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We present a novel family of slowly rotating black hole solutions in four, and higher dimensions, that
extend the well known Lense-Thirring spacetime and solve the field equations to linear order in rotation
parameter. As “exact metrics” in their own right, the new (nonvacuum) spacetimes feature the following
two remarkable properties: (i) near the black hole horizon they can be cast in the, manifestly regular,
Painlevé-Gullstrand form and (ii) they admit exact Killing tensor symmetries. We show these symmetries
are inherited from the principal Killing-Yano tensor of the exact rotating black hole geometry in the slow
rotation limit. This provides a missing link as to how the exact hidden symmetries emerge as rotation is
switched on. Remarkably, in higher dimensions the novel generalized Lense-Thirring spacetimes feature a
rapidly growing number of exact irreducible rank-2, as well as higher-rank, Killing tensors—giving a first
example of a physical spacetime with more hidden than explicit symmetries.
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I. INTRODUCTION

Within the framework of Hamiltonian dynamics one can
distinguish two kinds of symmetries: explicit symmetries,
that induce a nontrivial action on the configuration space,
and, dynamical symmetries, which are the genuine sym-
metries of the phase space. Since the latter “remain hidden”
on the configuration space, they are sometimes referred to
as hidden symmetries.
Perhaps the most familiar example of a hidden symmetry

in the context of general relativity is associated with aKilling
tensor [1]. This is a symmetric rank-p tensor Kα1…αp ¼
Kðα1…αpÞ obeying the following Killing tensor equation:

∇ðβKα1…αpÞ ¼ 0; ð1Þ

which forp ¼ 1 yields a Killing vector. Eq. (1) represents an
overdetermined partial differential equation that imposes
severe restrictions on the background metric, e.g. [2]. Once
present in a given spacetime, Killing tensors give rise to
monomial integrals of motion for geodesic trajectories—the
most famous example being Carter’s constant in the Kerr
geometry [3]. Killing tensors may also give rise to symmetry
operators of the scalar wave equation and underlie its
separability [4].
Killing tensors form a subalgebra of the full algebra of

symmetric tensor fields under an operation called the
Schouten-Nijenhuis (SN) bracket [5,6]. That is, given
two Killing tensors Aα1…αp and Bβ1…βq , their SN bracket

½A;B�α1…αpþq−1
SN ¼ pAγðα1…αp−1∇γBαp…αpþq−1Þ

− qBγðα1…αq−1∇γAαq…αqþp−1Þ ð2Þ

yields another Killing tensor. In terms of these brackets, the
Killing tensor equation (1) is conveniently expressed
as ½K; g�α1…αp

SN ¼ 0.
A trivial example of a Killing tensor is the metric itself,

another is obtained by taking a symmetrized product of
Killing vectors. If a Killing tensor cannot be decomposed
into a linear combination of products of lower rank Killing
tensors, it is called irreducible. Reducible Killing tensors
are trivial in the sense that they generate no new conserved
quantities and can typically be excluded from further
considerations. While spacetimes with exact irreducible
Killing tensors are quite rare, the pivotal examples include
the Kerr family of black hole spacetimes in all dimensions
[7,8] as well as various supergravity solutions, e.g. [9,10].
Another, perhaps even more intricate, example of a

hidden symmetry is that of Killing-Yano tensors [11]
which are in some sense the square root of Killing-tensors.
In particular, of special importance for black hole physics is
the principal Killing-Yano tensor [12,13], which is a 2-form
hαβ obeying the following equations:

∇γhαβ ¼ 2gγ½βξα�; ξα ¼ −
1

3
∇γhγα: ð3Þ

It turns out that starting with one such object, one may be
able to generate a whole tower of Killing tensors. The first
of these (and the only one in four dimensions) is given by
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Kαβ ¼ ðð�hÞ · ð�hÞÞαβ ¼ Qαβ −
1

