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We extend our previous work in which we derived the most general form of an induced metric describing
the geometry of an axially symmetric extremal isolated horizon (EIH) in asymptotically flat spacetime.
Here we generalize it to EIHs in asymptotically (anti–)de Sitter spacetime. The resulting metric
conveniently forms a six-parameter family which, in addition to a cosmological constant Λ, depends
on the area of the horizon, total electric and magnetic charges, and two deficit angles representing conical
singularities at poles. Such a metric is consistent with results obtained in the context of near-horizon
geometries. Moreover, we study extremal horizons of all black holes within the class of Plebański-
Demiański exact (electro)vacuum spacetimes of the algebraic type D. In an important special case of
nonaccelerating black holes, that is the famous Kerr-Newman-NUT-(A)dS metric, we were able to identify
the corresponding extremal horizons, including their position and geometry, and find explicit relations
between the physical parameters of the metric and the geometrical parameters of the EIHs.
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I. INTRODUCTION

In the present article, we continue our investigation of
axisymmetric extremal isolated horizons admitting a non-
zero value of the cosmological constant Λ.
As we have already pointed out in our previous work [1],

the concept of an isolated horizon has many interesting and
advantageous features. Above all, it may serve as a model
describing a black hole in equilibrium with its neighbor-
hood (its accretion disk, an external electromagnetic field,
etc.), purely (quasi)locally. This can be very useful in
theoretical research as well as in various applications in
numerical relativity or related astrophysical studies [2–5].
Among significant recent discoveries let us mention the
general proof of the Meissner effect for black holes [6,7].
Our work continues along this direction. More specifically,
we rigorously analyze the uniqueness of the extremal black
hole horizons.
It has been previously shown [8,9] that when a black hole

becomes extremal (by increasing its rotation, for example), it
exhibits behavior leading to its very special properties that do
not depend on the surrounding environment. One of these
properties is the uniqueness of the induced metric on the
horizon slices of constant time. Here we extend our
previous investigations and results [1] to the case when
the black hole is situated in asymptotically (anti–)de Sitter
[(A)dS] spacetime with a nonzero cosmological constant.

We systematically derive the induced metric of the extremal
horizon using the Newman-Penrose (NP) formalism, point-
ing out differences between the Λ ¼ 0 and Λ ≠ 0 cases. We
also compare our general result with the analogous one
previously obtained in [10–13]. We discuss the advantages
of our approach, leading to a result which—by its simple
and elegant form—allows also direct interpretation of the
obtained integration constants. In particular, we find explicit
relations between geometrical parameters of the EIHs and
physical parameters of the Kerr-Newman-NUT-(anti–)de
Sitter solution contained in the Plebański-Demiański class
of metrics [14–21].
Let us summarize structure of this paper. In Sec. II we

review the necessary notation and basic definitions con-
cerning isolated horizons. In Sec. III we specialize on
extremal isolated horizons with nonzero cosmological
constant Λ, and we explicitly solve the constraint equations
for a function describing the horizon geometry. We also
compare our result with the analogous result already known
in literature. In Sec. IV we investigate the horizon geometry
of the most general type D black hole in a Plebański-
Demiański family of exact spacetimes. Then we restrict our
attention to nonaccelerating black holes, that is the well-
known Kerr-Newman-NUT-(A)dS spacetime. In Sec. V we
show that such an extremal horizon has geometry identical
to the one derived for a generic EIH in Sec. II, and we also
provide explicit relations between the parameters of both
solutions. The Appendix contains a discussion of the
number and character of possible extremal horizons in
the Kerr-Newman-NUT-(A)dS spacetime.
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II. PRELIMINARIES

Here we consider EIHs with a nonzero cosmological
constant Λ ≠ 0. In our convention of metric ðþ−−−Þ, the
Einstein equations read

Rab −
1

2
Rgab þ Λgab ¼ −8πTab: ð1Þ

In the Newman-Penrose formalism,1 the equations are
reduced to a relation between the trace-free part of the
Ricci tensor and corresponding tetrad projections of the
energy-momentum tensor. In electrovacuum spacetimes
with Λ, this relation is simply

Φab ¼ 2ϕaϕ̄b; ð2Þ

where ϕa are tetrad projections of the electromagnetic field
tensor Fab.
Further, we define H to be an isolated horizon with a

cross section K. The null generator ofH coincides with the
null vector la of the NP tetrad on H, while the vectors
ma; m̄a span the tangent space of K, and na is constant
on H.
It turns out that for axially symmetric 2-dimensional

manifolds of spherical topology it is useful to introduce
adapted coordinates ðζ;ϕÞ ∈ ½−1; 1� × ½0; 2πÞ in which its
metric has the canonical form [4]

qabdxadxb ≡ −R2

�
1

fðζÞ dζ
2 þ fðζÞdϕ2

�
. ð3Þ

Such metric is characterized by a single metric function
fðζÞ and a radius parameter R related to the horizon area
as A≡ 4πR2. We further assume that the function fðζÞ
satisfies the generalized regularity conditions at the poles
ζ ¼ �1, namely

f0ð�1Þ ¼ ∓2

�
1þ δ�

2π

�
: ð4Þ

The two parameters δ� characterize deficit angles at
the poles.
A convenient choice of the spatial vector ma on H is

ma ¼H 1ffiffiffi
2

p
R

� ffiffiffiffiffiffiffiffiffi
fðζÞ

p ∂a
ζ þ

iffiffiffiffiffiffiffiffiffi
fðζÞp ∂a

ϕ

�
; ð5Þ

normalized as mam̄a ¼ −1. The only independent compo-
nent of the connection onH is then given by the coefficient
a defined as

a≡maδ̄m̄a ¼ α − β̄¼H −
1

2
ffiffiffi
2

p
R

f0ðζÞffiffiffiffiffiffiffiffiffi
fðζÞp : ð6Þ

With this choice, a is real on the horizon, ā¼H a, as well as

the derivative operator δ≡ma∇a ¼H δ̄ acting on a scalar
function, namely

δφ¼H 1ffiffiffi
2

p
R

ffiffiffiffiffiffiffiffiffi
fðζÞ

p ∂ζφ; ð7Þ

for an arbitrary function φ ¼ φðζÞ.

A. Electromagnetic field and the spin coefficient πNP

As we have already discussed in [1,7], the tetrad
component ϕ1 of the electromagnetic field tensor Fab is
on the horizon governed by the Maxwell equation which,

under an assumption of stationarity Dϕ2 ¼H 0, reads

δϕ1 þ 2πNPϕ1 − ϰðlÞϕ2 ¼H 0; ð8Þ

where ϰðlÞ is the surface gravity defined by the relation

Dla ¼H ϰðlÞla. Equation (8) remains unchanged also in
spacetimes with the cosmological constant Λ ≠ 0.
Similarly, the spin coefficient πNP, which is a subject of
a particular NP Ricci identity, remains unaffected. Namely,
the equation on the horizon reads

δπNP þ aπNP ¼H ϰðlÞλ − π2NP: ð9Þ

These two equations can be fully integrated in the axially
symmetric extremal case ϰðlÞ ¼ 0. The explicit solutions in
the adapted coordinates are

ϕ1¼H
cϕ

ðζ þ cπÞ2
; πNP¼H

ffiffiffi
f
2

r
1

Rðζ þ cπÞ
; ð10Þ

in which the integration constants cϕ; cπ depend only on
intrinsic properties of the horizon. It is illustrative to
express cϕ in terms of the physical electric and magnetic
charges,

Q≡QE þ iQM ¼ 1

2π

I
K
ϕ1volðKÞ ¼ 2R2

c2π − 1
cϕ: ð11Þ

Inverting this relation gives

cϕ ¼ Q
2R2

ðc2π − 1Þ: ð12Þ

Notice that the general arguments which previously led
to proof of the Meissner effect [6,7] remain valid as well.1For its summary see our previous work [1].
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III. GEOMETRY OF HORIZON SECTIONS

In previous section we argued that the electromagnetic
field ϕ1 and the spin coefficient πNP are independent of the
cosmological constant Λ. However, this might not be
expected for the Ψ2 component of the Weyl tensor, and
for the horizon geometry described by the metric function
fðζÞ. Indeed, repeating the same arguments as in [1] we
obtain the constrain equations for Ψ2 and fðζÞ in the form

ðπNP ¼H − πNPπ̄NP − Ψ2 − 2ΛNP;

ðπNP − ðπNP ¼H 2a2 − 2δa − 2Ψ2 þ 2ΛNP þ 4jϕ1j2: ð13Þ

Both equations contain additional terms proportional to the
NP quantity ΛNP, which is related to the scalar curvature by
ΛNP ¼ R=24. Therefore, in electrovacuum spacetimes
ΛNP ¼ Λ=6. From now on, we will use only the cosmo-
logical constant Λ to avoid confusion.

