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An Einstein manifold in four dimensions has some configuration of SUð2Þþ Yang-Mills instantons
and SUð2Þ− anti-instantons associated with it. This fact is based on the fundamental theorems that
the four-dimensional Lorentz group Spin(4) is a direct product of two groups SUð2Þ� and the
vector space of 2-forms decomposes into the space of self-dual and anti-self-dual 2-forms. It explains
why the four-dimensional spacetime is special for the stability of Einstein manifolds. We now
consider whether such a stability of four-dimensional Einstein manifolds can be lifted to a five-
dimensional Einstein manifold. The higher-dimensional embedding of four-manifolds from the
viewpoint of gauge theory is similar to the grand unification of the Standard Model, since the
group SOð4Þ ≅ Spinð4Þ=Z2 ¼ SUð2Þþ ⊗ SUð2Þ−=Z2 must be embedded into the simple group
SOð5Þ ¼ Spð2Þ=Z2. Our group-theoretic approach reveals the anatomy of Riemannian manifolds
quite similar to the quark model of hadrons in which two independent Yang-Mills instantons
represent a substructure of Einstein manifolds.

DOI: 10.1103/PhysRevD.105.064015

I. INTRODUCTION

The hadrons we know all fall into multiplets that reflect
underlying internal symmetries. To express this fact in a
simple and concrete way, it was hypothesized that hadrons
are composed of more elementary constituents with basic
symmetries, called quarks. The SUð3Þ multiplet structure
of the hadrons (baryons and mesons) strongly hinted at the
existence of a substructure [1,2]. According to the quark
model [3], all hadrons are made up of quarks and
antiquarks, bound together in different ways. Even in the
absence of knowledge about the potential which binds
quarks and antiquarks, the model was very predictive.
The triple tensor product of the fundamental representation
3 of the SUð3Þ flavor symmetry leads to octets and a
decuplet of baryons, 3 ⊗ 3 ⊗ 3 ¼ 1 ⊕ 8 ⊕ 8 ⊕ 10, in
addition to a singlet. This classification works also for
mesons: 3 ⊗ 3̄ ¼ 1 ⊕ 8. This quark model eventually led
to the introduction of color degrees of freedom and the
construction of quantum chromodynamics [4,5].

A special feature, which permeates four-dimensional
geometry, is the fact that Spin(4) splits into a product of two
groups:

Spinð4Þ ¼ SUð2Þþ × SUð2Þ−: ð1:1Þ

The group Spin(4) is a double cover of the four-
dimensional Euclidean Lorentz group SOð4Þ, i.e.,
SOð4Þ ≅ SUð2Þþ × SUð2Þ−=Z2. The splitting of Spin(4)
is isomorphically related to the decomposition of the
2-forms on a four-manifold. Using the Hodge � operator
acting on exterior 2-forms, one can split 2-forms into self-
dual and anti-self-dual 2-forms. The splitting can be
applied to the curvature form of any bundle with connection
over an oriented four-manifold. The canonical splitting of
the vector spaces leads to the irreducible decomposition of
Riemann curvature tensor R ∈ C∞ðg ⊗ Ω2Þ as [6]

R ¼ RðþþÞ ⊕ Rðþ−Þ ⊕ Rð−þÞ ⊕ Rð−−Þ; ð1:2Þ

where the subscript (��) refers to the splitting of
the vector spaces g≡ soð4Þ ¼ suð2Þþ ⊕ suð2Þ− and Ω2≡
Λ2T�M ¼ Ω2þ ⊕ Ω2

−. This splitting of the vector spaces
occupies a central position for the Donaldson theory of
four-manifolds and has been well known in mathematical
literatures (see, for example, Chaps. 1.G and 1.H in Ref. [7]
and Secs. 1.1 and 2.1 in Ref. [8]).
Imposing the Einstein equations, Rμν ¼ λgμν, leads to the

condition Rðþ−Þ ¼ RT
ð−þÞ ¼ 0 (6.32 in Ref. [7] and lemma
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in Ref. [9]). In this case, the Riemann curvature tensor
satisfies the self-duality equations �Rð��Þ ¼ Rð��Þ� ¼
�Rð��Þ, where the Hodge � operator �R acts on the first
two indices ½ab� of the curvature tensor Rabcd and R� acts
on the last two indices ½cd�. Therefore, an Einstein manifold
consists of SUð2Þþ instantons and SUð2Þ− anti-instantons
defined over itself [9,10]. The instantons in the SUð2Þþ
group live in a different representation space from the anti-
instantons in the SUð2Þ− group, because these are two
independent factors for the product group (1.1). This means
that RðþþÞ and Rð−−Þ correspond to two independent
components defined by self-dual and anti-self-dual spin
connections, respectively, acting on the chiral and antichiral
spin bundles. This special feature of four-dimensional
gravity has been originated from the splitting of the product
group (1.1).
A four-dimensional Einstein manifold has the irreducible

decomposition defined by the curvature tensor R ¼
RðþþÞ ⊕ Rð−−Þ which brings about two independent gravi-
tational components. However, such division into two
independent instanton sectors explains the stability of
Einstein manifolds. It turns out [11] that the topological
invariants carried by an Einstein manifold are determined
by the configuration of SUð2Þþ instantons and SUð2Þ−
anti-instantons, as will be reviewed in Sec. II. Therefore, an
Einstein manifold has a substructure like hadrons. An
interesting physics arises if the four-dimensional gravity
is regarded as being obtained from a five-dimensional
gravity through the Kaluza-Klein compactification [12].
The Riemann curvature tensor in five dimensions takes
values in the Lie algebra of the Lorentz group SOð5Þ. The
group SOð5Þ is a simple group unlike the four-dimensional
Lorentz group SOð4Þ ¼ SUð2Þþ × SUð2Þ−=Z2. Since the
group SOð4Þ must be embedded into the simple group
SOð5Þ ¼ Spð2Þ=Z2 in the five-dimensional gravity, we
expect that two independent components caused by the
separation of Riemann curvature tensors will be com-
bined into a single gravitation force in five dimensions.
Moreover, the electromagnetism and a scalar field obtained
from a five-dimensional metric through the Kaluza-
Klein reduction should also appear in the same multiplet
in an irreducible representation (irrep) of the Lorentz
group SOð5Þ.
This unification scheme is similar to the grand unifica-

tion of the Standard Model, since the group SOð4Þ ≅
SUð2Þþ ⊗ SUð2Þ−=Z2 must be embedded into the simple
group SOð5Þ ¼ Spð2Þ=Z2 although the Kaluza-Klein
theory is reduced from a five-dimensional gravity. The
Standard Model has a product gauge group SUð3Þ ×
SUð2Þ × Uð1Þ to describe the electroweak and strong
forces. In the grand unified theory (GUT), the product
gauge group in the Standard Model is embedded into a
single gauge group, for example, SUð5Þ or SOð10Þ (see,
e.g., Chaps. 18 and 24 in Ref. [13]). The leptons and quarks
in the GUT appear in the same multiplet in a larger

symmetry. The unification of forces with a larger simple
group typically opens a new decay channel of protons into
leptons and so introduces a novel instability of a stable
particle in the Standard Model. We will see how two
instanton sectors of four-dimensional Einstein manifolds
are similarly combined into a five-dimensional Einstein
manifold. The embedding of SUð2Þþ instantons and
SUð2Þ− anti-instantons into a five-dimensional Einstein
manifold may similarly develop a novel instability like the
proton decay in the GUT. A speculative reason for this
assumption is that there is no natural topological invariant
such as the Euler characteristic or the Hirzebruch signature
in five dimensions [7,14] that guarantees the stability of
five-dimensional Einstein manifolds.
The motivation for the present work lies in providing

a fresh point of view for the topological structure of
Einstein manifolds using the group properties of SOð4Þ ≅
SUð2Þþ ⊗ SUð2Þ−=Z2 and SOð5Þ ¼ Spð2Þ=Z2. We hope
it will provide a deeper insight into the nature of the
stability of Riemannian manifolds. We will mostly refer to
the perturbative stability of Einstein manifolds regarding
the second variation of the Einstein-Hilbert action with a
fixed volume at a background Einstein metric (see Chaps. 4
and 12 in Ref. [7]). But a nonperturbative instability may be
induced by instanton transitions. We will not try to exhaust
all the details but initiate a work along this direction.
This paper is organized as follows. In Sec. II, we briefly

review how the decomposition of Riemann curvature tensor
(1.2) is derived from the splitting of the vector spaces g≡
soð4Þ ¼ suð2Þþ ⊕ suð2Þ− and Ω2≡Λ2T�M¼Ω2þ ⊕Ω2

−.
We also discuss how topological invariants of Einstein
manifolds such as the Euler characteristic and the
Hirzebruch signature are determined by the configuration
of SUð2Þþ instantons and SUð2Þ− anti-instantons to
illuminate a substructure of Einstein manifolds. In
Sec. III, we consider a five-dimensional Einstein manifold
and its Kaluza-Klein reduction. We expand the five-dimen-
sional Riemann curvature tensor in the basis of spð2Þ ≅
soð5Þ Lie algebra which generalizes the decomposition
(1.2) to five dimensions. After the Kaluza-Klein reduction,
the Lorentz symmetry SOð5Þ is spontaneously broken to
SOð4Þ × Uð1Þ, where Uð1Þ is originated from the isome-
tries of the Kaluza-Klein circle [12]. According to the
symmetry breaking pattern, we further decompose the five-
dimensional Riemann curvature tensor in the basis of
soð4Þ ≅ suð2Þþ ⊕ suð2Þ− Lie algebra. This decomposition
is useful to see how Uð1Þ gauge fields and a scalar field
deform the instanton structure of four-dimensional Einstein
manifolds and to understand how these deformed geom-
etries are nicely combined into a five-dimensional Einstein
manifold. In Sec. IV, we consider particular cases to
consolidate that all these deformations can be organized
into a single five-dimensional Einstein manifold once the
fifth dimension is opened so that the Lorentz symmetry is
enhanced to SOð5Þ. In Sec. V, we discuss some important
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issues and generalization to noncompact Einstein mani-
folds that we have not addressed in this paper and speculate
a possible origin of novel instabilities of Einstein manifolds
in five dimensions.
In the Appendix A, we provide some details about the

Lie algebras soð4Þ≅ suð2Þþ ⊕ suð2Þ− and spð2Þ ≅ soð5Þ.
The geometric details of five-dimensional gravity and
Kaluza-Klein gravity, especially in the vielbein formalism,
appear in Appendix B. Appendix C contains the group
structure analysis of Riemann curvature tensors and the
decomposition of Ricci tensors and Ricci scalar in the
soð4Þ Lie algebra basis.

II. EINSTEIN MANIFOLDS AS YANG-MILLS
INSTANTONS

It is known [15,16] that Einstein manifolds are stable, at
least perturbatively. It is a bit mysterious, recalling that
gravity is also described within the framework of field
theory. One way to understand the stability is to notice that
an Einstein manifold carries nontrivial topological invar-
iants such as the Euler characteristic χ and Hirzebruch
signature τ [14]. The gauge theory formulation of gravity
reveals a beautiful aspect of the stability. It turns out [9,10]
that an Einstein manifold in four dimensions has a con-
figuration of SUð2Þþ Yang-Mills instantons and SUð2Þ−
anti-instantons. Two kinds of instantons are independent of
each other, because they belong to different gauge groups.1

Furthermore, instantons can be superposed to make multi-
instantons. In principle, it is possible to have a tower of
Einstein manifolds by superposing SUð2Þ instantons in
each gauge group. The multi-Taub-NUT spaces [17] could
serve as an example of such a tower (with only one type of
instanton used). Of course, a compact manifold has subtle
global obstructions for gluing multi-instantons (see Chap. 7
in Ref. [8]). Let us briefly recapitulate this aspect of the
stability.
Consider an Einstein manifold ðM; gÞ. The metric on M

takes the form

ds24 ¼ gμνðxÞdxμdxν ¼ ea ⊗ ea: ð2:1Þ

Using the metric, one can determine the spin connections
ωa

b ¼ ωa
bμdxμ and curvature tensors Ra

b ¼ 1
2
Ra

bμνdxμ ∧
dxν by solving the structure equations [14,18]

Ta ¼ dea þ ωa
b ∧ eb ¼ 0; ð2:2Þ

Ra
b ¼ dωa

b þ ωa
c ∧ ωc

b: ð2:3Þ

An underlying idea is that gravity can be formulated as
a gauge theory of the Lorentz group where spin
connections play a role of gauge fields and Riemann
curvature tensors correspond to their field strengths [19].
Another important point is that Riemann curvature
tensors Ra

b are spin(4)-valued 2-forms in Ω2ðMÞ ¼
Λ2T�M. These facts are combined with the well-known
theorems (see Chap. 13 in Ref. [7] and Chaps. 1 and 2
in Ref. [8]).

