
work [11], four of the TGs were shown to be solutions of
the most general quadratic theory. In this paper we shall
close a gap and show that the remaining four TGs are also
solutions of the most general quadratic theory, whose
action is displayed in Eq. (4). NMG is singled out by
being the only ghost-free theory in this class.2 However,
ghost freedom is not essential in defining a flow where TGs
are critical points.

In order to demonstrate this, let us present the logic of a
uniformization theorem along the lines of Ref. [15].
Assuming that the manifold admits some metric, one needs
to devise a mechanism to flow the initial metric into a
highly symmetric one, which can be obtained by the
following parabolic system:

∂tgμν ¼ OðgμνÞ; ð1Þ

where O is an elliptic operator. The parabolicity of Eq. (1)
ensures that the flow will end at fixed points as t → ∞,
for which OðgμνÞ ¼ 0. However, since OðgμνÞ should
transform as a tensor, it has to be constructed from
curvature tensors, which makes it impossible to obtain a
strictly parabolic system and leads to nonlinearity due to
the inverse metric. Many issues regarding these complica-
tions should be resolved for a full proof. In his proof,
Perelman made use of the operator

OðgμνÞ ¼ −2ðRμν þ∇μ∇νfÞ; ð2Þ

where f is a scalar field. It follows from the field equations
of the action that

S½f; g� ¼
Z

d3x
ffiffiffiffiffi
jgj

p
e−f½Rþ ð∇fÞ2�; ð3Þ

and the action (3) is an increasing functional provided that
∂tf ¼ ∂t ln

ffiffiffiffiffijgjp
. Alternatively, one can also try to use the

field equations of quadratic gravity theories as a candidate
for such an operator, which can be defined through an
action that is a functional of the metric tensor only. As long
as one finds an operator that vanishes for all TGs, the ghost
freedom of the theory plays no role in the construction.
Motivated by this, we consider the most general 3D

quadratic gravity theory described by the action
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1In Ref. [8], ghost-free theories were considered for simplicity
[10].

2NMG is obtained after imposing the absence of the scalar
mode, which is always a ghost, and the unitarity of the massive
spin-2 mode around a maximally symmetric background space-
time [see Ref. [12] for an analysis on a flat background and
Refs. [13,14] for constant-curvature backgrounds (dS/AdS)].
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S½g� ¼
Z

d3x
ffiffiffiffiffi
jgj

p
½σðR − 2ΛÞ þ αR2 þ βRμνRμν�; ð4Þ

where σ ¼ �1 is introduced to control the sign of the Einstein-Hilbert term and ðα; βÞ are arbitrary constants. Field
equations arising from the action (4) are given by

0 ¼ σðGμν þ ΛgμνÞ þ α

�
2RRμν −

1

2
gμνR2 þ 2gμν□R − 2∇μ∇νR

�

þ β

�
3

2
gμνRρσRρσ − 4Rμ

ρRνρ þ□Rμν þ
1

2
gμν□R −∇μ∇νRþ 3RRμν − gμνR2

�
: ð5Þ

As we summarize in Tables I and II, TGs are solutions for
different choices of (σ, α, β) that are subjected to two
constraints:

(i) The length scale in the metric should satisfy l2 > 0
in order to consider metrics with definite signature.

(ii) Denominators in the expressions for l2 and Λ
should be nonzero.

As a simple example, to ensure that the theory admits
Lorentzian TGs given in Table II as solutions, the following
choice of parameters is enough:

σ ¼ −1; β ¼ 1

m2
> 0; α > −

1

2m2
: ð6Þ

When one demands to obtain Lorentzian TGs as sol-
utions to a pure gravity theory (no scalar mode) with
unitary excitations around a maximally symmetric space-
time, NMG is the only choice and one has to fix the last
parameter as α ¼ − 3

8m2 [9,13,14], for which the scalar
mode decouples from the spectrum since it becomes
infinitely heavy (m2

s → ∞), and there remains only a
unitary massive spin-2 graviton with m2

g ¼ m2 þ Λ
2
> 0.

For the Euclidean TGs, some possible choices of param-
eters are given in Table III, where NMG is again a special
case. Note that m2 < 0 corresponds to an imaginary mass.
Analogous behavior was also observed in Refs. [15,16],
where the Euclidean solutions were obtained from the

TABLE I. Euclidean Thurston geometries as solutions to an arbitrary quadratic gravity theory. Parameters should satisfy the
constraints i and ii, where examples of sufficient but not necessary conditions are given in Table III.

