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Herein, we explore superradiance for Alfvén waves (Alfvénic superradiance) in an axisymmetric
rotating magnetosphere of a Kerr black hole within the force-free approximation. On the equatorial plane of
the Kerr spacetime, the Alfvén wave equation is reduced to a one-dimensional Schrödinger-type equation
by separating variables of the wave function and introducing a tortoise coordinate mapping the inner and
outer light surfaces to −∞ and þ∞, respectively, and we investigate a wave scattering problem for Alfvén
waves. An analysis of the asymptotic solutions of the wave equation and conservation of the Wronskian
provides the superradiant condition for Alfvén waves, and it is shown that the condition coincides with that
for the Blandford-Znajek process. This indicates that when Alfvénic superradiance occurs, the Blandford-
Znajek process also occurs in the force-free magnetosphere. Then, we evaluate the reflection rate of Alfvén
waves numerically and confirm that Alfvénic superradiance is indeed possible in the Kerr spacetime.
Moreover, we will discuss a resonant scattering of Alfvén waves, which is related to a “quasinormal mode”
of the magnetosphere.
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I. INTRODUCTION

The mechanism for extracting the rotational energy from
a black hole has been discussed as an energy source for
high-energy astronomical phenomena such as relativistic
jets in active galactic nuclei, compact objects, and gamma-
ray bursts. The Blandford-Znajek (BZ) process [1] is one of
the most promising candidates to describe this mechanism,
which is driven by rotating black hole magnetosphere. The
original BZ process [1] was discussed with focus on Kerr
spacetime and force-free magnetospshere, for which the
plasma inertia is ignored due to the strong electromagnetic
fields. Then, they discovered that if the angular velocity of
the rotating black hole ΩH exceeds that of magnetic field
lines ΩF:

0 < ΩF < ΩH; ð1Þ

the rotational energy of the black hole is transported
outward in the form of the Poynting flux, which is caused
by the magnetic torque acting on magnetic field lines due
to the dragging effect of the rotating black hole. After the

pioneering work by Blandford and Znajek in 1977 [1],
several supportive works have been conducted based on
analytical and numerical computations not only for force-
free manetosphere, but also for the magnetohydrodynamic
case, for example [2–12].
Superradiance [13–17] is also an energy extraction

mechanism, which is often described as a wave version
of the Penrose process [18–20]. The condition for super-
radiance (superradiant condition) is given by

0 <
ω

m
< ΩH; ð2Þ

where ω is the frequency of a wave and m is the azimuthal
quantum number. As various wave phenomena will occur
in the magnetosphere, the effect of energy extraction by
waves should also be considered.
Although, in general, the BZ process and superradiance

are considered as different mechanisms, conditions (1) and
(2) appear similar regarding the ratio ω=m as the angular
velocity of a wave pattern. There must be various wave
modes in a black hole magnetosphere, hence investigation
of the relationship between the BZ process and super-
radiance is important not only for clarifying their math-
ematical relation, but also for understanding the essence
of the BZ process. Indeed, there are several works on
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superradiant scattering of waves in black hole magneto-
spheres: superradiance for the fast magnetosonic wave
[21,22] and energy extraction via scalar clouds as a proxy
for the force-free magnetosphere [23], but the relationship
between superradiance and the BZ process had not been
clarified until our previous work [24]. In our previous
work [24], we investigated the relationship between the BZ
process and superradiance by discussing the superradiant
scattering of Alfvén waves (Alfvénic superradiance) for a
force-free magnetosphere in Bañados-Teitelboim-Zanelli
(BTZ) black string spacetime [4], and suggested that the BZ
process is the zero mode of Alfvénic superradiance. The
BTZ black string spacetime is asymptotically anti–de Sitter
spacetime and its horizon geometry is cylinder, hence, it is
not an astrophysical black hole. As black hole candidates
observed so far are well-explained with Kerr black hole, it
is important to check whether or not the Alfvénic super-
radiance is possible for a force-free magnetosphere around
a Kerr black hole.
One of the differences between the magnetospheres in

the BTZ string spacetime and the Kerr spacetime is the
existence of the outer light surface. For the Kerr spacetime
case there is an outer light surface that provides an outgoing
one-way boundary condition to Alfvén waves. If we solve
the wave equation with the outgoing boundary condition at
the outer light surface, which is similar to the computation
of black hole quasinormal modes, it is possible to discuss
the stability of the magnetosphere for the perturbation
associated with Alfvén waves.
In this paper, we investigate the possibility of the

Alfvénic superradiance in the Kerr spacetime. To achieve
this, we solve the equation for force-free black hole
magnetosphere in the Kerr spacetime to obtain a back-
ground magnetosphere. Then, we apply a perturbation to it
and discuss the wave propagation in the background black
hole magnetosphere. However, the global magnetosphere
around a Kerr black hole is difficult to obtain as we need to
solve the Grad-Shafranov equation [1,25,26] in the Kerr
spacetime. Hence, our computation will be restricted to the
electromagnetic field in the vicinity of the equatorial plane
of the Kerr spacetime. Moreover, the force-free magneto-
sphere is assumed to be symmetric about the equatorial
plane, axisymmetric, and stationary. Then, applying an
appropriate perturbation to the background magnetosphere,
the wave equation for Alfvén waves will be derived.
This paper is organized as follows. In Sec. II, we review

the force-free electromagnetic field and obtain the back-
ground magnetosphere around the equatorial plane of the
Kerr spacetime and confirm whether the BZ process is
possible for the background magnetosphere solution. In
Sec. III, the Alfvén wave equation will be derived by giving
a perturbation to the background magnetosphere. Then, we
rewrite the wave equation in the form of the Schrödinger-
type equation to clarify the propagation and scattering
problem of Alfvén waves with the effective potential.