A. Self-duality

On an orientable Riemannian four-manifold, the 2-forms
decompose into the space of self-dual and anti-self-dual 2-
forms:

Ω2 ¼ Ω2þ ⊕ Ω2
− ð2:4Þ

defined by the �1 eigenspaces of the Hodge star oper-
ator �∶ Ω2 → Ω2.

B. Lie group isomorphism

There is a global isomorphism between the four-
dimensional Lorentz group and classical Lie group, i.e.,
SOð4Þ ¼ SUð2Þþ ⊗ SUð2Þ−=Z2 or Spinð4Þ ¼ SUð2Þþ
⊗ SUð2Þ−. It also leads to the splitting of the Lie algebra

soð4Þ ¼ suþð2Þ ⊕ su−ð2Þ: ð2:5Þ

A central point is that these two decompositions
are deeply related to each other due to the canonical
vector space isomorphism between the Clifford algebra
Clð4Þ in four dimensions and the exterior algebra Ω�M ¼
⨁4

k¼0ΛkT�M over a four-dimensional Riemannian mani-
fold M (see Chap. 2 in Ref. [20]). For the isomorphism
between the vector spaces, the chiral operator γ5 ¼
−γ1γ2γ3γ4 in the Clifford algebra corresponds to the
Hodge-dual operator �∶ Ωk → Ω4−k in the exterior algebra.
Indeed, the splitting of vector spaces is induced by the
existence of the projection operators

P� ¼ 1

2
ð1� �Þ; P� ¼ 1

2
ð1� γ5Þ ð2:6Þ

acting on the vector space Ω2 and the soð4Þ generators
Jab ¼ 1

4
½γa; γb�, respectively. [See Appendix A for the

explicit matrix representations of soð4Þ Lie algebra.]
Therefore, the splitting of the two vector spaces in
Eqs. (2.4) and (2.5) is isomorphic to each other.
Thus, one can apply these decompositions to spin

connections and curvature tensors [9,10,21]. The first
decomposition is that the spin connections can be split
into a pair of SUð2Þþ and SUð2Þ− gauge fields according to
the Lie algebra splitting (2.5):

1This reasoning may not be complete, because a new insta-
bility may be developed through the interaction between in-
stantons. Moreover, T 4 and S1 × S3 (which is not an Einstein
manifold) have trivial topological invariants. However, the
stability of these product manifolds may be guaranteed by a
lower-dimensional topology.
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ωab ¼ AðþÞiηiab þ Að−Þiη̄iab; ð2:7Þ

where ηiab and η̄iab are the ’t Hooft symbols satisfying the
self-duality relation

ηiab ¼
1

2
εabcdη

i
cd; η̄iab ¼ −

1

2
εabcdη̄

i
cd: ð2:8Þ

Note that the index i ¼ ð1; 2; 3Þ refers to the suð2Þ�
Lie algebra index. Appendix A contains the explicit
representation of soð4Þ Lie algebra and the ’t Hooft
symbols. Accordingly the Riemann curvature tensors are
also decomposed into a pair of SUð2Þþ and SUð2Þ− field
strengths:

Rab ¼ FðþÞiηiab þ Fð−Þiη̄iab; ð2:9Þ

where SUð2Þ� field strengths are 2-forms onM defined by

Fð�Þi ¼ 1

2
Fð�Þi
cd ec ∧ dd

¼ dAð�Þi − εijkAð�Þj ∧ Að�Þk: ð2:10Þ

The second decomposition (2.4) is that the six-
dimensional vector space of 2-forms canonically splits
into the sum of three-dimensional vector spaces of self-dual
and anti-self-dual 2-forms. Canonical bases of self-dual and
anti-self-dual 2-forms are given by

ζiþ ¼ 1

2
ηiabe

a ∧ eb; ζi− ¼ 1

2
η̄iabe

a ∧ eb: ð2:11Þ

Using these bases, one can decompose the SUð2Þ� field
strengths in Eq. (2.10) as

FðþÞi ¼ fijðþþÞζ
j
þ þ fijðþ−Þζ

j
−; Fð−Þi ¼ fijð−þÞζ

j
þ þ fijð−−Þζ

j
−;

ð2:12Þ

where the canonical bases in Eq. (2.11) satisfy the Hodge-
duality equation

�ζi� ¼ �ζi�: ð2:13Þ

Combining the two decompositions (2.9) and (2.12) leads
to an irreducible decomposition of the general Riemann
curvature tensor [6,7,9,10]:

Rabcd ¼ fijðþþÞη
i
abη

j
cd þ fijðþ−Þη

i
abη̄

j
cd þ fijð−þÞη̄

i
abη

j
cd

þ fijð−−Þη̄
i
abη̄

j
cd: ð2:14Þ

The torsion-free condition (2.2) leads to an integrability
condition, the so-called first Bianchi identity

Rabcd þ Racdb þ Radbc ¼ 0: ð2:15Þ

From the first Bianchi identity (2.15), one can derive the
symmetry property

Rabcd ¼ Rcdab: ð2:16Þ
Equation (2.16), being totally 15 conditions, imposes the
symmetry property

fijðþþÞ ¼ fjiðþþÞ; fijð−−Þ ¼ fjið−−Þ; fijðþ−Þ ¼ fjið−þÞ: ð2:17Þ

The first Bianchi identity (2.15), being totally 16 con-
ditions, imposes an additional constraint

fijðþþÞδ
ij ¼ fijð−−Þδ

ij ð2:18Þ

that is equivalently written as

εabcdRabcd ¼ 0: ð2:19Þ

If ðM; gÞ is an Einstein manifold satisfying the equations
Rμν ¼ λgμν with λ a cosmological constant, one can show
(6.32 in Ref. [7] and Refs. [9,10]) that

fijðþ−Þ ¼ 0 ¼ fijð−þÞ: ð2:20Þ

In this case, the Riemann curvature tensor (2.9) is a direct
sum of self-dual SUð2Þþ field strengths and anti-self-dual
SUð2Þ− field strengths taking the form

FðþÞi ¼ fijðþþÞζ
j
þ; Fð−Þi ¼ fijð−−Þζ

j
−: ð2:21Þ

This means that SUð2Þ� field strengths describing an
Einstein manifold correspond to Yang-Mills instantons
obeying the self-duality equations explicitly written as

Fð�Þi
μν ¼ � 1

2

εαβρσffiffiffi
g

p gμαgνβF
ð�Þi
ρσ ; ð2:22Þ

where Fð�Þi¼ 1
2
Fð�Þi
μν dxμ ∧ dxν¼ 1

2
Fð�Þi
ab ea ∧ eb. Therefore,

an Einstein manifold ðM; gÞ has a configuration con-
sisting of SUð2Þþ Yang-Mills instantons and SUð2Þ−
anti-instantons [9].
Since Einstein manifolds encode a topological informa-

tion in the form of Yang-Mills instantons, it is natural
to expect that the topological invariants of an Einstein
manifold ðM; gÞ will be determined by the configuration of
SUð2Þ� Yang-Mills instantons. For a general closed
Riemannian manifold M, the Euler characteristic χðMÞ
and the Hirzebruch signature τðMÞ are defined by [7,14]

χðMÞ ¼ 1

32π2

Z
M
εabcdRab ∧ Rcd; ð2:23Þ

τðMÞ ¼ 1

24π2

Z
M
Rab ∧ Rab: ð2:24Þ
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The topological invariants can be expressed in terms of
SUð2Þ� gauge fields using the decompositions (2.9) and
(2.12)

χðMÞ ¼ 1

4π2

Z
M
ðFðþÞi ∧ FðþÞi − Fð−Þi ∧ Fð−ÞiÞ

¼ 1

2π2

Z
M
ððfijðþþÞÞ2 þ ðfijð−−ÞÞ2 − 2ðfijðþ−ÞÞ2Þ

ffiffiffi
g

p
d4x;

ð2:25Þ

τðMÞ ¼ 1

6π2

Z
M
ðFðþÞi ∧ FðþÞi þ FðþÞi ∧ FðþÞiÞ

¼ 1

3π2

Z
M
ððfijðþþÞÞ2 − ðfijð−−ÞÞ2Þ

ffiffiffi
g

p
d4x; ð2:26Þ

where we used the volume element

ζi� ∧ ζj� ¼ �2δij
ffiffiffi
g

p
d4x; ζi� ∧ ζj∓ ¼ 0:

An Einstein manifold has curvature tensors given by
Eq. (2.21) with the coefficients satisfying Eq. (2.18). In
this case, the Euler characteristic χðMÞ is given by the sum
of self-dual and anti-self-dual instantons, whereas the
Hirzebruch signature τðMÞ is their difference. The above
expression immediately verifies the famous inequalities for
the topological invariants. The first inequality is χðMÞ ≥ 0

with equality only if fijðþþÞ ¼ fijð−−Þ ¼ 0, i.e.,M is flat (6.32

in Ref. [7] and Sec. 10.4 in [14]). The second inequality is
the Hitchin-Thorpe inequality [22] stating that

χðMÞ � 3

2
τðMÞ ¼ 1

π2

Z
M
ðfijð��ÞÞ2

ffiffiffi
g

p
d4x ≥ 0; ð2:27Þ

where the equality holds only if fijðþþÞ ¼ 0 or fijð−−Þ ¼ 0,

i.e., M is half-flat (a gravitational instanton).
The instanton number for SUð2Þ� gauge fields is

defined by2

Ið�Þ ¼ � 1

4π2

Z
M
Fð�Þi ∧ Fð�Þi: ð2:28Þ

Then the topological invariants are determined by SUð2Þ�
instantons

χðMÞ ¼ ðIðþÞ þ Ið−ÞÞ ≥ 0; τðMÞ ¼ 2

3
ðIðþÞ − Ið−ÞÞ:

ð2:29Þ

Let χðMÞ ¼ m ∈ Z≥0 and τðMÞ ¼ n ∈ Z. We can invert
Eq. (2.29) as

Ið�Þ ¼ 1

4
ð2m� 3nÞ: ð2:30Þ

Note that our sign convention in Eq. (2.28) is Ið�Þ ≥ 0, so
the relation (2.30) is consistent with the inequality (2.27).
The above relations show how the topology of Einstein
manifolds is characterized by the configuration of SUð2Þþ
instantons and SUð2Þ− anti-instantons. One can also
deduce that χðMÞþτðMÞ¼mþn¼2ð1−b1þbþ2 Þ∈2Z,
where bi ¼ dimHiðM;RÞ is the ith Betti number
(Chap. 6.D in Ref. [7] and Sec. 10.4 in Ref. [14]). This
means that the set ðm; nÞ of topological numbers forms an
even integer lattice, i.e., mþ n ∈ 2Z. Some examples of
four-dimensional compact Einstein manifolds are shown in
Fig. 1, where the structure of the inverted triangle for an
allowed region is due to the inequalities m ≥ 0 and
m ≥ 3

2
jnj. In the list in Fig. 1, S1 × S3 is not an Einstein

manifold, since it does not admit Einstein metrics [22] and
Page is an inhomogeneous Einstein metric on the product
of the nontrivial S2 bundle over S2 [23].
Figure 1 clearly shows the “reflection” symmetry [11].

The reflection symmetry can be realized by considering
two compact Einstein manifolds ðM; gÞ and ðM̃; g̃Þ obeying
the following relation:

IðþÞðMÞ ¼ Ið−ÞðM̃Þ; Ið−ÞðMÞ ¼ IðþÞðM̃Þ: ð2:31Þ

Under the above transformation (2.31), the topological
invariants are related as

χðMÞ ¼ χðM̃Þ; τðMÞ ¼ −τðM̃Þ: ð2:32Þ

FIG. 1. Topological numbers of closed Einstein manifolds.