Combining these two equations to eliminate Ψ2 and
using Eq. (9) we arrive at

a2 − δaþ 2jϕ1j2 −
1

2
Λ¼H 1

2
ðπNP − π̄NPÞ2 þ aðπNP þ π̄NPÞ:

ð14Þ

Further, we employ the definition (6) and the expression for
the derivative operator (7) in the adapted coordinates. After
some algebra, the final equation for fðζÞ reads

jζ þ cπj4f00 þ ð2ζ þ cπ þ c̄πÞjζ þ cπj2f0 þ ðcπ − c̄πÞ2f
þ 8R2jcϕj2 þ 2ΛR2ðζ þ c̄πÞ2ðζ þ cπÞ2 ¼H 0: ð15Þ

The general solution in terms of the integration constants cπ
and cϕ has the form

fðζÞ ¼ 4jcϕj2R2ð1 − ζ2Þ
ðjcπj2 − 1Þjζ þ cπj2

− ΛR2ð1 − ζ2Þ ðjcπj
2 − 1Þðζ2 þ 2ðcπ þ c̄πÞζÞ þ 3c2π c̄2π þ cπ c̄π − ðζ2 þ 2ðcπ þ c̄πÞ2Þ

3ðjcπj2 − 1Þjζ þ cπj2
; ð16Þ

where we have applied the boundary conditions at both
poles fð�1Þ ¼ 0 to fix the integration constants. We also
impose our generalized regularity conditions (4) to find the
value of the constant cπ . We thus obtain

cπ ¼
δ− − δþ � 2i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A0 − A1 þ A2

p
4π þ δ− þ δþ − 4πjQj2R−2 − 4πΛR2

; ð17Þ

where

A0 ≡ ð2π þ δ−Þð2π þ δþÞ − 4π2jQj4R−4;

A1 ≡ 4

3
πð4π þ δ− þ δþÞΛR2 −

8

3
π2jQj2Λ;

A2 ≡ 4

3
π2Λ2R4: ð18Þ

Substitution into the formula for fðζÞ yields a unique
solution. We summarize it in the following theorem, which
is generalization of [1].
Theorem 1. Let ðH; ½la�Þ be an axially symmetric

extremal isolated horizon (EIH) of topology Sδþ
δ−

in asymp-
totically (anti–)de Sitter spacetime. Then the geometry of
its spherical sections is described by an induced metric qab
in the form (3), where the dimensionless metric function
fðζÞ is given

fEIHðζÞ ¼ ð1 − ζ2Þ d0 þ d1ζ þ d2ζ2

c0 þ c1ζ þ c2ζ2
; ð19Þ

in which

d0 ≡ ð2=πÞð2π þ δ−Þð2π þ δþÞ

þ 1

3
ΛR2½4πðΛR2 − 5Þ − 5ðδ− þ δþÞ þ q2�;

d1 ≡ 4

3
ΛR2ðδ− − δþÞ;

d2 ≡ 1

3
ΛR2½4πð1 − ΛR2Þ þ ðδ− þ δþÞ − q2�;

c0 ≡ 4π

�
1 −

1

3
ΛR2

�
þ ðδ− þ δþÞ þ q2;

c1 ≡ 2ðδ− − δþÞ;
c2 ≡ 4πð1 − ΛR2Þ þ ðδ− þ δþÞ − q2; ð20Þ

and we have denoted

q2 ≡ 4π
jQj2
R2

: ð21Þ

The function fEIHðζÞ is unique and depends on six real
independent parameters, namely δþ; δ−; R;Λ, and Q≡
QE þ iQM. It is well behaved, and any of these parameters
(except R when jQj ≠ 0) can be set to zero.
This is a fully general and explicit result for (axisym-

metric) extremal isolated horizons, expressed in terms of
geometrical and physical parameters, namely:
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Λ …… cosmological constant;

R …… radius defined by the horizon area A ¼ 4πR2;

q2 …… dimensionless elmag charge parameter q2 ¼ ð4πÞ2ðQ2
E þQ2

MÞ=A;
δ� …… two deficit angles at the horizon poles ζ ¼ �1; respectively:

In fact, Λ and R are combined into a single dimensionless parameter ΛR2, so that all terms entering the coefficients di
and ci are dimensionless. Moreover, d1 ¼ 2

3
ΛR2c1 and d2 ¼ 1

3
ΛR2c2.

The metric function has to be positive, fðζÞ > 0, and nonzero except at the poles where fðζ ¼ �1Þ ¼ 0, which restricts
range of the parameters.
There are two natural subcases to consider:

A. The case Λ= 0

In the spacetimes with zero cosmological constant Λ ¼ 0 the metric function (19) acquires much simpler form.
The coefficients (20) reduce to

d0 ¼ ð2=πÞð2π þ δ−Þð2π þ δþÞ; c0 ¼ 4π þ ðδ− þ δþÞ þ q2;

d1 ¼ 0; c1 ¼ 2ðδ− − δþÞ;
d2 ¼ 0; c2 ¼ 4π þ ðδ− þ δþÞ − q2; ð22Þ

so the function fðζÞ simplifies to

fEIHðζÞ ¼
2

π

ð2π þ δ−Þð2π þ δþÞð1 − ζ2Þ
4πð1þ ζ2Þ þ δ−ð1þ ζÞ2 þ δþð1 − ζÞ2 þ q2ð1 − ζ2Þ : ð23Þ

This is exactly the function derived and analyzed in our previous work, see Theorem 1 and Eq. (65) in [1].

B. Regular axes δ− = 0 = δ+

In the case when the both poles are regular, the coefficients (20) simplify to

d0 ¼ 8π þ 1

3
ΛR2½4πðΛR2 − 5Þ þ q2�; c0 ¼ 4π

�
1 −

1

3
ΛR2

�
þ q2;

d1 ¼ 0; c1 ¼ 0;

d2 ¼
1

3
ΛR2½4πð1 − ΛR2Þ − q2�; c2 ¼ 4πð1 − ΛR2Þ − q2; ð24Þ

and thus the function (19) takes the form

fEIHðζÞ ¼ ð1 − ζ2Þ 2þ
1
3
ΛR2½ðΛR2 − 5þ 1

4π q
2Þ þ ð1 − ΛR2 − 1

4π q
2Þζ2�

ð1 − 1
3
ΛR2 þ 1

4π q
2Þ þ ð1 − ΛR2 − 1

4π q
2Þζ2 : ð25Þ

As we will show below, a metric function of this form can be identified with an extremal isolated horizon of the Kerr-
Newman-(anti–)de Sitter black hole. When we set the electromagnetic charges to zero (QE ¼ 0 ¼ QM, implying q2 ¼ 0)
we obtain

fEIHðζÞ ¼ ð1 − ζ2Þ 2þ
1
3
ΛR2½ðΛR2 − 5Þ þ ð1 − ΛR2Þζ2�
ð1 − 1

3
ΛR2Þ þ ð1 − ΛR2Þζ2 : ð26Þ

This is the result recently presented by Buk and Lewandowski [9], with a straightforward identification of the variables
ζ ≡ x, fEIH ≡ P2.
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C. Comparison with the general result by Kunduri
and Lucietti

An analogous result to our Theorem 1 for the geometry
of an extremal black hole has been presented by Kunduri
and Lucietti in [10] in the context of near-horizon geom-
etries. This result in general admits conical singularities as
well as electromagnetic field and the cosmological con-
stant. However, from the analysis performed in [10] it is not
immediately clear which physical quantity is related to
which integration constant. In what follows we will
compare our result (19) with the result (83) from the proof
of Theorem 4.3 in [10] for the uncharged case e ¼ 0 ¼ g.
Such metric of the near-horizon geometry reads

ds2KL ¼ ΓðxÞðA0r2dv2 þ dvdrÞ þ ΓðxÞ
PðxÞ dx

2

þ PðxÞ
ΓðxÞ ðdΦþ krdvÞ2; ð27Þ

with

ΓðxÞ ¼ k2

β
þ βx2

4
; ð28Þ

PðxÞ¼−
βΛ
12

x4þ
�
A0−

2Λk2

β

�
x2þc1x−

4k2

β2

�
A0−

Λk2

β

�
:

ð29Þ

When we set dr ¼ 0 the metric degenerates if and only if
r ¼ 0. The horizon, which is a null hypersurface, is
therefore located at r ¼ 0. Then the induced metric of a
horizon section is

gjK ¼ ΓðxÞ
PðxÞ dx

2 þ PðxÞ
ΓðxÞ dΦ

2: ð30Þ

The poles and the range of the coordinate x are determined
by possible roots of the polynomial PðxÞ such
that PðxþÞ ¼ 0 ¼ Pðx−Þ.