Section IV presents the discussion of Alfvénic super-
radiance and the derivation of the superradiant condition,
and the reflection rates of Alfvén waves are evaluated with
a numerical calculation. Furthermore, we discuss a resonant
scattering of Alfvén waves, which is related to a “quasi-
normal mode” of the background magnetosphere. The
conclusion is provided in Sec. V. We use the CGS units
in electromagnetism and c ¼ G ¼ 1 throughout this paper.

II. FORCE-FREE ELECTROMAGNETIC FIELD
IN THE KERR SPACETIME

First, we briefly review the force-free approximation
of the plasma-electromagnetic field system in a curved
spacetime. Applying it to the Maxwell equation in the Kerr
spacetime, we obtain a configuration of force-free electro-
magnetic field in the vicinity of the equatorial plane of the
Kerr spacetime. Then, we discuss the BZ process for the
background magnetosphere solution.

A. Force-free approximation

The basic equations are Maxwell’s equation with electric
4-current jμ,

∇αFμα ¼ 4πjμ; ∇½μFνλ� ¼ 0; ð3Þ

and conservation of the energy-momentum tensor,

∇νðTμν
plasma þ Tμν

emÞ ¼ 0; ð4Þ

where Tμν
plasma is the energy momentum tensor of plasma

and Tμν
em is that of electromagnetic field. If the electromag-

netic fields are so strong that the inertia of plasmas can be
ignored, the above conservation law becomes ∇νT

μν
em ≃ 0.

This is the force-free approximation. Hereafter, we simply
denote Tμν

em as Tμν, and it is given by

Tμν ¼ FμαFν
α −

1

4
FαβFαβgμν: ð5Þ

Using the force-free approximation, it can be shown that
∇νTν

μ ¼ −4πFμνjν ≃ 0. Therefore, the Maxwell equation
under the force-free approximation is

Fμν∇αFνα ¼ 0; ∇½μFνλ� ¼ 0: ð6Þ

For an observer of which 4-velocity is given by uμ, the
electric field Eμ and the magnetic filed Bμ are defined
as Eμ ¼ Fμνuν and Bμ ¼ −�Fμνuν, respectively. The field
strength Fμν is assumed to be magnetically dominated, as

FμνFμν ¼ 2ðBμBμ − EμEμÞ > 0: ð7Þ

This condition ensures the existence of a timelike observer
who only sees the magnetic field. The field strength
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satisfying Eq. (6) can be represented with the Euler
potentials ϕ1 and ϕ2 [21,27–30] as

Fμν ¼ ∂μϕ1∂νϕ2 − ∂μϕ2∂νϕ1; ð8Þ
and the Maxwell equation with the force-free approxima-
tion yields the following nonlinear equations for the Euler
potentials:

∂μϕi∂ν½
ffiffiffiffiffiffi
−g

p ð∂μϕ1∂νϕ2 − ∂νϕ1∂μϕ2Þ� ¼ 0; ði ¼ 1; 2Þ:
ð9Þ

By solving these two equations, we obtain the Euler
potentials and the field strength. In the next subsection,
we present a solution around the equatorial plane of the
Kerr spacetime with arbitrary values of the spin parameter.

B. Background force-free magnetosphere

As a background magnetosphere to investigate the
propagation of Alfvén waves, we obtain a force-free
magnetosphere solution with monopolelike magnetic field
lines around the equatorial plane of a Kerr black hole by
solving Eq. (9) with the fixed Kerr metric. First, let us
introduce the Boyer-Lindquist coordinates ðt; r; θ;φÞ of the
Kerr spacetime

g ¼ −
�
1 −

2Mr
Σ

�
dt2 −

4aMr sin2θ
Σ

dtdφ

þ Σ
Δ
dr2 þ Σdθ2 þ A sin2 θ

Σ
dφ2; ð10Þ

where Δ ¼ r2 − 2Mrþ a2, Σ ¼ r2 þ a2cos2 θ, A ¼
ðr2 þ a2Þ2 − Δa2 sin2 θ, and the constants M and a are
the mass and angular momentum per unit mass of the Kerr
black hole, respectively. The outer horizon radius rH is
given as the larger root of Δ ¼ 0. The dragging of
spacetime is represented by the angular velocity of the
zero angular momentum observer

ΩðrÞ ≔ −
gtφ
gφφ

; ð11Þ

and the value of this function at the outer horizon is
ΩH ≔ a=ð2MrHÞ. The Kerr spacetime has two Killing
vectors, ξðtÞ ¼ ∂t and ξðφÞ ¼ ∂φ. The region where the
timelike Killing vector becomes spacelike is called the
ergoregion.
The solution of a monopole-type magnetic field for a

force-free magnetosphere around the equatorial plane is
given as

ϕ1 ¼ q cos θ; ϕ2 ¼ φ −ΩFtþ JB

Z
r2

Δ
dr;

with
π

2
− θ ≪ 1; ð12Þ

in terms of the Euler potentials, where q is the monopole
charge, the angular velocity of the magnetic field line ΩF is
a free parameter here, and JB is given by the regularity
condition of FμνFμν at the horizon as

