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An Einstein manifold in four dimensions has some configuration of SU(2), Yang-Mills instantons
and SU(2)_ anti-instantons associated with it. This fact is based on the fundamental theorems that
the four-dimensional Lorentz group Spin(4) is a direct product of two groups SU(2). and the
vector space of 2-forms decomposes into the space of self-dual and anti-self-dual 2-forms. It explains
why the four-dimensional spacetime is special for the stability of Einstein manifolds. We now
consider whether such a stability of four-dimensional Einstein manifolds can be lifted to a five-
dimensional Einstein manifold. The higher-dimensional embedding of four-manifolds from the
viewpoint of gauge theory is similar to the grand unification of the Standard Model, since the
group SO(4) = Spin(4)/Z, = SU(2), ® SU(2)_/Z, must be embedded into the simple group
SO(5) = Sp(2)/Z,. Our group-theoretic approach reveals the anatomy of Riemannian manifolds
quite similar to the quark model of hadrons in which two independent Yang-Mills instantons

represent a substructure of Einstein manifolds.

DOI: 10.1103/PhysRevD.105.064015

I. INTRODUCTION

The hadrons we know all fall into multiplets that reflect
underlying internal symmetries. To express this fact in a
simple and concrete way, it was hypothesized that hadrons
are composed of more elementary constituents with basic
symmetries, called quarks. The SU(3) multiplet structure
of the hadrons (baryons and mesons) strongly hinted at the
existence of a substructure [1,2]. According to the quark
model [3], all hadrons are made up of quarks and
antiquarks, bound together in different ways. Even in the
absence of knowledge about the potential which binds
quarks and antiquarks, the model was very predictive.
The triple tensor product of the fundamental representation
3 of the SU(3) flavor symmetry leads to octets and a
decuplet of baryons, 3®3®3=1068d 84 10, in
addition to a singlet. This classification works also for
mesons: 3 ® 3 =1 @ 8. This quark model eventually led
to the introduction of color degrees of freedom and the
construction of quantum chromodynamics [4,5].
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A special feature, which permeates four-dimensional
geometry, is the fact that Spin(4) splits into a product of two
groups:

Spin(4) = SU(2), x SU(2)_. (1.1)
The group Spin(4) is a double cover of the four-
dimensional Euclidean Lorentz group SO(4), i.e.,
SO(4) = SU(2), x SU(2)_/Z,. The splitting of Spin(4)
is isomorphically related to the decomposition of the
2-forms on a four-manifold. Using the Hodge * operator
acting on exterior 2-forms, one can split 2-forms into self-
dual and anti-self-dual 2-forms. The splitting can be
applied to the curvature form of any bundle with connection
over an oriented four-manifold. The canonical splitting of
the vector spaces leads to the irreducible decomposition of
Riemann curvature tensor R € C®(g ® Q?) as [6]
R=R(;+) ® R+ ) ® Ry) ® R, (1.2)
where the subscript (£4) refers to the splitting of
the vector spaces g = so(4) = su(2), @ su(2)_ and Q*°=
N’T*M = Q2 @ Q2. This splitting of the vector spaces
occupies a central position for the Donaldson theory of
four-manifolds and has been well known in mathematical
literatures (see, for example, Chaps. 1.G and 1.H in Ref. [7]
and Secs. 1.1 and 2.1 in Ref. [8]).
Imposing the Einstein equations, R, = 1g,,, leads to the

condition R, _y = R(T_+) =0 (6.32 in Ref. [7] and lemma
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in Ref. [9]). In this case, the Riemann curvature tensor
satisfies the self-duality equations *R(j.) = R(ii)* =
+R (1), where the Hodge * operator R acts on the first
two indices [ab] of the curvature tensor R, and Rx acts
on the last two indices [cd]. Therefore, an Einstein manifold
consists of SU(2), instantons and SU(2)_ anti-instantons
defined over itself [9,10]. The instantons in the SU(2),
group live in a different representation space from the anti-
instantons in the SU(2)_ group, because these are two
independent factors for the product group (1.1). This means
that R,y and R__y correspond to two independent
components defined by self-dual and anti-self-dual spin
connections, respectively, acting on the chiral and antichiral
spin bundles. This special feature of four-dimensional
gravity has been originated from the splitting of the product
group (1.1).

A four-dimensional Einstein manifold has the irreducible
decomposition defined by the curvature tensor R =
R(41) @ R(__) which brings about two independent gravi-
tational components. However, such division into two
independent instanton sectors explains the stability of
Einstein manifolds. It turns out [11] that the topological
invariants carried by an Einstein manifold are determined
by the configuration of SU(2), instantons and SU(2)_
anti-instantons, as will be reviewed in Sec. II. Therefore, an
Einstein manifold has a substructure like hadrons. An
interesting physics arises if the four-dimensional gravity
is regarded as being obtained from a five-dimensional
gravity through the Kaluza-Klein compactification [12].
The Riemann curvature tensor in five dimensions takes
values in the Lie algebra of the Lorentz group SO(5). The
group SO(5) is a simple group unlike the four-dimensional
Lorentz group SO(4) = SU(2),. x SU(2)_/Z,. Since the
group SO(4) must be embedded into the simple group
SO(5) =Sp(2)/Z, in the five-dimensional gravity, we
expect that two independent components caused by the
separation of Riemann curvature tensors will be com-
bined into a single gravitation force in five dimensions.
Moreover, the electromagnetism and a scalar field obtained
from a five-dimensional metric through the Kaluza-
Klein reduction should also appear in the same multiplet
in an irreducible representation (irrep) of the Lorentz
group SO(5).

This unification scheme is similar to the grand unifica-
tion of the Standard Model, since the group SO(4) =
SU(2), ® SU(2)_/Z, must be embedded into the simple
group SO(5) = Sp(2)/Z, although the Kaluza-Klein
theory is reduced from a five-dimensional gravity. The
Standard Model has a product gauge group SU(3) X
SU(2) x U(1) to describe the electroweak and strong
forces. In the grand unified theory (GUT), the product
gauge group in the Standard Model is embedded into a
single gauge group, for example, SU(5) or SO(10) (see,
e.g., Chaps. 18 and 24 in Ref. [13]). The leptons and quarks
in the GUT appear in the same multiplet in a larger

symmetry. The unification of forces with a larger simple
group typically opens a new decay channel of protons into
leptons and so introduces a novel instability of a stable
particle in the Standard Model. We will see how two
instanton sectors of four-dimensional Einstein manifolds
are similarly combined into a five-dimensional Einstein
manifold. The embedding of SU(2), instantons and
SU(2)_ anti-instantons into a five-dimensional Einstein
manifold may similarly develop a novel instability like the
proton decay in the GUT. A speculative reason for this
assumption is that there is no natural topological invariant
such as the Euler characteristic or the Hirzebruch signature
in five dimensions [7,14] that guarantees the stability of
five-dimensional Einstein manifolds.

The motivation for the present work lies in providing
a fresh point of view for the topological structure of
Einstein manifolds using the group properties of SO(4) =
SU12), ® SU(2)_/Z, and SO(5) = Sp(2)/Z,. We hope
it will provide a deeper insight into the nature of the
stability of Riemannian manifolds. We will mostly refer to
the perturbative stability of Einstein manifolds regarding
the second variation of the Einstein-Hilbert action with a
fixed volume at a background Einstein metric (see Chaps. 4
and 12 in Ref. [7]). But a nonperturbative instability may be
induced by instanton transitions. We will not try to exhaust
all the details but initiate a work along this direction.

This paper is organized as follows. In Sec. II, we briefly
review how the decomposition of Riemann curvature tensor
(1.2) is derived from the splitting of the vector spaces g =
so(4) = su(2), @ su(2)_ and Q> =AT"M =Q% § Q2.
We also discuss how topological invariants of Einstein
manifolds such as the Euler characteristic and the
Hirzebruch signature are determined by the configuration
of SU(2), instantons and SU(2)_ anti-instantons to
illuminate a substructure of FEinstein manifolds. In
Sec. III, we consider a five-dimensional Einstein manifold
and its Kaluza-Klein reduction. We expand the five-dimen-
sional Riemann curvature tensor in the basis of sp(2) =
so(5) Lie algebra which generalizes the decomposition
(1.2) to five dimensions. After the Kaluza-Klein reduction,
the Lorentz symmetry SO(5) is spontaneously broken to
SO(4) x U(1), where U(1) is originated from the isome-
tries of the Kaluza-Klein circle [12]. According to the
symmetry breaking pattern, we further decompose the five-
dimensional Riemann curvature tensor in the basis of
so(4) = su(2), @ su(2)_ Lie algebra. This decomposition
is useful to see how U(1) gauge fields and a scalar field
deform the instanton structure of four-dimensional Einstein
manifolds and to understand how these deformed geom-
etries are nicely combined into a five-dimensional Einstein
manifold. In Sec. IV, we consider particular cases to
consolidate that all these deformations can be organized
into a single five-dimensional Einstein manifold once the
fifth dimension is opened so that the Lorentz symmetry is
enhanced to SO(5). In Sec. V, we discuss some important

064015-2



ANATOMY OF EINSTEIN MANIFOLDS

PHYS. REV. D 105, 064015 (2022)

issues and generalization to noncompact Einstein mani-
folds that we have not addressed in this paper and speculate
a possible origin of novel instabilities of Einstein manifolds
in five dimensions.