1. The case Λ= 0

For simplicity, let us first assume that Λ ¼ 0. The
function ΓðxÞ remains the same, while the polynomial
PðxÞ simplifies to

PðxÞ ¼ A0x2 þ c1x −
4k2

β2
A0: ð31Þ

The range of the coordinate x is given by its two real roots,
x ∈ ½x−; xþ�. Since P=Γ is the square of the norm of the
axial Killing vector ∂Φ, it has to be positive. This
necessarily implies A0 < 0. The roots of PðxÞ are

x� ¼ 1

2A0

�
−c1 ∓

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c21 þ 16A2

0k
2β−2

q �
: ð32Þ

The area of the horizon section is

A ¼
Z

Φ2

Φ1

dΦ
Z

xþ

x−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðgjKÞ

p
dx

¼ ðΦ2 −Φ1Þðxþ − x−Þ≡ ΔΦðxþ − x−Þ: ð33Þ

Let us consider a linear transformation between the
canonical coordinates ðζ;ϕÞ of (3) and the coordinates
ðx;ΦÞ, namely

ζ ¼ ωxþ χ; Φ ¼ λϕþ κ; ð34Þ

where ω, χ, λ, κ are (not yet determined) constants. The
transformed metric reads

gjK ¼ A
4π

�
4πΓðxÞ
Aω2PðxÞ dζ

2 þ 4πPðxÞ
Aλ2ΓðxÞ dϕ

2

�
; ð35Þ

where A ¼ 4πR2. To ensure the same form of the metric (3)
in the canonical coordinates, for which gζζgϕϕ ¼ R4, the
parameter λ has to be chosen uniquely as

λ ¼ 4π

Aω
: ð36Þ

Other constants might be found from the known range of
the coordinate ζ. The poles are located at ζ ¼ �1 which
correspond to x ¼ x�, hence

1 ¼ ωxþ þ χ; −1 ¼ ωx− þ χ: ð37Þ

By using (32) and (36) we arrive at

ω ¼ −
2A0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

c21 þ 16A2
0k

2β−2
p ;

χ ¼ −
c1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

c21 þ 16A2
0k

2β−2
p : ð38Þ

Now we can also determine the range of the coordinate
Φ. The transformation (34) gives ΔΦ ¼ λΔϕ ¼ 2πλ.
Using (36), (33), and (37) we obtain ΔΦ2 ¼ 4π2.
Assuming naturally Φ2 > Φ1 we find that ΔΦ ¼ 2π.
Using (32), the black hole area (33) is thus cast into the

form

A ¼ −2π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c21 þ 16A2

0k
2β−2

p
A0

: ð39Þ

Therefore, the coefficients (38) of the transformation (34)
have a simple form in terms of the area A, namely
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ω ¼ 4π

A
; χ ¼ 2πc1

AA0

: ð40Þ

Themetric functionfKL can now be extracted from (35) as

fKLðxÞ≡ 4πPðxÞ
Aλ2ΓðxÞ : ð41Þ

When we substitute all the necessary relations we get the
following formula in the canonical coordinates

fKLðζÞ ¼
8A2

0ð1 − ζ2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c21β

2 þ 16A2
0k

2
p

ð1þ ζ2Þ þ 2c1βζ
: ð42Þ

The deficit angles can be now calculated using our regularity
condition (4), yielding

δ� ¼ π

2k2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c21β

2 þ 16A2
0k

2

q
∓ c1β

�
− 2π: ð43Þ

Putting this expressions in our result (23) and setting q ¼ 0
we obtain exactly the function (42). Our result is thus fully
compatible with the previous results [10] in this subcase.
Notice that for c1 ¼ 0 we obtain simply

δþ ¼ δ− ¼ −2π
�
A0

jkj þ 1

�
: ð44Þ

In this case we can achieve a regular geometry
(δþ ¼ 0 ¼ δ−) by an appropriate redefinition of the range
of the coordinate Φ, or by a suitable choice of the ratio
A0=jkj, which is admissible due to a freedom in the choice
of one of the metric parameters.

2. The case Λ ≠ 0

When the cosmological constant Λ is nonzero the
polynomial PðxÞ given by (29) is of the fourth order which
considerably complicates the analytic investigation.
Explicit identification of the roots x� corresponding to
the poles ζ� ¼ �1 of the horizon with the deficit angles δ�
is not obvious, as well as the physical interpretation of the
integration constants in (29) and the range of the coor-
dinates employed in [10].
Interestingly, it is possible to complete this task in the

case of uncharged extremal black holes with c1 ¼ 0. In
such a case the key expression (29) becomes biquadratic,
so that it is possible to find its four roots as

x21;2¼
6

Λβ2

�
A0β−2Λk2∓

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2
0β

2þ16

3
Λk2ðΛk2−A0βÞ

r �
:

ð45Þ

The poles are then located at x� ¼ �x1 or x� ¼ �x2,
depending on the precise values of the parameters and the

sign of Λ. However, our further analysis is not affected by
the specific choice, so let us take x ∈ ½x−; xþ�≡ ½−x1; x1�.
Now we proceed in exactly the same way as in the

previous case Λ ¼ 0. We assume the transformation (34),
which results in the relations (36) and (40), namely

ω ¼ 2

xþ − x−
¼ 4π

A
≡ 1

R2
; χ ¼ −

xþ þ x−
xþ − x−

¼ 0: ð46Þ

When we put these relations into (36), we get λ ¼ 1 and
consequently ΔΦ ¼ 2π. The metric function (41) now
reads

fKLðζÞ ¼
1
3
Λξ4 − 4ðA0β − 2Λk2Þξ2 þ 16k2ðA0β − Λk2Þ

R2β2ðξ2 þ 4k2Þ ;

ð47Þ

where we have denoted ξ≡ βR2ζ for brevity. The deficit
angles can be calculated directly from fKL or, in general,
using the chain rule for the derivative of fKL,

dfKL
dζ

¼ 1

ω

dfKL
dx

¼ d
dx

PðxÞ
ΓðxÞ ¼

P0ðxÞ
ΓðxÞ − PðxÞ Γ

0ðxÞ
Γ2ðxÞ : ð48Þ

Using Eq. (4), the deficit angles are thus

δ� ¼ ∓π
P0ðx�Þ
Γðx�Þ

− 2π: ð49Þ

After substituting the functions ΓðxÞ and PðxÞ from (28)
and (29), we arrive at

δþ ¼ δ−¼ 2π
4k2ð2Λxþ−1Þþβ2x2þð23Λxþ−1Þ−4A0βxþ

4k2þβ2x2þ
:

ð50Þ

In this special case when c1 ¼ 0, the deficit angles are
equal and the black hole is nonaccelerating. In fact, these
conditions are equivalent. The metric can be regularized
(by a suitable redefinition of the range of the coordinate Φ,
or by a special choice of one of the parameters) if and only
if c1 ¼ 0. For Λ ¼ 0, Eq. (50) reduces to (44).
When we put Eq. (50) into our main result (19) and (20)

together with q2 ¼ 0, we recover (47). Therefore, we
have proved that fKL coincides with fEIH for c1 ¼ 0 and
the particular choice of parameters δ�; R2; q2 given by the
above formulas. We have also determined the relation of the
parameters of the metric (27) to the geometric parameters
of EIHs.
Considerable complications to identify the parameters of

(29) in the most general case c1 ≠ 0 of extremal isolated
horizons with Λ ≠ 0 shows that our new form of the
metric function fEIHðζÞ given by (19), whose numerator is
factorized into a product of two quadratic terms, is more
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convenient. Moreover, it directly contains geometrical and
physical parameters, namely the deficit angles δ� at the two
poles of the horizon, its area A, and the dimensionless
electromagnetic charge parameter q2.