JB ¼ r2H þ a2

r2H
ðΩH −ΩFÞ: ð13Þ

Note that solution (12) is valid for arbitrary values of the
spin parameter a, but it is consistent with the solution of
magnetic field lines for a slowly rotating black hole
obtained by [1] (see also [30,31]). The derivation of
solution (12) is discussed in the Appendix.
The physical meaning of the Euler potentials is as

follows. The function ϕ1 is the so-called stream function,
which defines a magnetic surface as ϕ1 ¼ const, and ΩF is,
in general, a function of ϕ1. Therefore, ΩF is a constant for
a fixed magnetic surface. The condition ϕ2 ¼ const deter-
mines the shape and the time evolution of the magnetic
field lines on the magnetic surface. The timelike two-
dimensional surface defined by the intersection of
ϕ1 ¼ const and ϕ2 ¼ const lying in the four-dimensional
spacetime is called the field sheet [30]. Considering the
above properties, we see that a constant time slice on the
field sheet gives the magnetic field line on the magnetic
surface at that time.
The background magnetosphere has both the inner

and outer light surfaces, which are given as the condition
that the corotating vector with the magnetic field line
χμ ≔ ξμðtÞ þ ΩFξ

μ
ðφÞ becomes null. We denote the norm of χμ

by Γ and it is evaluated as

Γ ≔ gμνχμχν ¼ gtt þ 2ΩFgtφ þΩ2
Fgφφ

¼ −
Ω2

F

r
ðr0 − rÞðr − rinÞðr − routÞ;

r0 < 0 < rin < rout: ð14Þ

The two positive roots on the equatorial plane θ ¼ π=2 are
obtained analytically as

rin ¼ 2d1 cos

�
1

3
arccos

�
d2
2d1

�
−
2π

3

�
; ð15Þ

rout ¼ 2d1 cos

�
1

3
arccos

�
d2
2d1

��
; ð16Þ

and these are the radii of the inner and outer light surfaces,
respectively. The negative root r0 is

r0 ¼ 2d1 cos

�
1

3
arccos ðd2=ð2d1ÞÞ þ 2π=3

�
; ð17Þ

where
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d1 ¼
�
1 − a2Ω2

F

3Ω2
F

�
1=2

; d2 ¼ −6M
�
1 − aΩF

1þ aΩF

�
: ð18Þ

The inner light surface is located outside the black hole
horizon: rH < rin, which is always satisfied for the present
background magnetosphere. As shown in Fig. 1, Γ is
negative in the region between the light surfaces.
The light surfaces are causal surfaces for propagation

of Alfvén waves [30]. For all computations in the present
paper, we consider Alfvén wave propagation within the
range rin ≤ r ≤ rout where χμ is timelike and the velocities
of corotating observers are less than the speed of light.
The outer light surface forms due to the fact that the
velocity of the magnetic field lines becomes faster and
faster at a distant point, then finally, it exceeds the speed
of light at a far point; whereas, the inner light surface is
due to the effect of the gravitational redshift: Near the
black hole, the speed of light is relatively slow and the
velocity of the magnetic field lines becomes larger than
the speed of light.

C. Energy and angular momentum flux

The energy and angular momentum flux vectors are
defined with the timelike and spacelike Killing vectors as

Pμ ¼ −Tμ
νξ

ν
ðtÞ; Lμ ¼ Tμ

νξ
ν
ðφÞ: ð19Þ

Evaluating the radial components of these vectors [1], we
obtain

Pr ¼ −grrTrt ¼ −grrgθθFrθFtθ ≃ ΩFJB
q2

r2
sin2θ; ð20Þ

Lr ¼ grrTrφ ¼ grr gθθFrθFφθ ≃ JB
q2

r2
sin2θ; ð21Þ

where we consider π=2 − θ ≪ 1. As JB ∝ ðΩH −ΩFÞ, both
the energy and angular momentum fluxes become outward
only if

0 < ΩF < ΩH: ð22Þ

This is the condition for occurrence of the BZ process, and
if ΩF ¼ ΩH=2, then the energy flux takes the maximum.

III. ALFVÉN WAVES

In this section, we apply a perturbation to the back-
ground magnetosphere obtained in the previous section and
discuss the wave propagation in the magnetosphere. There
are two different wave modes in the force-free magneto-
sphere: the fast magnetosonic and Alfvén wave, which is a
longitudinal wave mode due to the magnetic and gas
pressure, and a transverse wave mode propagating along
magnetic field line due to the magnetic tension. In general,
these wave modes are coupled to each other, but they can be
decoupled by considering the perpendicular perturbation to
a magnetic surface.

