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We extend our previous work in which we derived the most general form of an induced metric describing
the geometry of an axially symmetric extremal isolated horizon (EIH) in asymptotically flat spacetime.
Here we generalize it to EIHs in asymptotically (anti-)de Sitter spacetime. The resulting metric
conveniently forms a six-parameter family which, in addition to a cosmological constant A, depends
on the area of the horizon, total electric and magnetic charges, and two deficit angles representing conical
singularities at poles. Such a metric is consistent with results obtained in the context of near-horizon
geometries. Moreover, we study extremal horizons of all black holes within the class of Plebanski-
Demianiski exact (electro)vacuum spacetimes of the algebraic type D. In an important special case of
nonaccelerating black holes, that is the famous Kerr-Newman-NUT-(A)dS metric, we were able to identify
the corresponding extremal horizons, including their position and geometry, and find explicit relations
between the physical parameters of the metric and the geometrical parameters of the EIHs.
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I. INTRODUCTION

In the present article, we continue our investigation of
axisymmetric extremal isolated horizons admitting a non-
zero value of the cosmological constant A.

As we have already pointed out in our previous work [1],
the concept of an isolated horizon has many interesting and
advantageous features. Above all, it may serve as a model
describing a black hole in equilibrium with its neighbor-
hood (its accretion disk, an external electromagnetic field,
etc.), purely (quasi)locally. This can be very useful in
theoretical research as well as in various applications in
numerical relativity or related astrophysical studies [2-5].
Among significant recent discoveries let us mention the
general proof of the Meissner effect for black holes [6,7].
Our work continues along this direction. More specifically,
we rigorously analyze the uniqueness of the extremal black
hole horizons.

It has been previously shown [8,9] that when a black hole
becomes extremal (by increasing its rotation, for example), it
exhibits behavior leading to its very special properties that do
not depend on the surrounding environment. One of these
properties is the uniqueness of the induced metric on the
horizon slices of constant time. Here we extend our
previous investigations and results [1] to the case when
the black hole is situated in asymptotically (anti—)de Sitter
[(A)dS] spacetime with a nonzero cosmological constant.

fd.matej ov@gmail.com
"podolsky @mbox.troja.mff.cuni.cz

2470-0010,/2022/105(6)/064016(17)

064016-1

We systematically derive the induced metric of the extremal
horizon using the Newman-Penrose (NP) formalism, point-
ing out differences between the A = 0 and A # 0 cases. We
also compare our general result with the analogous one
previously obtained in [10-13]. We discuss the advantages
of our approach, leading to a result which—by its simple
and elegant form—allows also direct interpretation of the
obtained integration constants. In particular, we find explicit
relations between geometrical parameters of the EIHs and
physical parameters of the Kerr-Newman-NUT-(anti—)de
Sitter solution contained in the Plebafski-Demianski class
of metrics [14-21].

Let us summarize structure of this paper. In Sec. Il we
review the necessary notation and basic definitions con-
cerning isolated horizons. In Sec. Il we specialize on
extremal isolated horizons with nonzero cosmological
constant A, and we explicitly solve the constraint equations
for a function describing the horizon geometry. We also
compare our result with the analogous result already known
in literature. In Sec. IV we investigate the horizon geometry
of the most general type D black hole in a Plebanski-
Demianski family of exact spacetimes. Then we restrict our
attention to nonaccelerating black holes, that is the well-
known Kerr-Newman-NUT-(A)dS spacetime. In Sec. V we
show that such an extremal horizon has geometry identical
to the one derived for a generic EIH in Sec. II, and we also
provide explicit relations between the parameters of both
solutions. The Appendix contains a discussion of the
number and character of possible extremal horizons in
the Kerr-Newman-NUT-(A)dS spacetime.

© 2022 American Physical Society
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II. PRELIMINARIES

Here we consider EIHs with a nonzero cosmological
constant A # 0. In our convention of metric (+———), the
Einstein equations read

1
Rab - ERgub + Agab = _8”Tab' (1)

In the Newman-Penrose formalism,1 the equations are
reduced to a relation between the trace-free part of the
Ricci tensor and corresponding tetrad projections of the
energy-momentum tensor. In electrovacuum spacetimes
with A, this relation is simply

D, = 2¢a$b7 (2)

where ¢, are tetrad projections of the electromagnetic field
tensor F',.

Further, we define H to be an isolated horizon with a
cross section K. The null generator of H coincides with the
null vector [* of the NP tetrad on H, while the vectors
m“,m* span the tangent space of K, and n“ is constant
on H.

It turns out that for axially symmetric 2-dimensional
manifolds of spherical topology it is useful to introduce
adapted coordinates (¢, ¢) € [—1, 1] x [0,2x) in which its
metric has the canonical form [4]

_ w1 s 2
Gupdr'dx’ = —R (f@dc +f(C)d¢>- @)

Such metric is characterized by a single metric function
f(&) and a radius parameter R related to the horizon area
as A =4zR?. We further assume that the function f(¢)
satisfies the generalized regularity conditions at the poles
¢ = %1, namely

fl(£1) = ;2(1 +§—jr) (4)

The two parameters &, characterize deficit angles at
the poles.
A convenient choice of the spatial vector m“ on H is

V(£)og +W62>7 (5)

normalized as m,m* = —1. The only independent compo-
nent of the connection on 7 is then given by the coefficient
a defined as

M 1(
m' = ——
V2R

1 . .
For its summary see our previous work [1].

C2V2RF(Q)

With this choice, a is real on the horizon, a il a, as well as

w1 IO

a=m,om’ =a—f

. Hz .
the derivative operator § = m*V, =6 acting on a scalar
function, namely

Hn 1
S = —— O, 7
T V(&) (7)
for an arbitrary function ¢ = ¢({).

A. Electromagnetic field and the spin coefficient zyp

As we have already discussed in [1,7], the tetrad
component ¢; of the electromagnetic field tensor F,, is
on the horizon governed by the Maxwell equation which,

. . . H
under an assumption of stationarity D¢, = 0, reads

61 + 2mnpy — X (1) P2 2o, (8)

where x ;) is the surface gravity defined by the relation

Dlag}f(f)la. Equation (8) remains unchanged also in
spacetimes with the cosmological constant A # 0.
Similarly, the spin coefficient zyp, which is a subject of
a particular NP Ricci identity, remains unaffected. Namely,
the equation on the horizon reads

H
S7np + amNp = X(p)A — Txp. 9)

These two equations can be fully integrated in the axially
symmetric extremal case x(,) = 0. The explicit solutions in
the adapted coordinates are

" Crar ™ \/21%(: oy (0

in which the integration constants c,, ¢, depend only on
intrinsic properties of the horizon. It is illustrative to
express ¢, in terms of the physical electric and magnetic
charges,