IV. EXACT TYPE D BLACK HOLES

A complete class of black hole spacetimes of algebraic
type D with any value of the cosmological constant Λ and
electromagnetic field (which is not null and is double
aligned with the gravitation field) was presented by
Plebański and Demiański [16], extending the previous
work of Debever [17]. Here we employ the convenient
Griffiths-Podolský form of these solutions derived in
[19,20] and summarized as Eq. (16.18) in [15], namely

ds2¼−
1

Ω2

�
−
Q
ρ2

�
dt−

�
asin2θþ4lsin2

1

2
θ

�
dφ

�
2

þρ2

Q
dr2

þρ2

P
dθ2þ P

ρ2
sin2θ½adt− ðr2þðaþ lÞ2Þdφ�2

�
: ð51Þ

The metric functions are

Ω ¼ 1 − α

�
l
ω
þ a
ω
cos θ

�
r;

ρ2 ¼ r2 þ ðlþ a cos θÞ2;
PðθÞ ¼ 1 − a3 cos θ − a4 cos2 θ;

QðrÞ ¼ ðω2kþ e2 þ g2Þ − 2mrþ ϵr2

− 2α
n
ω
r3 −

�
α2kþ Λ

3

�
r4; ð52Þ

where

a3 ¼ 2α
a
ω
m − 4α2

al
ω2

ðω2kþ e2 þ g2Þ − 4
Λ
3
al;

a4 ¼ −α2
a2

ω2
ðω2kþ e2 þ g2Þ − Λ

3
a2; ð53Þ

while the coefficients k, ϵ, and n in (52) are determined by
the relations�

ω2

a2− l2
þ 3α2l2

�
k¼ 1þ 2α

l
ω
m−3α2

l2

ω2
ðe2þ g2Þ−Λl2;

ð54Þ

ϵ¼ ω2k
a2− l2

þ4α
l
ω
m− ða2þ3l2Þ

�
α2

ω2
ðω2kþe2þg2ÞþΛ

3

�
;

ð55Þ

n¼ ω2kl
a2−l2

−α
a2−l2

ω
mþða2−l2Þl

�
α2

ω2
ðω2kþe2þg2ÞþΛ

3

�
:

ð56Þ

The metric (51) thus depends on seven usual physical
parameters m, a, l, α, e, g, Λ which characterize mass,
Kerr-like rotation, NUT parameter, acceleration, electric
and magnetic charges of the black hole, and the cosmo-
logical constant, respectively.
In addition, there is the twist parameter ω related both to

a and l (see the discussion in [18,19]). As demonstrated in
our previous works [1,21,22], it is very convenient to use
the remaining gauge freedom to fix ω as

ω≡ a2 þ l2

a
: ð57Þ

With this choice, the general metric (51) reduces directly to
the familiar forms of either the Kerr–Newman-(A)dS, the
Taub-NUT-(A)dS solution, or the C-metric with charges,
rotation, and the cosmological constant, without the need of
further transformations, simply by setting the correspond-
ing parameters to zero.
An important observation for our work is that horizons

are located at values of the radial coordinate r ¼ rh which
are determined by a condition

QðrhÞ ¼ 0: ð58Þ

An extremality of the horizon is related to its degeneracy,
and can be expressed as

Q0ðrhÞ ¼ 0; ð59Þ

where the prime denotes the derivative with respect to r. As
we have shown in our previous work [1], this condition is
equivalent to the requirement of vanishing surface grav-
ity ϰðlÞ ¼ 0.
The explicit form of the key metric function QðrÞ given

by (52) is rather complicated when (54)–(56) are employed.
It is a quartic expression in the coordinate r, but the
coefficients are rather cumbersome. Interestingly, for
Λ ¼ 0 it can be explicitly factorized to four roots [18],
thus simply identifying the corresponding horizons. This
fact enabled us in [1] to find and study the properties of all
admitted extremal horizons.
In order to proceed with the analysis in the present case

with a general cosmological constant Λ, we have to make
an additional simplifying assumption. It turns out that we
can identify the extremal horizons of all nonaccelerating
black holes of algebraic type D in the Plebański and
Demiański family.

A. Nonaccelerating black holes (α= 0)

For vanishing acceleration, i.e., for the Kerr-Newman-
NUT-(anti–)de Sitter black holes, by setting α ¼ 0 the
expressions (53) and (54)–(56) with (57) considerably
simplify to
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a3 ¼ −
4

3
Λal; a4 ¼ −

1

3
Λa2;

ω2k
a2 − l2

¼ 1 − Λl2; ϵ ¼ 1 −
1

3
Λða2 þ 6l2Þ;

n ¼
�
1þ 1

3
Λða2 − 4l2Þ

�
l: ð60Þ

The metric (51) with (52) thus reduces to

ds2¼Q
ρ2

�
dt−

�
asin2θþ4lsin2

1

2
θ

�
dφ

�
2

−
ρ2

Q
dr2

−
ρ2

P
dθ2−

P
ρ2
sin2θ½adt− ðr2þðaþ lÞ2Þdφ�2; ð61Þ

with

ρ2 ¼ r2 þ ðlþ a cos θÞ2;

PðθÞ ¼ 1þ 4

3
Λal cos θ þ 1

3
Λa2 cos2 θ;

QðrÞ ¼ ða2 − l2Þð1 − Λl2Þ þ e2 þ g2 − 2mr

þ
�
1 − Λ

�
1

3
a2 þ 2l2

��
r2 −

1

3
Λr4; ð62Þ

in full agreement with Eq. (16.23) of [15]. Recall that this
class of solutions is contained within those found in
different form by Carter [23], and that its particular
subclasses were presented and discussed, e.g., by Frolov
[24], and Gibbons and Hawking [25].
For further investigations it is useful to rewrite these

black hole spacetimes in an equivalent form by introducing
a coordinate

ς ¼ cos θ; ς ∈ ½−1; 1�: ð63Þ

The metric (61) then becomes

ds2 ¼ Q
ρ2

½dt − ðað1 − ς2Þ þ 2lð1 − ςÞÞdφ�2 − ρ2

Q
dr2

−
ρ2

P̃
dς2 −

P̃
ρ2

½adt − ðr2 þ ðaþ lÞ2Þdφ�2; ð64Þ

where

ρ2 ¼ r2 þ ðlþ aςÞ2; ð65Þ

P̃ðςÞ≡ ð1 − ς2ÞPðςÞ

¼ ð1 − ς2Þ
�
1þ 4

3
Λalςþ 1

3
Λa2ς2

�
; ð66Þ

while QðrÞ remains the same is in (62).

B. Geometry of the horizons of nonaccelerating
black holes

In our previous paper [1] we investigated a class of exact
spacetimes of the algebraic type D with Λ ¼ 0, and we
derived explicit results for a metric function which
describes the geometry of extremal black hole horizons
in this class. Interestingly, the derivation of these results
does not differ from the case when Λ ≠ 0. Hence, using the
formula (55) in [1] (summarized in Theorem 2 of [1]), the
corresponding metric function reads

fDðζÞ ¼
4πC2

A
½r2H þ ðaþ lÞ2�2 P̃ðζÞ

Ω2ðζÞρ2ðζÞ ; ð67Þ

where the dependence on Λ is implicit via the specific
function P̃. For nonaccelerating black holes studied here
the functions P̃ and ρ are given by (66) and (65),
respectively, while Ω ¼ 1 because α ¼ 0. Let us recall
that these functions have to be regarded as functions of a
new coordinate ζ which is related to ς via

ζðςÞ ¼ ς − αrHðaω þ l
ω ςÞ

1 − αrHðaω ςþ l
ωÞ

; ð68Þ

see Eq. (53) in [1]. However, in the present case α ¼ 0 this
is just an identity, ζ ¼ ς.
The horizon area A of an extremal black hole whose

horizon is located at rH, entering the expression (67), is

A ¼ 4πC½r2H þ ðaþ lÞ2�; ð69Þ

see Eq. (51) in [1] for the case α ¼ 0.
Finally, the deficit angles around the poles are given by

Eq. (57) in [1],

δþ ¼ 2πðCð1 − a3 − a4Þ − 1Þ;

δ− ¼ 2π

�
Cð1þ a3 − a4Þ

r2H þ ðaþ lÞ2
r2H þ ða − lÞ2 − 1

�
: ð70Þ

Recall that the free conicity parameter C was introduced to
ensure the correct range ½0; 2πÞ of the adapted angular
coordinate ϕ.