A. Perturbation and wave modes

Let δϕi be a perturbation to the Euler potential ϕi for
i ¼ 1, 2. To define the perturbation, it is useful to introduce
the displacement vector [21,29] in the θ direction, whose
component is denoted by ζθ. Taking the inner product
between the derivative of the Euler potentials of the
background magnetosphere and ζμ ≔ δμθζ

θ, the perturba-
tions are obtained as

δϕ1 ¼ ζμ∂μϕ1 ¼ ζθðt; r;φÞ∂θϕ1; δϕ2 ¼ ζμ∂μϕ2 ¼ 0

ð23Þ

Note that we choose the magnetic surface on the equa-
torial plane of the Kerr spacetime; therefore, the first
derivative of δϕ1 with respect to θ becomes zero due to the
definition of the perturbation and the θ dependence of the
background magnetosphere solution (12). This indicates
that the wave mode δϕ1 does not propagate in the θ
direction; specifically, the propagation of this wave mode
is restricted on the magnetic surface. Moreover, its
oscillation is in the perpendicular direction of the mag-
netic surface; therefore, δϕ1 is a transverse wave mode
propagating on a magnetic surface (Alfvén wave).
Meanwhile, δϕ2 corresponding to the fast magnetosonic
wave does not appear for the present perturbation to the
background magnetosphere.
From (9), the first-order perturbation equations are

∂μδϕi∂ν½
ffiffiffiffiffiffi
−g

p ∂ ½μϕ1∂ν�ϕ2�þ∂μϕi∂ν½
ffiffiffiffiffiffi
−g

p ð∂ ½μδϕ1∂ν�ϕ2Þ�¼0:

ð24Þ

FIG. 1. Plot of Γ for a=M ¼ 0.2 and MΩF ¼ 0.027; Γ < 0 in
the region between rin and rout, and outside the region, Γ becomes
positive. The left end of this curve is the position of the black hole
horizon.
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For i ¼ 1, the second term is zero due to ∂θδϕ1 ¼ 0,
whereas the first term is proportional to π=2 − θð≪ 1Þ by
expanding this quantity and becomes zero on θ ¼ π=2.
Therefore, (24) with i ¼ 1 is a trivial equation. For i ¼ 2,
we obtain

∂μϕ2∂ν½
ffiffiffiffiffiffi
−g

p ∂ ½μδϕ1∂ν�ϕ2� ¼ 0: ð25Þ

This is the wave equation governing the propagation of
Alfvén waves on the magnetic surface at θ ¼ π=2. A
schematic of magnetic fields and the perturbation per-
pendicular to the magnetic surface (θ ¼ π=2) is displayed
in Fig. 2. Note that the background magnetic field lines can
have curvature in the toroidal direction, which stems from
the nonzero Bφ (A13).

B. Alfvén wave equation in the form
of the Schrödinger equation

In this subsection, we rewrite the wave equation (25) in
the form of a Schrödinger-type equation by introducing a
“tortoise coordinate,” which maps the inner and outer light
surfaces to −∞ and þ∞, respectively.
In terms of the Euler potentials, a magnetic field line and

its time evolution is given by

ϕ2 ¼ φ −ΩFtþ JB

Z
r2

Δ
dr ¼ const: ð26Þ

Considering the property of Alfvén waves that propagate
along a magnetic field line, we should assume the depend-
ence of variables as

δϕ1 ¼ δϕ1

�
t; r;φ −ΩFtþ JB

Z
ðr2=ΔÞdr

�
: ð27Þ

Substituting this δϕ1 into (25), we obtain

−
r2

Δ
H∂2

t δϕ1 þ ∂r

�
−Γ

�
∂r −

JBr2gφφ
ΓΔ

ðΩ −ΩFÞ∂t

�
δϕ1

�

þ JBr2gφφ
Δ

ðΩ − ΩFÞ∂t∂rδϕ1 − j∂ϕ2j2δϕ1 ¼ 0; ð28Þ

where j∂ϕij2 ≔ ∂μϕi∂μϕi and H ≔ 1þ ΩFgφφ∂rϕ2. Note
that j∂ϕ2j2 is proportional to the absolute square of the field
strength as shown below:

FμνFμν

2
¼ ½j∂ϕ1j2j∂ϕ2j2 − ð∂μϕ1∂μϕ2Þ2� ¼

q2

r2
j∂ϕ2j2:

ð29Þ

First, we introduce the following new coordinates to
eliminate the ∂t∂rδϕ1 term in (28):

∂T ¼ ∂t; ∂X ¼ ∂r −
JBr2gφφ
ΓΔ

ðΩ − ΩFÞ∂t: ð30Þ

The relation between the old and new coordinates is

r ¼ X; t ¼ T − JB

Z
dX

X2gφφ
ΓΔ

ðΩ − ΩFÞ; ð31Þ

and Eq. (28) yields

�
−
X2

Δ
H þ J2BX

4g2φφ
ΓΔ2

ðΩ −ΩFÞ2
�
∂2
Tδϕ1

þ ∂Xð−Γ∂Xδϕ1Þ − j∂ϕ2j2δϕ1 ¼ 0: ð32Þ

Then, separating the variables as δϕ1 ¼ e−iωTRðXÞ and
introducing the tortoise coordinate x as dx=dX ¼ −Γ−1, we
obtain the Schrödinger-type equation1

d2R
dx2

− VeffR ¼ 0; ð33Þ

Veff ¼ −Γj∂ϕ2j2 þ
ω2X2

Δ

�
HΓ −

J2BX
2g2φφ
Δ

ðΩ −ΩFÞ2
�
:

ð34Þ

In the tortoise coordinate, the locations of the inner and
outer light surfaces becomes x ¼ −∞ and x ¼ þ∞,
respectively. The effective potentials for several frequencies
are plotted in Fig. 3. Note that the x-dependence of the
terms with ω in (34) is very small, as seen from Fig. 3.
Therefore, properties of the effective potential, such as the
existence and the position of the peak, are determined by
the first term, which reflects the effect of the gravitational
redshift and the angular velocity of magnetic field lines in Γ
as well as the square of the field strength.