2
gαβQγ

γ; ð4Þ

where Qαβ ¼ hαγhβγ , and we have defined ðω · ωÞαβ ¼
1
p!ωαγ1…γpωβ

γ1…γp for any (pþ 1)-form ω. Notably, this
construction applies to the Killing tensor of the Kerr
geometry [12] and its higher-dimensional generalizations
[8], where it guarantees the complete integrability of
geodesic motion [3,7,14].
It is the aim of the present paper to construct a new class

of solutions with exact Killing tensors. Namely, we pick up
the threads on the recent observation [15] that an appro-
priately modified Lense-Thirring spacetime [16], which
describes a field of a slowly rotating body, admits the exact
Killing tensor. We show that this result can be extended to
the whole family of (possibly charged) generalized Lense-
Thirring spacetimes with a cosmological constant in four
and higher dimensions.
These spacetimes are “derived” from the corresponding

exact black hole solutions (seeds) in the slow rotation
approximation. As such they inherit the approximate hidden
symmetries of the exact seed solutions. Remarkably, when
these metrics are “appropriately modified,” the approximate
Killing tensor symmetry becomes exact. In addition, the
obtained spacetimes are regular on theblack hole horizon and
close to its vicinity can be cast in the Painlevé-Gullstrand
(PG) form, see [17,18].

II. EXACT KERR-NEWMANN-ADS SOLUTION
AND ITS SLOW ROTATION EXPANSION

To start our discussion, let us recapitulate the exact
Einstein-Maxwell-Λ solution for a rotating black hole—
known as the Kerr-Newmann-AdS (anti–de Sitter) metric
[19], which we write in the “standard Boyer-Lindquist
form” [20]:

ds2 ¼ −
Δ
Σ

�
dt −

asin2θ
Ξ

dϕ

�
2

þ Σ
Δ
dr2 þ Σ

S
dθ2

þ Ssin2θ
Σ

�
adt −

r2 þ a2

Ξ
dϕ

�
2

;

A ¼ −
qr
Σ

�
dt −

asin2θ
Ξ

dϕ

�
; ð5Þ

where A is the vector potential and F ¼ dA the corre-
sponding field strength, a is the rotation parameter,

Σ¼ r2 þ a2cos2θ; Ξ¼ 1−
a2

l2
; S¼ 1−

a2

l2
cos2θ;

Δ¼ ðr2 þ a2Þ
�
1þ r2

l2

�
− 2mrþ q2; ð6Þ

m and q are the mass and charge parameters, and l is the
AdS radius. One can check that the geometry at the

horizon, located at r ¼ rþ, given by the largest root
ΔðrþÞ is regular, and in particular, the Kretschmann scalar,

I ¼ RαβγδRαβγδ; ð7Þ

is smooth at r ¼ rþ. As written, the solution rotates at
infinity—this rotation can be removed by “going to the
nonrotating frame”: dϕ → dϕ − a=l2dt.
The metric is the algebraically special type D and admits

a fundamental hidden symmetry, encoded in the principal
Killing-Yano tensor h, which obeys (3), and is explicitly
given by h ¼ db, where

2b ¼ r2
�
dt − a sin2 θ

dϕ
Ξ

�
− a2 cos2 θ

�
dt −

adϕ
Ξ

�
: ð8Þ

The corresponding irreducible Killing tensor, constructed
from h according to (4), reads

K ¼ a2 cos2 θ
ΔΣ

ððr2 þ a2Þ∂t þ aΞ∂ϕÞ2 −
a2 cos2 θΔ

Σ
ð∂rÞ2

þ r2

ΣS sin2 θ
ða sin2 θ∂t þ Ξ∂ϕÞ2 þ

Sr2

Σ
ð∂θÞ2: ð9Þ

Together with the two explicit symmetries, ∂t and ∂ϕ, it
guarantees the complete integrability of geodesic motion in
these spacetimes [19,21].
Let us now perform the linear in a expansion to the above

exact solution. This yields the following approximate to
OðaÞ solution of the Einstein-Maxwell-Λ equations:

ds2 ¼ −fdt2 þ dr2

f
þ 2a sin2 θðf − 1Þdtdϕ;

þ r2 sin2 θdϕ2 þ r2dθ2 þOða2Þ;
A ¼ −

q
r
ðdt − a sin2 θdϕÞ þOða2Þ; ð10Þ

where

f ¼ 1 −
2M
r

þ q2

r2
þ r2

l2
: ð11Þ

Of course, the spacetime inherits the hidden symmetries
of the full solution to the linear order in a, given by