In the Appendix A, we provide some details about the
Lie algebras so(4) = su(2), @ su(2)_and sp(2) = so(5).
The geometric details of five-dimensional gravity and
Kaluza-Klein gravity, especially in the vielbein formalism,
appear in Appendix B. Appendix C contains the group
structure analysis of Riemann curvature tensors and the
decomposition of Ricci tensors and Ricci scalar in the
so(4) Lie algebra basis.

II. EINSTEIN MANIFOLDS AS YANG-MILLS
INSTANTONS

It is known [15,16] that Einstein manifolds are stable, at
least perturbatively. It is a bit mysterious, recalling that
gravity is also described within the framework of field
theory. One way to understand the stability is to notice that
an Finstein manifold carries nontrivial topological invar-
iants such as the Euler characteristic y and Hirzebruch
signature 7 [14]. The gauge theory formulation of gravity
reveals a beautiful aspect of the stability. It turns out [9,10]
that an Einstein manifold in four dimensions has a con-
figuration of SU(2), Yang-Mills instantons and SU(2)_
anti-instantons. Two kinds of instantons are independent of
each other, because they belong to different gauge groups.]
Furthermore, instantons can be superposed to make multi-
instantons. In principle, it is possible to have a tower of
Einstein manifolds by superposing SU(2) instantons in
each gauge group. The multi-Taub-NUT spaces [17] could
serve as an example of such a tower (with only one type of
instanton used). Of course, a compact manifold has subtle
global obstructions for gluing multi-instantons (see Chap. 7
in Ref. [8]). Let us briefly recapitulate this aspect of the
stability.

Consider an Einstein manifold (M, g). The metric on M
takes the form

ds = g, (x)dx*dx’ = e* @ e“. (2.1)
Using the metric, one can determine the spin connections
o, = 0",,dx" and curvature tensors R?, = %R“b}wdx” A
dx" by solving the structure equations [14,18]

T =de’ + vy A b =0, (2.2)

Rab = da)“b + Cl)ac A G)Cb. (23)

'This reasoning may not be complete, because a new insta-
bility may be developed through the interaction between in-
stantons. Moreover, T* and S' x S (which is not an Einstein
manifold) have trivial topological invariants. However, the
stability of these product manifolds may be guaranteed by a
lower-dimensional topology.

An underlying idea is that gravity can be formulated as
a gauge theory of the Lorentz group where spin
connections play a role of gauge fields and Riemann
curvature tensors correspond to their field strengths [19].
Another important point is that Riemann curvature
tensors R%, are spin(4)-valued 2-forms in Q*(M) =
A>T*M. These facts are combined with the well-known
theorems (see Chap. 13 in Ref. [7] and Chaps. 1 and 2
in Ref. [8]).

A. Self-duality
On an orientable Riemannian four-manifold, the 2-forms
decompose into the space of self-dual and anti-self-dual 2-
forms:
Q=02 Q2 (2.4)
defined by the *+1 eigenspaces of the Hodge star oper-
ator *: Q% — Q2.

B. Lie group isomorphism
There is a global isomorphism between the four-
dimensional Lorentz group and classical Lie group, i.e.,
SO(4)=8U(2), ® SU(2)_/Z, or Spin(4) =SU(2),
® SU(2)_. It also leads to the splitting of the Lie algebra
so(4) = su,(2) ® su_(2). (2.5)
A central point is that these two decompositions
are deeply related to each other due to the canonical
vector space isomorphism between the Clifford algebra
Cl(4) in four dimensions and the exterior algebra Q*M =
2=0AkT*M over a four-dimensional Riemannian mani-
fold M (see Chap. 2 in Ref. [20]). For the isomorphism
between the vector spaces, the chiral operator ys =
—717273Y4 in the Clifford algebra corresponds to the
Hodge-dual operator *: QF — Q** in the exterior algebra.
Indeed, the splitting of vector spaces is induced by the
existence of the projection operators

1
Pi: (1:‘:*), Pi:i

(I+ys)  (2.6)

Y-

acting on the vector space Q? and the so(4) generators
Jab =3[va- 7). Tespectively. [See Appendix A for the
explicit matrix representations of so(4) Lie algebra.]
Therefore, the splitting of the two vector spaces in
Egs. (2.4) and (2.5) is isomorphic to each other.

Thus, one can apply these decompositions to spin
connections and curvature tensors [9,10,21]. The first
decomposition is that the spin connections can be split
into a pair of SU(2) . and SU(2)_ gauge fields according to
the Lie algebra splitting (2.5):
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wgp = Al + AT, (2.7)
where 7, and 7', are the "t Hooft symbols satisfying the
self-duality relation

. 1 . . 1 .
Tllab = Egabcdﬂlcd, 7];;, = - Eeabcd”lcd-

(2.8)
Note that the index i= (1,2,3) refers to the su(2),
Lie algebra index. Appendix A contains the explicit
representation of so(4) Lie algebra and the 't Hooft
symbols. Accordingly the Riemann curvature tensors are
also decomposed into a pair of SU(2), and SU(2)_ field
strengths:

Ry, = FWMigt, + FOigt (2.9)

where SU(2) , field strengths are 2-forms on M defined by

NS gy
FO = Fy e nd

= dAW — glikpAE)] A AF)K, (2.10)
The second decomposition (2.4) is that the six-
dimensional vector space of 2-forms canonically splits
into the sum of three-dimensional vector spaces of self-dual
and anti-self-dual 2-forms. Canonical bases of self-dual and

anti-self-dual 2-forms are given by
¢ =

—qi et At (2.11)

—ni, e’ A eb, o= 3

2

Using these bases, one can decompose the SU(2), field
strengths in Eq. (2.10) as

FOl= fl G+ el FOI= 8+ 6L,

(2.12)

where the canonical bases in Eq. (2.11) satisfy the Hodge-
duality equation

#( = £ (2.13)

Combining the two decompositions (2.9) and (2.12) leads
to an irreducible decomposition of the general Riemann
curvature tensor [6,7,9,10]:

= f(++)’7gb’7¢d + f rlabncd + f

+ fl] ﬁab’/]cd

Rabcd I/[abncd

(2.14)

The torsion-free condition (2.2) leads to an integrability
condition, the so-called first Bianchi identity

Rabcd =+ Racdb =+ Radbc =0. (215)

From the first Bianchi identity (2.15), one can derive the
symmetry property

Rabcd = Rcdab- (2 16)

Equation (2.16), being totally 15 conditions, imposes the
symmetry property
The first Bianchi identity (2.15), being totally 16 con-
ditions, imposes an additional constraint

f’(j++)5’f = f’(/__)ﬁ” (2.18)
that is equivalently written as
E'adeRade =0. (219)

If (M, g) is an Einstein manifold satisfying the equations
R,, = 4g,, with 1 a cosmological constant, one can show
(6.32 in Ref. [7] and Refs. [9,10]) that

0= fiJ

fho=0=r_y (2.20)
In this case, the Riemann curvature tensor (2.9) is a direct
sum of self-dual SU(2), field strengths and anti-self-dual
SU(2)_ field strengths taking the form

Fi = Flen 8 FOi = fLoel. (221)
This means that SU(2), field strengths describing an
Einstein manifold correspond to Yang-Mills instantons
obeying the self-duality equations explicitly written as

guagbﬁF/()O') ’ (222)

where F&)i =1 gyt A dx? =L F) @ A eb. Therefore,

an Einstein manifold (M,g) has a configuration con-
sisting of SU(2), Yang-Mills instantons and SU(2)_
anti-instantons [9].

Since Einstein manifolds encode a topological informa-
tion in the form of Yang-Mills instantons, it is natural
to expect that the topological invariants of an Einstein
manifold (M, g) will be determined by the configuration of
SU(2), Yang-Mills instantons. For a general closed
Riemannian manifold M, the Euler characteristic y(M)
and the Hirzebruch signature z(M) are defined by [7,14]

1
)((M) = ﬁ SadeRab A Rcd’ (223)
1
T(M) = Tﬂ'z MRab VAN Rab' (224)
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The topological invariants can be expressed in terms of
SU(2), gauge fields using the decompositions (2.9) and
(2.12)

i | | 4 .
2(M) = — / (Fi A FOIZ O A B
47'[ M
1 ij ij ij
o [ (G4 G = 20 ),
(2.25)
| A | A .
(M) = / (FOi A B FOE A p0Y
6 M
1 y y
o [ UL -G vEe (226)

where we used the volume element

AL = £28Y [gdix, {ng =0.