. 1 2R?
0 =0 +i0y =3 § hivol() = 37 pe (11

Y

Inverting this relation gives

c¢:2—£2(c,2[—1). (12)

Notice that the general arguments which previously led
to proof of the Meissner effect [6,7] remain valid as well.
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III. GEOMETRY OF HORIZON SECTIONS

In previous section we argued that the electromagnetic
field ¢, and the spin coefficient zyp are independent of the
cosmological constant A. However, this might not be
expected for the ¥, component of the Weyl tensor, and
for the horizon geometry described by the metric function
f(£). Indeed, repeating the same arguments as in [1] we
obtain the constrain equations for ¥, and f(¢) in the form

H _
Onnp = — npZine — Vo — 2Anp,
dntp — Ontnp 2 202 — 28a — 2% + 2Awp + 4|1 2. (13)

Both equations contain additional terms proportional to the
NP quantity Axp, which is related to the scalar curvature by
Anp = R/24. Therefore, in electrovacuum spacetimes
Anp = A/6. From now on, we will use only the cosmo-
logical constant A to avoid confusion.

|

AleyPR*(1-¢?)

(Jeal? = (& +2(c, 4+ T,)8) + 3¢z + 8, — (8 4 2(c, + E,)?)

Combining these two equations to eliminate ¥, and
using Eq. (9) we arrive at

I xnl _ _
a* —da + 2| |* - EAZE (7xp — Anp)* + alzinp + Tnp)-
(14)

Further, we employ the definition (6) and the expression for
the derivative operator (7) in the adapted coordinates. After
some algebra, the final equation for f({) reads
|C + cﬂ|4f” + (2'&: + ¢+ Elr)|él + C7Z|2f/ + (clt - En)zf

+ 8R2|cy|* + 2ARX(L + E,)X (L + cp) 2o (15)

The general solution in terms of the integration constants ¢,
and ¢, has the form

[0 = —AR*(1-07) . (16)
(leal? = DIC+ ca? 3(leal? = DIC + cq?
I
where we have applied the boundary conditions at both  dy = (2/7)(2z + 5_)(2x +6,)
poles f(+1) = 0 to fix the integration constants. We also 1
impose our generalized regularity conditions (4) to find the + 3 AR?[4x(AR?> = 5) = 5(6_ +6.) + ¢*],
value of the constant ¢,. We thus obtain 4
d =-AR*(5_-6.),
6_—6, £2iAg— A+ A, (17) 3
CJT - — )
Am +6_ + 0. — 4x|Q|*R™2 — 4zAR? dy = %AR2[47;(1 CARY) + (5.1 6.) — 7],
here 1
W COE47I<1—§AR2> +(6-+6.)+ q%
Ag= 27+ 6_)(2n +6,) — 47*|Q*R™*,
4 8 Cl 52(5__5+),
Ay =3a(dn +6.+6,)AR? -2 |QPA, ¢y =4n(l — ARY) + (5_+5,) — g% (20)
4
A2 = §ﬂ2A2R4. (18)
o ) ) and we have denoted
Substitution into the formula for f(¢) yields a unique
solution. We summarize it in the following theorem, which
is generalization of [1].
Theorem 1. Let (H,[l“]) be an axially symmetric 7= 4ﬂg 1)
extremal isolated horizon (EIH) of topology ng in asymp- R?

totically (anti—)de Sitter spacetime. Then the geometry of
its spherical sections is described by an induced metric ¢,
in the form (3), where the dimensionless metric function

f(&) is given

do + d\{ + dy&*

fem(@) = (1-0%) ot el +cl2

(19)

in which

The function fg(¢) is unique and depends on six real
independent parameters, namely o,,6_,R,A, and Q=
O +1Qy,. It is well behaved, and any of these parameters
(except R when |Q| # 0) can be set to zero.

This is a fully general and explicit result for (axisym-
metric) extremal isolated horizons, expressed in terms of
geometrical and physical parameters, namely:
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Aol cosmological constant,

R ... radius defined by the horizon area A = 47R?,

q> ... dimensionless elmag charge parameter ¢*> = (47)?(Q% + 03%,)/A,
Of  wenne. two deficit angles at the horizon poles { = +1, respectively.

In fact, A and R are combined into a single dimensionless parameter AR?, so that all terms entering the coefficients d;
and ¢; are dimensionless. Moreover, d; =3AR*c; and d, =} AR?c,.

The metric function has to be positive, f({) > 0, and nonzero except at the poles where f({ = 1) = 0, which restricts
range of the parameters.

There are two natural subcases to consider:

A. The case A=0

In the spacetimes with zero cosmological constant A = 0 the metric function (19) acquires much simpler form.
The coefficients (20) reduce to

dy=(2/n)2n +6_)(2n +6,),  co=4n+(6_+6,)+ 4,
d1=0, C1:2(5_—5+),
dy =0, ey =4r+ (65_46.) - ¢*, (22)

so the function f({) simplifies to

_”
R (e E A (Ew e Ny e v >
This is exactly the function derived and analyzed in our previous work, see Theorem 1 and Eq. (65) in [1].
B. Regular axes §_=0=0,
In the case when the both poles are regular, the coefficients (20) simplify to
dy = 8ﬂ+%AR2[4ﬂ(AR2—5) + ¢°], o :47r(1 —%AR2> + ¢,
dy =0, ¢ =0,
dy — %AR2[47r(1 _AR?) = g7, ¢y = 4n(1 = AR?) = . (24)
and thus the function (19) takes the form
fem(©) = (1-0%) 2 ARAR" = +4_1]TQ2) TU-AR ﬁqZ)é’Z] (25)

(1= 5ART = L) + (1= AR = )0

As we will show below, a metric function of this form can be identified with an extremal isolated horizon of the Kerr-
Newman-(anti-)de Sitter black hole. When we set the electromagnetic charges to zero (Qp = 0 = Q,,, implying ¢*> = 0)
we obtain

2 +ARY[(AR? = 5) + (1 — AR?)(?]

fEIH(C):(l_Z:Q) (1_%AR2)+(1_AR2)C2

(26)

This is the result recently presented by Buk and Lewandowski [9], with a straightforward identification of the variables
{=x, fom =P
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C. Comparison with the general result by Kunduri
and Lucietti

An analogous result to our Theorem 1 for the geometry
of an extremal black hole has been presented by Kunduri
and Lucietti in [10] in the context of near-horizon geom-
etries. This result in general admits conical singularities as
well as electromagnetic field and the cosmological con-
stant. However, from the analysis performed in [10] it is not
immediately clear which physical quantity is related to
which integration constant. In what follows we will
compare our result (19) with the result (83) from the proof
of Theorem 4.3 in [10] for the uncharged case ¢ = 0 = g.
Such metric of the near-horizon geometry reads

ds%; = T'(x)(Agr’dv? + dvdr) + %dx2
+ % (d® + krdv)?, (27)
with
px?
[(x) = ﬁ + 1 (28)
K? K2 K2
)

(29)

When we set dr = 0 the metric degenerates if and only if
r =0. The horizon, which is a null hypersurface, is
therefore located at » = 0. Then the induced metric of a
horizon section is

(x)

24 F m d®?. (30)

The poles and the range of the coordinate x are determined
by possible roots of the polynomial P(x) such
that P(x,) =0 =P(x_).