2b ¼ r2dt − ar2 sin2 θdϕþOða2Þ; ð12Þ

K ¼ 2a∂t∂ϕ þ
1

sin2 θ
ð∂ϕÞ2 þ ð∂θÞ2 þOða2Þ: ð13Þ

Note that since the metric is stationary and axisymmetric,
the first term in (13) is just a product of Killing vectors and
can be excluded.
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A tempting possibility is to truncate the Oða2Þ terms in
(10), and treat the resultant fields as “exact” (not neces-
sarily a solution of the field equations). However, the
spacetime has several “drawbacks.” Namely, as exact
metric, it is singular on what would be the black hole
horizon f ¼ 0, noting for example that the Kretschmann
scalar (7) diverges there at Oða2Þ. Second, both [truncated
to OðaÞ] hidden symmetries (12) and (13) remain only
approximate. Finally, the metric cannot be cast in the PG
form [22].

III. GENERALIZED LENSE-THIRRING METRIC

To fix the above “drawbacks,” let us instead consider
the following modification of the above slowly rotating
solution:

ds2¼−fdt2þdr2

f
þ r2sin2θ

�
dϕþaðf−1Þ

r2
dt

�
2

þ r2dθ2;

A¼−
q
r

�
dt−asin2θ

�
dϕþ a

fr2
dr

��
; ð14Þ

with metric function f given by Eq. (11). In what follows,
we shall call it the generalized Lense-Thirring solution,
c.f. [22]. Formally, it can be obtained by “completing the
square” in the truncated solution (10) (together with an
appropriate modification of the vector potential A to
achieve regularity of the electromagnetic invariants on
the horizon). As such, it still solves the Einstein-
Maxwell-Λ system to OðaÞ, as well as admitting the
approximate hidden symmetries (12) and (13).
However, when understood as an exact (filled with

matter) spacetime,1 it is a much better approximation for
a slowly rotating black hole than the above truncated
solution since it is regular on the horizon—the curvature
scalars, such as I (7), no longer diverge at f ¼ 0 and the
metric can be cast (at least in the vicinity of the horizon) in
the manifestly regular PG form, see the Appendix for more
details. It also has an ergosphere and will feature super-
radiant phenomena, e.g. [23]. Most remarkably, the gen-
eralized Lense-Thirring spacetime (14) falls into a class of
the Benenti and Francaviglia metrics [24] (see also [25] for
some recent applications). This means that not only does
the metric posses an exact Killing tensor, the separability of

the scalar wave equation and integrability of the geodesics
are guaranteed.2

The corresponding exact Killing tensor is given by

K ¼ 1

sin2 θ
ð∂ϕÞ2 þ ð∂θÞ2; ð15Þ

and can be understood as a slow rotation (truncated)
version of the approximate Killing tensor (13).
Interestingly, this Killing tensor can be written in the
following suggestive form:

K ¼ L2
x þ L2

y þ L2
z ; ð16Þ

where Lz ¼ ∂ϕ is a Killing vector of (14) and vectors Lx
and Ly are given by

Lx ¼ cot θ cosϕ∂ϕ þ sinϕ∂θ;

Ly ¼ − cot θ sinϕ∂ϕ þ cosϕ∂θ; ð17Þ

which upon recovering the spherical symmetry (a → 0)
would be the remaining two SOð3Þ Killing vectors. Since
Lz and ∂t are the only two Killing vectors present in the
spacetime (14), it can be checked that the above Killing
tensor is irreducible.
Moreover, we may define the following 2-form:

hð0Þ ¼ dbð0Þ 2bð0Þ ¼ r2dt; ð18Þ

obtained by the a → 0 limit of the 2-form (12). While this is
not a principal tensor even to the linear order in a, it yields
the above exact Killing tensor (15) via the formula (4) (with
h → hð0Þ). We also note that

ξð0Þ ¼ −
1

3
∇ · hð0Þ ¼ ∂t þ a

�
q2

3r4
−

1

l2

�
∂ϕ; ð19Þ

which is an exact Killing vector when q ¼ 0.
Let us finally mention that the generalized Lense-