FIG. 2. Schematic of the perturbation perpenducular to the
magnetic surface on the equatorial plane.

1The inner light surface is a causal boundary like a black hole
horizon for Alfvén waves. Therefore, it is useful to map the point
to −∞ as in the case of the analysis of the black hole perturbation
equation.
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IV. ALFVÉNIC SUPERRADIANCE AND
RESONANT SCATTERING

In this section, we discuss the wave scattering problem of
Alfvén waves by solving Schrödinger-type equation (33)
for the corotating coordinates ðT; xÞ. For Alfvén waves
to be scattered by the effective potential efficiently,
we focus only on the relatively low frequency cases:
Mω ¼ 0.050–0.250. From the coefficients of the asymp-
totic ingoing and outgoing solutions, we define the reflec-
tion rate of the Alfvén waves, then obtain the condition for
Alfvénic superradiance.

A. Reflection rate of Alfvén waves and the condition
for Alfvénic superradiance

To evaluate the asymptotic form of the wave function R
in Eq. (33), first, we examine the asymptotic form of the

effective potential. Then, the definition of ingoing and
outgoing modes in this scattering problem is discussed. As
Γ ≃ 0 in the vicinity of the two light surfaces, the
asymptotic form of the effective potential is

Vasymp
eff ≃ −

ω2J2BX
4g2φφ

Δ2
ðΩ −ΩFÞ2 < 0: ð35Þ

Therefore, the asymptotic solution of Eq. (33) is written in
the following form:

R ∝ exp

�
�i

Z
dx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−Vasymp

eff

q �

¼ exp

�
�iω

Z
dx

X2gφφ
Δ

jJBjðΩF −ΩÞ
�
; ð36Þ

where ω; X2; gφφ, and Δ are positive definite quantities,
whereas the sign of Ω − ΩF can be changed depending on
the value of ΩF and the location r. At a point far from the
black hole where the dragging effect of the spacetime is
almost zero: Ω ∼ 0 and the sign of the integrand in (36) is
positive. Therefore, the positive (negative) sign in (36)
indicates the outgoing (ingoing) wave there. We use this
asymptotic behavior of the phase of the wave function to
define the in and outgoing modes.
As the inner light surface is the causal boundary for

Alfvén waves [30], we require the purely ingoing boundary
condition at the inner light surface. The asymptotic
solutions of Eq. (33) with the ingoing boundary condition
at the light surfaces are

R ¼
(
exp ½−iω R

dx
Δ X2gφφjJBjðΩF −ΩÞ� for x → −∞;

Ain exp ½−iω
R

dx
Δ X2gφφjJBjðΩF − ΩÞ� þ Aout exp ½iω

R
dx
Δ X2gφφjJBjðΩF − ΩÞ� for x → þ∞:

ð37Þ

The ingoing wave around the inner light surface
becomes outward when the spacetime dragging effect is
so large that the sign of the integrand get flipped.2 From the
conservation of theWronskian, we obtain the reflection rate
of the wave as����Aout

Ain

����2 ¼ 1 −
fin
fout

ðΩF −ΩjrinÞ
ðΩF − ΩjroutÞ

1

jAinj2
; ð38Þ

where fin=out ¼ ðX2gφφ=ΔÞjrin=out . From Eq. (38), one sees

that the reflection rate jAout=Ainj2 exceeds unity and the

reflected Alfvén wave will be amplified through the
scattering by the effective potential (Alfvénic superra-
diance) if the angular velocity of the magnetic field line
satisfies3

Ωjrout < ΩF < Ωjrin : ð39Þ

Note that the functions Ωjrin=out depend on ΩF, hence we
need to solve the inequality for ΩF to evaluate it. As the
functions Ωjrin=out are too algebraically complex to solve,

FIG. 3. Effective potentials Veff for Alfvén waves propagating
on the magnetic surface in the vicinity of the equatorial plane for
a=M ¼ 0.2, MΩF ¼ 0.041 with Mω ¼ 0, 0.08, 0.124. The
parameter set ðMΩF;MωÞ ¼ ð0.041; 0.124Þ gives a deep bottom,
and a resonance can be seen as displayed in Fig. 6.

2This point is similar to superradiance for other waves such as
scalar waves.