1. The case A=0

For simplicity, let us first assume that A =0. The
function I'(x) remains the same, while the polynomial
P(x) simplifies to

4k>

P(x) :on2+clx—FA0. (31)

The range of the coordinate x is given by its two real roots,
x € [x_,x]. Since P/T is the square of the norm of the
axial Killing vector Jg, it has to be positive. This
necessarily implies Ay < 0. The roots of P(x) are

|
X = ( o F \/c%+16A(2)k2ﬁ‘2). (32)
24,

The area of the horizon section is

@, Xp
A= / a4 / /det(gl)dx
(o} X_

= (@) — D)) (x, —x_) =AD(x, —x_). (33)

Let us consider a linear transformation between the
canonical coordinates ({,¢) of (3) and the coordinates
(x, @), namely

{=wx+y, O = A¢ + &, (34)

where w, y, A, k are (not yet determined) constants. The
transformed metric reads

A [ 4aT(x)
4r (A ?P(x)

47P(x)

2
Wt 2 AT (x)

gl = ). 39)
where A = 47R?. To ensure the same form of the metric (3)
in the canonical coordinates, for which g g,, = R*, the

parameter A has to be chosen uniquely as

47
A=—. 36
v (36)
Other constants might be found from the known range of
the coordinate . The poles are located at { = 1 which
correspond to x = x,, hence

1 =wx, +y, -1=wx_+y. (37)

By using (32) and (36) we arrive at

24,

Ve + 16ALCHE

- il
i e+ 16A3B2

Now we can also determine the range of the coordinate
®. The transformation (34) gives A® = AA¢ = 2z4.
Using (36), (33), and (37) we obtain AD? = 47°.
Assuming naturally ®, > ®; we find that A® = 2.

Using (32), the black hole area (33) is thus cast into the
form

w=-

(38)

NZESTI e
A= g VT IAKFT (39)

Ao

Therefore, the coefficients (38) of the transformation (34)
have a simple form in terms of the area A, namely
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47 _ 2mcy
VI

(40)

The metric function f; can now be extracted from (35) as

47P(x)

fru(x) Em~

(41)

When we substitute all the necessary relations we get the
following formula in the canonical coordinates

8AZ(1 - &%)
VEF T 16AZR(1+ 2) + 20, ¢

The deficit angles can be now calculated using our regularity
condition (4), yielding

T
5= 2 (1R 7 ) 20 (4

Putting this expressions in our result (23) and setting ¢ = 0

we obtain exactly the function (42). Our result is thus fully

compatible with the previous results [10] in this subcase.
Notice that for ¢; = 0 we obtain simply

fKL(C) =

o, =6_= —27r<|%+ 1). (44)

In this case we can achieve a regular geometry
(6, =0 =0_) by an appropriate redefinition of the range
of the coordinate @, or by a suitable choice of the ratio
Ap/|k|, which is admissible due to a freedom in the choice
of one of the metric parameters.

2. The case A # 0

When the cosmological constant A is nonzero the
polynomial P(x) given by (29) is of the fourth order which
considerably complicates the analytic investigation.
Explicit identification of the roots x, corresponding to
the poles £ = +£1 of the horizon with the deficit angles d..
is not obvious, as well as the physical interpretation of the
integration constants in (29) and the range of the coor-
dinates employed in [10].

Interestingly, it is possible to complete this task in the
case of uncharged extremal black holes with ¢; = 0. In
such a case the key expression (29) becomes biquadratic,
so that it is possible to find its four roots as

6 16
X2, = A7 [Aoﬂ— 2AK2 T \/ AR+ M (AR = Agf) |

(45)

The poles are then located at x; = +x; or x, = Fx,,
depending on the precise values of the parameters and the

sign of A. However, our further analysis is not affected by
the specific choice, so let us take x € [x_, x, | = [—xy, xq].
Now we proceed in exactly the same way as in the
previous case A = 0. We assume the transformation (34),
which results in the relations (36) and (40), namely

~

2 ﬂ'_i

B Xy Xl
x,—x. A R¥

— - T7m 0. (46
S (46)

a =

When we put these relations into (36), we get 1 =1 and
consequently A® = 2z. The metric function (41) now
reads

TAE — 4(Aof — 2AK*)E + 16K* (Aof — AK?)
R2ﬂ2(§2+4k2) ’
(47)

fKL(C) =

where we have denoted & = SR?¢ for brevity. The deficit
angles can be calculated directly from f; or, in general,
using the chain rule for the derivative of fyp,

dfxe _ 1dfxe  dPlx) P(x) o T'(x)
& " wdr @) T TWEg @8
Using Eq. (4), the deficit angles are thus
- Pl(xi) _
b, =Frx ) 2z (49)

After substituting the functions I'(x) and P(x) from (28)

and (29), we arrive at

4k2(2Ax, — 1)+ f2x2 (3Ax — 1) —4Aopx,
4K* + pPx% '

5. =6_=2z
(50)

In this special case when ¢y = 0, the deficit angles are
equal and the black hole is nonaccelerating. In fact, these
conditions are equivalent. The metric can be regularized
(by a suitable redefinition of the range of the coordinate @,
or by a special choice of one of the parameters) if and only
if ¢c; =0. For A =0, Eq. (50) reduces to (44).

When we put Eq. (50) into our main result (19) and (20)
together with g> =0, we recover (47). Therefore, we
have proved that fi; coincides with fgpy for ¢; = 0 and
the particular choice of parameters 5, R?, g*> given by the
above formulas. We have also determined the relation of the
parameters of the metric (27) to the geometric parameters
of EIHs.

Considerable complications to identify the parameters of
(29) in the most general case c¢; # 0 of extremal isolated
horizons with A # 0 shows that our new form of the
metric function fgy(¢) given by (19), whose numerator is
factorized into a product of two quadratic terms, is more
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convenient. Moreover, it directly contains geometrical and
physical parameters, namely the deficit angles J., at the two
poles of the horizon, its area A, and the dimensionless
electromagnetic charge parameter ¢°.