2This definition has considered the fact [21] that SUð2Þ�
gauge fields from spin connections in Eq. (2.7) are related to
Yang-Mills gauge fields by Ai

G ¼ − 1
2
Ai
YM and Fi

G ¼ − 1
2
Fi
YM

and SUð2Þ generators in gravity and gauge theory are related
by Ti

G ¼ −2τiYM. Note that the 4 × 4 matrices Ti
G ¼ ηiab or η̄iab

correspond to the spin s ¼ 3
2

representation of SUð2Þ Lie
algebra as shown in Eqs. (A7) and (A8), while the 2 × 2 Pauli
matrices τi ¼ 2iτiYM in SUð2Þ gauge fields are the spin s ¼ 1

2
representation.
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Thus, the reflection symmetry corresponds to the inter-
change of instantons and anti-instantons which is achieved
by a change of the manifold’s orientation. This map
indicates that a four-manifold with τðMÞ ¼ 0 is self-mirror.
We take the Lie algebra generators of SOð4Þ as

Jij ≡ εijkJk; Ji4 ≡ Ni; ð2:33Þ

where i, j, k ¼ 1, 2, 3 and

Ji ¼
i
2
ðτi ⊗ 12Þ ¼

i
2

�
τi 0

0 τi

�
;

Ni ¼
i
2
ðτi ⊗ τ3Þ ¼ i

2

�
τi 0

0 −τi

�
: ð2:34Þ

They satisfy the commutation relations

½Ji; Jj� ¼ −εijkJk; ½Ni; Nj� ¼ −εijkJk;

½Ji; Nj� ¼ −εijkNk: ð2:35Þ

In this representation, the generators in the Cartan sub-
algebra are −iJ3 and −iN3. An irreducible representation
(irrep) of SOð4Þ is labeled by the highest weight defined by
these operators [24], which is denoted by a state

����p2 ;
q
2

�
; p ≥ jqj; ð2:36Þ

where p and q are both even integers or both odd integers.
The isomorphism Spinð4Þ ≅ SUð2Þþ ⊗ SUð2Þ− can be
realized by taking

JðþÞ
i ≡ 1

2
ðJi þ NiÞ; Jð−Þi ≡ 1

2
ðJi − NiÞ; ð2:37Þ

because they separately obey the suð2Þ ≅ soð3Þ commu-
tation relations

½Jð�Þ
i ; Jð�Þ

j � ¼ −εijkJð�Þ
k ; ½Jð�Þ

i ; Jð∓Þ
j � ¼ 0: ð2:38Þ

For each SUð2Þ� factor, one may take a spin-j� repre-

sentation such that Jð�Þ
i Jð�Þ

i ¼ −j�ðj� þ 1Þ. We choose
jþ ≥ j−. An SOð4Þ irrep in this basis is then labeled by a
pair of integers or half integers ðjþ; j−Þ, i.e., the angular
momenta associated with the suð2Þþ and suð2Þ− subalge-
bras. We denote the highest weight state as

jjþ; j−i: ð2:39Þ

The two representations are related by putting p ¼ 2ðjþ þ
j−Þ and q ¼ 2ðjþ − j−Þ (Sec. 19.13 in Ref. [24]). The irrep
of the direct product DðjþÞ ⊗ Dðj−Þ is decomposed as

�
p
2
;
q
2

�
→

�
p
2

�
⊕

�
p
2
− 1

�
⊕ � � � ⊕

�jqj
2

�
ð2:40Þ

under the restriction SOð4Þ → SOð3Þ.
We note that the separation of instantons such as

Eq. (2.21) is caused by the splitting of the Lie algebra
(2.5). Considering the fact that the instanton action S ¼
8π2jIð�Þj is determined by the instanton number itself, it
may be reasonable to identity the instanton numbers Ið�Þ
with the labels characterizing some irreps of SUð2Þ�. Now
we identify the labels ðjþ; j−Þ in the representation (2.39)
with the instanton numbers in Eq. (2.30) as follows:

jþ ¼ 2IðþÞ ¼ 1

2
ð2mþ 3nÞ ≥ 0;

j− ¼ 2Ið−Þ ¼ 1

2
ð2m − 3nÞ ≥ 0: ð2:41Þ

This identification automatically satisfies the Hitchin-
Thorpe inequality (2.27). However, in order to satisfy
the condition that the set ðm; nÞ of topological numbers
forms an even integer lattice, i.e., mþ n ∈ 2Z, it is
necessary to choose ðjþ; j−Þ such that both are integers
or half integers and 5jþ þ j− ∈ 12Z. This identification
leads to the identification p ¼ 2ðjþ þ j−Þ ¼ 4m ¼ 4χ ≥ 0
and q ¼ 2ðjþ − j−Þ ¼ 6n ¼ 6τ in the representation
(2.36). The condition mþ n ∈ 2Z corresponds to the
requirement that both p and q are even and 3pþ
2q ∈ 24Z. The reflection symmetry (2.31) corresponds
to the interchange of the representations, ðjþ ↔ j−Þ, under
which ðp; qÞ → ðp;−qÞ. This is the reason why it is
enough to consider only the case, jþ ≥ j−, i.e., q ≥ 0.
Note that the representationsDðjþÞ ⊗ Dðj−Þ andDðj−Þ ⊗
DðjþÞ for jþ ≠ j− correspond to distinct representations in
SOð4Þ. It may be pointed out that the identification (2.41)
does not explain the Hitchin-Thorpe inequality (2.27),
because we have chosen the representations ðjþ; j−Þ such
that they obey the relation jþ ¼ 2IðþÞ and j− ¼ 2Ið−Þ.
Nevertheless, it is very encouraging that it is always
possible to choose the SOð4Þ representations so that such
a relation is satisfied.
The four-dimensional Lorentz group Spin(4) is the spin

group in dimension 4, the double cover of SOð4Þ, that is a
product group since Spinð4Þ ¼ SUð2Þþ × SUð2Þ− and its
Lie algebra becomes a direct sum of two suð2Þ� Lie
algebras. The splitting of the Lie algebra in Eq. (2.5) is
related to the decomposition of the 2-forms on a four-
manifold in Eq. (2.4). The canonical splitting of the vector
spaces occupies a central position for the instanton struc-
ture of Einstein manifolds. However, one may think of the
four-dimensional gravity as being obtained through the
Kaluza-Klein reduction of a five-dimensional gravity. Then
one can consider the four-dimensional Einstein manifolds
as obtained from a five-dimensional gravitational solution.
The five-dimensional Lorentz group is SOð5Þ which is a
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simple group. Since SOð4Þ ⊂ SOð5Þ, it will be interesting
to see how the instanton configuration of Einstein mani-
folds fits into a multiplet in the irrep of SOð5Þ. We will
discuss this issue in the next section.

III. REPRESENTATION OF RIEMANNIAN
MANIFOLDS

As we have observed in Sec. II, the separation of
Riemann curvature tensors has been originated from the
splitting of the Lie algebra vector space (2.5). Since the
vector space soð4Þ is isomorphic to the vector space of
2-formsΩ2, the same kind of splitting must also arise in the
vector space Ω2. Equation (2.4) precisely shows such a
splitting of the vector space Ω2. The gravitational force is
represented by Riemann curvature tensors, and Einstein
manifolds are described by two independent components of
Riemann tensors (i.e., self-dual and anti-self-dual gravita-
tional instantons).3 However, an interesting physics arises
if we consider the four-dimensional gravity as being
obtained from a five-dimensional gravity through the
Kaluza-Klein compactification [12]. Then the five-
dimensional Lorentz group is SOð5Þ that is a simple
group unlike the group SOð4Þ ¼ SUð2Þþ × SUð2Þ−=Z2.
Moreover, there is no concept of self-duality for 2-forms in
five dimensions so that the vector space Ω2 is no more
decomposed. Therefore, neither the Lie algebra of SOð5Þ
nor the vector space of 2-forms Ω2 is split in five
dimensions. This implies that the self-dual and anti-self-
dual components in SUð2Þ� factors must be combined in
five dimensions, since the group SOð4Þ ¼ SUð2Þþ ×
SUð2Þ−=Z2 has to be embedded into the simple group
SOð5Þ. In other words, SUð2Þþ instantons and SUð2Þ−
anti-instantons in four-dimensional Einstein manifolds
must appear in the same multiplet of the Lorentz group
SOð5Þ. Therefore, the five-dimensional Kaluza-Klein
theory unifies two independent sectors of curvature tensors
as well as the electromagnetic force into a single gravita-
tional force.
This scheme is similar to the grand unification of the

Standard Model, although the Kaluza-Klein theory is
defined in five-dimensional space. The Standard Model
has a product gauge group SUð3Þ × SUð2Þ ×Uð1Þ to
describe the electroweak and strong forces. In the GUT,
the Standard Model gauge group is embedded into a single
gauge group, for example, SUð5Þ or SOð10Þ. Then the
leptons and quarks appear in the same multiplet in a larger

symmetry [13]. Now we will see how four-dimensional
Riemannian manifolds are similarly combined into a five-
dimensional Einstein manifold. Furthermore, we will see
that SUð2Þþ instantons and SUð2Þ− anti-instantons play a
role of quarks and antiquarks from the point of view of a
five-dimensional Einstein manifold. In order to analyze the
anatomy of Riemannian manifolds, we will greatly use the
group isomorphism [2]

SOð5Þ ≅ Spð2Þ=Z2: ð3:1Þ

We provide more details about the Lie algebras soð4Þ ¼
suð2Þþ ⊕ suð2Þ− and soð5Þ ≅ spð2Þ in Appendix A.
Let N be a five-dimensional Riemannian manifold

whose metric is given by

ds2 ¼ GMNðXÞdXMdXN: ð3:2Þ

Introduce at each spacetime point on N a local basis of
orthonormal tangent vectors EA ¼ EM

A ∂M ∈ ΓðTNÞ and its
dual basis EA ¼ EA

MdX
M ∈ ΓðT�NÞ defined by a natural

pairing hEA; EBi ¼ δAB, where A; B ¼ 1;…; 5;M;N ¼ 1;
…; 5. In terms of the noncoordinate basis in ΓðT�NÞ, the
metric (3.2) can be written as

ds2 ¼ GMNðXÞdXMdXN ¼ δABEA ⊗ EB: ð3:3Þ

Let us consider Einstein manifolds ðN;GÞ described by the
Einstein-Hilbert action

S5 ¼ −
1

16πG5

Z
ðR − 3ΛÞ

ffiffiffiffi
G

p
d5X; ð3:4Þ

where Λ and G5 are a cosmological constant and the
gravitational constant in five dimensions, respectively. The
equations of motion derived from the action (3.4) are

RMN ¼ ΛGMN: ð3:5Þ

A solution to Eq. (3.5) constitutes five-dimensional
Einstein manifolds ðN;GÞ. Now we consider the Kaluza-
Klein compactification of five-dimensional Einstein mani-
folds by assuming that the five-dimensional space N is a
cylinder M × S1 with 0 ≤ x5 ≤ L ¼ 2πR5 [12]. We split
five-dimensional coordinates as XM ¼ ðxμ; x5Þ;μ¼ 1;…;4,
according to the cylinder geometry. Then the five-
dimensional metric tensor in (3.2) also splits into four-
dimensional fields, gμνðxÞ, AμðxÞ, and ϕðxÞ. We have
imposed the cylinder condition that the fields should not
depend on the fifth coordinate x5. We take the Kaluza-Klein
ansatz for the five-dimensional metric in the form

ds2 ¼ GMNðXÞdXMdXN

¼ e−
1
3
ϕðgμνdxμdxν þ eϕðdx5 þ κAμdxμÞ2Þ; ð3:6Þ

3It is not the case for the Lorentzian signature, because the
local Lorentz group SOð3; 1Þ is a simple group although it is not
compact. Furthermore, it does not mean that there are two
independent gravitational forces, because the gravitational force
is transmitted by metrics (not connections) and the metric does
not decompose in any sense into a sum of two independent parts.
The self-dual and anti-self-dual components of spin connections
are described by the same metric.
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where κ2 ¼ 16πG4 and G4 ¼ G5

L is the four-dimensional
gravitational constant. It may be instructive to write the
five-dimensional metric in the matrix form