An Einstein manifold has curvature tensors given by
Eq. (2.21) with the coefficients satisfying Eq. (2.18). In
this case, the Euler characteristic y(M) is given by the sum
of self-dual and anti-self-dual instantons, whereas the
Hirzebruch signature 7(M) is their difference. The above
expression immediately verifies the famous inequalities for
the topological invariants. The first inequality is y(M) > 0

with equality only if f;'f'++) = f’(’_ _, =0,ie, Mis flat (6.32
in Ref. [7] and Sec. 10.4 in [14]). The second inequality is
the Hitchin-Thorpe inequality [22] stating that

3 1

p0n £ 500 = [ (L PVadia 0. 22)

where the equality holds only if f ’(’+ H= Oorf z]_ = 0,
i.e., M is half-flat (a gravitational instanton).

The instanton number for SU(2), gauge fields is
defined by2

1 / FE A P
471'2 M

Then the topological invariants are determined by SU(2)
instantons

1% =4+ (2.28)

M) =1 +19) >0, (M) =

(2.29)

*This definition has considered the fact [21] that SU(2),
gauge fields from spin connections in Eq. (2.7) are related to
Yang-Mills gauge fields by A, = —1A\\ and Fj, = —1F}y,
and SU(2) generators in gravity and gauge theory are related
by T% = =214, Note that the 4 x 4 matrices T5; = n’, or 7i',,
correspond to the spin s =3 representation of SU(2) Lie
algebra as shown in Eqs. (A7) and (A8), while the 2 x 2 Pauli
matrices 7' = 2iti in SU(2) gauge fields are the spin s =1
representation.

m
(x.7) = (m,n) XeXeXoeXoXoX0X0Xe 4XeXeXeXoeXeX0X0XOX0SX
ETTYRT £/0110 B0 0 B0 0 050 B0 108 0G0 0 H0H0 B0 H0H 08
ORI S B
SZXS2(4'O) eX e X e X eX0®X0®X0X0®X X e X oXoX0oX0Xe0XeXeo
T? x §(4,0) %o xoxoXoxoxox o hpg oxoxenonononenon
§4(2,0) xoxoxonoxox2:5x XeXoeXoeXoeXoXoxox
CP(3,1) ©0£30 6300 0000 h0H0BOPoMOn0H0n
T"(0,0) eXeXeXeXeXoeXoeXPXoeXOXoX0OXOX0OXS
SIXSJ(O.O) I I .:-T.x-*.x:(:(,; lllt.llXoTle
-20 / -10 0 10 \ 20
RO
e . even ASD Instantons eX e Xe e X e Xe SD Instantons
X Odd X o X x x
)5-1 x
* X9 x
L]
-
T T O T T
—20 —10 0 10 20
n
FIG. 1. Topological numbers of closed Einstein manifolds.

Let y(M) =m € Z5, and ©(M) = n € Z. We can invert
Eq. (2.29) as

1) =~ (2m + 3n). (2.30)

FN-

Note that our sign convention in Eq. (2.28) is I'¥) > 0, so
the relation (2.30) is consistent with the inequality (2.27).
The above relations show how the topology of Einstein
manifolds is characterized by the configuration of SU(2)
instantons and SU(2)_ anti-instantons. One can also
deduce that y(M)+t(M)=m+n=2(1-b,+b3)€2Z,
where b; =dimH'(M,R) is the ith Betti number
(Chap. 6.D in Ref. [7] and Sec. 10.4 in Ref. [14]). This
means that the set (m, n) of topological numbers forms an
even integer lattice, i.e., m +n € 2Z. Some examples of
four-dimensional compact Einstein manifolds are shown in
Fig. 1, where the structure of the inverted triangle for an
allowed region is due to the inequalities m >0 and
m >3|n|. In the list in Fig. 1, S! x S* is not an Einstein
manifold, since it does not admit Einstein metrics [22] and
Page is an inhomogeneous Einstein metric on the product
of the nontrivial S? bundle over S? [23].

Figure 1 clearly shows the “reflection” symmetry [11].
The reflection symmetry can be realized by considering
two compact Einstein manifolds (M, g) and (M, ) obeying
the following relation:

IH(M) = 19)(M), 19)(M) = 1) (M), (2.31)
Under the above transformation (2.31), the topological
invariants are related as
(M) = —t(M).

x(M) = x(M), (2.32)
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Thus, the reflection symmetry corresponds to the inter-

change of instantons and anti-instantons which is achieved

by a change of the manifold’s orientation. This map

indicates that a four-manifold with (M) = 0 is self-mirror.
We take the Lie algebra generators of SO(4) as

Jij = Eiijk7 Jis =N, (2-33)
where i, j, k=1, 2, 3 and
i, . i/t 0
Ji==(7"®1) == ,
i 2 (T ® 2) 2 ( 0 Ti )
i . i/t 0
N, = —(7 N == . 2.34
e =5(7 ) (2.34)
They satisfy the commutation relations
i, Jj] = —e I, [Ni,N;| = —eV Uy,
[Ji’ N‘/} == —Eijka. (235)

In this representation, the generators in the Cartan sub-
algebra are —iJ; and —iN5. An irreducible representation
(irrep) of SO(4) is labeled by the highest weight defined by
these operators [24], which is denoted by a state

"’ q>, p2ldl (2.36)

2°2

where p and ¢ are both even integers or both odd integers.

The isomorphism Spin(4) = SU(2), ® SU(2)_ can be
realized by taking
() 1 ()1
Ji ZE(JH'NJ’ Ji :E(Ji_Ni)v (2.37)

because they separately obey the su(2) = so(3) commu-
tation relations

I = kP, P U =0, (2.38)
For each SU(2), factor, one may take a spin-j. repre-

sentation such that Jgi)J§i> =—j+(jr +1). We choose
J+ > j_. An SO(4) irrep in this basis is then labeled by a
pair of integers or half integers (j,,j_), i.e., the angular
momenta associated with the su(2), and su(2)_ subalge-

bras. We denote the highest weight state as

s jo)- (2.39)
The two representations are related by putting p = 2(j, +
j—)and g = 2(j,. — j_) (Sec. 19.13 in Ref. [24]). The irrep
of the direct product D(j, ) ® D(j_) is decomposed as

pal _[r] o [r 4]
23 -[lel-eefs] ww
under the restriction SO(4) — SO(3).

We note that the separation of instantons such as
Eq. (2.21) is caused by the splitting of the Lie algebra
(2.5). Considering the fact that the instanton action S =
872|I%)| is determined by the instanton number itself, it
may be reasonable to identity the instanton numbers /()
with the labels characterizing some irreps of SU(2) . Now
we identify the labels (j,,j_) in the representation (2.39)
with the instanton numbers in Eq. (2.30) as follows:

jo=2I%) =—-(2m+3n) >0,

jo =210 =—-(2m-3n) > 0. (2.41)

N = D —

This identification automatically satisfies the Hitchin-
Thorpe inequality (2.27). However, in order to satisfy
the condition that the set (m,n) of topological numbers
forms an even integer lattice, i.e., m+n €27, it is
necessary to choose (j,,j_) such that both are integers
or half integers and 5j, 4 j_ € 12Z. This identification
leads to the identification p = 2(j, +j_) =4m =4y >0
and ¢ =2(j, —j_)=6n=067 in the representation
(2.36). The condition m +n € 2Z corresponds to the
requirement that both p and ¢ are even and 3p +
2q € 24Z. The reflection symmetry (2.31) corresponds
to the interchange of the representations, (j, < j_), under
which (p,q) — (p,—¢q). This is the reason why it is
enough to consider only the case, j, >j_, i.e, g >0.
Note that the representations D(j,) ® D(j_) and D(j_) ®
D(j,) for j, # j_ correspond to distinct representations in
SO(4). It may be pointed out that the identification (2.41)
does not explain the Hitchin-Thorpe inequality (2.27),
because we have chosen the representations (j,, j_) such
that they obey the relation j, =2I") and j_ = 2I).
Nevertheless, it is very encouraging that it is always
possible to choose the SO(4) representations so that such
a relation is satisfied.

The four-dimensional Lorentz group Spin(4) is the spin
group in dimension 4, the double cover of SO(4), that is a
product group since Spin(4) = SU(2), x SU(2)_ and its
Lie algebra becomes a direct sum of two su(2), Lie
algebras. The splitting of the Lie algebra in Eq. (2.5) is
related to the decomposition of the 2-forms on a four-
manifold in Eq. (2.4). The canonical splitting of the vector
spaces occupies a central position for the instanton struc-
ture of Einstein manifolds. However, one may think of the
four-dimensional gravity as being obtained through the
Kaluza-Klein reduction of a five-dimensional gravity. Then
one can consider the four-dimensional Einstein manifolds
as obtained from a five-dimensional gravitational solution.
The five-dimensional Lorentz group is SO(5) which is a
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simple group. Since SO(4) € SO(5), it will be interesting
to see how the instanton configuration of Einstein mani-
folds fits into a multiplet in the irrep of SO(5). We will
discuss this issue in the next section.