V. IDENTIFICATION OF EIHS WITH HORIZONS
OF ALL TYPE D NONACCELERATING

EXTREMAL BLACK HOLES

As we have already mentioned, the most important
subclass of the general family of type D black holes are
solutions without acceleration (α ¼ 0). In fact, these are the
famous Kerr-Newman-NUT-(A)dS black holes character-
ized by six physical parameters m; a; l; e; g;Λ. Such space-
times in general contain two black hole horizons, which
“merge” when the black hole is extremal, and two
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cosmological horizons due to the presence of a cosmo-
logical constant Λ.
In view of (62), Eq. (58) which localizes these horizons

takes the form

1

3
Λr4h −

�
1 − Λ

�
1

3
a2 þ 2l2

��
r2h þ 2mrh

−ða2 − l2 þ e2 þ g2Þ þ Λl2ða2 − l2Þ ¼ 0: ð71Þ

For Λ ¼ 0 the condition of extremality (59) relates the
value of the radial coordinate and the mass parameter
directly as rh ¼ m, see [1]. Inspired by this relation, we can
express the mass parameter m from Eq. (59) by taking the
derivative of Q given by (62). An algebraic manipulation
leads to

m ¼ rh −
1

3
Λða2 þ 6l2 þ 2r2hÞrh: ð72Þ

When we substitute this relation back into (71) we obtain

ðr2h þ l2ÞðΛr2h þ Λl2 − 1Þ þ 1

3
Λa2ðr2h − 3l2Þ

þ a2 þ e2 þ g2 ¼ 0: ð73Þ

Interestingly, this is a quadratic equation for r2h whose
distinct two roots are

r2H ¼ 1

2Λ

�
1 − Λ

�
1

3
a2 þ 2l2

�
−

ffiffiffiffi
D

p �
;

r2C ¼ 1

2Λ

�
1 − Λ

�
1

3
a2 þ 2l2

�
þ

ffiffiffiffi
D

p �
; ð74Þ

where

D≡ 1 − Λ
�
14

3
a2 þ 4e2 þ 4g2

�
þ Λ2a2

�
1

9
a2 þ 16

3
l2
�
:

ð75Þ

The first root rH represents a black hole horizon, while rC
localizes a cosmological horizon. To see this directly, let us
compute the area of the two surfaces. Substituting these
values of rH and rC into (69) gives

AH ¼ 2πC
Λ

�
1þ Λa

�
5

3
aþ 4l

�
−

ffiffiffiffi
D

p �
;

AC ¼ 2πC
Λ

�
1þ Λa

�
5

3
aþ 4l

�
þ

ffiffiffiffi
D

p �
; ð76Þ

respectively. Expansion for small values of Λ leads to

AH ¼ 4πC½2aðaþ lÞ þ e2 þ g2� þOðΛÞ;

AC ¼ 4πC
1

Λ
þOð1Þ: ð77Þ

In the limit of asymptotically flat spacetimeΛ → 0, the area
AC diverges, i.e., the cosmological horizon expands to
infinity. On the other hand, in this limit the black hole
horizon has the area AH¼4πC½a2−l2þe2þg2þðaþlÞ2�¼
4πC½r2HþðaþlÞ2� and m ¼ rH, which fully agrees with
Eqs. (110) and (109) of [1], respectively.
From (74) it is obvious that for each r2H and r2C there

actually exists a pair of horizons, namely �rH and �rC.
There are thus extremal horizons in both regions r > 0 and
r < 0. Moreover, it can be seen from (72) that rh → −rh
corresponds to m → −m. By substituting �rH from (74)
into (72) we obtain an explicit expression mða; l; e; g;ΛÞ
determining the value of the mass parameter for the
corresponding extremal black hole horizon.
The precise number and degeneracy of these extremal

horizons in the Kerr-Newman-NUT-(A)dS spacetime
depend on the cosmological constant Λ (primarily divided
into the distinct Λ < 0 and Λ > 0 cases) and on specific
values of the physical parameters a, l, e, g. In the Appendix
we carefully discuss all the possibilities. Let us summarize
here only the main results:

(i) In the Λ < 0 case there is no cosmological horizon.
The extremal black hole horizon is located at rH
given by (A11), provided the NUT parameter l
satisfies the condition (A10).

(ii) In the Λ > 0 case the admittable values of the
cosmological constant form a discontinuous interval
Λ ∈ ð0;Λ−� ∪ ðΛþ;∞Þ, whereΛ� are given by (A7).

(iii) The boundary value Λ− characterizes a situation
in which all horizons merge into one multiple-
degenerate horizon located at rH ¼ rC given by
(A20). Moreover, the NUT parameter l has to fulfill
the condition (A17).

(iv) For Λ ∈ ð0;Λ−Þ there is the extremal black hole
horizon as well as the cosmological horizon at rH and
rC expressed by (A33) and (A34), respectively. The
value of l is again restricted by (A17). Depending on
the relative values of jaj and jlj, the cosmological
constant Λ is further restricted by (A35), or is not
restricted at all.

(v) On the other hand, existence of the extremal black
hole horizon is automatically excluded when
Λ ∈ ðΛþ;∞Þ. In this case, the cosmological horizon
is present only if jlj < jaj and Λ is greater than Λ0

given by (A6).
Let us now return to the main topic of this section which

is the identification of the metric functions fEIHðζÞ and
fDðζÞ of extremal black holes. The former is given by (19)
while the latter by (67). For nonaccelerating type D black
holes it simplifies to
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fD¼C½r2Hþðaþ lÞ2�ð1−ζ2Þ1þ
4
3
Λalζþ 1

3
Λa2ζ2

r2HþðlþaζÞ2 ; ð78Þ

and the deficit angles (70) around the poles are

δþ ¼ 2πC
�
1þ 1

3
Λaðaþ 4lÞ

�
− 2π;

δ− ¼ 2πC

�
1þ 1

3
Λaða − 4lÞ

�
r2H þ ðaþ lÞ2
r2H þ ða − lÞ2 − 2π: ð79Þ

To keep the relations compact and readable, we do not
substitute for rH from (74).
To complete the investigation of the extremal isolated

horizons in the full family of Kerr-Newman-NUT-(A)dS
black holes, we substitute the values (79) for δ� together
with the relation R2 ¼ C½r2H þ ðaþ lÞ2�, see (69), into the
formula (19), (20) for fEIH, and we compare the resulting
function with (78). It turns out that it is possible to match
fD and fEIH exactly by a unique choice of the dimension-
less charge parameter q2, namely by

q2 ¼ 4πC
ðr2H þ l2Þ½1−Λðr2H þ l2Þ�− a2½1þΛð1

3
r2H − l2Þ�

r2H þ ða− lÞ2 :

ð80Þ

Indeed, for these values of δ�, R2, and q2 we obtain

c0 ¼ Ξðr2H þ l2Þ; d0 ¼ CΞ½r2H þ ðaþ lÞ2�;

c1 ¼ Ξ2al; d1 ¼ CΞ½r2H þ ðaþ lÞ2� 4
3
Λal;

c2 ¼ Ξa2; d2 ¼ CΞ½r2H þ ðaþ lÞ2� 1
3
Λa2;

where

Ξ ¼ 8πC
1 − 1

3
Λð2r2H þ 2l2 þ a2Þ
r2H þ ða − lÞ2 ; ð81Þ

so that (19) is exactly the function (78).
Moreover, using the definition (21) of q2 for (80) and the

area A ¼ 4πR2 of the extremal black hole horizon at rH
given by (69), we arrive at the explicit relation between the

physically defined charges (11) and the parameters of the
type D metric (61) as

Q2
E þQ2

M ¼ C2
r2H þ ðaþ lÞ2
r2H þ ða − lÞ2

h
ðr2H þ l2Þ½1 − Λðr2H þ l2Þ�

− a2
h
1þ Λ

�
1
3
r2H − l2

�ii
: ð82Þ

Expressing rH using (74), that is r2H þ l2 ¼
ð1 − 1

3
Λa2 −

ffiffiffiffi
D

p Þ=ð2ΛÞ, we get

Q2
E þQ2

M ¼ C2
1þ Λað5

3
aþ 4lÞ − ffiffiffiffi

D
p

1þ Λað5
3
a − 4lÞ − ffiffiffiffi

D
p ðe2 þ g2Þ; ð83Þ

whereD is given by (75). The physical chargesQE, QM are
thus directly related to the metric charge parameters e, g,
although they are not identical. However, a simple relation
Q2

E þQ2
M ¼ C2ðe2 þ g2Þ is recovered if and only if

alΛ ¼ 0, i.e., when the Kerr rotation vanishes (a ¼ 0), when
the NUT parameter vanishes (l ¼ 0), or in the absence of the
cosmological constant (Λ ¼ 0).
We can thus summarize the results in the following

theorem.
Theorem 2. Extremal horizons in the complete family of

Kerr-Newman-NUT-(A)dS black holes (all extremal black
holes of algebraic type D without acceleration) are located
at rH determined by (74). Their geometry is represented by
the induced metric of the form (3), where the metric
function fD is given by (78).
Moreover, this function precisely coincides with the

metric function fEIHðζÞ of axisymmetric extremal isolated
horizons (EIHs) in asymptotically (A)dS spacetime, given
in Theorem 1. The geometric parameters of EIHs are
identified with the parameters of the metric (61) via the
relation R2 ¼ C½r2H þ ðaþ lÞ2�, the deficit angles δþ, δ−
around the poles are given by (79), and the physical charges
QE, QM are given by (83).