GMN ¼ e−
1
3
ϕ

�
gμν þ κ2eϕAμAν κeϕAμ

κeϕAν eϕ

�
: ð3:7Þ

The geometric details of the five-dimensional gravity and
the Kaluza-Klein theory appear in Appendix B.
Using the result (B21), one can write down the five-

dimensional Einstein-Hilbert action (3.4) for the Kaluza-
Klein ansatz (3.6). First note that the five-dimensional
volume form is

ffiffiffiffi
G

p
d5X¼E1 ∧ � � �∧E5 ¼ e−

1
3
ϕ ffiffiffi

g
p

d4xdx5.
Since the four-dimensional fields do not depend on the
circle coordinate x5, one can integrate out the fifth
coordinate that gives rise to the redefinition of the gravi-
tational constant G4 ¼ G5

L . Moreover, one can ignore the
Laplacian term in Eq. (B21) because it becomes a boundary
term. Finally, the Einstein-Hilbert action (3.4) reduces to
the four-dimensional action

S ¼
Z �

−
1

16πG4

ðð4ÞR − 3e−
κffiffi
3

p ΦΛÞ

þ 1

4
e

ffiffi
3

p
κΦgμρgνσFμνFρσ þ

1

2
gμν∂μΦ∂νΦ

� ffiffiffi
g

p
d4x;

ð3:8Þ

where we have rescaled the scalar field

Φ≡ 1ffiffiffi
3

p
κ
ϕ ð3:9Þ

such that the scalar field has the usual kinetic term with
canonical mass dimension. The Ricci scalar ð4ÞR with the
left-hand superscript ð4Þ is determined only by the four-
dimensional metric ds24 ¼ gμνðxÞdxμdxν. Note that Λ no
longer behaves like a cosmological constant in four
dimensions except the case of a constant scalar field.
Let us consider the symmetries of the Kaluza-Klein

geometry with the metric (3.6) where the components of
the gravitational field along the circle transmute into
the electromagnetic field. The effective field theory of
five-dimensional gravity around a solution of the form
N ¼ M × S1 is four-dimensional gravity coupled to
electromagnetism and a dilaton field. The five-dimensional
Lorentz transformations that would mix the remaining four-
dimensional gravitational excitations with electromagnetic
excitations are not symmetries of the metric. The sym-
metries of the Kaluza-Klein vacuum (3.6) are the four-
dimensional Lorentz symmetries, acting on M, and a Uð1Þ
group acting on the circle S1 [12,25]. These symmetries are
realized as local or gauge symmetries in the apparent four-
dimensional world, because the whole theory started with

the Einstein-Hilbert action (3.4) which is generally covar-
iant. Therefore, the spontaneous symmetry breaking by the
Kaluza-Klein ground state (3.6) arises via a two-step
procedure with the symmetry breaking from SOð5Þ to
SOð4Þ followed by the symmetry enhancement to SOð4Þ ×
Uð1Þ in terms of the isometry of the Kaluza-Klein circle.
The remaining symmetry is denoted as

SOð5Þ → SOð4Þ ×Uð1Þ; ð3:10Þ

although the Uð1Þ factor is not a subgroup of SOð5Þ, since
it acts on the circle coordinate as

xμ ↦ xμ; x5 ↦ x5 þ fðxÞ: ð3:11Þ

Under this transformation, we have

gμν ↦ gμν; ϕ ↦ ϕ; Aμ ↦ Aμ −
1

κ
∂μf; ð3:12Þ

so that the 1-form A ¼ Aμdxμ transforms like an Abelian
gauge field.
The equations of motion for the four-dimensional fields

can be derived from the action (3.8):

ð4ÞRμν −
1

2
gμνðð4ÞR − 3e−

κffiffi
3

p ΦΛÞ ¼ 8πG4Tμν; ð3:13Þ

Dμðe
ffiffi
3

p
κΦFμνÞ ¼ 0; ð3:14Þ

ΔΦ ¼
ffiffiffi
3

p
κ

4
e

ffiffi
3

p
κΦFμνFμν −

ffiffiffi
3

p

κ
e−

κffiffi
3

p ΦΛ; ð3:15Þ

where the energy-momentum tensor Tμν is given by

Tμν ¼ e
ffiffi
3

p
κΦgρσFμρFνσ þ ∂μΦ∂νΦ

− gμν

�
1

4
e

ffiffi
3

p
κΦFρσFρσ þ 1

2
gρσ∂ρΦ∂σΦ

�
: ð3:16Þ

Indeed, one can check using the results in Eqs. (B18)–
(B21) and R ¼ 5Λ that the above equations of motion are
exactly the same as Eq. (3.5) for a five-dimensional
Einstein manifold. Therefore, the general five-dimensional
metric (3.6) describes a five-dimensional Einstein manifold
as long as the four-dimensional fields, gμνðxÞ, AμðxÞ, and
ΦðxÞ, satisfy the above equations of motion. It will be
interesting to see how the other fields such as AμðxÞ and
ΦðxÞ deform the instanton structure of four-dimensional
Einstein manifolds and understand how these deformed
geometries are nicely unified into a five-dimensional
Einstein manifold.
In order to understand such a structure of a five-

dimensional Einstein manifold, it would be useful to have
the decomposition of five-dimensional Riemann curvature
tensors similar to the four-dimensional decomposition
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(2.14). The generators of soð5Þ Lorentz algebra are
defined by

JAB ¼ 1

4
½γA; γB�; ð3:17Þ

and they satisfy the Lorentz algebra

½JAB; JCD� ¼ −ðδACJBD − δADJBC − δBCJAD þ δBDJACÞ:
ð3:18Þ

See Appendix A for the representation of the five-
dimensional gamma matrices. The ten generators in
Eq. (3.17) consist of JAB ¼ ðJab; J5aÞ, where the generators
Jab satisfy the four-dimensional Lorentz algebra soð4Þ ⊂
soð5Þ and J5a are additional generators given by

Jab ¼
1

4
½γa; γb� ¼

i
2

�
ηiabτ

i 0

0 η̄iabτ
i

�
;

J5a ¼
1

4
½γ5; γa� ¼

1

2

�
0 σa

−σ̄a 0

�
: ð3:19Þ

Let us denote the generators in Eq. (3.19) as

Jij ≡ εijkTk; Ji4 ≡ T3þi;

Ji5 ≡ −T6þi; J45 ≡ −T10; ð3:20Þ

which take the block matrix form

Ti ¼ i
2
ðτi ⊗ 12Þ ¼

i
2

�
τi 0

0 τi

�
;

T3þi ¼ i
2
ðτi ⊗ τ3Þ ¼ i

2

�
τi 0

0 −τi

�
;

T6þi ¼ i
2
ðτi ⊗ τ1Þ ¼ i

2

�
0 τi

τi 0

�
;

T10 ¼ i
2
ð12 ⊗ τ2Þ ¼ 1

2

�
0 12

−12 0

�
: ð3:21Þ

It can be shown (see Appendix A) that the 4 × 4 matrices
TA;A ¼ 1;…; 10, in Eq. (3.21) constitute the Lie algebra
generators of spð2Þ. Therefore, we establish the Lie algebra
isomorphism spð2Þ ≅ soð5Þ. Since the universal covering
group of SOð5Þ is Spð2Þ, we get the group isomor-
phism (3.1).
Since the vector spaces generated by JAB and TA are

isomorphic to each other, there exists a linear relation
between them:

JAB ¼ ψA
ABT

A; TA ¼ 1

2
ψA
ABJAB; ð3:22Þ

where

ψA
AB ¼ −TrðJABTAÞ: ð3:23Þ

The psi symbol in (3.23) is the analog of the four-
dimensional ’t Hooft symbols in Eq. (A6), which explicitly
presents the Lie algebra isomorphism soð5Þ ≅ spð2Þ.
Indeed, the matrix expression ðTAÞAB ≡ ψA

AB provides
the five-dimensional representation of spð2Þ Lie algebra
as was shown in Eq. (A36). The Riemann curvature tensor
R ¼ 1

2
RABJAB ∈ C∞ðg ⊗ Ω2Þ carries two kinds of indices

living in different vector spaces:

RAB ¼ 1

2
RABMNdXM ∧ dXN ¼ 1

2
RABCDEC ∧ ED; ð3:24Þ

where the indices ðA;BÞ live in the vector space of
g ¼ soð5Þ Lie algebra while ðC;DÞ live in the vector
space of 2-formsΩ2 ¼ Λ2T�N. But these two vector spaces
are isomorphic to each other, and their isomorphism is
encoded in the symmetry property of curvature tensors:

RABCD ¼ RCDAB: ð3:25Þ

The symmetry property (3.25) can be derived from the first
Bianchi identity

RABCD þ RACDB þ RADBC ¼ 0; ð3:26Þ

which is the integrability condition for the torsion 2-forms
in Eq. (B1) [14,18]. Thus, we can expand the curvature
tensors RABCD in the spð2Þ basis for both indices using the
psi symbol (3.23) as

RABCD ¼ RABψ
A
ABψ

B
CD; ð3:27Þ

where the expansion coefficients are symmetric, i.e.,

RAB ¼ RBA ¼ 1

4
RABCDψ

A
ABψ

B
CD ð3:28Þ

due to the property (3.25). The Bianchi identity (3.26)
which is totally 50 conditions imposes five additional
conditions

dABCRAB ¼ 0 ð3:29Þ

in addition to the 45 conditions from Eq. (3.28), where the
structure constants dABC are defined in Eq. (A26). The
constraints (3.29) can be derived from Eq. (3.27) by
contracting 1

4
JABJCD on both sides and applying the

products (A27) and (A28). Then it results in two identities

RABδ
AB ¼ 1

2
R; ð3:30Þ

dABERAB ¼ 1

4
εABCDERABCD ¼ 0; ð3:31Þ
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where R is the Ricci scalar and Eq. (3.31) must vanish due
to the Bianchi identity (3.26). It may also be checked by
counting the number of independent Riemann curvature
tensors. In five dimensions, the number of independent
Riemann curvature tensors obeying the Bianchi identity
(3.26) is 50. The number of spð2Þ curvature tensors

obeying Eq. (3.28) is 55 ¼ 100 − 45, and then imposing
the five constraints (3.29) leads to 50 independent compo-
nents. See Appendix C for the group structure of Riemann
curvature tensor.
The spð2Þ ≅ soð5Þ generators in Eq. (3.21) satisfy the

commutation relations

½Ti; Tj� ¼ ½T3þi; T3þj� ¼ ½T6þi; T6þj� ¼ −εijkTk;

½Ti; T3þj� ¼ −εijkT3þk; ½Ti; T6þj� ¼ −εijkT6þk; ½T3þi; T6þj� ¼ −δijT10;

½Ti; T10� ¼ 0; ½T3þi; T10� ¼ T6þi; ½T6þi; T10� ¼ −T3þi: ð3:32Þ

Note that T3 ¼ i
2
ðτ3 ⊗ 12Þ and T6 ¼ i

2
ðτ3 ⊗ τ3Þ are diagonal matrices. Therefore, they constitute the set of the Cartan

subalgebra for spð2Þ ≅ soð5Þ:

h ¼ fH1 ¼ −iT3; H2 ¼ −iT6g: ð3:33Þ

They correspond to H1 ¼ −iJ3 and H2 ¼ −iN3, respectively, according to the notation (2.33). Thus, this representation
contains the highest weight state (2.36). The remaining generators are chosen to satisfy the eigenvalue equations [13,24]

½Hi; Eα� ¼ αiEα; ð3:34Þ

where i ¼ 1, 2. The two-dimensional vector α⃗ ¼ ðα1; α2Þ is called a root, and Eα is the corresponding ladder operator. We
choose the ladder operators as follows:

A� ¼ 1

2
ðT1 � iT2 þ ðT4 � iT5ÞÞ; B� ¼ 1

2
ðT1 � iT2 − ðT4 � iT5ÞÞ;

C� ¼ T7 � iT8; D� ¼ T9 � iT10: ð3:35Þ

It may be useful to show the explicit matrix representation of the Cartan-Weyl basis:

H1 ¼ 1

2

�
τ3 0

0 τ3

�
; H2 ¼ 1

2

�
τ3 0

0 −τ3

�
; A� ¼ 1

2

�
τ� 0

0 0

�
; B� ¼ 1

2

�
0 0

0 τ�

�
;

C� ¼ 1

2

�
0 τ�

τ� 0

�
; D� ¼ i

2

�
0 �12 þ τ3

∓12 þ τ3 0

�
; ð3:36Þ

where τ� ¼ iðτ1 � iτ2Þ. Then the commutation relations in
Eq. (3.32) can be written in the Cartan-Weyl basis as