III. REPRESENTATION OF RIEMANNIAN
MANIFOLDS

As we have observed in Sec. II, the separation of
Riemann curvature tensors has been originated from the
splitting of the Lie algebra vector space (2.5). Since the
vector space so(4) is isomorphic to the vector space of
2-forms Q?, the same kind of splitting must also arise in the
vector space Q2. Equation (2.4) precisely shows such a
splitting of the vector space Q. The gravitational force is
represented by Riemann curvature tensors, and Einstein
manifolds are described by two independent components of
Riemann tensors (i.e., self-dual and anti-self-dual gravita-
tional instantons).” However, an interesting physics arises
if we consider the four-dimensional gravity as being
obtained from a five-dimensional gravity through the
Kaluza-Klein compactification [12]. Then the five-
dimensional Lorentz group is SO(5) that is a simple
group unlike the group SO(4) = SU(2), x SU(2)_/Z,.
Moreover, there is no concept of self-duality for 2-forms in
five dimensions so that the vector space Q? is no more
decomposed. Therefore, neither the Lie algebra of SO(5)
nor the vector space of 2-forms Q? is split in five
dimensions. This implies that the self-dual and anti-self-
dual components in SU(2), factors must be combined in
five dimensions, since the group SO(4) = SU(2), x
SU(2)_/Z, has to be embedded into the simple group
SO(5). In other words, SU(2), instantons and SU(2)_
anti-instantons in four-dimensional Einstein manifolds
must appear in the same multiplet of the Lorentz group
SO(5). Therefore, the five-dimensional Kaluza-Klein
theory unifies two independent sectors of curvature tensors
as well as the electromagnetic force into a single gravita-
tional force.

This scheme is similar to the grand unification of the
Standard Model, although the Kaluza-Klein theory is
defined in five-dimensional space. The Standard Model
has a product gauge group SU(3) x SU(2) x U(1) to
describe the electroweak and strong forces. In the GUT,
the Standard Model gauge group is embedded into a single
gauge group, for example, SU(5) or SO(10). Then the
leptons and quarks appear in the same multiplet in a larger

31t is not the case for the Lorentzian signature, because the
local Lorentz group SO(3, 1) is a simple group although it is not
compact. Furthermore, it does not mean that there are two
independent gravitational forces, because the gravitational force
is transmitted by metrics (not connections) and the metric does
not decompose in any sense into a sum of two independent parts.
The self-dual and anti-self-dual components of spin connections
are described by the same metric.

symmetry [13]. Now we will see how four-dimensional
Riemannian manifolds are similarly combined into a five-
dimensional Einstein manifold. Furthermore, we will see
that SU(2), instantons and SU(2)_ anti-instantons play a
role of quarks and antiquarks from the point of view of a
five-dimensional Einstein manifold. In order to analyze the
anatomy of Riemannian manifolds, we will greatly use the
group isomorphism [2]
SO(5) = Sp(2)/Z,. (3.1)
We provide more details about the Lie algebras so(4) =
su(2), @ su(2)_ and so(5) = sp(2) in Appendix A.
Let N be a five-dimensional Riemannian manifold
whose metric is given by
ds> = Gy (X)dXMdx". (3.2)
Introduce at each spacetime point on N a local basis of
orthonormal tangent vectors £, = E¥ 9y, € T'(TN) and its
dual basis E4 = E{,dX™ € T(T*N) defined by a natural
pairing (E*, Ep) = &4, where A,B=1,...,5;M,N =1,
...,5. In terms of the noncoordinate basis in ['(T*N), the
metric (3.2) can be written as
ds2 = GMN(X)dXMdXN = 5ABEA ® EB. (33)
Let us consider Einstein manifolds (N, G) described by the
Einstein-Hilbert action

1
S5 = — R - 3A)VG&X,
5 167Z'G5 /( )

(3.4)

where A and G5 are a cosmological constant and the
gravitational constant in five dimensions, respectively. The
equations of motion derived from the action (3.4) are

Ryn = AGyy. (3.5)
A solution to Eq. (3.5) constitutes five-dimensional
Einstein manifolds (N, G). Now we consider the Kaluza-
Klein compactification of five-dimensional Einstein mani-
folds by assuming that the five-dimensional space N is a
cylinder M x S' with 0 < x> < L = 2zR5 [12]. We split
five-dimensional coordinates as XM = (x*,x%),u =1, ...,4,
according to the cylinder geometry. Then the five-
dimensional metric tensor in (3.2) also splits into four-
dimensional fields, g,,(x), A,(x), and ¢(x). We have
imposed the cylinder condition that the fields should not
depend on the fifth coordinate x>. We take the Kaluza-Klein
ansatz for the five-dimensional metric in the form

dsz = GMN(X)dXMdXN

= e‘%"’(guudx”dx” +el(dx’ + kA dx')?),  (3.6)
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where x> = 167G, and G, =% is the four-dimensional
gravitational constant. It may be instructive to write the
five-dimensional metric in the matrix form

Gyn = o5 <g’”’ + K2e¢AMAv Ke¢A" ) (3.7)
ke?A, e?

The geometric details of the five-dimensional gravity and

the Kaluza-Klein theory appear in Appendix B.

Using the result (B21), one can write down the five-
dimensional Einstein-Hilbert action (3.4) for the Kaluza-
Klein ansatz (3.6). First note that the five-dimensional
volume form is VG&°X =E' A --- NES = e‘%‘/’\/gd“xde.
Since the four-dimensional fields do not depend on the
circle coordinate x°, one can integrate out the fifth
coordinate that gives rise to the redefinition of the gravi-
tational constant G, = % Moreover, one can ignore the
Laplacian term in Eq. (B21) because it becomes a boundary
term. Finally, the Einstein-Hilbert action (3.4) reduces to
the four-dimensional action

] K
s= /(- @R —3eV%A
/( 167ZG4 ( ¢ )

1 1
+3 eV g ok F o+ 5 gﬂvaﬂcbayq)) Vadx,

(3.8)
where we have rescaled the scalar field
1
b=— 3.9
™ (3.9)

such that the scalar field has the usual kinetic term with
canonical mass dimension. The Ricci scalar ()R with the
left-hand superscript () is determined only by the four-
dimensional metric dsj = g,, (x)dx"dx". Note that A no
longer behaves like a cosmological constant in four
dimensions except the case of a constant scalar field.

Let us consider the symmetries of the Kaluza-Klein
geometry with the metric (3.6) where the components of
the gravitational field along the circle transmute into
the electromagnetic field. The effective field theory of
five-dimensional gravity around a solution of the form
N=MxS' is four-dimensional gravity coupled to
electromagnetism and a dilaton field. The five-dimensional
Lorentz transformations that would mix the remaining four-
dimensional gravitational excitations with electromagnetic
excitations are not symmetries of the metric. The sym-
metries of the Kaluza-Klein vacuum (3.6) are the four-
dimensional Lorentz symmetries, acting on M, and a U(1)
group acting on the circle S' [12,25]. These symmetries are
realized as local or gauge symmetries in the apparent four-
dimensional world, because the whole theory started with

the Einstein-Hilbert action (3.4) which is generally covar-
iant. Therefore, the spontaneous symmetry breaking by the
Kaluza-Klein ground state (3.6) arises via a two-step
procedure with the symmetry breaking from SO(5) to
SO(4) followed by the symmetry enhancement to SO(4) x
U(1) in terms of the isometry of the Kaluza-Klein circle.
The remaining symmetry is denoted as
SO(5) - SO(4) x U(1), (3.10)
although the U(1) factor is not a subgroup of SO(5), since
it acts on the circle coordinate as
X xH, ¥ X+ f(x).

(3.11)

Under this transformation, we have

1
G > Guw ¢ P, A, HAﬂ—;aﬂf, (3.12)
so that the 1-form A = A,dx* transforms like an Abelian
gauge field.
The equations of motion for the four-dimensional fields

can be derived from the action (3.8):

1 e
“R,, - Egm,((“)R ~3¢A) = 82G,T,,,  (3.13)
D, (eV3**Fm) =0, (3.14)
AD = @eﬁ'@F P — ée‘%“’A, 3.15
4 m
K

where the energy-momentum tensor 7', is given by
T,, = eV*®¢°F, F,, + 8,00,

1 1
~ G (Z eV*CF , Fro + Egﬂ"apdwgcb) . (3.16)

Indeed, one can check using the results in Eqs. (B18)—
(B21) and R = 5A that the above equations of motion are
exactly the same as Eq. (3.5) for a five-dimensional
Einstein manifold. Therefore, the general five-dimensional
metric (3.6) describes a five-dimensional Einstein manifold
as long as the four-dimensional fields, g, (x), A,(x), and
®(x), satisfy the above equations of motion. It will be
interesting to see how the other fields such as A, (x) and
®(x) deform the instanton structure of four-dimensional
Einstein manifolds and understand how these deformed
geometries are nicely unified into a five-dimensional
Einstein manifold.