3In the BTZ black string case [24], the superradiant condition
is 0 < ΩF < Ωjrin because there is not an outer light surface due
to the asymptotic AdS structure of the spacetime.
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instead of that, we plot those functions of ΩF in Fig. 4.
The superradiant condition (39) holds only in the
region II where

0 < ΩF < ΩH; ð40Þ

in Fig. 4. Therefore, the superradiant condition (39) is
exactly the same as the condition for the BZ process (22).
ForMΩF in regions I–III, we evaluate the reflection rate by
solving wave equation (33) numerically. The results for
various spin parameters of the Kerr spacetime a=M with
fixed Mω are shown in Fig. 5. Indeed, the reflection
rate exceeds unity for MΩF satisfying superradiant con-
dition (39) or equivalently (22).
In Fig. 6, we present the contour plot of the reflection

rate on the ΩF − ω plane for a=M ¼ 0.2. The contours of
jAout=Ainj2 ¼ 1 correspond toMΩF¼0 andMΩF ¼ MΩH.

Alfvénic superradiance occurs in the region between these
two lines. There is a peak associated with Ain ∼ 0 at
ðMΩF;MωÞ ¼ ð0.0412; 0.124Þ. As this situation is similar
to the quasinormal modes of black hole perturbation, which
come from the boundary condition Ain ¼ 0 with complex
frequency, we search the frequency in the complex plane of
ω with the fixed angular velocity of the magnetic field line
MΩF ¼ 0.0412. As a result, we realized a frequency giving
Ain ¼ 0 at Mω ¼ 0.1240 − 0.0002i. Therefore, the peak in
Fig. 6 reflects a resonant scattering corresponding to a
“quasinormal mode” of the magnetosphere for Alfvénic
perturbation.4 As the imaginary part of those frequencies
are negative, the present magnetosphere is stable for the
perturbation with Alfvénic superradiance. Moreover, there
is a bottom at ðMΩF;MωÞ ¼ ð0.054; 0.114Þ. The presence
of the bottom comes from Aout ¼ 0, which corresponds to a
resonant absorption of Alfvén waves. For those two cases

FIG. 5. Reflection rate for the Mω ¼ 0.02 case with several
spin parameters. The threshold forMΩF, which is marked as ∘, is
given by the angular velocity of the black hole horizon, as we
expected from Eqs. (39), (22), and Fig. 4. The values are
MΩH ¼ 0.0505, 0.104, 0.167, 0.250 for a=M ¼ 0.2, 0.4, 0.6,
0.8, respectively.

FIG. 6. Contour plot of jAout=Ainj2 on ΩF − ω plane for the
a=M ¼ 0.2 case. The vertical line labeled as 1.000 is the contour
of jAout=Ainj2 ¼ 1.

FIG. 4. Relationship among functions Ω ¼ ΩjrinðΩFÞ;Ω ¼
ΩjroutðΩFÞ, and Ω ¼ ΩF for a fixed spin parameter a=M¼0.2.
The black dots correspond to the solutions of ΩjrinðΩFÞ ¼ ΩF

and ΩjroutðΩFÞ ¼ ΩF, which are ΩF ¼ ΩH and ΩF ¼ 0, respec-
tively. The minimum and maximum of MΩF for the existence of
two light surfaces are denoted by Ωmin

F and Ωmax
F , respectively.

FIG. 7. Reflection rates for the frequencies giving the resonant
scattering and absorption in the a=M ¼ 0.2 case.

4The quasinormal modes of magnetosphere itself have already
been discussed in [31] although it is not for Alfvénic perturbation.
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with resonant scattering, the reflection rates are plotted
in Fig. 7.

V. DISCUSSION AND CONCLUDING REMARKS

In this paper, based on the force-free approximation, we
discussed Alfvénic superradiance in the Kerr spacetime to
investigate the difference from our previous work for the
BTZ black string spacetime [24]. The structure of the
background magnetic field lines considered here is a
monopolelike in the poloidal plane, and the inner and
outer light surfaces exist. We investigated the propagation
of Alfvén waves by applying a perturbation perpendicular
to the magnetic surface in the vicinity of the equatorial
plane of the Kerr spacetime.
Introducing the tortoise coordinate x, the wave equation

for Alfvén waves can be written in the form of the
Schrödinger-type equation. To investigate the reflection
rate, we defined the in and outgoing waves at asymptotic
regions near the inner and outer light surfaces. Then,
considering the conservation of the Wronskian, we derived
the superradiant condition for Alfvén waves, which is
exactly the same as that for the BZ process. Due to the
existence of the outer light surface, the superradiant
condition in the Kerr spacetime appears to be slightly
modified from the condition derived in [24]; however, in
Fig. 4, both are shown to be the same as the condition for
the BZ process after all.
The result of this study demonstrates that Alfvénic

superradiance, which was discussed only for the magneto-
sphere around a BTZ black string [24], is possible for the
Kerr spacetime case as well. Therefore, it would be
important for the extraction process of the rotational energy
of astrophysical black holes regarding relativistic jets and/or
high-energy radiations in active galactic nuclei or gamma ray
bursts. In particular, the resonant scattering is determined by
not only the frequency of Alfvén waves, but also the
parameter of the magnetosphere such as ΩF, and the
structure of magnetosphere, specifically that it provides
the shape of the effective potential. If we observe this
resonant scattering as a burstlike emission of electromag-
netic waves, information on the structure of the magneto-
sphere and the black hole spacetime would be derived.
The dynamical situation and higher order of the perturba-

tion are also important, as discussed in the recentwork [32].A
higher order of perturbation can generate a richer phenome-
non, as suggested in [32]: The second order perturbation toϕ2