½H1; A�� ¼ �A�; ½H2; A�� ¼ 0;

½H1; B�� ¼ 0; ½H2; B�� ¼ �B�;

½H1; C�� ¼ �C�; ½H2; C�� ¼ �C�;

½H1; D�� ¼ �D�; ½H2; D�� ¼ ∓D�: ð3:37Þ

Therefore, we identify the root vectors derived from the
ladder generators

α⃗A� ¼ �ð1; 0Þ; α⃗B� ¼ �ð0; 1Þ;
α⃗C� ¼ �ð1; 1Þ; α⃗D� ¼ �ð1;−1Þ; ð3:38Þ FIG. 2. Root diagram of soð5Þ ≅ spð2Þ for the Cartan sub-

algebra (3.33).
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where the first (second) entry of root vectors is the
eigenvalue of adH1ðadH2Þ. The corresponding root diagram
is shown in Fig. 2. The simple roots are denoted by

α⃗ ¼ ð0; 1Þ; β⃗ ¼ ð1;−1Þ: ð3:39Þ

One may choose a different combination of the Cartan
subalgebra

h ¼
	
H1 ¼ −

iffiffiffi
2

p ðT3 þ T6Þ; H2 ¼ −
iffiffiffi
2

p ðT3 − T6Þ


;

ð3:40Þ

whose matrix form is given by

H1 ¼ 1ffiffiffi
2

p
�
τ3 0

0 0

�
; H2 ¼ 1ffiffiffi

2
p

�
0 0

0 τ3

�
: ð3:41Þ

They correspond to H1 ¼ −
ffiffiffi
2

p
iJðþÞ

3 and H2 ¼ −
ffiffiffi
2

p
iJð−Þ3 ,

respectively, according to the notation (2.37). Thus, this
representation contains the highest weight state (2.39).
Then the commutation relations in Eq. (3.32) can be written
in the Cartan-Weyl basis as

½H1; A�� ¼ �
ffiffiffi
2

p
A�; ½H2; A�� ¼ 0;

½H1; B�� ¼ 0; ½H2; B�� ¼ �
ffiffiffi
2

p
B�;

½H1; C�� ¼ � 1ffiffiffi
2

p C�; ½H2; C�� ¼ � 1ffiffiffi
2

p C�;

½H1; D�� ¼ � 1ffiffiffi
2

p D�; ½H2; D�� ¼ ∓ 1ffiffiffi
2

p D�: ð3:42Þ

The corresponding root diagram is shown in Fig. 3. The
simple roots may be chosen as

α⃗ ¼
ffiffiffi
2

p
ð0; 1Þ; β⃗ ¼ 1ffiffiffi

2
p ð1;−1Þ: ð3:43Þ

Our normalization for simple roots is that the square length
of the longest roots is set equal to 2.
As we have indicated in Eq. (3.24), the Riemann

curvature tensors are 2-forms inΩ2 ¼ Λ2T�N taking values
in the vector space of g ¼ soð5Þ ≅ spð2Þ Lie algebra.
According to the remaining symmetry (3.10), let us
decompose the Lie algebra g ¼ soð5Þ ¼ fTAjA ¼
1;…; 10g as

g ¼ soð4Þ ⊕ k ¼ suð2Þþ ⊕ suð2Þ− ⊕ k; ð3:44Þ

where k contains the generators J5a in the coset space
SOð5Þ=SOð4Þ ≅ S4. Since g ≅ Λ2T�N as vector spaces,
Eq. (3.27) gives us the expansion of the curvature tensor in
the basis of g. In the basis (3.20), fTAjA ¼ 1;…; 6g

corresponds to Jab, so soð4Þ ⊂ soð5Þ Lie algebra and
fT6þa∶a ¼ 1;…; 4g corresponds to the coset generators
J5a in k. As is well known, Eq. (3.32) shows that the coset
space SOð5Þ=SOð4Þ ≅ S4 is reductive ð½soð4Þ; k� ⊂ kÞ and
symmetric ð½k; k� ⊂ soð4ÞÞ. One can explicitly determine
nonzero components of the psi symbols defined by
Eq. (3.23) using Eq. (A27):

ψ i
ab ¼ εiab4; ψ3þi

ab ¼ δiaδ4b − δibδ4a; ψ6þa
5b ¼ δab:

ð3:45Þ

Therefore, the ’t Hooft symbols in Eq. (A6) are related to
the psi symbols by

ηiab ¼ ψ i
ab þ ψ3þi

ab ; η̄iab ¼ ψ i
ab − ψ3þi

ab : ð3:46Þ

Then the above combination implies that

Ti þ T3þi ¼ 1

2
ðψ i

ab þ ψ3þi
ab ÞJab ¼

1

2
ηiabJab ∈ suð2Þþ;

Ti − T3þi ¼ 1

2
ðψ i

ab − ψ3þi
ab ÞJab ¼

1

2
η̄iabJab ∈ suð2Þ−;

ð3:47Þ

where we used the definition (3.22). The coset generators
are given by

T6þa ¼ ψ6þa
5b J5b ¼ J5a ∈ k: ð3:48Þ

Thus, the Cartan-Weyl basis for the root diagram in Fig. 3
can be classified as follows:

ðH1;A�Þ ∈ suð2Þþ; ðH2;B�Þ ∈ suð2Þ−; ðC�;D�Þ ∈ k:

ð3:49Þ

FIG. 3. The root diagram of spð2Þ ≅ soð5Þ for the Cartan
subalgebra (3.40) where the actual roots must read as
jα1; α2i ¼

ffiffiffi
2

p jβ1; β2i.
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The decomposition of four-dimensional Einstein manifolds
implies that SUð2Þþ Yang-Mills instantons live in the
vector space suð2Þþ and SUð2Þ− Yang-Mills anti-instan-
tons live in the vector space suð2Þ−. The root diagram in
Fig. 3 shows how each component in the five-dimensional
Riemann curvature tensors RABCD deforms the instanton
structure of four-dimensional Einstein manifolds.
Hence, it is useful to decompose the five-dimensional

Riemann curvature tensors in Eq. (3.27) according to the
Lie algebra decomposition (3.44). First, the Riemann
curvature tensors in (B14) are decomposed as

Rabcd ¼ fijðþþÞη
i
abη

j
cd þ fijðþ−Þη

i
abη̄

j
cd þ fijð−þÞη̄

i
abη

j
cd

þ fijð−−Þη̄
i
abη̄

j
cd; ð3:50Þ

where

fijðþþÞ ≡
1

4
ðRi;j þR3þi;j þRi;3þj þR3þi;3þjÞ;

fijðþ−Þ ≡
1

4
ðRi;j þR3þi;j −Ri;3þj −R3þi;3þjÞ;

fijð−þÞ ≡
1

4
ðRi;j −R3þi;j þRi;3þj −R3þi;3þjÞ;

fijð−−Þ ≡
1

4
ðRi;j −R3þi;j −Ri;3þj þR3þi;3þjÞ: ð3:51Þ

Explicitly, they are given by

fijðþþÞ ¼ e
1
3
ϕ

	
fijðþþÞ

− κ2eϕ
�
3

4
fðþÞifðþÞj−

1

8
ðfðþÞkfðþÞk−fð−Þkfð−ÞkÞδij

�

þ 1

24
ðΔϕ−

1

6
ð∂aϕÞ2Þδij



;

fijðþ−Þ ¼ e
1
3
ϕ

	
fijðþ−Þ−

3

4
κ2eϕfðþÞifð−Þj

þ 1

24

�
Da∂bϕþ1

6
∂aϕ∂bϕ

�
ηiacη̄

j
bc



;

fijð−−Þ ¼ e
1
3
ϕ

	
fijð−−Þ

− κ2eϕ
�
3

4
fð−Þifð−Þjþ1

8
ðfðþÞkfðþÞk−fð−Þkfð−ÞkÞδij

�

þ 1

24
ðΔϕ−

1

6
ð∂aϕÞ2Þδij



; ð3:52Þ

where fijð��Þ are the expansion coefficients of the four-

dimensional Riemann curvature tensors (2.14) and we have
introduced a similar decomposition forUð1Þ field strengths

Fab ¼ fðþÞiηiab þ fð−Þiη̄iab: ð3:53Þ

Note that

fijðþþÞ ¼ fjiðþþÞ; fijð−−Þ ¼ fjið−−Þ; fijðþ−Þ ¼ fjið−þÞ ð3:54Þ

due to the symmetry property (3.25) and the Bianchi
identity (3.26) further requires

fijðþþÞδ
ij ¼ fijð−−Þδ

ij: ð3:55Þ

It is easy to check Eq. (3.55) using the above results.4 Using
the decomposition (3.53), it is straightforward to calculate
the Uð1Þ instanton density:

ρUð1Þ ¼
1

64π2
εabcdFabFcd

¼ 1

8π2
ðfðþÞkfðþÞk − fð−Þkfð−ÞkÞ: ð3:56Þ

Using Eq. (3.45), the expansion (3.27) for the Riemann
tensors R5abc can be written as

R5abc ¼ R6þa;Bψ
B
bc

≡ F ðþÞi
5a ηibc þ F ð−Þi

5a η̄ibc; ð3:57Þ

where F ð�Þi
5a ¼ 1

2
ðR6þa;i �R6þa;3þiÞ are given by

F ðþÞi
5a ¼ κ

12
e
5
6
ϕð6DðþÞ

a fðþÞi þ 7fðþÞi∂aϕ − 2εijkfðþÞjηkab∂bϕ

þ fð−Þjηiacη̄
j
bc∂bϕÞ;

F ð−Þi
5a ¼ κ

12
e
5
6
ϕð6Dð−Þ

a fð−Þi þ 7fð−Þi∂aϕ − 2εijkfð−Þjη̄kab∂bϕ

þ fðþÞjη̄iacη
j
bc∂bϕÞ; ð3:58Þ

and

Dð�Þ
a fð�Þi ¼ ∂afð�Þi − 2εijkAð�Þj

a fð�Þk: ð3:59Þ

The expansion components F ð�Þi
5a are not completely

independent due to the constraints (3.29). It is straightfor-
ward to read off the constraints using Table I in Appendix A
that gives four relations from the first four rows, so totally
20 ¼ 24 − 4 independent components remain. The last line
in Table I gives rise to the constraint (3.55). Finally, we
have

4It can also be derived from Eq. (3.31) by using the algebraic
properties of the ’t Hooft symbols in Appendix A:

1

4
εabcd5Rabcd ¼ 1

2
ðfijðþþÞη

i
abη

j
ab − fijðþ−Þη

i
abη̄

j
ab

þ fijð−þÞη̄
i
abη

j
ab − fijð−−Þη̄

i
abη̄

j
abÞ

¼ 2ðfijðþþÞδ
ij − fijð−−Þδ

ijÞ ¼ 0:
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R5a5b ¼ R6þa;6þb ≡Rab

¼ e
1
3
ϕ

	
κ2

4
eϕððfðþÞifðþÞi þ fð−Þifð−ÞiÞδab

þ 2fðþÞifð−Þjηiacη̄
j
bcÞ

−
2

9
∂aϕ∂bϕþ 1

18
∂cϕ∂cϕδab −

1

3
Da∂bϕ



;

ð3:60Þ

where Rab ¼ Rba, so totally ten components. Thus, we
recover the 50 ¼ 20þ 20þ 10 components of Riemann
curvature tensors in five dimensions.

IV. FIVE-DIMENSIONAL EINSTEIN MANIFOLDS

It was shown in Eq. (A36) that ψA
AB defined in Eq. (3.23)

provide the five-dimensional representation of spð2Þ ≅
soð5Þ Lie algebra. It is the irrep of spð2Þ corresponding
to the highest weight ϖ2 ¼ ð0; 1Þ on the right-hand side in
Fig. 4. It is well known [13] that a simple Lie algebra of
rank r possesses r inequivalent fundamental irreps. The two
fundamental weights for the Lie algebra spð2Þ ≅ soð5Þ are
shown in Fig. 4. The four-dimensional representation,
corresponding to the highest weight ϖ1 ¼ ð1; 0Þ on the
left-hand side in Fig. 4, is the spinor representation of soð5Þ
and the defining representation of spð2Þ. In contrast, ϖ2 ¼
ð0; 1Þ is the highest weight of a five-dimensional repre-
sentation of spð2Þ ≅ soð5Þ Lie algebra. It is easy to find the
defining representation of soð5Þ that is given by Eq. (A37).
There must exist a five-dimensional representation of spð2Þ
defined by the fundamental weight ϖ2 ¼ ð0; 1Þ. That is
precisely provided by the psi symbol (3.23).
Therefore, the expansion (3.27) corresponds to the

generalization of the four-dimensional decomposition
(2.14) to the five-dimensional case. The five-dimensional
curvature tensors are not decomposed into some irreducible
blocks, because the Lorentz group SOð5Þ ¼ Spð2Þ=Z2

is a simple group, unlike the four-dimensional case.