IV. EXACT TYPE D BLACK HOLES

A complete class of black hole spacetimes of algebraic
type D with any value of the cosmological constant A and
electromagnetic field (which is not null and is double
aligned with the gravitation field) was presented by
Plebanski and Demianski [16], extending the previous
work of Debever [17]. Here we employ the convenient
Griffiths-Podolsky form of these solutions derived in
[19,20] and summarized as Eq. (16.18) in [15], namely

-2 (—% {dt— (asin29+4lsin2§9> dgo] +%dr2

ds?=
P’ P
+Fd92 +—sin*fladr — (7 + (a+ I)Z)d(p]2) . (51
P
The metric functions are
[l a
Q=1—-al—+—cos@ |r,
0
p? =r*+ (I +acosf)?,
P(0) =1 —ascosf — a,cos® 0,

Q(r) = (w*k + €* + ¢*) — 2mr + er?

A
S PO <a2k + —) M, (52)
0) 3
where
l A
azy = 20%m - 4a2a—2(0)2k +e*+ ¢*) —4—=al,
0] w 3
2
A
as = —02%(w2k+62+92) —gaz, (53)

while the coefficients k, €, and n in (52) are determined by
the relations

w’ 272 ! 212 ) 2
5 lz+3al k:1—|—2a5m—3a F(e + %) — A%,

(54)
%k [ a> A
€:ﬂ+4a5m—(cz2+3lz) [E(a)zk—l—ez—i-gz)—i-?},
(55)
2kl 2_l2 2 A
n= az) 2—aa m+(a*=1?)1 a—z(w2k+ez+gz)+— :
a-—1 0) 3

(56)

The metric (51) thus depends on seven usual physical
parameters m, a, l, a, e, g, A which characterize mass,
Kerr-like rotation, NUT parameter, acceleration, electric
and magnetic charges of the black hole, and the cosmo-
logical constant, respectively.

In addition, there is the twist parameter o related both to
a and [ (see the discussion in [18,19]). As demonstrated in
our previous works [1,21,22], it is very convenient to use
the remaining gauge freedom to fix @ as

a? + 12
= ) 57
0= (57)

With this choice, the general metric (51) reduces directly to
the familiar forms of either the Kerr—Newman-(A)dS, the
Taub-NUT-(A)dS solution, or the C-metric with charges,
rotation, and the cosmological constant, without the need of
further transformations, simply by setting the correspond-
ing parameters to zero.

An important observation for our work is that horizons
are located at values of the radial coordinate r = r;, which
are determined by a condition

Q(r,) = 0. (58)

An extremality of the horizon is related to its degeneracy,
and can be expressed as

Q(ry) =0, (59)

where the prime denotes the derivative with respect to r. As
we have shown in our previous work [1], this condition is
equivalent to the requirement of vanishing surface grav-
ity x &) = 0.

The explicit form of the key metric function Q(r) given
by (52) is rather complicated when (54)—(56) are employed.
It is a quartic expression in the coordinate r, but the
coefficients are rather cumbersome. Interestingly, for
A =0 it can be explicitly factorized to four roots [18],
thus simply identifying the corresponding horizons. This
fact enabled us in [1] to find and study the properties of all
admitted extremal horizons.

In order to proceed with the analysis in the present case
with a general cosmological constant A, we have to make
an additional simplifying assumption. It turns out that we
can identify the extremal horizons of all nonaccelerating
black holes of algebraic type D in the Plebanski and
Demianski family.

A. Nonaccelerating black holes (a=0)

For vanishing acceleration, i.e., for the Kerr-Newman-
NUT-(anti-)de Sitter black holes, by setting @ = 0 the
expressions (53) and (54)-(56) with (57) considerably
simplify to
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4
as = —gl\al, a, = —gAaz,
o’k 1
mzl—/\lz, € = 1—51\(6124’612),
1
n= [1 +3 A~ 412)] l. (60)

The metric (51) with (52) thus reduces to

0 . L1 2 p?
ds? == |dt— 201 41sin®~0 |do| —-Z-dr?
S pz{ (asm —+4/sin > ) go} 0 r
p’ p
—Fdw——zsinze[adt—(r2+(a+l)2)d<p]2, (61)
P
with

P =r*+ (I +acosh)?,
4 1
PO) =1+ 5Aalcos€ + gAa2 cos? 0,
Q(r) = (a> = P)(1 = AP) + &* + ¢* = 2mr

1 1
+ {1—1\(56124—212)}#—5/\#, (62)

in full agreement with Eq. (16.23) of [15]. Recall that this
class of solutions is contained within those found in
different form by Carter [23], and that its particular
subclasses were presented and discussed, e.g., by Frolov
[24], and Gibbons and Hawking [25].

For further investigations it is useful to rewrite these
black hole spacetimes in an equivalent form by introducing
a coordinate

¢ =coso, ce[-1,1]. (63)

The metric (61) then becomes

9 2 2 ’ 2
ds? = = [dr — (a(1 = ¢%) + 21(1 = ¢))dy] —édr
P
s P
— ?dg2 — ; [adt — (7 + (a + 1)?)de]?, (64)
where
pP=rt+ (I +ag)?, (65)

P(e)=(1-¢H)P(¢)

4 1
=(1-¢&) <1 +3Aale + §Aa2g2> ,  (66)

while Q(r) remains the same is in (62).

B. Geometry of the horizons of nonaccelerating
black holes

In our previous paper [1] we investigated a class of exact
spacetimes of the algebraic type D with A =0, and we
derived explicit results for a metric function which
describes the geometry of extremal black hole horizons
in this class. Interestingly, the derivation of these results
does not differ from the case when A # 0. Hence, using the
formula (55) in [1] (summarized in Theorem 2 of [1]), the
corresponding metric function reads

_4irC2 2 p " P(2)
~oa e g

where the dependence on A is implicit via the specific
function P. For nonaccelerating black holes studied here
the functions P and p are given by (66) and (65),
respectively, while Q =1 because o = 0. Let us recall
that these functions have to be regarded as functions of a
new coordinate ¢ which is related to ¢ via

fo(¢) (67)

_s—aru(g+59)
l—ary(&c+1)’

[0}

¢(e) (68)

see Eq. (53) in [1]. However, in the present case o = 0 this
is just an identity, { = c.

The horizon area A of an extremal black hole whose
horizon is located at ry, entering the expression (67), is

A =4znC[r3 + (a +1)?], (69)
see Eq. (51) in [1] for the case a = 0.
Finally, the deficit angles around the poles are given by
Eq. (57) in [1],

5, =2n(C(l —ay —ay) —1),

I”2 a 2
5= 2ﬂ<C(1 +a; — aU%— 1>. (70)

Recall that the free conicity parameter C was introduced to
ensure the correct range [0,27z) of the adapted angular
coordinate ¢.