Geometry Metric l2 Λ

E3 ds2 ¼ dx2 þ dy2 þ dz2 No length scale 0
S3 ds2 ¼ l2ðdx2 þ sin2xdy2 þ sin2xsin2ydz2Þ Arbitrary 1

l2 − σ 2ð3αþβÞ
l4

H3 ds2 ¼ l2ðdx2 þ cosh2xdy2 þ cosh2xcosh2ydz2Þ Arbitrary − 1
l2 − σ 2ð3αþβÞ

l4

E1 × S2 ds2 ¼ l2ðdx2 þ dy2 þ sin2 ydz2Þ 1
2Λ − σ

4ð2αþβÞ
E1 × H2 ds2 ¼ l2ðdx2 þ dy2 þ cosh2 ydz2Þ − 1

2Λ − σ
4ð2αþβÞ

Nil ds2 ¼ l2
4
½dx2 þ dy2 þ ðxdy − dzÞ2� − 1

2Λ − σ
8ðαþ3βÞ

SLð2;RÞ ds2 ¼ l2½dr2 þ sinh2rcosh2rdθ2 þ ðdψ þ sinh2rdθÞ2� − 25αþ23β
10ΛðαþβÞ −σ 25αþ23β

200ðαþβÞ2
Sol ds2 ¼ l2ðe−2zdx2 þ e2zdy2 þ dz2Þ − 1

2Λ − σ
8ðαþβÞ

TABLE II. Lorentzian Thurston geometries as solutions to an arbitrary quadratic gravity theory. Parameters should satisfy the
constraints i and ii, where an example of sufficient but not necessary conditions is given in Eq. (6).

Geometry Metric l2 Λ

Nil ds2 ¼ l2

4
½dx2 þ dy2 − ðxdy − dzÞ2� 1

2Λ − σ
8ðαþ3βÞ

SLð2;RÞ ds2 ¼ l2

4
½−ðdΨþ cosΘdΦÞ2 þ dΘ2 þ sin2ΘdΦ2� 25αþ23β

10ΛðαþβÞ −σ 25αþ23β
200ðαþβÞ2

New Sol ds2 ¼ l2ðe−2zdx2 þ e2zdy2 − dz2Þ 1
2Λ − σ

8ðαþβÞ
Lorentz Sol ds2 ¼ l2ð2e−zdxdzþ e2zdy2Þ Arbitrary σ ¼ 0, no effect on the solution
Third Sol ds2 ¼ l2ð−e2zdy2 − 2dxdyþ dz2Þ −4σβ 0
Lorentz-Heisenberg ds2 ¼ l2

4
ð−dx2 þ dy2 þ ðxdy − dzÞ2Þ 1

2Λ − σ
8ðαþ3βÞ

AdS ds2 ¼ l2½dr2 þ sinh2rcosh2rdθ2 − ðdψ þ sinh2rdθÞ2� Arbitrary − 1
l2 − σ 2ð3αþβÞ

l4
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low-energy limit of string theory supplemented by a one-
form gauge field. For some of the solutions, gauge fields
become imaginary, which is equivalent to having the kinetic
terms with opposite signs in the action. However, this should
not be considered as a problem since the aim here is to
choose the parameters according to Table I and show that
TGs correspond to fixed points.
TGs were also considered in another modification of

Einstein’s equations called minimal massive gravity
(MMG) [17], whose field equations read

Gμν þ Λgμν þ
1

μ
Cμν þ

γ

μ2
Jμν ¼ 0; ð7Þ

where the Cotton tensor Cμν is related to the Schouten
tensor Sμν as

Cμν ¼ ϵμ
αβ∇αSβν; Sμν ¼ Rμν −

1

4
gμνR; ð8Þ

and the J tensor is given by

Jμν ¼ ϵμ
αβϵν

ρσSαρSβσ: ð9Þ

The field equations (7) do not arise from the variation of an
action and are covariantly conserved only on shell. In
Ref. [18], it was shown that all TGs except Sol geometry
are solutions to Eq. (7) for certain (nonzero and finite)
choices of parameters. Sol geometry requires the vanishing
of the coefficient of the Cotton term (μ → ∞, γ → ∞ such
that γ

μ2
→ const), which in general ruins the physical

consistency of the theory. However, such a solution is still
acceptable if ϵμρσSρτCστ ¼ 0, which is the case for the Sol
geometry. Therefore, in addition to NMG,MMG defines an
operator OðgμνÞ that vanishes for all TGs. What the field
equations of MMG lack is the existence of an entropy
functional along the flow that admits a gradient formulation
(see Ref. [19] for an example in Cotton flow), which might
be crucial in an attempt for a full proof of a uniformization
theorem.
All in all, realizing TGs as vacuum solutions to higher-

curvature modifications of Einstein’s equations yields
many possibilities where the ghost-free theories are not
necessarily privileged. Due to the higher-derivative oper-
ators, it seems impossible to apply results from elliptic
operator theory for rigorous results. However, the relevance
of the unitarity of the theory might be checked through a
detailed numerical analysis of the flow equation, as was
done in Ref. [19] for the Cotton flow.
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