In order to understand such a structure of a five-
dimensional Einstein manifold, it would be useful to have
the decomposition of five-dimensional Riemann curvature
tensors similar to the four-dimensional decomposition

064015-8



ANATOMY OF EINSTEIN MANIFOLDS

PHYS. REV. D 105, 064015 (2022)

(2.14). The generators of so(5) Lorentz algebra are
defined by

Jan Ya. 78] (3.17)

:Z[

and they satisfy the Lorentz algebra

[Jag-Jep] = =(6acT gD Sgcap + 0gpJac)-

(3.18)

- 6ADJBC -

See Appendix A for the representation of the five-
dimensional gamma matrices. The ten generators in
Eq. (3.17) consist of J 45 = (J 4p» J54 ), Where the generators
J . satisfy the four-dimensional Lorentz algebra so(4) C
so(5) and Js, are additional generators given by
. l TI 0

Jab:j‘_[yuvyh]:;<nab _ i>9
0 it

1 1 0 o
Jso=~[r5.74) == i 3.19
5a 4[?57] 2(_5,1 0) ( )
Let us denote the generators in Eq. (3.19) as
J” = gijka’ Ji4 = T3+i,
Ji5 = —T6+i, J45 = —T]O, (320)
which take the block matrix form
i 0
TN =~ 1,) ==
o i/t 0
T3+ = — ,
ler)= 2<0 _f>
. 0 7
T6+1:_T®Tl __< >’
5 ) T
1/0 1,
T =~ 2) =~ . 3.21
e =3( 5 7) (3.21)

It can be shown (see Appendix A) that the 4 x 4 matrices
TA A =1,...,10, in Eq. (3.21) constitute the Lie algebra
generators of sp(2). Therefore, we establish the Lie algebra
isomorphism sp(2) = so(5). Since the universal covering
group of SO(5) is Sp(2), we get the group isomor-
phism (3.1).

Since the vector spaces generated by J,z and T” are
isomorphic to each other, there exists a linear relation
between them:

1

Jas = wipT", ™ = EV/QBJAB’ (3.22)

where

Wy = ~Tr(J4sT"). (3.23)
The psi symbol in (3.23) is the analog of the four-
dimensional 't Hooft symbols in Eq. (A6), which explicitly
presents the Lie algebra isomorphism so(5) = sp(2).
Indeed, the matrix expression (T?),; =’ provides
the five-dimensional representation of sp(2) Lie algebra
as was shown in Eq. (A36). The Riemann curvature tensor
R =1R,pJsp € C*(g ® Q?) carries two kinds of indices
living in different vector spaces:

1 1
RAB - ERABMNdXM VAN dXN - ERABCDEC A\ ED, (324)
where the indices (A,B) live in the vector space of
g = so(5) Lie algebra while (C,D) live in the vector
space of 2-forms Q> = A?T*N. But these two vector spaces
are isomorphic to each other, and their isomorphism is
encoded in the symmetry property of curvature tensors:
Rupcp = Repas: (3.25)

The symmetry property (3.25) can be derived from the first
Bianchi identity

Rypep + Racps + Rappe = 0. (3.26)
which is the integrability condition for the torsion 2-forms
in Eq. (B1) [14,18]. Thus, we can expand the curvature
tensors R, pcp in the sp(2) basis for both indices using the
psi symbol (3.23) as

Ragcp = RapWisWen: (3.27)

where the expansion coefficients are symmetric, i.e.,

1

Rag = Rpa = ZRABCDWQBV/%D (3.28)
due to the property (3.25). The Bianchi identity (3.26)
which is totally 50 conditions imposes five additional
conditions

dABCERAB — O (329)
in addition to the 45 conditions from Eq. (3.28), where the
structure constants d*BC are defined in Eq. (A26). The
constraints (3.29) can be derived from Eq. (3.27) by
contracting %JABJCD on both sides and applying the
products (A27) and (A28). Then it results in two identities

1

S{AB(SAB - ER, (330)

1
dABEm/-\B = ZSABCDERABCD =0, (3-31)
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where R is the Ricci scalar and Eq. (3.31) must vanish due
to the Bianchi identity (3.26). It may also be checked by
counting the number of independent Riemann curvature
tensors. In five dimensions, the number of independent
Riemann curvature tensors obeying the Bianchi identity
(3.26) is 50. The number of sp(2) curvature tensors

|

obeying Eq. (3.28) is 55 = 100 — 45, and then imposing
the five constraints (3.29) leads to 50 independent compo-
nents. See Appendix C for the group structure of Riemann
curvature tensor.

The sp(2) = so(5) generators in Eq. (3.21) satisfy the
commutation relations

[Ti, Tj] — [T3+i, T3+j] — [T6+i, T6+j] — —glikTk,

{Ti, T3+j] — —£ijkT3+k,

{Ti, TlO] — 0’ [T3+i’ TlO] — T6+i,

[Ti, T6+j] — _gijka)Jrk’

{T6+i, Tl()] — —T3+i.

[T3+i’ T6+j] — _5ijTl(),
(3.32)

Note that 7° =4 (> ® 1,) and T° = % (¢} @ 7*) are diagonal matrices. Therefore, they constitute the set of the Cartan

subalgebra for sp(2) = so(5):

h={H' =—iT3 H* = —iTS}.

(3.33)

They correspond to H' = —iJ; and H> = —iNs, respectively, according to the notation (2.33). Thus, this representation
contains the highest weight state (2.36). The remaining generators are chosen to satisfy the eigenvalue equations [13,24]

[H, E*] = o' E*,

(3.34)

where i = 1, 2. The two-dimensional vector @ = (a', a?) is called a root, and E® is the corresponding ladder operator. We

choose the ladder operators as follows:

1
Ap =5 (T £i1? + (1" £iT%)).

C. =T +iT8,

B:l::

D. =T° +iT".

1
5 (T %12 = (T4 £iT7)),

(3.35)

It may be useful to show the explicit matrix representation of the Cartan-Weyl basis:

('53 O> 1 ('53 0 )
) H2:_ )
0 2\0 -7

where 7* = (7' & iz?). Then the commutation relations in
Eq. (3.32) can be written in the Cartan-Weyl basis as

[HI,A:E] =4A,, [Hz,Ai} =0,

[H',B.] =0, [H?,B.] = +B.,

[H',Cy] = £Cy, [H?,Cy] = £Cy,

[Hl,Di] =xD,, [Hz,Di] =FD,. (3.37)

Therefore, we identify the root vectors derived from the

ladder generators

&At - :l:(l,O),
dc, = £(1,1),

&Bi - :i:(O, 1),

dp, = +(1,-1), (3.38)

A_1<Ti o> B_1<0 o>
*72\0 o) *72\0 )

3), (3.36)

(-1,1) a=(0,1) (1,1)

(_lx O)

+(1,0)

(—1,—1) (0,-1) g=(1,-1)
FIG. 2. Root diagram of so(5) = sp(2) for the Cartan sub-
algebra (3.33).
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where the first (second) entry of root vectors is the
eigenvalue of ady (ady). The corresponding root diagram
is shown in Fig. 2. The simple roots are denoted by

-

=01, j=(,-1) (3.39)

One may choose a different combination of the Cartan
subalgebra

[) — {Hl — _75(]*3 +T6),H2 — _E(Tfi _T())}7

(3.40)

whose matrix form is given by

B )
V2 0 0/’ V20 )
They correspond to H!' = —\/ziJgﬂ and H?> = —\/EiJg_>
respectively, according to the notation (2.37). Thus, this
representation contains the highest weight state (2.39).

Then the commutation relations in Eq. (3.32) can be written
in the Cartan-Weyl basis as

(3.41)

[H'.A,] = £V2A,, [H2,A,] =0,
[H'.B.] =0, [H2,B,] = £V2B.,

1 1
H'.C.l=+—C,, H2,C.l=+—C,,
[ i] \/z + [ i] \/5 +

1 1
H'.D.]=4+—D., H>D.]=F—D,. (3.42
[ -] Nohts [ <] :F\/E + (342)

The corresponding root diagram is shown in Fig. 3. The
simple roots may be chosen as

.
ﬂ:7§(17—1)~

Our normalization for simple roots is that the square length
of the longest roots is set equal to 2.

As we have indicated in Eq. (3.24), the Riemann
curvature tensors are 2-forms in Q> = A>T*N taking values
in the vector space of g =so(5) = sp(2) Lie algebra.
According to the remaining symmetry (3.10), let us
decompose the Lie algebra g=s0(5)={T"|A=
1,...,10} as

a=v2(0,1), (3.43)

g=s0(4) ®t=su(2) ®sul2)_Pt, (3.44)

where f contains the generators Js, in the coset space
SO(5)/S0O(4) = S*. Since g = A>T*N as vector spaces,
Eq. (3.27) gives us the expansion of the curvature tensor in
the basis of g. In the basis (3.20), {T*|A =1,...,6}

corresponds to J,;, so so(4) C so(5) Lie algebra and
{T%"%:a =1,...,4} corresponds to the coset generators
Js, in £. As is well known, Eq. (3.32) shows that the coset
space SO(5)/S0(4) = S* is reductive ([so(4),¥] C £) and
symmetric ([£, ] C so(4)). One can explicitly determine
nonzero components of the psi symbols defined by
Eq. (3.23) using Eq. (A27):

i

VA 8iab4 3+ 5ia54b _ 5ib54a 6+a __ 5ab
ab ’ * ’ - :

Yab Ysp
(3.45)

Therefore, the "t Hooft symbols in Eq. (A6) are related to
the psi symbols by

My =Wy Twos's Wy, =wh,—wil (3.46)

Then the above combination implies that

A 1 . 1.