V. IDENTIFICATION OF EIHS WITH HORIZONS
OF ALL TYPE D NONACCELERATING
EXTREMAL BLACK HOLES

As we have already mentioned, the most important
subclass of the general family of type D black holes are
solutions without acceleration (@ = 0). In fact, these are the
famous Kerr-Newman-NUT-(A)dS black holes character-
ized by six physical parameters m, a, [, e, g, A. Such space-
times in general contain two black hole horizons, which
“merge” when the black hole is extremal, and two
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cosmological horizons due to the presence of a cosmo-
logical constant A.

In view of (62), Eq. (58) which localizes these horizons
takes the form

1 1
§Ar4 — {1 —A<§a2 + 212)} r%l + 2mry,

—(@* =P+ + @)+ AP@®-1P)=0. (71)

For A =0 the condition of extremality (59) relates the
value of the radial coordinate and the mass parameter
directly as r;, = m, see [1]. Inspired by this relation, we can
express the mass parameter m from Eq. (59) by taking the
derivative of Q given by (62). An algebraic manipulation
leads to

1
m=r,— gl\(a2 + 612 +2r2)r). (72)
When we substitute this relation back into (71) we obtain

1
(rp + P)(Ar + AP —1) + §Aa2(r}, - 302)

+a’+ e+ =0. (73)

Interestingly, this is a quadratic equation for rfl whose
distinct two roots are

1 1
2 2 2
ry A [1 A(3a +21) \/D},

L[I_A(iaz+2lz)+@} (74)

2
"¢TaA 3

where

14 1 1
D=1 —A<?az —|—4€2+492> +A2a2<§a2 +?612>.

(75)

The first root ry represents a black hole horizon, while r¢
localizes a cosmological horizon. To see this directly, let us
compute the area of the two surfaces. Substituting these
values of ry and r¢ into (69) gives

22C 5
AH—L{1+Aa<—a+4Z> —\/5],

A 3
2
Ac_%c{1+Aa<§a+4l>+\/l_)], (76)

respectively. Expansion for small values of A leads to

Ay = 4nC2a(a + 1) + & + ¢*] + O(A),

AC:471C%+O(1). (77)

In the limit of asymptotically flat spacetime A — 0, the area
Ac diverges, i.e., the cosmological horizon expands to
infinity. On the other hand, in this limit the black hole
horizon has the area Ay =47Cla* = >+ >+ >+ (a+1)?]|=
4zC[ry+(a+1)%] and m = ry, which fully agrees with
Egs. (110) and (109) of [1], respectively.

From (74) it is obvious that for each r and r% there
actually exists a pair of horizons, namely +ry and £rc.
There are thus extremal horizons in both regions » > 0 and
r < 0. Moreover, it can be seen from (72) that r, — —r,
corresponds to m — —m. By substituting +ry from (74)
into (72) we obtain an explicit expression m(a,l, e, g, A)
determining the value of the mass parameter for the
corresponding extremal black hole horizon.

The precise number and degeneracy of these extremal
horizons in the Kerr-Newman-NUT-(A)dS spacetime
depend on the cosmological constant A (primarily divided
into the distinct A < 0 and A > 0 cases) and on specific
values of the physical parameters a, /, e, g. In the Appendix
we carefully discuss all the possibilities. Let us summarize
here only the main results:

(1) In the A < O case there is no cosmological horizon.
The extremal black hole horizon is located at ry
given by (All), provided the NUT parameter !/
satisfies the condition (A10).

(i1)) In the A > 0 case the admittable values of the
cosmological constant form a discontinuous interval
A € (0,A7] U (AT, o0), where A* are given by (A7).

(iii) The boundary value A~ characterizes a situation
in which all horizons merge into one multiple-
degenerate horizon located at ry = ro given by
(A20). Moreover, the NUT parameter [ has to fulfill
the condition (A17).

(iv) For A € (0,A™) there is the extremal black hole
horizon as well as the cosmological horizon at ry; and
rc expressed by (A33) and (A34), respectively. The
value of [ is again restricted by (A17). Depending on
the relative values of |a| and |/|, the cosmological
constant A is further restricted by (A35), or is not
restricted at all.

(v) On the other hand, existence of the extremal black
hole horizon is automatically excluded when
A € (A, ). In this case, the cosmological horizon
is present only if |/| < |a| and A is greater than A,
given by (A6).

Let us now return to the main topic of this section which
is the identification of the metric functions fg({) and
/(&) of extremal black holes. The former is given by (19)
while the latter by (67). For nonaccelerating type D black
holes it simplifies to
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1 +3Aall +1Aa?$?
=C 2 12 1= 2 3 3 , 78
fo=Clry+(a+1)?(1-8%) 24 (It al)? (78)
and the deficit angles (70) around the poles are
1
o, = 27TC|:1 +§Aa(a +41)} —2r,
1 4+ (a+1)?
5_=27C|1 +sAa(a—4l)| H——5-22. (79

To keep the relations compact and readable, we do not
substitute for ry from (74).

To complete the investigation of the extremal isolated
horizons in the full family of Kerr-Newman-NUT-(A)dS
black holes, we substitute the values (79) for 6, together
with the relation R? = C[r}, + (a + )%, see (69), into the
formula (19), (20) for fg, and we compare the resulting
function with (78). It turns out that it is possible to match
fp and fgm exactly by a unique choice of the dimension-
less charge parameter g2, namely by

(ry + )1 =A(rg, + )] —a?[1 + A(% r —1%)]

2 = 4nC
S i+ (=1

(80)
Indeed, for these values of §,, R?, and ¢ we obtain

dy = CE[ry; + (a +1)?],

4
¢y = B2al, dy = CE[ry + (a +1)?] §Aal,

1—3AQ2r + 22 + a?)

EISC )
d 3+ (a—1)?

(81)

so that (19) is exactly the function (78).

Moreover, using the definition (21) of g for (80) and the
area A = 47R? of the extremal black hole horizon at ry
given by (69), we arrive at the explicit relation between the

|

physically defined charges (11) and the parameters of the
type D metric (61) as

03+ 03 = IO [0, 4 )1 - A + )
—a2[1+A(§r§,—zz)H. (82)

Expressing ry using (74), that is %+ =

(1 —=1Ad® = V/D)/(2A), we get

1+ AaGa+4l)—v/D
1+AaBGa—-4l)- VD

POy =C

(e +g%). (83)

where D is given by (75). The physical charges Qr, Q,, are
thus directly related to the metric charge parameters e, g,
although they are not identical. However, a simple relation
0% + 03, = C*(e* + ¢*) is recovered if and only if
al\ = 0,1.e., when the Kerr rotation vanishes (¢ = 0), when
the NUT parameter vanishes (/ = 0), or in the absence of the
cosmological constant (A = 0).

We can thus summarize the results in the following
theorem.

Theorem 2. Extremal horizons in the complete family of
Kerr-Newman-NUT-(A)dS black holes (all extremal black
holes of algebraic type D without acceleration) are located
at ry determined by (74). Their geometry is represented by
the induced metric of the form (3), where the metric
function fp is given by (78).