A. Kerr-Newman-(A)dS black holes (l = 0)

Let us have a closer look at the physically most relevant
case, when the black hole represents a charged and rotating
mass in (anti–)de Sitter spacetime without the NUT
parameter.
The black hole extremal horizon rH > 0 (and rH < 0) is

located at the radial coordinate

r2H ¼ 1

2Λ

�
1 −

1

3
Λa2 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − Λ

�
14

3
a2 þ 4e2 þ 4g2

�
þ 1

9
Λ2a4

s �
; ð84Þ
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see (74). By setting l ¼ 0 in (78), the metric function
simplifies to

fD ¼ Cðr2H þ a2Þð1 − ζ2Þ 1þ
1
3
Λa2ζ2

r2H þ a2ζ2
: ð85Þ

The deficit angles (79) remain nonzero, namely

δþ ¼ δ− ¼ 2πC

�
1þ 1

3
Λa2

�
− 2π; ð86Þ

but for a unique choice of the conicity parameter

C ¼
�
1þ 1

3
Λa2

�
−1
; ð87Þ

we obtain a solution with both poles regular.
Then the function fDðζÞ given by (85) has precisely the

form of (25) of fEIHðζÞ, with

q2 ¼ 4π
r2H − a2 − 1

3
Λr2Hð3r2H þ a2Þ

ðr2H þ a2Þð1þ 1
3
Λa2Þ ¼ 8πΛðe2 þ g2Þ

ð1þ 1
3
Λa2Þð1þ 5

3
Λa2 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − Λð14

3
a2 þ 4e2 þ 4g2Þ þ 1

9
Λ2a4

q
Þ
: ð88Þ

This is consistent with (80). Notice also that the limit Λ→0
is well defined and nonzero,

lim
Λ→0

q2 ¼ 4π
e2 þ g2

2a2 þ e2 þ g2
: ð89Þ

Due to (21) and (76), the relation between the charge
parameters is

Q2
E þQ2

M ¼ C2ðe2 þ g2Þ ¼ e2 þ g2

ð1þ 1
3
Λa2Þ2 : ð90Þ

The genuine electric and magnetic charges QE,QE are thus
proportional to the metric charge parameters e, g. However,
the proportionality factor C determining the conicity is now
fixed by the condition (87) to achieve δþ ¼ 0 ¼ δ−, i.e.,
regular both axes.

B. Charged NUT-(A)dS black holes (a= 0)

In this part we concentrate on non-rotating black holes
characterized by a condition a ¼ 0. In fact, in this case
necessarily α ¼ 0, because there is no accelerating NUT
solution in the considered class of type D spacetimes [18].
Equation (73) simplifies to

ðr2H þ l2ÞðΛr2H þ Λl2 − 1Þ þ e2 þ g2 ¼ 0; ð91Þ

with explicit solutions

r2H ¼ 1 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4Λðe2 þ g2Þ

p
2Λ

− l2;

r2C ¼ 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4Λðe2 þ g2Þ

p
2Λ

− l2: ð92Þ

Expansion for small values of the cosmological constant
yields

r2H ¼ e2 þ g2 − l2 þOðΛÞ; r2C ¼ 1

Λ
þOð1Þ; ð93Þ

so we immediately recognize the black hole horizons at rH
and the cosmological horizons at rC.
The area of the black hole horizon given by (69) is

A ¼ 2πC
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4Λðe2 þ g2Þ

p
Λ

; ð94Þ

which for Λ → 0 reduces to 4πCðe2 þ g2Þ, in agreement
with the results of [1]. Notice also that in absence of electric
and magnetic charge e ¼ 0 ¼ g, the black hole horizon can
not be extremal.
Under the current assumption of a nonrotating black

hole, the metric function (78) simplifies considerably to

fDðζÞ ¼ Cð1 − ζ2Þ: ð95Þ
This result does not depend on Λ, and is the same as in the
case when Λ ¼ 0. Geometry of the black hole horizon is
that of a quasi-regular sphere. The deficit angles (70)
around the poles are zero provided C ¼ 1 because
a3 ¼ 0 ¼ a4, and thus

δþ ¼ δ− ¼ 2πðC − 1Þ: ð96Þ
In order to map the metric function fEIHðζÞ to fDðζÞ, we

substitute the above relations into (20) which gives

d0 ¼ 8πC2 þ 1

3
ΛR2½4πðΛR2 − 5CÞ þ q2�;

c0 ¼ 4π

�
C −

1

3
ΛR2

�
þ q2;

d1 ¼ 0; c1 ¼ 0;

d2 ¼
1

3
ΛR2½4πðC − ΛR2Þ − q2�;

c2 ¼ 4πðC − ΛR2Þ − q2; ð97Þ
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so that the metric function (19) becomes

fEIHðζÞ ¼ ð1 − ζ2Þ 2C
2 þ 1

3
ΛR2½ðΛR2 − 5Cþ 1

4π q
2Þ þ ðC − ΛR2 − 1

4π q
2Þζ2�

ðC − 1
3
ΛR2 þ 1

4π q
2Þ þ ðC − ΛR2 − 1

4π q
2Þζ2 : ð98Þ

It reduces to (95) if and only if we choose

q2 ¼ 4πðC − ΛR2Þ ¼ 4πC½1 − Λðr2H þ l2Þ�: ð99Þ

Using the definition (21) of q2 and substituting for rH from
(92) and (69) we arrive at

Q2
E þQ2

M ¼ C2ðe2 þ g2Þ: ð100Þ

The physically defined charges QE, QM are thus directly
proportional to the electric and magnetic parameters e, g of
the type D metric via the conicity C.

VI. SUMMARY

The main aim of this paper was to extend the results from
our previous work [1] in which we investigated in detail the
unique properties of axially symmetric extremal isolated
horizons (EIHs) in asymptotically flat spacetimes. Here we
considered such horizons in asymptotically (anti–)de Sitter
spacetimes with nonzero cosmological constant Λ ≠ 0.
After we introduced in Sec. II the necessary notation and

basic definitions we systematically studied constrain equa-
tions following from the NP formalism. We concluded that
the electromagnetic field, represented by tetrad projections
ϕi, and the spin coefficient πNP remain unchanged com-
pared to the case with Λ ¼ 0. Namely, in the natural
coordinates ζ and ϕ adapted to the horizon geometry they
are given explicitly as

πNP ¼H
ffiffiffi
f
2

r
1

Rðζ þ cπÞ
; ϕ1 ¼H

cϕ
ðζ þ cπÞ2

; ð101Þ

see Eq. (10). Using these results, we were able to integrate
the remaining Eq. (14) constraining the horizon geometry.
Our first main result of this paper is summarized in
Theorem 1. In particular, the metric function fEIH describ-
ing the induced metric on the horizon reads

fEIHðζÞ ¼ ð1 − ζ2Þ d0 þ d1ζ þ d2ζ2

c0 þ c1ζ þ c2ζ2
; ð102Þ

where the constants di, ci are given in (20). The function is
unique, well behaved, and depends on six real independent
parameters, namely two deficit angles δþ; δ− at the horizon
poles, the square of the radius R2 (the horizon area A
divided by 4π), the cosmological constant Λ, and the total
electric and magnetic charges QE, QM. It further simplifies

for various special choices of these parameters. For
instance, we recover the recently derived solution (26)
by Buk and Lewandowski [9] when the function fEIH is
assumed to be regular at both poles (δþ ¼ 0 ¼ δ−). For
Λ ¼ 0 it precisely reduces to the solution (23) which we
investigated in [1].
We also compared our result (19) with an analogous,

previously known result (30), which was derived in the
context of near horizon geometries [10–13]. In two special
cases of uncharged black holes (when Λ ¼ 0 and c1 ¼ 0,
respectively) we proved the equivalence of the results.
Furthermore, we discussed advantages of our approach
which leads to a more elegant form with integration
constants having a direct geometrical interpretation and
with the full gauge freedom already fixed.
Our second objective here was to compare the general