Ti 4 73+ = 5 (wi, + i) = Eni,hlab € su(2),,
‘ R : 1.

T - T3 = E(l//lab - WZZ,H)Jab = E’/I;b-]ab € Su(2)_,

(3.47)

where we used the definition (3.22). The coset generators
are given by
T6+a = l//g_bHIJSb = JSa (S f (348)

Thus, the Cartan-Weyl basis for the root diagram in Fig. 3
can be classified as follows:

(H',Ay) €su(2),, (H*B.)€su(2)_, (Ci,D.)€el
(3.49)

FIG. 3. The root diagram of sp(2) = so(5) for the Cartan
subalgebra (3.40) where the actual roots must read as

oy, o) = \/§|ﬁ1?ﬁ2>~
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The decomposition of four-dimensional Einstein manifolds
implies that SU(2), Yang-Mills instantons live in the
vector space su(2), and SU(2)_ Yang-Mills anti-instan-
tons live in the vector space su(2)_. The root diagram in
Fig. 3 shows how each component in the five-dimensional
Riemann curvature tensors R,pcp deforms the instanton
structure of four-dimensional Einstein manifolds.

Hence, it is useful to decompose the five-dimensional
Riemann curvature tensors in Eq. (3.27) according to the
Lie algebra decomposition (3.44). First, the Riemann
curvature tensors in (B14) are decomposed as

Rapea = f@++)ﬂabﬂcd *‘f ﬂabﬂcd *‘f ”abncd
+ L T g (3.50)

where

L] — 1
f(++ = Z (mlj + m?ﬂ J + ERz 3+j + m3+l 3+/)

ij 1

fl., = 1 (Rij +Rapij— Rizy — Rapize)

yo_1

fly = 1 (Rij—Rapij+ Rize; — Rauizg),

o1

f(J__> =7 (Rij —Rsij — Risy + Ragizeg)- (3.51)

Explicitly, they are given by
=€ {f (+4)
x e¢< FOFERT L (O R f<—>k)5ij>
35 (A= 50,0707},

ij 1 ij 3 i (=
- —eé¢{f<f+_) _ZK2e¢f(+) £

1

+24 (D ab¢+ aa¢ab¢)nacnbc}

et G FO %( FUR FEK _ ok f<—>k)5u'>
1

#3480 (0,707}, 3.52)

where f’(’* . are the expansion coefficients of the four-

dimensional Riemann curvature tensors (2.14) and we have
introduced a similar decomposition for U(1) field strengths
F ab — f

Ny + e (3.53)

Note that

oy =flhne Tl =T flo =1L, (54
due to the symmetry property (3.25) and the Bianchi
identity (3.26) further requires
i) 87 = fiL_81. (3.55)
It is easy to check Eq. (3.55) using the above results.” Using

the decomposition (3.53), it is straightforward to calculate
the U(1) instanton density:

Puy = 642 eV, F oy
1
= o (PR = fRFOR). (3.56)

Using Eq. (3.45), the expansion (3.27) for the Riemann
tensors Rs,;. can be written as

_ B
RSabc - m6+a,[EBl//bc

=F )+ F T (3.57)

where [Fg?i =1 (Rerai £ Rerasi) are given by

% (6D fH+ 7119, p — 26U Flink, 5,

+ f ”acnbcabd))
FQ = e (6D O 4710, = 26 OO,

o =

+ S i, D), (3.58)
and
D fE = 0, {97 — 26T AF fEE - (3.59)

The expansion components ngﬁ are not completely

independent due to the constraints (3.29). It is straightfor-
ward to read off the constraints using Table I in Appendix A
that gives four relations from the first four rows, so totally
20 = 24 — 4 independent components remain. The last line
in Table I gives rise to the constraint (3.55). Finally, we
have

*It can also be derived from Eq. (3.31) by using the algebraic
properties of the 't Hooft symbols in Appendix A:

U
Zgabcd5Rabcd =35 (féqr 7721};77',/1;, - f(.ﬁr—)nabn{zb
+ f ’7ab’7ab f(__>’7/;b’7]izb)

=2(f, 89 = _67) = 0.
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Rs,s, = 2R6+a,6+b =Ry
2
= e%qﬁ{% e ((FHIFHI 4 fQifOs
+ 27 i)
28¢8¢+18¢6¢5 1D8¢
9 a b 18 c c ab 3 aYb s
(3.60)

where R, = R, so totally ten components. Thus, we
recover the 50 = 20 + 20 4 10 components of Riemann
curvature tensors in five dimensions.

IV. FIVE-DIMENSIONAL EINSTEIN MANIFOLDS

It was shown in Eq. (A36) that z;/f}B defined in Eq. (3.23)
provide the five-dimensional representation of sp(2) =
so(5) Lie algebra. It is the irrep of sp(2) corresponding
to the highest weight @, = (0, 1) on the right-hand side in
Fig. 4. It is well known [13] that a simple Lie algebra of
rank 7 possesses r inequivalent fundamental irreps. The two
fundamental weights for the Lie algebra sp(2) 2 so(5) are
shown in Fig. 4. The four-dimensional representation,
corresponding to the highest weight w; = (1,0) on the
left-hand side in Fig. 4, is the spinor representation of so(5)
and the defining representation of sp(2). In contrast, w, =
(0,1) is the highest weight of a five-dimensional repre-
sentation of sp(2) 2 so(5) Lie algebra. It is easy to find the
defining representation of so(5) that is given by Eq. (A37).
There must exist a five-dimensional representation of sp(2)
defined by the fundamental weight w, = (0, 1). That is
precisely provided by the psi symbol (3.23).

Therefore, the expansion (3.27) corresponds to the
generalization of the four-dimensional decomposition
(2.14) to the five-dimensional case. The five-dimensional
curvature tensors are not decomposed into some irreducible
blocks, because the Lorentz group SO(5) = Sp(2)/Z,
is a simple group, unlike the four-dimensional case.

\
[

-1,0 -2,1

0,-1

FIG. 4. The block weight diagrams of the fundamental repre-
sentations of sp(2) = so(5).

The Riemann curvature tensor belongs to the irrep of
SO(5) = Sp(2)/Z, given by

Ragcp € (50 = BE‘) . (4.1)

Thus, the five-dimensional Einstein manifold satisfying
the equations of motion (3.5) should take elements in
the irrep (3.5). The expansion (3.27) shows how these
elements are organized according to the root structure in
Fig. 2 or 3. After the Kaluza-Klein compactification, the
symmetry is reduced to SO(4) x U(1). Then the Riemann
curvature tensors in Eq. (4.1) are decomposed according
to the remaining symmetry (3.10) or, more precisely,
Eq. (3.44). This decomposition appears in Egs. (3.50),

(3.57), and (3.60). In particular, the components f’(jjE 4 of

four-dimensional Einstein manifolds appear in the curva-
ture tensor (3.50). The instanton structure of Einstein
manifolds is deformed by the excitations of U(1) gauge
fields and a scalar field. However, these deformations in the
curvature tensor (3.50) are done only in the root directions
A4 and B, corresponding to the x axis and the y axis,
respectively, in the root diagram in Fig. 2 or 3. Therefore, if

the mixed components f’(";L_) = fg’_ ,) in the deformed

curvature tensor R,,.; identically vanish, the instanton
structure is still maintained despite the presence of U(1)
gauge fields and a scalar field, i.e.,

. 1 .
%Ei)l = iigabcdgij)l’ (42)
where G =1R  wi and ) =1R,,.i . But
ab 4 abed'lcd ab 4abed'lcd

generic excitations of four-dimensional fields break the
instanton structure of four-dimensional Einstein manifolds.
Consequently, once the fifth dimension is opened so that
the Lorentz symmetry is enhanced to SO(5), all these
deformations have to be organized into a single five-
dimensional Einstein manifold. So it may be interesting
to look at some particular cases.

First, consider the case with ¢» = const. A caveat is that

the condition ¢ = const implies the unwanted result,
_4

1F P =5e7?, from Eq. (3.15). In order to avoid this
conclusion, one can proceed in the reverse order by putting
the condition ¢ = const in the action (3.8) or the ansatz
(3.6) and varying the action afterward [12]. The constant
scalar field can simply be removed by a field redefinition

and defining a four-dimensional cosmological constant
2=3e"APALIf we tumn off the U(1) gauge field, ie.,
AM = (0, we recover the four-dimensional Einstein mani-
folds discussed in Sec. II. We know well the instanton
structure of four-manifolds in this case. So let us turn on the
U(1) gauge field. Note that the Einstein equation (3.13) can
be equivalently written as

1
Rap =5 0uR + A3, = 0. (4.3)
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Using the result (C3), it is straightforward to reduce
Eq. (4.3) as the form [9,10]

G A
Fln® =19 =3

5 f’('f'+_> = 162G, fHif.