Moreover, this function precisely coincides with the
metric function fgy({) of axisymmetric extremal isolated
horizons (EIHs) in asymptotically (A)dS spacetime, given
in Theorem 1. The geometric parameters of EIHs are
identified with the parameters of the metric (61) via the
relation R? = C[r% + (a + [)?], the deficit angles &, &_
around the poles are given by (79), and the physical charges
Qf, Q) are given by (83).

A. Kerr-Newman-(A)dS black holes (I1=0)

Let us have a closer look at the physically most relevant
case, when the black hole represents a charged and rotating
mass in (anti-)de Sitter spacetime without the NUT
parameter.

The black hole extremal horizon r; > 0 (and ry < 0) is
located at the radial coordinate

L[ 14 1
ré:ﬂ{l—gAaz—\/1—A<?a2+4e2+4gz> +§A2a4} (84)
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see (74). By setting [ =0 in (78), the metric function
simplifies to

but for a unique choice of the conicity parameter

1 +1Ad?s? 1 -1
The deficit angles (79) remain nonzero, namely
| we obtain a solution with both poles regular.
5, =6_=2aC (1 + —Aa2> —2n, (86) Then the function f,({) given by (85) has precisely the
3 form of (25) of fry (&), with
|
7= dn ry —a* =L Arg,(3ry + a?) _ 8zA(e* + ¢°) (8)
2 2 TA2 .
(i @)A1 LA (143002 - /1= A(Ea + 462 +4¢) + L)
|
This is consistent with (80). Notice also that the limit A —0 > 2,2 n , 1
is well defined and nonzero, rp=e¢ g - F+OQ) e = A +0(1), (93)

e’ + ¢
limg> =4 ——-7—. 89
Ao "2 +er+ ¢ (89)
Due to (21) and (76), the relation between the charge
parameters is

ez—i—g2

2 2 20,2 2\
QE+QM_C(e +g)_(1+%/\a2)2' (90)

The genuine electric and magnetic charges Qf, O are thus
proportional to the metric charge parameters e, g. However,
the proportionality factor C determining the conicity is now
fixed by the condition (87) to achieve 6, =0 =24_, i.e.,
regular both axes.

B. Charged NUT-(A)dS black holes (a=0)

In this part we concentrate on non-rotating black holes
characterized by a condition a = 0. In fact, in this case
necessarily a = 0, because there is no accelerating NUT
solution in the considered class of type D spacetimes [18].

Equation (73) simplifies to

(rh + )Y (Ary, + AP = 1)+ 2+ > =0, (91)

with explicit solutions

1—\/1—4A(62+92)_12

ris = 27 ’
14+ /1= 4A(? + ¢
= 19)_p (92)

Expansion for small values of the cosmological constant
yields

so we immediately recognize the black hole horizons at ry
and the cosmological horizons at r¢.
The area of the black hole horizon given by (69) is

1—/1-4A(E 1 &
A =2nC (e’ +9)

A ’

(94)

which for A — 0 reduces to 4z7C(e” + ¢*), in agreement
with the results of [1]. Notice also that in absence of electric
and magnetic charge ¢ = 0 = g, the black hole horizon can
not be extremal.

Under the current assumption of a nonrotating black
hole, the metric function (78) simplifies considerably to

fog)=c1-2). (95)

This result does not depend on A, and is the same as in the
case when A = 0. Geometry of the black hole horizon is
that of a quasi-regular sphere. The deficit angles (70)
around the poles are zero provided C =1 because
ay; = 0 = ay, and thus

5. =6_=2r(C—1). (96)

In order to map the metric function fry(¢) to fp((), we
substitute the above relations into (20) which gives

dy = 87C* + %ARz [47(AR? = 5C) + ¢,
o= 47r<C - %AR2> +q°

d, =0, c; =0,

d, = %AR2[47z(C - AR?) - 4%,

¢y = 4n(C — AR?) — ¢*, (97)
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so that the metric function (19) becomes

2C? +3AR’[(AR® = 5C + 4. 4°) + (C — AR — L. ¢*) ]

fEIH(C) = (1 - 52)

It reduces to (95) if and only if we choose
q* = 47(C — AR?) = 4zC[1 — A(r3; + P)].  (99)

Using the definition (21) of ¢* and substituting for r from
(92) and (69) we arrive at

0f + Qi = C*(e* + 7°). (100)
The physically defined charges Qg, Q) are thus directly

proportional to the electric and magnetic parameters e, g of
the type D metric via the conicity C.

VI. SUMMARY

The main aim of this paper was to extend the results from
our previous work [1] in which we investigated in detail the
unique properties of axially symmetric extremal isolated
horizons (EIHs) in asymptotically flat spacetimes. Here we
considered such horizons in asymptotically (anti—)de Sitter
spacetimes with nonzero cosmological constant A # 0.

After we introduced in Sec. II the necessary notation and
basic definitions we systematically studied constrain equa-
tions following from the NP formalism. We concluded that
the electromagnetic field, represented by tetrad projections
¢;, and the spin coefficient zyp remain unchanged com-
pared to the case with A = 0. Namely, in the natural
coordinates ¢ and ¢ adapted to the horizon geometry they
are given explicitly as

n |f 1 H_
”NP_\ER(CH”)’ ¢1_(C+cn)2’

see Eq. (10). Using these results, we were able to integrate
the remaining Eq. (14) constraining the horizon geometry.
Our first main result of this paper is summarized in
Theorem 1. In particular, the metric function fgp; describ-
ing the induced metric on the horizon reads

(101)

do + d\{ + dy&?

fem($) = (1-0%) cot el +cl2

(102)

where the constants d;, c¢; are given in (20). The function is
unique, well behaved, and depends on six real independent
parameters, namely two deficit angles ., , 6_ at the horizon
poles, the square of the radius R> (the horizon area A
divided by 4x), the cosmological constant A, and the total
electric and magnetic charges Qf, Q,,. It further simplifies

(C—EART - 5q?) + (C = AR = )

(98)

for various special choices of these parameters. For
instance, we recover the recently derived solution (26)
by Buk and Lewandowski [9] when the function fgpy is
assumed to be regular at both poles (6, =0 = o_). For
A = 0 it precisely reduces to the solution (23) which we
investigated in [1].

We also compared our result (19) with an analogous,
previously known result (30), which was derived in the
context of near horizon geometries [10—13]. In two special
cases of uncharged black holes (when A =0 and ¢; = 0,
respectively) we proved the equivalence of the results.
Furthermore, we discussed advantages of our approach
which leads to a more elegant form with integration
constants having a direct geometrical interpretation and
with the full gauge freedom already fixed.