obeys the Klein-Gordon equation with a source term deter-
mined by δϕ1. Specifically, the linearAlfvénwaves can evoke
the second order fast magnetosonic wave. Regarding this, a
nonlinear effect that results in the conversion ofAlfvénwaves
to fast magnetosonic waves in rotating magnetospheres
around neutron stars has been discussed in [33].
We restricted the discussion herein to a stationary

magnetosphere filled with a strong magnetic field, for
which the force-free approximation is valid. To grasp what

really happens around astrophysical black holes, it is
necessary to consider the plasma effects and the environ-
ment around a black hole such as an accretion disk, and to
discuss how the rotational energy extracted by Alfvén
waves can be transported and converted into the kinetic
energy of plasmas and how they contribute to the relativ-
istic jets. We leave these tasks for our next papers.
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APPENDIX: DERIVATION OF THE
BACKGROUND MAGNETOSPHERE NEAR

THE EQUATORIAL PLANE

Here, we demonstrate the derivation of background
magnetosphere solution (12) by solving the following basic
equation of the force-free electrodynamics:

∂μϕi∂ν½
ffiffiffiffiffiffi
−g

p ð∂μϕ1∂νϕ2 − ∂νϕ1∂μϕ2Þ� ¼ 0. ði ¼ 1; 2Þ
ðA1Þ

In general, the Euler potentials for stationary and axisym-
metric magnetosphere can be written as

ϕ1 ¼ Ψðr; θÞ; ϕ2 ¼ φ −ΩFðΨÞtþΦðr; θÞ: ðA2Þ

This was discussed by Uchida [28] with Killing vectors.
Here, to obtain a force-free magnetosphere in the vicinity of
the equatorial plane, we assume that functions Ψ and Φ in
the Euler potentials depend on the variables as

ϕ1 ¼ ΨðθÞ; ϕ2 ¼ φ −ΩFtþΦðrÞ; ðA3Þ

where ΩF is a constant corresponding to the angular
velocity of magnetic field lines. Substituting this ansatz
into Eq. (A1) and expanding it up to the first order of the
small angle measured from the equatorial plane, we obtain:

ϵ ¼ π

2
− θ: ðA4Þ

First, for i ¼ 1, (A1) yields

0 ¼ ∂θ Ψ ∂ν ðsin θ ∂θΨ∂νϕ2Þ
¼ sin θð∂θΨÞ2 ∂νð∂ν ϕ2Þ: ðA5Þ

Assuming sin θð∂ΨÞ2 ≠ 0, we obtain
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∂r

�
Δ
Σ
∂rΦ

�
¼ 0: ðA6Þ

Considering the fact Σ ¼ r2 þ a2 cos2 θ ¼ r2 þOðϵ2Þ, the
above equation becomes the differential equation only for r.
Then, the solution is

ΦðrÞ ¼ JB

Z
r2

Δ
dr: ðA7Þ

The constant JB stems from Δ=r2∂rΦ ¼ const ≔ JB and is
determined by the regularity of FμνFμν at the black hole
horizon. For i ¼ 2, (A1) gives

0 ¼ ∂νϕ2∂θð
ffiffiffiffiffiffi
−g

p ∂θϕ1∂νϕ2Þ
¼ j∂ϕ2j2∂θðsin θ ∂θΨÞ þ sin θ ∂θΨ ∂θj∂ϕ2j2; ðA8Þ

where j∂ϕ2j2 ≔ ∂νϕ2∂ν ϕ2, which is expanded as

j∂ϕ2j2 ¼ ðfunction of rÞ þOðϵ2Þ: ðA9Þ

The derivative of j∂ϕ2j2 with respect to θ is proportional to
cos θ, hence it is ignored in the present approximation.
Therefore, Eq. (A8) finally yields

∂θ ðsin θΨðθÞÞ ¼ 0; ðA10Þ

for which, the solution is

ΨðθÞ ¼ q cos θ; ðA11Þ

in the vicinity of the equatorial plane. Here, q represents the
monopole charge. Thus, the background force-free mag-
netosphere solution is obtained as (12).
To investigate the structure of the magnetic field lines,

we compute the electro and magnetic fields on the
equatorial plane measured by a Killing observer whose
four velocity is uν ¼ ð1; 0; 0; 0Þ. The nonzero components
of the electric and magnetic fields are

Eθ ¼ qΩF

r2
; Br ¼ q

r2
ðgtt þ ΩFgtφÞ; ðA12Þ

Bφ ¼ −
qJB
r2

gtt Bt ¼ qJB
Δ

gtφ: ðA13Þ

Note that this background solution corresponds to a
monopolelike magnetosphere in the vicinity of the equa-
torial plane of the Kerr spacetime.

[1] R. D. Blandford and R. L. Znajek, Electromagnetic extrac-
tion of energy from Kerr black holes, Mon. Not. R. Astron.
Soc. 179, 433 (1977).

[2] K. Toma and F. Takahara, Electromotive force in the
Blandford-Znajek process, Mon. Not. R. Astron. Soc.
442, 2855 (2014).

[3] K. Toma and F. Takahara, Causal production of the
electromagnetic energy flux and role of the negative
energies in the Blandford-Znajek process, Prog. Theor.
Exp. Phys. 2016, 063E01 (2016).