The Riemann curvature tensor belongs to the irrep of
SOð5Þ ¼ Spð2Þ=Z2 given by

ð4:1Þ

Thus, the five-dimensional Einstein manifold satisfying
the equations of motion (3.5) should take elements in
the irrep (3.5). The expansion (3.27) shows how these
elements are organized according to the root structure in
Fig. 2 or 3. After the Kaluza-Klein compactification, the
symmetry is reduced to SOð4Þ ×Uð1Þ. Then the Riemann
curvature tensors in Eq. (4.1) are decomposed according
to the remaining symmetry (3.10) or, more precisely,
Eq. (3.44). This decomposition appears in Eqs. (3.50),
(3.57), and (3.60). In particular, the components fijð��Þ of
four-dimensional Einstein manifolds appear in the curva-
ture tensor (3.50). The instanton structure of Einstein
manifolds is deformed by the excitations of Uð1Þ gauge
fields and a scalar field. However, these deformations in the
curvature tensor (3.50) are done only in the root directions
A� and B�, corresponding to the x axis and the y axis,
respectively, in the root diagram in Fig. 2 or 3. Therefore, if
the mixed components fijðþ−Þ ¼ fjið−þÞ in the deformed
curvature tensor Rabcd identically vanish, the instanton
structure is still maintained despite the presence of Uð1Þ
gauge fields and a scalar field, i.e.,

Fð�Þi
ab ¼ � 1

2
εabcdF

ð�Þi
cd ; ð4:2Þ

where FðþÞi
ab ≡ 1

4
Rabcdη

i
cd and Fð−Þi

ab ≡ 1
4
Rabcdη̄

i
cd. But

generic excitations of four-dimensional fields break the
instanton structure of four-dimensional Einstein manifolds.
Consequently, once the fifth dimension is opened so that
the Lorentz symmetry is enhanced to SOð5Þ, all these
deformations have to be organized into a single five-
dimensional Einstein manifold. So it may be interesting
to look at some particular cases.
First, consider the case with ϕ ¼ const. A caveat is that

the condition ϕ ¼ const implies the unwanted result,
1
4
FμνFμν ¼ Λ

κ2
e−

4
3
ϕ, from Eq. (3.15). In order to avoid this

conclusion, one can proceed in the reverse order by putting
the condition ϕ ¼ const in the action (3.8) or the ansatz
(3.6) and varying the action afterward [12]. The constant
scalar field can simply be removed by a field redefinition
and defining a four-dimensional cosmological constant
λ≡ 3

2
e−

κffiffi
3

p ΦΛ. If we turn off the Uð1Þ gauge field, i.e.,
Aμ ¼ 0, we recover the four-dimensional Einstein mani-
folds discussed in Sec. II. We know well the instanton
structure of four-manifolds in this case. So let us turn on the
Uð1Þ gauge field. Note that the Einstein equation (3.13) can
be equivalently written as

Rab −
1

2
δabRþ λe

1
3
ϕδab ¼ 0: ð4:3ÞFIG. 4. The block weight diagrams of the fundamental repre-

sentations of spð2Þ ≅ soð5Þ.
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Using the result (C3), it is straightforward to reduce
Eq. (4.3) as the form [9,10]

fijðþþÞδ
ij ¼ fijð−−Þδ

ij ¼ λ

2
; fijðþ−Þ ¼ 16πG4fðþÞifð−Þj:

ð4:4Þ

Since the Maxwell equations are coming from the compo-
nents of the Ricci tensor Ra5 ¼ R5bab, we can read off the
expansion for the Maxwell equations in the spð2Þ ≅ soð5Þ
basis from Eq. (3.57):

ηiabD
ðþÞ
b fðþÞi þ η̄iabD

ð−Þ
b fð−Þi ¼ 0; ð4:5Þ

where the covariant derivatives are defined by Eq. (3.59).
The structure in Eq. (4.4) clearly shows that turning

on Uð1Þ gauge fields introduces a mixing of SUð2Þþ
and SUð2Þ− sectors, since the mixed part fijðþ−Þ no longer

vanishes. Although the Riemann curvature tensor in this
case does not satisfy the self-duality equation like Eq. (4.2),
the mixed part fijðþ−Þ does not disturb the conformal and

instanton structures of four-manifolds, since the Weyl
tensor does not depend on the mixed part fijðþ−Þ ¼ fjið−þÞ
[9]. A bit mysterious aspect is that there is no effect in the
four-dimensional Einstein equations (4.4) if only self-dual
(i.e., fð−Þi ¼ 0) or anti-self-dual (i.e., fðþÞi ¼ 0) Uð1Þ
gauge fields are turned on. This structure is due to the
fact that the energy-momentum tensor in Eq. (C4) identi-
cally vanishes for self-dual or anti-self-dual gauge fields.
So one may conclude that the Einstein structure is infinitely
degenerate in the sense that one can add arbitrary self-dual
or anti-self-dual Uð1Þ gauge fields without spoiling the
Einstein condition of a four-manifold. But the five-dimen-
sional Einstein manifold secretly notices the existence of
such Uð1Þ instantons, because the four-dimensional
Maxwell equations (4.5) correspond to Ra5 ¼ 0 as shown
by Eq. (B19) and they are nontrivial.5

The deformed instanton structure defined by Eq. (4.2)
does not allow a similar frigidity as long as Uð1Þ gauge

fields and a scalar field are active. For simplicity, let us
consider the case where only the scalar field is turned on but
Uð1Þ gauge fields are completely turned off. Among the
field configurations obeying the condition fijðþ−Þ ¼ 0 which

is equal to the equations

fijðþ−Þ ¼ −
1

24

�
Da∂bϕþ 1

6
∂aϕ∂bϕ

�
ηiacη̄

j
bc ð4:6Þ

with the covariant derivative Da∂bϕ ¼ ∂a∂bϕ − ωcba∂cϕ,
the instanton Eq. (4.2) would not be affected by the scalar
field if it satisfied the equation

Δϕ ¼ 1

6
ð∂aϕÞ2: ð4:7Þ

But Eq. (4.7) cannot be satisfied for a nontrivial physical
scalar field, because the left-hand side upon integration
with a proper boundary (or asymptotic) condition becomes
negative while the right-hand side is positive definite. This
implies that the instantons in four-dimensional Einstein
manifolds are all connected by activating the four-
dimensional fields in the metric (3.7). Then it will be
possible to bind SUð2Þþ instantons and SUð2Þ− anti-
instantons into a single multiplet of the five-dimensional
Lorentz group SOð5Þ ¼ Spð2Þ=Z2. The unification of two
independent instantons in a four-dimensional Einstein
manifold would be clear when looking at the root
diagram in Fig. 2 or 3. In four dimensions, one can move
only along the x direction or the y direction which lies in
the representation of suð2Þþ or suð2Þ−, respectively, in
Eq. (3.49). These two classes cannot be mixed, because the
corresponding root vectors are orthogonal to each other.
But, in five dimensions, one can now move along the
diagonal directions which correspond to the coset elements
in Eq. (3.49). Thus, it will be possible to connect two kinds
of instantons by exciting four-dimensional fields coupled
with soð5Þ ≅ spð2Þ root vectors. It will be left for future
work to explicitly analyze the unification of four-dimen-
sional Einstein manifolds in five dimensions.

V. DISCUSSION

There is a mysterious transition between Euclidean
spaces and Minkowski (Lorentzian) spaces. They are
simply related by an analytic continuation x0 ¼ −ix4,
but it results in dramatic changes of physics. In the
Euclidean space, physical forces have the self-dual struc-
ture defined by Eq. (2.4). The eigenspace of the self-dual
structure is called instantons. The 2-forms are important in
Riemannian geometry because of their relation with the
curvature tensor, and this decomposition has a profound
influence on the underlying geometry of four dimensions
[6]. And this separation is deeply related to the splitting of
the Euclidean Lorentz group (1.1). This correspondence is
natural from the viewpoint of the Clifford isomorphism

5This kind of absurd insensitivity holds true even when we
consider a four-dimensional gravity coupled to SUð2Þ Yang-
Mills gauge theory [9]. The Einstein equations in this case are
simply replaced by fijðþ−Þ ¼ 16πG4TrðfðþÞifð−ÞjÞ, where the trace
is performed for the SUð2Þ gauge group. If SUð2Þ gauge fields
are Yang-Mills instantons whose equations are exactly the same
as Eq. (2.22), fijðþ−Þ again identically vanishes. Therefore, the
Einstein structure is infinitely degenerate even for the presence of
Yang-Mills instantons. It is quite strange considering that the
instanton equation of Yang-Mills gauge fields is exactly the same
as that of an Einstein manifold. But a higher-dimensional Einstein
manifold secretly notices the existence of such Yang-Mills
instantons as the five-dimensional case, because the four-
dimensional Yang-Mills equations are obtained by the Kaluza-
Klein compactification of a higher-dimensional gravity [26].
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[20], since the 2-forms Ω2 in the exterior algebra are
isomorphically related to the Lorentz generators Jab ¼
1
4
½γa; γb� in the Clifford algebra. After the Wick rotation

x0 ¼ −ix4, the physical forces no longer have the self-dual
structure, because the Hodge � operator satisfies �2 ¼ −1.
Instead, a novel structure emerges in the Minkowski
(Lorentzian) space, the so-called causal structure. A vector
or, more generally, tensors have the causal structure
depending on their signature: timelike if kxk2 < 0, space-
like if kxk2 > 0, and lightlike if kxk2 ¼ 0. The causal
structure in Euclidean spaces is trivial, because always
kxk2 > 0 unless x ¼ 0. Moreover, the Lorentz group
SOð3; 1Þ becomes a simple group, although it is a non-
compact group. The physical forces are no longer sepa-
rated, but they exert their influences according to the
causality. We wonder what the relationship between
these two structures is. A five-dimensional Lorentzian
manifold may provide some clue for the question, since
time-independent solutions can be classified by the four-
dimensional self-dual structure and SOð4Þ ⊂ SOð4; 1Þ.
Our formalism can also be applied to noncompact