Our second objective here was to compare the general
result (19) with the horizon geometry of extremal black
holes in the Plebafiski and Demianiski class of exact
solutions of the algebraic type D. It is represented by
the line element (51) in a convenient parametrization by
Griffiths and Podolsky [19,20]. In [1] we derived a specific
metric function fp, which describes the geometry of the
horizon of such type D black holes. Its general form (67) is
not affected by any value of A, since it enters the function
only indirectly via P,A,ry. Hence the formula (67)
remains valid also for A # 0.

For reasons of simplicity, we restricted our subsequent
analysis to nonaccelerating black holes with o = 0, that is
to the family of Kerr-Newman-NUT-(anti—)de Sitter black
holes (61) and (62).

We identified two types of extremal horizons—the black
hole one and the cosmological one. They are located at
radial coordinates +ry and £, respectively, expressed by
(74). Their precise number and degeneracy depend on the
cosmological constant A (primarily divided into the distinct
cases A < 0 and A > 0), as it is carefully analyzed in the
Appendix.

In the last part of Sec. V of our work we were able to
show that the function fp has the same form as fgy for
every combination of the physical parameters. The result is
summarized in Theorem 2. The metric function fp, is
simplified to (78), namely

1+3Aall +iAa*C?

fD:C[r%{+<a+l)2](1_§2) r%[_,_(l_'_aé’)Z

(103)

This function is equivalent to fgy if we choose the
dimensionless charge parameter ¢° as
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(4 )1 = Ay + ) a1+ Ay~ )
r+(a—1)? ’
(104)

qz =4rC

see (80). The key observation is that it does not depend on
the coordinate ¢, thus it can be regarded as a different
parametrization of the same function. The reason why we
had to find its (unique) value is that the parameters of the
metric (61) have well-understood meanings only in special
cases. Applying the definition (21), we thus obtained a
nontrivial relation between the genuine electric and mag-
netic charges (11) and the charge parameters of the Kerr-
Newman-NUT-(anti—)de Sitter metric, namely

,1+Aa(3a+4l)— D
1+AaGa—4l) - VD

01+03=C (e*+¢%). (105)

where D is given by (75). The charges are mutually propor-
tional, Q% + Q3, = C?(e? + ¢?), if and only if alA = 0.

In Sec. VA we concentrated on the physically most
relevant subcase when / = 0. We found that the poles are
not generally regular, although they can be regularized by a
suitable choice (87) of the conicity parameter C. Due to
this choice there is a specific relation (90) between the
electric and magnetic charges, which simplifies to equality

2 + 03, = €> + ¢ in asymptotically flat spacetimes.

Another interesting example was discussed in Sec. V B.
It represents the most general non-rotating (a = 0) charged
NUT black hole of type D in the (anti—)de Sitter back-
ground. The intrinsic geometry of its horizon is identical to
the geometry of a quasiregular sphere (95), and it does not
depend on any parameter apart from the free conicity
parameter C. Though not obvious, the function fgp; also
admits this possibility, and it appears when the dimension-
less charge parameter g> has the particular value given
by (99).

A possible extension of the current work is to study the
structure of EIHs in the most general type D spacetimes
with a nonzero acceleration parameter a. Another possibil-
ity would be to investigate geometry of a “nearly extremal”
horizon x(,) — 0, or to relax the assumption of axial
symmetry in a nonlinear setting.
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APPENDIX: ANALYSIS OF THE NUMBER AND
DEGENERACY OF THE EXTREMAL HORIZONS
OF NONACCELERATING BLACK HOLES

To simplify the analysis, let us denote
x=r7, (A1)

and rewrite the key Eq. (73) for the position of the horizons
in the standard form

px*+qx+s=0, (A2)
where the constants are
p=A,
1, 2
s=a*+e*+ g - P+ NP> -d?). (A3)

The solution of this
(=g £+/D)/(2p), that is

quadratic equation is x; =

! [1 —A<1a2 +212> i%ﬁ],

Xy = ﬁ 3 (A4)

where the discriminant D = ¢> — 4ps reads

14 1 16
D=1-A (?az +4e? +4gz> +A%a? <§a2 +?lz) . (A5)

It is a quadratic expression in A.

In order to have a well-defined coordinate position of a
horizon r;, by (A1), the corresponding root has to be non-
negative, x > 0.

The special case when x = 0 = rj, implies s = 0, which
appears whenever the cosmological constant takes the
special value

a* =P+’ + ¢
Ao = lz(az_lz)

(A6)

In the uncharged case, A, = [72.

The number of real roots x is determined by the sign of D
in (A4). This discriminant vanishes for certain values of A,
namely

Ai

_ ;7@ 46>+ 64 + V (7d% + 6€% + 642)% — a*(a® + 4812)
B a*(a* + 481%)

. (A7)
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Such values A* are real and positive provided
a*(a*> +48P2) < (7a° + 6¢* + 64%)%, i.e.,

s T, ., 3(E+gP)?
I <a +4(e +g)+4 R (A8)
For uncharged black holes this condition is simply > < a?.

For negative values of A the discriminant (AS) is always
positive, while for positive A it acquires negative, positive,
and zero values. The case A = 0 was investigated in our
previous work [1]. Thus, we restrict our attention to the
remaining cases A $ 0, which we will discuss separately.

1. The case A <0

Since D > 0, there are always two real roots x.. given by
(A4). Due to (A1) these have to be positive. It is easy to
infer that x, <O for any combination of the metric
parameters (indeed, p <0 and —g > 0, so that x, >0
implies —g 4+ /D < 0 which is a contradiction). On the
other hand, from x_ > 0 we obtain a non-trivial constraint

—q<\/_:\/q2—4ps©5>0

S A - (1+AP)P+a®>+ e+ ¢ > 0.

If [ = 0, the last inequality holds for any ¢, e, g. Hence, we
may regard it as a restriction imposed on the admittable
values of /. It is a quadratic polynomial in /> with two roots

) 1+ A+ /(1 +Ad®)? +4(=A)(a*> + e + &)

(A9)
|

Now, (1?), < 0 (since for A < 0 the expression under the
square root is a sum of positive numbers) which is
forbidden. The second root (/?)_ defines a maximal range

of [
Inax =1/ (P)_. (A10)

In the wuncharged case when e =0=g¢g we obtain
(1?)_ = a@?, so that the interval is simply |/| < |al.

To summarize, in the case A < 0 there is no cosmologi-
cal horizon (which would be at r2C =x,) while the

extremal black hole horizon is located at

le (_lmax’ lmax)’

1 1
2 — — _ -2 2\ _
Iy =X A {1 A(sa +21> \/D], (All)

see (A4), where the discriminant is given by (AS5).

For the special value A = Ay < 0 of the cosmological
constant given by (A6) with a> < > < a®> + > + ¢, we
obtain ry = 0. This also admits the nonrotating case a = 0.