[4] T. Jacobson and M. J. Rodriguez, Blandford-Znajek process
in vacuo and its holographic dual, Phys. Rev. D 99, 124013
(2019).

[5] S. Kinoshita and T. Igata, The essence of the Blandford-
Znajek process, Prog. Theor. Exp. Phys. 2018, 3E02
(2018).

[6] S. S. Komissarov, Electrodynamics of black hole magneto-
spheres, Mon. Not. R. Astron. Soc. 350, 427 (2004).

[7] S. S. Komissarov, Observations of the Blandford-Znajek
process and the magnetohydrodynamic Penrose process in
computer simulations of black hole magnetospheres, Mon.
Not. R. Astron. Soc. 359, 801 (2005).

[8] S. Koide, T. Kudoh, and K. Shibata, Jet formation driven by
the expansion of magnetic bridges between the ergosphere
and the disk around a rapidly rotating black hole, Am. Phys.
Soc. 74, 044005 (2006).

[9] J. C. McKinney, General relativistic magnetohydrodynamic
simulations of the jet formation and large-scale propagation
from black hole accretion systems, Mon. Not. R. Astron.
Soc. 368, 1561 (2006).

[10] S. S. Komissarov, The role of the ergosphere in the
Blandford-Znajek process, Mon. Not. R. Astron. Soc.
423, 1300 (2012).

[11] S. Koide and T. Baba, Causal extraction of black hole
rotational energy by various kinds of electromagnetic fields,
Astrophys. J. 792, 88 (2014).

[12] S. Koide and T. Imamura, Dynamic process of spontaneous
energy radiation from spinning black holes through force-
free magnetic field, Astrophys. J. 864, 173 (2018).

[13] Y. B. Zel’dovich, The generation of Waves by a rotating
body, Zh. Eksp. Teor. Fiz. Pis’ma Red. 14, 270 (1971) [Sov.
Phys. JETP Lett. 14, 180 (1971)].

[14] Y. B. Zel’dovich, Amplification of cylindrical electromag-
netic waves reflected from a rotating body, Sov. Phys. JETP
35, 1085 (1972).

[15] A. A. Starobinsky, Amplification of waves from a rotating
black hole, Zh. Eksp. Teor. Phyz. 64, 48 (1973) [Sov. Phys.
JETP 37, 28 (1973)].

[16] A. A. Starobinsky and S. M. Churilov, Amplification of
electromagnetic and gravitational waves scattered by a
rotating “black hole”, Zh. Eksp. Teor. Phyz. 65, 3 (1973)
[Sov. Phys. JETP 38, 1 (1974)].

ALFVÉNIC SUPERRADIANCE FOR A MONOPOLE … PHYS. REV. D 105, 064018 (2022)

064018-9

https://doi.org/10.1093/mnras/179.3.433
https://doi.org/10.1093/mnras/179.3.433
https://doi.org/10.1093/mnras/stu1053
https://doi.org/10.1093/mnras/stu1053
https://doi.org/10.1093/ptep/ptw081
https://doi.org/10.1093/ptep/ptw081
https://doi.org/10.1103/PhysRevD.99.124013
https://doi.org/10.1103/PhysRevD.99.124013
https://doi.org/10.1093/ptep/pty024
https://doi.org/10.1093/ptep/pty024
https://doi.org/10.1111/j.1365-2966.2004.07598.x
https://doi.org/10.1111/j.1365-2966.2005.08974.x
https://doi.org/10.1111/j.1365-2966.2005.08974.x
https://doi.org/10.1103/PhysRevD.74.044005
https://doi.org/10.1103/PhysRevD.74.044005
https://doi.org/10.1111/j.1365-2966.2006.10256.x
https://doi.org/10.1111/j.1365-2966.2006.10256.x
https://doi.org/10.1111/j.1365-2966.2012.20950.x
https://doi.org/10.1111/j.1365-2966.2012.20950.x
https://doi.org/10.1088/0004-637X/792/2/88
https://doi.org/10.3847/1538-4357/aad4fe


[17] R. Brito, V. Cardoso, and P. Pani, Superradiance, Lect.
Notes Phys. 906, 1 (2015).

[18] R. Penrose, Gravitational collapse: The role of general
relativity, Riv. Nuovo Cimento 1, 252 (1969).

[19] S. M. Wagh, S. V. Dhurandhar, and N. Dadhich, Revival of
the Penrose process for astrophysical applications, Astro-
phys. J. 290, 12 (1985).

[20] N. Dadhich, Magnetic Penrose process and Blanford-Zanejk
mechanism: A clarification, arXiv:1210.1041.

[21] T. Uchida, Linear perturbations in force-free black hole
magnetospheres II. Wave propagation, Mon. Not. R. Astron.
Soc. 291, 125 (1997).

[22] M. H. P. M. van Putten, Superradiance in a torus magneto-
sphere around a black hole, Science 284, 115 (1999).

[23] J. Wilson-Gerow and A. Ritz, Black hole energy extraction
via a stationary scalar analog of the Blandford-Znajek
mechanism, Phys. Rev. D 93, 044043 (2016).

[24] S. Noda, Y. Nambu, T. Tsukamoto, and M. Takahashi,
Blandford-Znajek process as Alfvénic superradiance, Phys.
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