Riemannian manifolds with a boundary. However, in this
case, it is necessary to include boundary terms to discuss
the topological invariants such as the Euler characteristic
χðMÞ and the Hirzebruch signature τðMÞ [14,27–29].
These boundary terms introduce a mixing between
SUð2Þþ gauge fields and SUð2Þ− gauge fields in the topo-
logical invariants, because the Lorentz symmetry SOð4Þ ≅
SUð2Þþ ⊗ SUð2Þ−=Z2 is reduced to SOð3Þ ≅ SUð2Þ=Z2

on the boundary [21]. The boundary symmetry SUð2Þ
corresponds to the diagonal element of SUð2Þþ ⊗ SUð2Þ−.
Thus, the nice splitting between SUð2Þþ and SUð2Þ−
factors is lost. Furthermore, all known examples, at
least, for gravitational instantons, imply [27–29] that
χðMÞ ¼ jτðMÞj þ 1. The reduction of the topological
invariants is due to the reduction of the Lorentz symmetry
at the boundary. The topologically inequivalent sector of
instanton solutions is defined by the homotopy class of a
map from a three-sphere at asymptotic infinity to the gauge
group G:

f∶ S3 → G; ð5:1Þ

and the topological charge is given by an element of the
homotopy group π3ðGÞ [18]. Since the spin connection
(2.7) can be viewed as gauge fields in G ¼ SOð4Þ, the
topological sector of the SOð4Þ gauge fields is given by
the homotopy class π3ðSOð4ÞÞ ¼ π3ðSUð2Þþ×SUð2Þ−Þ ¼
Z⊕Z. Consequently, there are two independent topologi-
cal charges, χðMÞ and τðMÞ. But, if a noncompact
Riemannian manifold has a boundary, the Lorentz sym-
metry SOð4Þ is reduced to SOð3Þ due to the boundary and
the homotopy class has to be defined by the remaining
symmetry, i.e., π3ðSOð3ÞÞ ¼ Z. This implies that the Euler

characteristic χðMÞ and the Hirzebruch signature τðMÞ are
no longer independent, but there must be some relation
between them. The relation χðMÞ ¼ jτðMÞj þ 1 represents
such a relationship. It will be interesting to understand such
a boundary effect from the Kaluza-Klein theory. In par-
ticular, it is an interesting problem to include boundary
terms in the action (3.4) and understand a role of Uð1Þ
gauge fields and a scalar field at the boundary.
The proton is a stable particle, because it cannot decay to

light leptons due to the baryon number conservation.
However, in the GUT, a large simple group such as
SUð5Þ or SOð10Þ contains quarks and leptons in the same
multiplet. Therefore, it is possible for the proton to decay
into a lepton (a positron and two gamma-ray photons),
although its half-life is extremely long. A similar instability
of Einstein manifolds may appear in a five-dimensional
gravity. In five dimensions, the Lorentz group is SOð5Þ ⊃
SOð4Þ, which is a simple group. Therefore, SUð2Þþ
instantons and SUð2Þ− anti-instantons must be embedded
in the same multiplet of SOð5Þ. The reason for the stability
of a four-dimensional Einstein manifold is that instantons
and anti-instantons belong to different gauge groups as we
intentionally indicated. However, in five dimensions, they
belong to an irrep of the same simple group. Then it is
impossible to prevent these instantons from decaying each
other. The topological consideration also supports this
conjecture. In five dimensions, the Euler characteristic
identically vanishes: χ ¼ 0. It is a simple consequence
of Poincaré duality that manifolds with an odd dimension
have vanishing Euler characteristic. The Hirzebruch sig-
nature can also be defined only in multiples of four
dimensions. The homotopy consideration f∶S4 → G sim-
ilar to Eq, (5.1) also supports this kind of triviality, because
π4ðSOð5ÞÞ ¼ Z2 (see Table 4.1 in Ref. [18]). Thus, there is
no natural topological invariant to support the stability of a
five-dimensional Einstein manifold. If the fifth dimension
is compactified with a sufficiently small radius, the Lorentz
symmetry (3.10) is reduced to SOð4Þ ×Uð1Þ. Then
Einstein manifolds may recover their stability in four
dimensions. But this kind of instability in five dimensions
may have appeared in the early Universe, and the Universe
would have stabilized in four dimensions through some
similar mechanism [30]. It would be great if one could
explain in this way why our Universe has chosen the four-
dimensional spacetime.
The standard Kaluza-Klein vacuum M × S1 is known to

be unstable [31–34]. The instanton that mediates the decay
is the five-dimensional Euclidean Schwarzschild solution

ds2 ¼ dr2

1 − R2

r2
þ r2dΩ2

3 þ
�
1 −

R2

r2

�
dχ2; ð5:2Þ

where dΩ2
3 is the metric on the unit three-sphere and χ is

the coordinate on the Kaluza-Klein circle. The five-
dimensional solution (5.2) is a bounce which describes
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the decay of the Kaluza-Klein vacuum and is a topology
changing process. In four dimensions, the Euclidean
Schwarzschild solution [17] is Ricci flat, and it consists
of an SUð2Þþ instanton and an SUð2Þ− anti-instanton. The
solution is semiclassically stable, since it carries nontrivial
topological invariants, χðMÞ ¼ 1þ 1 ¼ 2 and τðMÞ ¼ 0
[14,21]. However, if the four-dimensional Schwarzschild
solution is lifted to the five-dimensional solution (5.2), it
was shown in Ref. [31] that a nonperturbative instability
of the ground state is developed. Therefore, it will be
interesting to investigate the nature of instability in
Refs. [31–34] from the perspective we have discussed
above. Any progress in this direction will be reported.
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APPENDIX A: SOð4Þ ≅ SUð2Þ+ ⊗ SUð2Þ− =Z2
AND SOð5Þ= Spð2Þ=Z2

The defining representation of the Lie algebra soðnÞ is

soðnÞ ¼ fMjM ∈ glðn;RÞ such that MT ¼ −Mg:

We take six generators of the Lie algebra soð4Þ as

ðXiÞab ¼ −εiab4; ðYiÞab ¼ −ðδaiδb4 − δbiδa4Þ; ðA1Þ

where i ¼ 1, 2, 3, a; b ¼ 1;…; 4, and the Levi-Civita
tensor is normalized as ε1234 ¼ 1. Two sets ðXi; YiÞ satisfy
the commutation relations

½Xi; Xj� ¼ εijkXk; ½Yi; Yj� ¼ εijkXk; ½Xi; Yj� ¼ εijkYk;

where εijk ¼ εijk4. It is convenient to define a new set of
generators as

τ�i ¼ −
1

2
ðXi � YiÞ: ðA2Þ

Then τ�i satisfy soð3Þ or suð2Þ Lie algebra, separately:

½τ�i ; τ�j � ¼ −εijkτ�k ; ½τ�i ; τ∓j � ¼ 0: ðA3Þ

Hence, the Lie algebra soð4Þ is a direct sum of two
independent soð3Þ or suð2Þ Lie algebras:

soð4Þ ≅ soð3Þþ ⊕ soð3Þ− ≅ suð2Þþ ⊕ suð2Þ−: ðA4Þ

Since the direct sum of Lie algebras corresponds to the
direct product of Lie groups and the universal covering
group of SOð3Þ is SUð2Þ, we get the group isomorphism
[24]

SOð4Þ ≅ SUð2Þþ ⊗ SUð2Þ−=Z2: ðA5Þ
One can identify the components of two families of 4 × 4

matrices τ�i from Eq. (A1):

2½τiþ�ab ≡ ηiab ¼ εiab4 þ ðδiaδ4b − δibδ4aÞ;
2½τi−�ab ≡ η̄iab ¼ εiab4 − ðδiaδ4b − δibδ4aÞ: ðA6Þ

Explicitly, they are given by [10,21]

τ1þ ¼ 1

2

0
BBB@

0 0 0 1

0 0 1 0

0 −1 0 0

−1 0 0 0

1
CCCA; τ2þ ¼ 1

2

0
BBB@

0 0 −1 0

0 0 0 1

1 0 0 0

0 −1 0 0

1
CCCA;

τ3þ ¼ 1

2

0
BBB@

0 1 0 0

−1 0 0 0

0 0 0 1

0 0 −1 0

1
CCCA; ðA7Þ

τ1− ¼ 1

2

0
BBB@

0 0 0 −1
0 0 1 0

0 −1 0 0

1 0 0 0

1
CCCA; τ2− ¼ 1

2

0
BBB@

0 0 −1 0

0 0 0 −1
1 0 0 0

0 1 0 0

1
CCCA;

τ3− ¼ 1

2

0
BBB@

0 1 0 0

−1 0 0 0

0 0 0 −1
0 0 1 0

1
CCCA: ðA8Þ

The matrices in Eq. (A6) provide two independent spin
s ¼ 3

2
representations of suð2Þ Lie algebra. The so-called

’t Hooft symbols defined by Eq. (A6) satisfy the following
relations [10,21]:

ηð�Þi
ab ¼ � 1

2
εab

cdηð�Þi
cd ; ðA9Þ

ηð�Þi
ab ηð�Þi

cd ¼ δacδbd − δadδbc � εabcd; ðA10Þ

εabcdη
ð�Þi
de ¼ ∓ðδecηð�Þi

ab þ δeaη
ð�Þi
bc − δebη

ð�Þi
ac Þ; ðA11Þ

ηð�Þi
ab ηð∓Þj

ab ¼ 0; ðA12Þ

ηð�Þi
ac ηð�Þj

bc ¼ δijδab þ εijkηð�Þk
ab ; ðA13Þ

ηð�Þi
ac ηð∓Þj

bc ¼ ηð�Þi
bc ηð∓Þj

ac ; ðA14Þ
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εijkηð�Þj
ab ηð�Þk

cd ¼ δacη
ð�Þi
bd − δadη

ð�Þi
bc − δbcη

ð�Þi
ad þ δbdη

ð�Þi
ac ;

ðA15Þ

where ηðþÞi
ab ≡ ηiab and ηð−Þiab ≡ η̄iab.

Now we consider the soð5Þ Lie algebra. The five-
dimensional gamma matrices γA ¼ ðγa; γ5Þ, A ¼ 1;…; 5,
are given by

γa ¼
�

0 σa

σ̄a 0

�
; γ5 ¼ −γ1γ2γ3γ4 ¼

�
12 0

0 −12

�
;

ðA16Þ

where σa ¼ ðiτi; 12Þ and σ̄a ¼ ð−iτi; 12Þ ¼ ðσaÞ† with τi

the Pauli matrices. They satisfy the Dirac algebra

fγA; γBg ¼ 2δAB: ðA17Þ

Then the Lorentz generators of soð5Þ Lie algebra are
defined by

JAB ¼ 1

4
½γA; γB�: ðA18Þ

One can see that the four-dimensional Lorentz algebra
generated by Jab obeys the chiral representation [see
Eq. (3.19)] whose generators are given by

Jð�Þ
ab ¼ 1

2
ð1� γ5ÞJab ðA19Þ

and

JðþÞ
ab ¼ i

2
ηiabτ

i ∈ suð2Þþ; Jð−Þab ¼ i
2
η̄iabτ

i ∈ suð2Þ−:
ðA20Þ

The ’t Hooft symbols in Eq. (A6) are obtained by

ηiab ¼ −iTrðJðþÞ
ab τiÞ; η̄iab ¼ −iTrðJð−Þab τ

iÞ: ðA21Þ

The chiral generators in Eq. (A19) independently satisfy
the four-dimensional Lorentz algebra that verifies the Lie
algebra isomorphism (A4).
It is easy to check the Lie algebra isomorphism spð2Þ ≅

soð5Þ using the identification (3.20). The matrices TA in
Eq. (3.21) are anti-Hermitian, i.e., ðTAÞ† ¼ −TA, and obey
the relation

ðTAÞTJ þ JTA ¼ 0; ðA22Þ

where

J ¼ iðτ2 ⊗ 12Þ ¼ i

�
τ2 0

0 τ2

�

is the symplectic matrix. The relation (A22) implies that the
4 × 4 matrices TA in Eq. (3.21) are the Lie algebra
generators of spð2Þ. Indeed, they satisfy the spð2Þ Lie
algebra

½TA; TB� ¼ −fABCTC; ðA23Þ

where fABC are totally antisymmetric structure constants.
Their nonzero components are listed below:

fijk¼ fð3þiÞð3þjÞk ¼ fð6þiÞð6þjÞk ¼ εijk; fð3þiÞð6þjÞ10¼ δij

ðA24Þ

that can be read off from Eq. (3.32). Thus, we establish the
Lie algebra isomorphism spð2Þ ≅ soð5Þ.
The soð5Þ generators in Eq. (A18) also obey the

anticommutation relation

fJAB; JCDg ¼ −
1

2
ðδACδBD − δADδBCÞ14 −

1

2
εABCDEγE:

ðA25Þ

The corresponding anticommutation relations for the spð2Þ
generators in Eq. (3.21) read as

fTA; TBg ¼ −
1

2
δAB14 −

1

2
dABCT̃C; ðA26Þ

where T̃C do not belong to the set of spð2Þ generators.
Indeed, they are given by T̃A ¼ γA and correspond to the
second term on the right-hand side in Eq. (A25). The
nonvanishing components of dABC are listed in Table I.
Then one can deduce the product of soð5Þ and spð2Þ
generators:

JABJCD ¼ −
1

4
ðδACδBD − δADδBCÞ14

−
1

2
ðδACJBD − δADJBC − δBCJAD þ δBDJACÞ

−
1

4
εABCDEγE; ðA27Þ

TABLE I. �ðA;B; CÞ≡�dABC ¼ 1.