(4.4)

Since the Maxwell equations are coming from the compo-
nents of the Ricci tensor R,5 = Rs;,;,, we can read off the
expansion for the Maxwell equations in the sp(2) = so(5)
basis from Eq. (3.57):

7, DS i i, D) pOF — o, (4.5)
where the covariant derivatives are defined by Eq. (3.59).

The structure in Eq. (4.4) clearly shows that turning
on U(1) gauge fields introduces a mixing of SU(2),

and SU(2)_ sectors, since the mixed part f é";r_) no longer

vanishes. Although the Riemann curvature tensor in this
case does not satisty the self-duality equation like Eq. (4.2),

the mixed part fé{r_) does not disturb the conformal and
instanton structures of four-manifolds, since the Weyl
tensor does not depend on the mixed part f'(’+_) = f{’_ "

[9]. A bit mysterious aspect is that there is no effect in the
four-dimensional Einstein equations (4.4) if only self-dual
(.e., f)'=0) or anti-self-dual (ie., f()=0) U(1)
gauge fields are turned on. This structure is due to the
fact that the energy-momentum tensor in Eq. (C4) identi-
cally vanishes for self-dual or anti-self-dual gauge fields.
So one may conclude that the Einstein structure is infinitely
degenerate in the sense that one can add arbitrary self-dual
or anti-self-dual U(1) gauge fields without spoiling the
Einstein condition of a four-manifold. But the five-dimen-
sional Einstein manifold secretly notices the existence of
such U(1) instantons, because the four-dimensional
Maxwell equations (4.5) correspond to R,5; = 0 as shown
by Eq. (B19) and they are nontrivial.’

The deformed instanton structure defined by Eq. (4.2)
does not allow a similar frigidity as long as U(1) gauge

>This kind of absurd insensitivity holds true even when we
consider a four-dimensional gravity coupled to SU(2) Yang-
Mills gauge theory [9]. The Einstein equations in this case are
simply replaced by f E-L_) = 162G, Tr(fH) f(5)7), where the trace
is performed for the SU(2) gauge group. If SU(2) gauge fields
are Yang-Mills instantons whose equations are exactly the same
as Eq. (2.22), fz'fr_> again identically vanishes. Therefore, the

Einstein structure is infinitely degenerate even for the presence of
Yang-Mills instantons. It is quite strange considering that the
instanton equation of Yang-Mills gauge fields is exactly the same
as that of an Einstein manifold. But a higher-dimensional Einstein
manifold secretly notices the existence of such Yang-Mills
instantons as the five-dimensional case, because the four-
dimensional Yang-Mills equations are obtained by the Kaluza-
Klein compactification of a higher-dimensional gravity [26].

fields and a scalar field are active. For simplicity, let us
consider the case where only the scalar field is turned on but
U(1) gauge fields are completely turned off. Among the
field configurations obeying the condition féfr_> = 0 which
is equal to the equations

. 1 1 o
f('ﬁr_) ! (Daab¢ + 88a¢8b¢> HaclThe (4.6)

with the covariant derivative D,0,¢ = 0,0,¢) — @0, 0.,
the instanton Eq. (4.2) would not be affected by the scalar
field if it satisfied the equation

N =

But Eq. (4.7) cannot be satisfied for a nontrivial physical
scalar field, because the left-hand side upon integration
with a proper boundary (or asymptotic) condition becomes
negative while the right-hand side is positive definite. This
implies that the instantons in four-dimensional Einstein
manifolds are all connected by activating the four-
dimensional fields in the metric (3.7). Then it will be
possible to bind SU(2), instantons and SU(2)_ anti-
instantons into a single multiplet of the five-dimensional
Lorentz group SO(5) = Sp(2)/Z,. The unification of two
independent instantons in a four-dimensional FEinstein
manifold would be clear when looking at the root
diagram in Fig. 2 or 3. In four dimensions, one can move
only along the x direction or the y direction which lies in
the representation of su(2), or su(2)_, respectively, in
Eq. (3.49). These two classes cannot be mixed, because the
corresponding root vectors are orthogonal to each other.
But, in five dimensions, one can now move along the
diagonal directions which correspond to the coset elements
in Eq. (3.49). Thus, it will be possible to connect two kinds
of instantons by exciting four-dimensional fields coupled
with so(5) = sp(2) root vectors. It will be left for future
work to explicitly analyze the unification of four-dimen-
sional Einstein manifolds in five dimensions.

V. DISCUSSION

There is a mysterious transition between Euclidean
spaces and Minkowski (Lorentzian) spaces. They are
simply related by an analytic continuation x* = —ix*,
but it results in dramatic changes of physics. In the
Euclidean space, physical forces have the self-dual struc-
ture defined by Eq. (2.4). The eigenspace of the self-dual
structure is called instantons. The 2-forms are important in
Riemannian geometry because of their relation with the
curvature tensor, and this decomposition has a profound
influence on the underlying geometry of four dimensions
[6]. And this separation is deeply related to the splitting of
the Euclidean Lorentz group (1.1). This correspondence is
natural from the viewpoint of the Clifford isomorphism
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[20], since the 2-forms Q7 in the exterior algebra are
isomorphically related to the Lorentz generators J,, =
T 17a.7p) in the Clifford algebra. After the Wick rotation
x% = —ix*, the physical forces no longer have the self-dual
structure, because the Hodge * operator satisfies *> = —1.
Instead, a novel structure emerges in the Minkowski
(Lorentzian) space, the so-called causal structure. A vector
or, more generally, tensors have the causal structure
depending on their signature: timelike if ||x||> < 0, space-
like if ||x||> > 0, and lightlike if ||x||*> = 0. The causal
structure in Euclidean spaces is trivial, because always
|x||*> > 0 unless x =0. Moreover, the Lorentz group
SO(3,1) becomes a simple group, although it is a non-
compact group. The physical forces are no longer sepa-
rated, but they exert their influences according to the
causality. We wonder what the relationship between
these two structures is. A five-dimensional Lorentzian
manifold may provide some clue for the question, since
time-independent solutions can be classified by the four-
dimensional self-dual structure and SO(4) C SO(4,1).

Our formalism can also be applied to noncompact
Riemannian manifolds with a boundary. However, in this
case, it is necessary to include boundary terms to discuss
the topological invariants such as the Euler characteristic
x(M) and the Hirzebruch signature z(M) [14,27-29].
These boundary terms introduce a mixing between
SU(2), gauge fields and SU(2)_ gauge fields in the topo-
logical invariants, because the Lorentz symmetry SO(4) =
SU(2), ® SU(2)_/Z, is reduced to SO(3) = SU(2)/Z,
on the boundary [21]. The boundary symmetry SU(2)
corresponds to the diagonal element of SU(2), ® SU(2)_.
Thus, the nice splitting between SU(2), and SU(2)_
factors is lost. Furthermore, all known examples, at
least, for gravitational instantons, imply [27-29] that
x(M) =|t(M)|+ 1. The reduction of the topological
invariants is due to the reduction of the Lorentz symmetry
at the boundary. The topologically inequivalent sector of
instanton solutions is defined by the homotopy class of a
map from a three-sphere at asymptotic infinity to the gauge
group G:

f: S =G, (5.1)
and the topological charge is given by an element of the
homotopy group z3(G) [18]. Since the spin connection
(2.7) can be viewed as gauge fields in G = SO(4), the
topological sector of the SO(4) gauge fields is given by
the homotopy class 73(SO(4)) = #5(SU(2) . xSU(2)_) =
Z @ Z. Consequently, there are two independent topologi-
cal charges, y(M) and z(M). But, if a noncompact
Riemannian manifold has a boundary, the Lorentz sym-
metry SO(4) is reduced to SO(3) due to the boundary and
the homotopy class has to be defined by the remaining
symmetry, i.e., 73(SO(3)) = Z. This implies that the Euler

characteristic y(M) and the Hirzebruch signature 7(M) are
no longer independent, but there must be some relation
between them. The relation y (M) = |t(M)| + 1 represents
such a relationship. It will be interesting to understand such
a boundary effect from the Kaluza-Klein theory. In par-
ticular, it is an interesting problem to include boundary
terms in the action (3.4) and understand a role of U(1)
gauge fields and a scalar field at the boundary.