Thirring spacetime (14) is, contrary to the exact solution
(5), algebraically general and describes a slowly rotating
charged black hole (or rotating body) that can be assigned
the following asymptotic charges:

M ¼ m; J ¼ ma; Q ¼ q

�
1þ 2a2

3l2

�
; ð20Þ

and is surrounded by (charged) matter. To linear order in a,
the corresponding first law of black hole thermodynamics

1One should be a bit cautious about the physicality of the extra
matter supporting the (modified) Lense-Thirring spacetimes. In
particular, whenQ ¼ 0 ¼ Λ, the tetrad component of the Einstein
tensor is G0̂ 0̂ ¼ − 1

2
R ¼ −ð3aM sin θ=r4Þ2, yielding a negative

energy density [22]. This is partly emended in the presence of the
additional ordinary matter—for example in our case the EM field
dominates near infinity and guarantees there positive energy
density. However, we expect that the generic Lense-Thirring
spacetimes may need to be (at least partly) supported by exotic
matter violating the standard energy conditions.

2In particular, one can check that Carter’s criterion [4]
∇αðkγ ½αRβ�γÞ ¼ 0 is satisfied. Interestingly, one can also check
that the criteria required for separability of the conformally
coupled scalar equation are not satisfied, even though this
equation does separate for Kerr-NUT-AdS spacetimes [26].
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coincides with that of the spherical charged AdS black hole,
e.g. [27].

IV. HIGHER-DIMENSIONAL LENSE-THIRRING
SPACETIMES

The above construction becomes even more remarkable
in higher dimensions. To illustrate this, let us start from the
full Kerr-AdS metric in d spacetime dimensions [28]:

ds2 ¼ −Wð1þ r2=l2Þdt2 þ 2M
U

�
Wdtþ

Xm
i¼1

aiμ2i dϕi

Ξi

�
2

þ
Xm
i¼1

r2 þ a2i
Ξi

ðμ2i dϕ2
i þ dμ2i Þ þ

Udr2

V − 2M
þ ϵr2dν2

þ 1

Wðl2 − r2Þ
�Xm

i¼1

r2 þ a2i
Ξi

μidμi þ ϵr2νdν

�
2

; ð21Þ

where

W ¼
Xm
i¼1

μ2i
Ξi

þ ϵν2; V ¼ rϵ−2ð1þ r2=l2Þ
Ym
i¼1

ðr2 þ a2i Þ;

U ¼ V
1þ r2=l2

�
1−

Xm
i¼1

a2i μ
2
i

r2 þ a2i

�
; Ξi ¼ 1−

a2i
l2

:

ð22Þ

Here, ϵ ¼ 1, 0 for even, odd dimensions, m ¼ ½d−1
2
� (where

[A] denotes the whole part of A), and the coordinates μi and
ν obey a constraint

Xm
i¼1

μ2i þ ϵν2 ¼ 1: ð23Þ

The metric admits [8,13] a principal Killing-Yano tensor,
h ¼ db,

2b ¼
�
r2 þ

Xm
μ¼1

a2i μ
2
i

�
1þ r2 þ a2i

l2Ξi

��
dt

þ
Xm
i¼1

aiμ2i
r2 þ a2i

Ξi
dϕi; ð24Þ

which generates the towers of explicit and hidden sym-
metries, see [8].
By repeating the procedure above, we arrive at the

following slowly rotating generalized Lense-Thirring sol-
ution (written now in non-rotating at infinity coordinates):

ds2 ¼ −fdt2 þ dr2

f
þ r2

Xm
i¼1

μ2i

�
dϕi þ

2Mai
r2mþϵ dt

�
2

þ r2
�Xm

i¼1

dμ2i þ ϵdν2
�
; f ¼ 1−

2M
r2m−2þϵ þ

r2

l2
:

ð25Þ

As before, the metric is regular on the horizon, f ¼ 0, near
its vicinity admits the PG form (see the Appendix), and
inherits the following approximate principal Killing-Yano
tensor:

2b ¼ r2dtþ r2
Xm
i¼1

aiμ2i dϕi: ð26Þ

Surprisingly, in addition, we have a fast growing (with
number of dimensions) tower of exact Killing tensors.
Explicitly, let us define the set S ¼ f1;…; mg and let I ∈
PðSÞ where PðSÞ is the power set of S, then we have the
following objects:

2bðIÞ ≡ r2
�
dtþ

X
i∈I

aiμ2i dϕi

�
; hðIÞ ≡ dbðIÞ; ð27Þ

fðIÞ ≡ 1

ðjIj þ 1Þ! � ðh
ðIÞ ∧ … ∧ hðIÞ|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

jIjþ1 times

Þ; ð28Þ

where jIj denotes the size of the set I. These generate the
following exact rank-2 Killing tensors:

KðIÞ
μν ¼

�Y
i∈I

ai

�
−2
ðfðIÞ · fðIÞÞμν: ð29Þ

Note that, this construction “coincides” with the one for the
full Kerr-AdS geometry [8], replacing the principal Killing-
Yano tensor h with its appropriate limits hðIÞ at the relevant
order of the small rotation parameters expansion.
Of course, in a given dimension, not all of these are

nontrivial. In fact, it is only Kð0Þ which exists in all
dimensions d ≥ 4, and is given by our familiar formula (4)
(with h → hð0Þ). Explicitly, these Killing tensors take the
following simple form:

KðIÞ ¼
Xm−1þϵ

i∉I

��
1−μ2i −

X
j∈I

μ2j

�
ð∂μiÞ2−2

X
j∉I∪fig

μiμj∂μi∂μj

�

þ
Xm
i∉I

�
1−

P
j∈Iμ

2
j

μ2i
ð∂ϕi

Þ2
�
: ð30Þ
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It turns out, however, that
P

m−3
i¼0 ðmi Þ of these are reducible,

leaving

k ¼
Xm−2þϵ

i¼0

�
m
i

�
−
Xm−3

i¼0

�
m
i

�
¼ 1

2
mðm − 1þ 2ϵÞ ð31Þ

irreducible rank-2 Killing tensors in d dimensions.
Contrary to the exact Kerr-AdS spacetimes whose number
of rank-2 Killing tensors grows linearly with number of
spacetime dimensions, in our case the growth is quadratic.
For example, already in d ¼ 8we have (for distinct rotation
parameters) six irreducible rank-2 Killing tensors and only
mþ 1 ¼ 4 independent Killing vectors—that is the num-
ber of hidden symmetries exceeds the number of the
explicit ones (more so once we also count higher rank
Killing tensors obtained by various combinations of SN
brackets—see below). However, this is still much smaller
than the maximum possible number of rank-2 Killing
tensors in a given dimension d, which for rank-p Killing
tensor (p ≥ 1) reads, e.g. [2]:

kmax ¼
1

d

�
dþ p

pþ 1

��
dþ p − 1

p

�
; ð32Þ

and for d ¼ 8 and p ¼ 2 gives kmax ¼ 540.
In addition to the above rank-2 Killing tensors, one can

also generate (potentially irreducible) higher-rank Killing
tensors via the SN brackets (2). Our construction thus
provides a physically well-motivated example in the long-
standing search for spacetimes with higher-rank Killing
tensors [29–31]. Of course, these objects are, at the same
time, approximate (to linear order in rotation parameters)
higher-rank Killing tensors for the full Kerr-AdS geometry
(21). We have verified up to d ¼ 13 that the SN bracket of
any two Killing tensors vanishes if the intersection of the
two labels equals the first. That is,

½KðI1Þ; KðI2Þ�SN ¼ 0; ð33Þ

if I1 ∩ I2 ¼ I1. Otherwise, a new Killing tensor is gen-
erated. In particular, in d dimensions this implies (taking
into account explicit symmetries and the metric as well) the
existence of d mutually commuting symmetry objects—a
necessary requirement for complete (and again exact)
integrability of geodesic motion in the spacetime (25).
We expect this to remain true also in higher dimensions.
Finally we close by illustrating the above construction in

d ¼ 6 dimensions. In this case k ¼ 3 and we have the
following irreducible rank-2 Killing tensors:

Kð∅Þ ¼ 1

μ21
ð∂ϕ1

Þ2 þ 1

μ22
ð∂ϕ2

Þ2 þ ð1 − μ21Þð∂μ1Þ2

− 2μ1μ2ð∂μ1Þð∂μ2Þ þ ð1 − μ22Þð∂μ2Þ2;

Kð1Þ ¼ 1 − μ21
μ22

ð∂ϕ2
Þ2 − ð1 − μ21 − μ22Þð∂μ2Þ2;

Kð2Þ ¼ 1 − μ22
μ21

ð∂ϕ1
Þ2 − ð1 − μ21 − μ22Þð∂μ1Þ2: ð34Þ

Their SN brackets are

½Kð0Þ; Kð1Þ�SN ¼ 0 ¼ ½Kð0Þ; Kð2Þ�SN;M ¼ ½Kð1Þ; Kð2Þ�SN;
ð35Þ

where M is the new rank-3 Killing tensor with the
following components:

Mμ1μ2μ2 ¼ −
4μ1ðμ21 þ μ22 − 1Þ

3
¼ μ22M

ϕ2ϕ2μ1 ;

Mμ1μ1μ2 ¼ 4μ2ðμ21 þ μ22 − 1Þ
3

¼ μ21M
ϕ1ϕ1μ2 : ð36Þ

Provided no additional irreducible rank-2 Killing tensors
exist in this spacetime, M is also irreducible. This tensor
further generates rank-4 Killing tensors via SN brackets
with Kð1Þ and Kð2Þ, and so on.

V. CONCLUSIONS

Starting in four dimensions, we have seen how a “small
modification” of the linear in a expansion of the exact Kerr-
Newmann-AdS black hole solution gives rise to an, in
many ways, preferred slowly rotating geometry. This
generalized Lense-Thirring spacetime is (when taken as
an exact metric) manifestly regular on the black hole
horizon and admits an exact Killing tensor.
This observation fills an important gap in understanding

as to how the exact hidden symmetries of the full Kerr-
Newmann-AdS geometry emerge as the rotation is
switched on. While the nonrotating (spherical) solution
admits an exact principal Killing-Yano and Killing tensor,
these are trivial, the latter being reducible—given by a
product of Killing vectors derived from the rotational
symmetry (and possibly time independence). Adding a
small rotation to OðaÞ breaks the full rotational symmetry
and the approximate hidden symmetries become nontrivial.
Remarkably a simple modification of the metric at Oða2Þ
yields a spacetime which in four dimensions is of the
Benenti and Francaviglia class of spacetimes [24] in which
separability of the Klein-Gordon and Hamilton-Jacobi
equations is guaranteed. The exact irreducible Killing
tensor can be understood as a (truncated) version of the
approximate Killing tensor generated from the approximate
principal Killing-Yano tensor. Both these hidden

SLOWLY ROTATING BLACK HOLES WITH EXACT KILLING … PHYS. REV. D 105, 064017 (2022)

064017-5



symmetries become exact, when the full Kerr-Newmann-
AdS solution is considered.
Naturally, a similar construction also works in higher

dimensions, which we have explicitly demonstrated for
Kerr-AdS spacetimes in all dimensions, however the
structure is much richer. The corresponding generalized
Lense-Thirring spacetimes admit a rapidly growing tower
of exact rank-2 and higher-rank Killing tensors, that is a
“slow rotation seed” of the associated (much smaller) tower
of rank-2 Killing tensors for the full Kerr-AdS geometry.
Although the higher-dimensional Lense-Thiring spacetime
(25) is not explicitly in the Benenti-Francaviglia form, we
have a tower of Killing tensors growing faster than the
number of Killing vectors—providing a first example of a
physically interesting spacetime with larger number of
hidden symmetries than the explicit ones.
We expect this construction to be quite general and apply

to many other rotating black hole spacetimes with hidden
symmetries (e.g. [9,10]). In particular, note that while in our
paper we have focused on negative Λ, the same construc-
tion would also work for Λ positive. It remains an
interesting open question whether similar construction
would also work for higher order expansions in rotation
parameters, providing thus even a more complete link
between the generalized Lense-Thirring spacetimes and the
exact black hole solutions.
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APPENDIX: PAINLEVÉ-GULLSTRAND FORM

In what follows we shall demonstrate that the general-
ized Lense-Thirring spacetimes can, at least in the vicinity
of the black hole horizon, be cast in the PG form [17,18].
As we shall see this can be formally achieved by a simple
coordinate transformation, cf. [15,22].
Let us start in four dimensions, having the solution (14).