result (19) with the horizon geometry of extremal black
holes in the Plebański and Demiański class of exact
solutions of the algebraic type D. It is represented by
the line element (51) in a convenient parametrization by
Griffiths and Podolský [19,20]. In [1] we derived a specific
metric function fD, which describes the geometry of the
horizon of such type D black holes. Its general form (67) is
not affected by any value of Λ, since it enters the function
only indirectly via P̃; A; rH. Hence the formula (67)
remains valid also for Λ ≠ 0.
For reasons of simplicity, we restricted our subsequent

analysis to nonaccelerating black holes with α ¼ 0, that is
to the family of Kerr-Newman-NUT-(anti–)de Sitter black
holes (61) and (62).
We identified two types of extremal horizons—the black

hole one and the cosmological one. They are located at
radial coordinates�rH and�rC, respectively, expressed by
(74). Their precise number and degeneracy depend on the
cosmological constant Λ (primarily divided into the distinct
cases Λ < 0 and Λ > 0), as it is carefully analyzed in the
Appendix.
In the last part of Sec. V of our work we were able to

show that the function fD has the same form as fEIH for
every combination of the physical parameters. The result is
summarized in Theorem 2. The metric function fD is
simplified to (78), namely

fD¼C½r2Hþðaþ lÞ2�ð1−ζ2Þ1þ
4
3
Λalζþ 1

3
Λa2ζ2

r2HþðlþaζÞ2 : ð103Þ

This function is equivalent to fEIH if we choose the
dimensionless charge parameter q2 as
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q2 ¼ 4πC
ðr2H þ l2Þ½1−Λðr2H þ l2Þ�− a2½1þΛð1

3
r2H − l2Þ�

r2H þ ða− lÞ2 ;

ð104Þ

see (80). The key observation is that it does not depend on
the coordinate ζ, thus it can be regarded as a different
parametrization of the same function. The reason why we
had to find its (unique) value is that the parameters of the
metric (61) have well-understood meanings only in special
cases. Applying the definition (21), we thus obtained a
nontrivial relation between the genuine electric and mag-
netic charges (11) and the charge parameters of the Kerr-
Newman-NUT-(anti–)de Sitter metric, namely

Q2
E þQ2

M ¼ C2
1þ Λað5

3
aþ 4lÞ − ffiffiffiffi

D
p

1þ Λað5
3
a − 4lÞ − ffiffiffiffi

D
p ðe2 þ g2Þ; ð105Þ

whereD is given by (75). The charges are mutually propor-
tional, Q2

E þQ2
M ¼ C2ðe2 þ g2Þ, if and only if alΛ ¼ 0.

In Sec. VA we concentrated on the physically most
relevant subcase when l ¼ 0. We found that the poles are
not generally regular, although they can be regularized by a
suitable choice (87) of the conicity parameter C. Due to
this choice there is a specific relation (90) between the
electric and magnetic charges, which simplifies to equality
Q2

E þQ2
M ¼ e2 þ g2 in asymptotically flat spacetimes.

Another interesting example was discussed in Sec. V B.
It represents the most general non-rotating (a ¼ 0) charged
NUT black hole of type D in the (anti–)de Sitter back-
ground. The intrinsic geometry of its horizon is identical to
the geometry of a quasiregular sphere (95), and it does not
depend on any parameter apart from the free conicity
parameter C. Though not obvious, the function fEIH also
admits this possibility, and it appears when the dimension-
less charge parameter q2 has the particular value given
by (99).
A possible extension of the current work is to study the

structure of EIHs in the most general type D spacetimes
with a nonzero acceleration parameter α. Another possibil-
ity would be to investigate geometry of a “nearly extremal”
horizon ϰðlÞ → 0, or to relax the assumption of axial
symmetry in a nonlinear setting.
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APPENDIX: ANALYSIS OF THE NUMBER AND
DEGENERACY OF THE EXTREMAL HORIZONS

OF NONACCELERATING BLACK HOLES

To simplify the analysis, let us denote

x≡ r2h; ðA1Þ

and rewrite the key Eq. (73) for the position of the horizons
in the standard form

px2 þ qxþ s ¼ 0; ðA2Þ

where the constants are

p ¼ Λ;

q ¼ −1þ Λ
�
1

3
a2 þ 2l2

�
;

s ¼ a2 þ e2 þ g2 − l2 þ Λl2ðl2 − a2Þ: ðA3Þ

The solution of this quadratic equation is x� ¼
ð−q� ffiffiffiffi

D
p Þ=ð2pÞ, that is

x� ¼ 1

2Λ

�
1 − Λ

�
1

3
a2 þ 2l2

�
�

ffiffiffiffi
D

p �
; ðA4Þ

where the discriminant D≡ q2 − 4ps reads

D¼1−Λ
�
14

3
a2þ4e2þ4g2

�
þΛ2a2

�
1

9
a2þ16

3
l2
�
: ðA5Þ

It is a quadratic expression in Λ.
In order to have a well-defined coordinate position of a

horizon rh by (A1), the corresponding root has to be non-
negative, x ≥ 0.
The special case when x ¼ 0 ¼ rh implies s ¼ 0, which

appears whenever the cosmological constant takes the
special value

Λ0 ¼
a2 − l2 þ e2 þ g2

l2ða2 − l2Þ : ðA6Þ

In the uncharged case, Λ0 ¼ l−2.
The number of real roots x is determined by the sign ofD

in (A4). This discriminant vanishes for certain values of Λ,
namely

Λ� ¼ 3
7a2 þ 6e2 þ 6g2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð7a2 þ 6e2 þ 6g2Þ2 − a2ða2 þ 48l2Þ

p
a2ða2 þ 48l2Þ : ðA7Þ
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Such values Λ� are real and positive provided
a2ða2 þ 48l2Þ < ð7a2 þ 6e2 þ 6g2Þ2, i.e.,

l2 < a2 þ 7

4
ðe2 þ g2Þ þ 3

4

ðe2 þ g2Þ2
a2

: ðA8Þ

For uncharged black holes this condition is simply l2 < a2.
For negative values of Λ the discriminant (A5) is always

positive, while for positive Λ it acquires negative, positive,
and zero values. The case Λ ¼ 0 was investigated in our
previous work [1]. Thus, we restrict our attention to the
remaining cases Λ ≶ 0, which we will discuss separately.

1. The case Λ < 0

SinceD > 0, there are always two real roots x� given by
(A4). Due to (A1) these have to be positive. It is easy to
infer that xþ < 0 for any combination of the metric
parameters (indeed, p < 0 and −q > 0, so that xþ > 0

implies −qþ ffiffiffiffi
D

p
< 0 which is a contradiction). On the

other hand, from x− > 0 we obtain a non-trivial constraint

− q <
ffiffiffiffi
D

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 − 4ps

q
⇔ s > 0

⇔ Λl4 − ð1þ Λa2Þl2 þ a2 þ e2 þ g2 > 0:

If l ¼ 0, the last inequality holds for any a, e, g. Hence, we
may regard it as a restriction imposed on the admittable
values of l. It is a quadratic polynomial in l2 with two roots

ðl2Þ� ¼ 1þΛa2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þΛa2Þ2 þ 4ð−ΛÞða2 þ e2 þ g2Þ

p
2Λ

:

ðA9Þ

Now, ðl2Þþ < 0 (since for Λ < 0 the expression under the
square root is a sum of positive numbers) which is
forbidden. The second root ðl2Þ− defines a maximal range
of l

l ∈ ð−lmax; lmaxÞ; lmax ≡
ffiffiffiffiffiffiffiffiffiffi
ðl2Þ−

q
: ðA10Þ

In the uncharged case when e ¼ 0 ¼ g we obtain
ðl2Þ− ¼ a2, so that the interval is simply jlj < jaj.
To summarize, in the case Λ < 0 there is no cosmologi-

cal horizon (which would be at r2C ≡ xþ) while the
extremal black hole horizon is located at

r2H ≡ x− ¼ 1

2Λ

�
1 − Λ

�
1

3
a2 þ 2l2

�
−

ffiffiffiffi
D

p �
; ðA11Þ

see (A4), where the discriminant is given by (A5).
For the special value Λ ¼ Λ0 < 0 of the cosmological

constant given by (A6) with a2 < l2 < a2 þ e2 þ g2, we
obtain rH ¼ 0. This also admits the nonrotating case a ¼ 0.