−ð1; 10; 1Þ (5, 9, 1) −ð6; 8; 1Þ
−ð2; 10; 2Þ −ð4; 9; 2Þ (6, 7, 2)
−ð3; 10; 3Þ (4, 8, 3) −ð5; 7; 3Þ
(1, 7, 4) (2, 8, 4) (3, 9, 4)
(1, 4, 5) (2, 5, 5) (3, 6, 5)
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TATB ¼ −
1

4
δAB14 −

1

2
fABCTC −

1

4
dABCT̃C: ðA28Þ

Using the linear relation (3.22), let us write the products in
Eqs. (A27) and (A28) as the form

ðIÞ JABJCD ¼ ψA
ABψ

B
CDT

ATB; ðA29Þ

ðIIÞ TATB ¼ 1

4
ψA
ABψ

B
CDJABJCD: ðA30Þ

Applying the relations in Eqs. (A27) and (A28) on both
sides in products (I) and (II) leads to useful algebraic
relations for the psi symbols (3.23). From product (I),
we get

ψA
ABψ

A
CD ¼ δACδBD − δADδBC; ðA31Þ

fABCψB
ABψ

C
CD ¼ δACψ

A
BD − δADψ

A
BC − δBCψ

A
AD þ δBDψ

A
AC;

ðA32Þ

where TrðγETAÞ ¼ TrðT̃CTAÞ ¼ 0 were used. Similarly,
from product (II), we get

ψA
ABψ

B
AB ¼ 2δAB; ðA33Þ

fABCψC
AB ¼ ψA

ACψ
B
BC − ψA

BCψ
B
AC; ðA34Þ

where TrðγEJABÞ ¼ TrðT̃CJABÞ ¼ 0 were used. The above
relations are analogous to those in Eqs. (A9)–(A15).
Actually, those identities have been derived by applying
a similar technique to Eq. (A20). If we define 5 × 5
matrices by

ðTAÞAB ≡ ψA
AB; ðA35Þ

Eq. (A34) reduces to the commutation relations

½TA; TB� ¼ −fABCTC; ðA36Þ

while Eq. (A33) gives us the trace TrðTATBÞ ¼ −2δAB.
Therefore, the generators in Eq. (A35) provide the five-
dimensional representation of spð2Þ Lie algebra which is
isomorphic to the defining representation of soð5Þ Lie
algebra with generators given by

ðJABÞCD ¼ δACδBD − δADδBC: ðA37Þ

The relation (A31) corresponds to the Fierz identity for
the spð2Þ Lie algebra generators in Eq. (A35) and the
identity (A32) can be transformed into Eq. (A34) by using
the trace (A33) or vice versa by using the Fierz iden-
tity (A31).

APPENDIX B: KALUZA-KLEIN GRAVITY

On a five-dimensional Riemannian manifold N, the
spin connection Ω ¼ 1

2
ΩABJAB ¼ 1

2
ΩABMJABdXM consti-

tutes an SOð5Þ gauge field with respect to the local SOð5Þ
rotations

Ω → Ω0 ¼ ΛΩΛ−1 þ ΛdΛ−1;

where Λ ¼ expð1
2
λABðXÞJABÞ ∈ SOð5Þ and JAB are soð5Þ

Lorentz generators in Eq. (A18). Then the covariant
derivatives for the vectors EA and EA are defined by

DMEA ¼ ∂MEA −ΩB
AMEB;

DMEA ¼ ∂MEA þ ΩA
BMEB:

The connection 1-forms ΩA
B ¼ ΩA

BMdXM satisfy the
Cartan structure equations [14,18]

TA ¼ dEA þ ΩA
B ∧ EB; ðB1Þ

RA
B ¼ dΩA

B þ ΩA
C ∧ ΩC

B; ðB2Þ

where TA are the torsion 2-forms and RA
B are the curvature

2-forms. We impose the torsion-free condition TA
MN ¼

DMEA
N −DNEA

M ¼ 0 to recover the standard content of
general relativity which determines ΩM as

ΩABC ¼ ΩABMEM
C ¼ 1

2
ðfBCA þ fCAB − fABCÞ; ðB3Þ

where fABC are the structure functions defined by

½EA; EB� ¼ −fABCEC ðB4Þ

or its dual equations

dEA ¼ 1

2
fBCAEB ∧ EC: ðB5Þ

In order to formulate gravity as a gauge theory of local
Lorentz symmetry, it is necessary to introduce a local basis
for the Kaluza-Klein geometry (3.6):

EA ¼ ðEa; E5Þ ¼ ðe−1
6
ϕea; e

1
3
ϕe5Þ; ðB6Þ

where

ds24 ¼ ea ⊗ ea ¼ gμνðxÞdxμdxν ðB7Þ

and

e5 ¼ dx5 þ κAμðxÞdxμ: ðB8Þ
By solving the torsion-free condition TA ¼ 0 in Eq. (B1),
one can determine the spin connections as
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Ωab ¼ ωab −
1

6
e
1
6
ϕð∂bϕEa − ∂aϕEbÞ − κ

2
e
2
3
ϕFabE5; ðB9Þ

Ωa5 ¼ −
1

3
e
1
6
ϕ∂aϕE5 −

κ

2
e
2
3
ϕFabEb; ðB10Þ

where ωab is the four-dimensional spin connection for the
local frames in Eq. (B7) and ∂a ≡ ea ¼ eμaðxÞ∂μ ∈ ΓðTMÞ

are orthonormal tangent vectors dual to the covectors ea, i.e.,
hea; ebi ¼ δab. In particular, the exterior derivative acting on
M × S1 is defined by d ¼ dxμ∂μ ¼ ea∂a, since we have
assumed the cylinder condition (i.e., no dependence on x5).
After a little algebra, the curvature 2-forms for the

Kaluza-Klein geometry (3.6) can be determined by the
structure equation (B2):

Rab ¼ ð4ÞRab −
κ2

4
eϕðFabFcd þ FacFbdÞec ∧ ed −

κ

2
eϕDcFabec ∧ e5

−
κ

4
eϕð2Fab∂cϕ − Fbc∂aϕþ Fac∂bϕÞec ∧ e5

þ κ

12
eϕðFac∂cϕeb ∧ e5 − Fbc∂cϕea ∧ e5Þ

þ 1

36
ð∂bϕ∂cϕea ∧ ec − ∂aϕ∂cϕeb ∧ ec − ∂cϕ∂cϕea ∧ ebÞ

þ 1

6
ðDc∂aϕec ∧ eb −Dc∂bϕec ∧ eaÞ; ðB11Þ

R5a ¼
κ2

4
e
3
2
ϕFabFbcec ∧ e5 þ κ

2
e
1
2
ϕDcFabec ∧ eb

þ κ

4
e
1
2
ϕðFbc∂aϕ − Fab∂cϕÞeb ∧ ec −

κ

12
e
1
2
ϕFbc∂bϕea ∧ ec

þ 1

9
e
1
2
ϕð2∂aϕ∂bϕþ 3Db∂aϕÞeb ∧ e5 −

1

18
e
1
2
ϕ∂bϕ∂bϕea ∧ e5: ðB12Þ

Here, ð4ÞRab is the curvature 2-form determined by the four-dimensional metric (B7), and the covariant derivatives are
defined by

Da∂bϕ ¼ ∂a∂bϕ − ωcba∂cϕ;

DcFab ¼ ∂cFab − ωdacFdb − ωdbcFad:

Note that the derivations ∂a ≡ ea do not commute, but they satisfy the structure equation similar to Eq. (B4),

½∂a; ∂b� ¼ −fabc∂c: ðB13Þ

The curvature 2-forms above have the following expansion in the basis ðec ∧ ed; ec ∧ e5Þ:

Rab ¼
1

2
e−

1
3
ϕRabcdec ∧ ed þ e

1
6
ϕRabc5ec ∧ e5;

R5a ¼
1

2
e−

1
3
ϕR5abceb ∧ ec þ e

1
6
ϕR5a5be5 ∧ eb:

Therefore, one can read off the components of Riemann curvature tensors from Eqs. (B11) and (B12):

Rabcd ¼ e
1
3
ϕ

	
ð4ÞRabcd −

κ2

4
eϕð2FabFcd þ FacFbd − FadFbcÞ

þ 1

36
ð∂aϕ∂cϕδbd − ∂aϕ∂dϕδbc − ∂bϕ∂cϕδad þ ∂bϕ∂dϕδac − ∂eϕ∂eϕðδacδbd − δadδbcÞÞ

þ 1

6
ðDc∂aϕδbd −Dd∂aϕδbc −Dc∂bϕδad þDd∂bϕδacÞ



; ðB14Þ
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Rabc5 ¼ −
1

2
κe

5
6
ϕ

	
Fab∂cϕ −

1

2
Fbc∂aϕþ 1

2
Fac∂bϕ −

1

6
ðFadδbc − FbdδacÞ∂dϕþDcFab



; ðB15Þ

R5a5b ¼ e
1
3
ϕ

	
κ2

4
eϕFacFbc −

2

9
∂aϕ∂bϕþ 1

18
∂cϕ∂cϕδab −

1

3
Db∂aϕ



: ðB16Þ

Note that

Da∂bϕ −Db∂aϕ ¼ ð−fabc þ ωcab − ωcbaÞ∂cϕ ¼ 0;

ðB17Þ
because fabc ¼ ωcab − ωcba. Therefore, R5a5b ¼ R5b5a as it
should be.
Now it is easy to determine the Ricci tensors and the

Ricci scalar using the above results:

Rab¼RcacbþR5a5b

¼e
1
3
ϕ

�
ð4ÞRab−

κ2

2
eϕFacFbc−

1

6
∂aϕ∂bϕþ

1

6
Dc∂cϕδab

�
;

ðB18Þ
Ra5 ¼ Rbab5

¼ κ

2
e
5
6
ϕðFab∂bϕþDbFabÞ; ðB19Þ

R55 ¼ Ra5a5

¼ e
1
3
ϕ

�
κ2

4
eϕFabFab −

1

3
Da∂aϕ

�
; ðB20Þ

R ¼ Rabδ
ab þ R55

¼ e
1
3
ϕ

�
ð4ÞR −

κ2

4
eϕFabFab −

1

6
∂aϕ∂aϕþ 1

3
Da∂aϕ

�
;

ðB21Þ
where ð4ÞRab ¼ ð4ÞRcacb and ð4ÞR ¼ ð4ÞRaa are the Ricci
tensors and the Ricci scalar, respectively, determined by
the four-dimensional geometry (B7) and the Laplacian
operator is defined by

Δϕ≡Da∂aϕ ¼ 1ffiffiffi
g

p ∂μð
ffiffiffi
g

p
gμν∂νϕÞ: ðB22Þ

APPENDIX C: REPRESENTATION OF RICCI
TENSORS

The Riemann curvature tensors in Eq. (3.24), under the
group SOð5Þ, correspond to the tensor product

ðC1Þ

The Clebsch-Gordan decomposition of this tensor product
is given by

ðC2Þ

The last two representations, 45 ⊕ 5, are removed by the first Bianchi identity (3.26). In particular, the last one, 5,
corresponds to the five constraints (3.29). The Clebsch-Gordan decomposition (C2) can be further decomposed according
to the symmetry breaking pattern (3.10) or, more precisely, Eq. (3.44), as was shown in Sec. III. It is straightforward to
determine the decomposition of the Ricci tensors and Ricci scalar in Eqs. (B18) and (B21) using the result (3.50):

Rab ¼ e
1
3
ϕ

	
ðfijðþþÞδ

ij þ fijð−−Þδ
ijÞδab þ 2fijðþ−Þη

i
acη̄

j
bc −

1

6
ð∂aϕ∂bϕ − ΔϕδabÞ

−
κ2

2
eϕððfðþÞifðþÞi þ fð−Þifð−ÞiÞδab þ 2fðþÞifð−Þjηiacη̄

j
bcÞ



;

R ¼ e
1
3
ϕ

	
4ðfijðþþÞδ

ij þ fijð−−Þδ
ijÞ − 1

6
ð∂aϕ∂aϕ − 2ΔϕÞ − κ2eϕðfðþÞifðþÞi þ fð−Þifð−ÞiÞ



: ðC3Þ

The energy-momentum tensor in Eq. (3.16) takes the form [10]

Tab ¼ e
ffiffi
3

p
κΦFacFbc þ ∂aΦ∂bΦ − δab

�
1

4
e

ffiffi
3

p
κΦFcdFcd þ

1

2
ð∂cΦÞ2

�

¼ 2e
ffiffi
3

p
κΦfðþÞifð−Þjηiacη̄

j
bc þ ∂aΦ∂bΦ −

1

2
δabð∂cΦÞ2: ðC4Þ
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