The PG coordinates are traditionally associated with a free-
falling observer starting from rest at infinity and moving (at
infinity) radially inward. However, since our metrics have
possibly AdS asymptotics, this is no longer achievable (due
to the AdS “attraction” timelike geodesics do not reach
asymptotic infinity). Formally, however, one can consider
radially infalling observers starting from rest at a finite
radius from the black hole, determined for simplicity by
fðr0Þ ¼ 1—restricting to regions with f ≤ 1. (For

asymptotically flat spacetimes r0 approaches infinity.)
The corresponding 4-velocity then reads

u ¼ dtþ
ffiffiffiffiffiffiffiffiffiffiffi
1 − f

p
f

dr: ðA1Þ

Setting the latter equal to dT, where T is the proper time of
the observer, we arrive at the following coordinate trans-
formation:

dt ¼ dT −
ffiffiffiffiffiffiffiffiffiffiffi
1 − f

p
f

dr; ðA2Þ

upon which the solution (14) can be written as

ds2 ¼−dT2þðdrþ
ffiffiffiffiffiffiffiffiffiffi
1−f

p
dTÞ2þ r2dθ2

þ r2sin2θ

�
dϕþaðf− 1Þ

r2
dT −

aðf− 1Þ ffiffiffiffiffiffiffiffiffiffi
1−f

p
r2f

dr

�
2

;

A¼−
q
r

�
dT −asin2θ

�
dϕþ a

fr2
dr

��
: ðA3Þ

Here we have dropped the pure gauge term proportional to
dr. Formally, one can bring the metric in the PG form by
setting

dϕ ¼ dΦþ aðf − 1Þ ffiffiffiffiffiffiffiffiffiffiffi
1 − f

p
r2f

dr; ðA4Þ

upon which we recover

ds2¼−dT2þðdrþ
ffiffiffiffiffiffiffiffiffiffi
1−f

p
dTÞ2þ r2dθ2

þ r2sin2θ

�
dΦþaðf−1Þ

r2
dT

�
2

;

A¼−
q
r

�
dT−asin2θ

�
dΦþað1þ ffiffiffiffiffiffiffiffiffiffi

1−f
p ðf−1ÞÞ

fr2
dr

��
:

ðA5Þ

Obviously, the spatial hypersurfaces T ¼ const. are all
intrinsically flat, and the metric as well as the vector
potential are manifestly nonsingular for f ¼ 0. The fact
that the Lense-Thirring spacetimes can be brought into the
PG form by a coordinate transformation shows that the
Killing tensor discovered in [15] coincides with the one
studied in this paper for vanishing cosmological constant
and q ¼ 0. At the same time it shows that the metrics (2.3)
and (2.4) in [22] are at least locally diffeomorphic.
Similarly, the higher-dimensional Lense-Thirring space-

times (25) can be cast in the higher-dimensional version of
the PG form close to the horizon, by the following change
of coordinates:
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dt ¼ dT −
ffiffiffiffiffiffiffiffiffiffiffi
1 − f

p
f

dr;

dϕi ¼ dΦi þ
2Mai

ffiffiffiffiffiffiffiffiffiffiffi
1 − f

p
fr2mþϵ dr; ðA6Þ

upon which the metric takes the following PG form:

ds2 ¼ −dT2 þ ðdrþ
ffiffiffiffiffiffiffiffiffiffiffi
1 − f

p
dTÞ2 þ r2

�Xm
i¼1

dμ2i þ ϵdν2
�
þ r2

Xm
i¼1

μ2i

�
dΦi þ

2Mai
r2mþϵ dT

�
2

;

f ¼ 1 −
2M

r2m−2þϵ þ
r2

l2
; ðA7Þ

which is nonsingular on the horizon f ¼ 0 and whose T ¼ const. slices are manifestly flat.
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