2. The case Λ > 0 with Λ=Λ�

When D ¼ 0, all horizons merge into one multiple-
degenerate horizon. The corresponding solution for x0 ≡
xþ ¼ x− is

x�0 ¼ 1

2Λ� −
1

6
a2 − l2: ðA12Þ

Positivity of this root requires Λ�ð1
3
a2 þ 2l2Þ < 1.

This is violated by Λþ, as demonstrated by the following
estimate,

Λþ
�
1

3
a2 þ 2l2

�
¼ 7a2 þ 6e2 þ 6g2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð7a2 þ 6e2 þ 6g2Þ2 − a2ða2 þ 48l2Þ

p
a2ða2 þ 48l2Þ ða2 þ 6l2Þ

≥
7a2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
48a4 − 48a2l2

p

a2ða2 þ 48l2Þ ða2 þ 6l2Þ ¼ FðξÞ; ðA13Þ

where we have introduced

ξ≡ l2

a2
≥ 0; FðξÞ≡ 7þ ffiffiffiffiffi

48
p ffiffiffiffiffiffiffiffiffiffi

1 − ξ
p

1þ 48ξ
ð1þ 6ξÞ: ðA14Þ

The function FðξÞ monotonously decreases for ξ ∈ ½0; 1�,
with minimum Fð1Þ ¼ 1, so that FðξÞ ≥ 1. The valueΛþ is
thus not admitted.
The complementary value Λ− yields a possible solution,

but the ranges of the metric parameters are restricted. Let us
define dimensionless constants

ψ ≡ e2 þ g2

a2
≥ 0; η≡ 7þ 6ψ ; ðA15Þ

so that

Λ−
�
1

3
a2þ2l2

�
¼
h
η−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
η2− ð1þ48ξÞ

q i 1þ6ξ

1þ48ξ
: ðA16Þ

This expression is required to be < 1, which implies a
constraint on the possible values of l. Using η ≥ 7, we get
6ξ < η − 5þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
η2 − 8ηþ 23

p
, that is
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l2 <
1

3
a2 þ e2 þ g2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4

9
a4 þ a2ðe2 þ g2Þ þ ðe2 þ g2Þ2

r
:

ðA17Þ

For e ¼ 0 ¼ g we simply obtain jlj < jaj as in the previous
case Λ < 0.
Using the parameters introduced in (A14) and (A15), the

condition (A8), which guaranties that Λ− is well defined,
can be rewritten in the form

48ξ < η2 − 1: ðA18Þ

Then it is easy to show that for all η ≥ 7

8
�
η − 5þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
η2 − 8ηþ 23

q �
≤ η2 − 1: ðA19Þ

The condition (A17) thus restricts the values of l more
than (A8).
Under the condition (A17), the multiple degenerate

horizon is located at

r2H ¼ r2C ¼ 1

2Λ− −
1

6
a2 − l2; ðA20Þ

where Λ− is given by (A7).

3. The case Λ > 0 with Λ ≠ Λ�

In this general case with positive cosmological constant
there exist two distinct extremal horizons at r2h ≡ x if and
only if Λ ∈ ð0;Λ−Þ ∪ ðΛþ;∞Þ. Otherwise, there are no
horizons and the singularity is naked.
The roots x�, explicitly given by (A4), must be positive.

The condition xþ > 0 requires −q > −
ffiffiffiffi
D

p
, which is

equivalent either to q < 0 or to s < 0. On the other hand,
for x− > 0 one needs −q >

ffiffiffiffi
D

p
which is q < 0 and s > 0.

The latter conditions are stronger than the former, thus
x− > 0 implies xþ > 0.
Let us investigate the condition x− > 0. It differs from

the Λ < 0 case, because q might be positive or negative as
well, which induces an additional constraint for Λ, not only
for l. We require

1Þ − q ¼ 1 − Λ
�
1

3
a2 þ 2l2

�
> 0; ðA21Þ

2Þ s ¼ ða2 − l2Þð1 − Λl2Þ þ e2 þ g2 > 0: ðA22Þ

The first condition is violated by every Λ > Λþ because

Λ
�
1

3
a2 þ 2l2

�
> Λþ

�
1

3
a2 þ 2l2

�
≥ FðξÞ ≥ 1; ðA23Þ

where we used our previous estimate (A13). On the other
hand, it is fulfilled by every Λ < Λ− provided l is bounded
by (A17).
It is useful to introduce another dimensionless (positive)

parameter

λ≡ a2Λ; ðA24Þ
and analogously,

λ− ≡ a2Λ−; λþ ≡ a2Λþ: ðA25Þ
The inequalities (A21) and (A22) are then recast into the
form

1Þ 1 − λ

�
1

3
þ 2ξ

�
> 0; ðA26Þ

2Þ 1 − ξþ ψ − λξð1 − ξÞ ≥ 0: ðA27Þ

When ξ < 1, that is for jlj < jaj, we may write these
conditions as

1Þ 3

1þ 6ξ
> λ; ðA28Þ

2Þ 1 − ξþ ψ

ξð1 − ξÞ > λ; ðA29Þ

where the expressions on the left-hand sides are functions
of ξ, also depending on the parameter ψ. For any fixed ξ
they determine the maximal value of λ. Admissible values
of λ for each ξ are represented graphically by the dark
shaded area in Fig. 1.

FIG. 1. Specific constraints on the values of the dimensionless
metric parameters ξ ¼ l2=a2 and λ ¼ a2Λ. The inequality (A28)
is represented here as the curve 1, while the inequality (A29) is
represented as the curve 2. Also shown are the values λ− and λþ
given by (A25) and (A7). The shaded areas denote the admissible
values of the parameters ξ and λ. The dimensionless “charge”
parameter ψ was chosen here as ψ ¼ 0.1, but qualitative behavior
is the same for any ψ > 0.
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For 0 < ξ < 1 we have an estimate

1 − ξþ ψ

ξð1 − ξÞ >
3

1þ 6ξ
> λ− ðA30Þ

for any value of ψ ≥ 0. The cosmological constant is thus
not additionally restricted, and it remains Λ ∈ ð0;Λ−Þ.
For ξ > 1we have to reverse the inequality (A29) which,

apart from the upper bound λ−, bounds the value of λ from
below

ξ − 1 − ψ

ξðξ − 1Þ < λ < λ− <
3

1þ 6ξ
: ðA31Þ

In this case necessarily ψ > 0. These inequalities imply a
maximal value for ξ as well, namely

ξ <
1

3
þ ψ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4

9
þ ψðψ þ 1Þ

r
: ðA32Þ

Written in terms of the physical parameters, it is exactly the
condition (A17). In particular, ψ ¼ 0 requires ξ < 1, that is
e ¼ 0 ¼ g requires jlj < jaj.
To sum up, in the case of a positive cosmological

constant Λ ∈ ð0;Λ−Þ there is the extremal black hole
horizon as well as the cosmological horizon, located at

r2H ¼ 1

2Λ

�
1 − Λ

�
1

3
a2 þ 2l2

�
−

ffiffiffiffi
D

p �
; ðA33Þ

r2C ¼ 1

2Λ

�
1 − Λ

�
1

3
a2 þ 2l2

�
þ

ffiffiffiffi
D

p �
; ðA34Þ

provided the value of the NUT parameter l satisfies the
condition (A17). If jaj > jlj the value of Λ is not further
restricted, while if jlj > jaj and e2 þ g2 ≠ 0 there is a lower
bound for Λ given by

Λ > Λ0 ≡ a2 − l2 þ e2 þ g2

l2ða2 − l2Þ : ðA35Þ

Finally, let us look at the second condition xþ > 0. We
have already shown that if q < 0 then it is sufficient to have
positive xþ irrespective of the sign of s. However, if q > 0
one can still ensure that xþ is positive by requiring s < 0. In
such a case there is only a cosmological horizon. In the
interval 0 < ξ < 1 (that is for jlj < jaj) we obtain the
following restriction on the values of the cosmological
constant

λþ <
1 − ξþ ψ

ξð1 − ξÞ < λ: ðA36Þ

In terms of the physical parameters it reads

Λþ < Λ0 < Λ: ðA37Þ

Hence, the cosmological horizon exists for all values
Λ ∈ ðΛ0;∞Þ. However, if ξ > 1 there is no positive solution,
i.e., no horizons. The values of λ, which satisfy Eq. (A36) are
graphically represented by the light shaded area in Fig. 1.
Interestingly, the presence of the cosmological horizon

depends not only on the value of the cosmological constant
Λ but also on all other parameters of the black hole, namely
of the mutual relation of the Kerr-like rotation a and the
NUT parameter l.
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