2. The case A > 0 with A=AT

When D =0, all horizons merge into one multiple-
degenerate horizon. The corresponding solution for x, =

X, =x_1s
1 1
f=—e—-—a? -1 Al12
7oA 6 (A12)

Positivity of this root requires A*(a* 4 217) < 1.
This is violated by A, as demonstrated by the following
estimate,

1 7a* + 6e% + 647 7a* + 6e% + 6g%)* — a*(a® + 481°
A (Lasap :a+e+g+\/(2a2+e—2|—g) a*(a” + )(a2+6lz)
3 a*(a* + 481%)
7a? + V48a* — 48a* I
> 2161 = F(&), Al3
02(024-48]2) (d + ) <§) ( )
where we have introduced Y= e? 4; 7 >0, W=7+ 6. (Al5)
a
2 7+ /48T =€
=—->0  F(§)l=— " (1+6&). Al4 so that
(1, , 5 14+6&

The function F(&) monotonously decreases for & € [0, 1], A <§a +2 ) - [’7_ Vi (1 +48§)} 1+ 488 (A16)

with minimum F(1) = 1, so that F(&) > 1. The value A™ is
thus not admitted.

The complementary value A~ yields a possible solution,
but the ranges of the metric parameters are restricted. Let us
define dimensionless constants

This expression is required to be < 1, which implies a
constraint on the possible values of /. Using n > 7, we get

6 <n—54/n* —8n+ 23, that is
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1 4
< gaz +e?+g* + \/§a4 +a*(e®+ @)+ (e + &)
(A17)

For e = 0 = g we simply obtain |/| < |a| as in the previous
case A < 0.

Using the parameters introduced in (A14) and (A15), the
condition (A8), which guaranties that A~ is well defined,
can be rewritten in the form

485 < —1. (A18)

Then it is easy to show that for all n > 7

8<n—5+ \/772—8774—23) <P -1 (A19)

The condition (A17) thus restricts the values of [ more
than (A8).

Under the condition (A17), the multiple degenerate
horizon is located at

1 _1a2_12’

A6 (A20)

ry=re=
where A~ is given by (A7).

3. The case A > 0 with A # A™

In this general case with positive cosmological constant
there exist two distinct extremal horizons at ri = x if and
only if A€ (0,A7) U (A", ). Otherwise, there are no
horizons and the singularity is naked.

The roots x_, explicitly given by (A4), must be positive.
The condition x, > 0 requires —g > —/D, which is
equivalent either to ¢ < 0 or to s < 0. On the other hand,
for x_ > 0 one needs —¢q > /D which is g <0ands > 0.
The latter conditions are stronger than the former, thus
x_ > 0 implies x, > 0.

Let us investigate the condition x_ > 0. It differs from
the A < 0 case, because ¢ might be positive or negative as
well, which induces an additional constraint for A, not only
for I. We require

1
1) —q_l—A<§a2+2lz> >0, (A21)

) s=(a’>-P)1=AP)+e*+ g >0. (A22)

The first condition is violated by every A > A" because

A(% a* + 212) > A* (% a® + 212> >FE)>1, (A23)

where we used our previous estimate (A13). On the other
hand, it is fulfilled by every A < A~ provided [ is bounded
by (A17).

It is useful to introduce another dimensionless (positive)
parameter

A= da’A, (A24)

and analogously,
At =a?AT.

I~ =a®A-, (A25)

The inequalities (A21) and (A22) are then recast into the
form

1) 1—,1(%+2§> >0, (A26)

D) 1—¢+y—2E1-8)>0. (A27)

When £ < 1, that is for |l| < |a|, we may write these
conditions as

3
D e (A28)
2) 15(_15_2’)” > 2, (A29)

where the expressions on the left-hand sides are functions
of &, also depending on the parameter . For any fixed &
they determine the maximal value of 4. Admissible values
of 1 for each & are represented graphically by the dark
shaded area in Fig. 1.

A
\ —
Y L S N
20F % \ 2_
'._“ N = e /\
i \ — — A
\
15} \
AN
N
AN
1.0 N
~
~~~~~~ ~
...... ~
............. ~

0.0 0.5 1.0 1.5

FIG. 1. Specific constraints on the values of the dimensionless
metric parameters & = [2/a? and 1 = a®?A. The inequality (A28)
is represented here as the curve 1, while the inequality (A29) is
represented as the curve 2. Also shown are the values A~ and A+
given by (A25) and (A7). The shaded areas denote the admissible
values of the parameters £ and A. The dimensionless ‘“‘charge”
parameter y was chosen here as = 0.1, but qualitative behavior
is the same for any y > 0.
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For 0 < £ < 1 we have an estimate

1—§+w> 3
§1-¢)  1+6¢

> A" (A30)

for any value of y > 0. The cosmological constant is thus
not additionally restricted, and it remains A € (0, A™).

For & > 1 we have to reverse the inequality (A29) which,
apart from the upper bound 47, bounds the value of A from
below

s-l-y
£e-1)

In this case necessarily y > 0. These inequalities imply a
maximal value for £ as well, namely

<< (A31)

< —:.
1+ 6¢

1 4
§<§+y/+ —+y(y+1). (A32)

9

Written in terms of the physical parameters, it is exactly the
condition (A17). In particular, = 0 requires £ < 1, that is
e = 0 = g requires || < |al.

To sum up, in the case of a positive cosmological
constant A € (0, A”) there is the extremal black hole
horizon as well as the cosmological horizon, located at

r = % [1 - A(%a2 + 212) - \/5}, (A33)
1 1
&,zix[l—A<§a2+2F>—%vTﬂ, (A34)

provided the value of the NUT parameter [ satisfies the
condition (A17). If |a| > |I| the value of A is not further
restricted, while if |/| > |a| and e + ¢* # O there is a lower
bound for A given by

a’>—P+e*+ ¢

(A35)

Finally, let us look at the second condition x, > 0. We
have already shown that if ¢ < O then it is sufficient to have
positive x, irrespective of the sign of s. However, if ¢ > 0
one can still ensure that x,_ is positive by requiring s < 0. In
such a case there is only a cosmological horizon. In the
interval 0 < & <1 (that is for |/| < |a|) we obtain the
following restriction on the values of the cosmological
constant

I1-é+y
§(1-¢)

In terms of the physical parameters it reads

i< < (A36)

AT <Ay <A (A37)
Hence, the cosmological horizon exists for all values
A € (A, o). However, if & > 1 there is no positive solution,
i.e., no horizons. The values of 1, which satisfy Eq. (A36) are
graphically represented by the light shaded area in Fig. 1.

Interestingly, the presence of the cosmological horizon
depends not only on the value of the cosmological constant
A but also on all other parameters of the black hole, namely
of the mutual relation of the Kerr-like rotation a and the
NUT parameter L.
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