The proton is a stable particle, because it cannot decay to
light leptons due to the baryon number conservation.
However, in the GUT, a large simple group such as
SU(5) or SO(10) contains quarks and leptons in the same
multiplet. Therefore, it is possible for the proton to decay
into a lepton (a positron and two gamma-ray photons),
although its half-life is extremely long. A similar instability
of Einstein manifolds may appear in a five-dimensional
gravity. In five dimensions, the Lorentz group is SO(5) D
SO(4), which is a simple group. Therefore, SU(2),
instantons and SU(2)_ anti-instantons must be embedded
in the same multiplet of SO(5). The reason for the stability
of a four-dimensional Einstein manifold is that instantons
and anti-instantons belong to different gauge groups as we
intentionally indicated. However, in five dimensions, they
belong to an irrep of the same simple group. Then it is
impossible to prevent these instantons from decaying each
other. The topological consideration also supports this
conjecture. In five dimensions, the Euler characteristic
identically vanishes: y = 0. It is a simple consequence
of Poincaré duality that manifolds with an odd dimension
have vanishing Euler characteristic. The Hirzebruch sig-
nature can also be defined only in multiples of four
dimensions. The homotopy consideration f:S* — G sim-
ilar to Eq, (5.1) also supports this kind of triviality, because
74(SO(5)) = Z, (see Table 4.1 in Ref. [18]). Thus, there is
no natural topological invariant to support the stability of a
five-dimensional Einstein manifold. If the fifth dimension
is compactified with a sufficiently small radius, the Lorentz
symmetry (3.10) is reduced to SO(4) x U(1). Then
Einstein manifolds may recover their stability in four
dimensions. But this kind of instability in five dimensions
may have appeared in the early Universe, and the Universe
would have stabilized in four dimensions through some
similar mechanism [30]. It would be great if one could
explain in this way why our Universe has chosen the four-
dimensional spacetime.

The standard Kaluza-Klein vacuum M x S' is known to
be unstable [31-34]. The instanton that mediates the decay
is the five-dimensional Euclidean Schwarzschild solution

dr? 2

R
ds® = —— + r2dQ3 + (1 —7> A, (52)

-7
where dQ3 is the metric on the unit three-sphere and y is
the coordinate on the Kaluza-Klein circle. The five-
dimensional solution (5.2) is a bounce which describes
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the decay of the Kaluza-Klein vacuum and is a topology
changing process. In four dimensions, the Euclidean
Schwarzschild solution [17] is Ricci flat, and it consists
of an SU(2) . instanton and an SU(2)_ anti-instanton. The
solution is semiclassically stable, since it carries nontrivial
topological invariants, y(M) =1+ 1=2 and (M) =0
[14,21]. However, if the four-dimensional Schwarzschild
solution is lifted to the five-dimensional solution (5.2), it
was shown in Ref. [31] that a nonperturbative instability
of the ground state is developed. Therefore, it will be
interesting to investigate the nature of instability in
Refs. [31-34] from the perspective we have discussed
above. Any progress in this direction will be reported.
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APPENDIX A: SO(4) = SU(2), @ SU(2)_/Z,
AND SO(5)=Sp(2)/Z,

The defining representation of the Lie algebra so(n) is
so(n) = {M|M € gl(n,R) such that M" = —M}.
We take six generators of the Lie algebra so(4) as

(Xi)ap = —€iavas (Yi)ap = —(0aiOps — 0pibas),  (Al)
where i=1, 2, 3, a,b=1,...,4, and the Levi-Civita
tensor is normalized as €534 = 1. Two sets (X, ¥;) satisfy
the commutation relations

(X, Xj] = eipXeo (Vi Vil = i Xpo (X3, Y] = Y,
where €;j; = &;4. It is convenient to define a new set of
generators as

1
=

E— (X, £ 7))
1 2(1 l)

(A2)

Then 77 satisfy so(3) or su(2) Lie algebra, separately:
[, rji] = —el-jk'r,f, [t£,77] = 0. (A3)

Hence, the Lie algebra so(4) is a direct sum of two
independent so(3) or su(2) Lie algebras:

so(4) 2 s0(3), ®so(3)_ =su(2), ®su2)_. (A4)

Since the direct sum of Lie algebras corresponds to the
direct product of Lie groups and the universal covering
group of SO(3) is SU(2), we get the group isomorphism
[24]

SO(4)=SU(2), @ SU(2)_/Z,. (A5)

One can identify the components of two families of 4 x 4
matrices 7 from Eq. (A1):

Z[Ti]ah = ”;b — 8iab4 + (5ia54b _ 5ib54a)’

Z[Tl—]ah = ﬁizb — 8iab4 _ (5ia54b _ 5ib54a). (A6)
Explicitly, they are given by [10,21]
0O 0 01 0 0 -10
110 0 10 110 0 O
11+ =_ , Ti =_ ,
21 0 -1 00 21 0 O
-1 0 00 0 -1 0
0O 1 0 O
11]-1 0 0 O
3 =2 , A7
“T2l0 0 0 1 (A7)
0 0 -1 0
0O 0 0 -1 00 -1 0
] 0O 0 1 0 , 00 0 -1
T == , Tt == ,
210 -1 0 0 2110 0 O
1 0 0 O 01 0 O
0 1 0 O
11-1 0 0 O
=o A8
“7210 00 -1 (A8)
0O 01 O

The matrices in Eq. (A6) provide two independent spin
s = 3 representations of su(2) Lie algebra. The so-called
’t Hooft symbols defined by Eq. (A6) satisfy the following
relations [10,21]:

Ny = i%%b“’n(j)i, (A9)

ﬂi,?iﬂgj)i = 8acOpd = Oaadpe * €apea  (A10)
Eapealye = F(Bectly + Soatly = Septtlc). (A1)
My My = 0, (A12)

e Mo = 8950, + ey, (A13)

nee iy = e (A14)
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ik (£)] (£)k +)i +)i +)i +)i
e g = Buctyd = Suanly = Bpenlig + Spanic”
(A15)
where ni:)i =y, and ;7((;,)" =i,

Now we consider the so(5) Lie algebra. The five-
dimensional gamma matrices y4 = (y,,75), A=1,...,5,
are given by

_<O a“) B _(12 0>
Ya = s 0) Vs = —V172Y3YV4 = 0 -1, )

(A16)

where ¢ = (it,1,) and &% = (—it', 1,) = (¢*)" with 7/
the Pauli matrices. They satisfy the Dirac algebra

{ra.vs} =265 (A17)
Then the Lorentz generators of so(5) Lie algebra are
defined by

1

Jag ==1Ya,VB|
AB 4[}’A}’B]

(A18)
One can see that the four-dimensional Lorentz algebra
generated by J,, obeys the chiral representation [see
Eq. (3.19)] whose generators are given by

I = (1t 75)u (A19)

| =

and

I = Sniyd e su@),, Iy =2

2 a zﬁizbfi € Su(z)—'

(A20)
The ’t Hooft symbols in Eq. (A6) are obtained by

Moy = =ITe()7). iy = =iTr(J)7). (A2D)
The chiral generators in Eq. (A19) independently satisfy
the four-dimensional Lorentz algebra that verifies the Lie
algebra isomorphism (A4).

It is easy to check the Lie algebra isomorphism sp(2) =
s0(5) using the identification (3.20). The matrices T* in
Eq. (3.21) are anti-Hermitian, i.e., (T%)" = —T*, and obey
the relation

(TATJ +JT™ =0, (A22)

where

) (0
J:l(T2®12):l(0 72>

is the symplectic matrix. The relation (A22) implies that the
4 x 4 matrices T" in Eq. (3.21) are the Lie algebra
generators of sp(2). Indeed, they satisfy the sp(2) Lie
algebra

[TA, TB] = —fABCTC, (A23)
where fABC are totally antisymmetric structure constants.
Their nonzero components are listed below:

fijk :f(3+i)(3+j)k :f(6+i)(6+j)k — Sijk’ f(3+1')(6+j)10 =5l

(A24)

that can be read off from Eq. (3.32). Thus, we establish the
Lie algebra isomorphism sp(2) = so(5).

The so(5) generators in Eq. (A18) also obey the
anticommutation relation

TassJen} = —~(8acOmp — Sappc)Ls — 2
{ABa cD :—5 ACOBD — OADOBC 4_§€ABCDE7E-

(A25)

The corresponding anticommutation relations for the s p(2)
generators in Eq. (3.21) read as

1 1 -
{TA, T[EB} — _55/&[814 —Ed/-\BCTC,

(A26)
where 7€ do not belong to the set of sp(2) generators.
Indeed, they are given by 74 =y, and correspond to the
second term on the right-hand side in Eq. (A25). The
nonvanishing components of d*B¢ are listed in Table I.
Then one can deduce the product of so(5) and sp(2)
generators:

1
Jandep = = 3 (6acdsp = Sapdpc)ls

1
) (bacdgp = 6apIgc = Opcdap + 0ppJ ac)
1
~ 4 EABCDEVE (A27)
TABLE I +(A,B,C) = +d"3C = .
~(1,10,1) 5,9, 1) —(6,8,1)
~(2,10,2) ~(4,9,2) ©, 7, 2)
~(3,10,3 @, 8, 3) ~(5.7.3)
(1,7, 4) (2, 8, 4) 3,9, 4)
(1,4,5) (2,5,5) (3,6,5)
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TATB — _%5/-\[314 _ %f/—\BCTC _ ldA[EBCTC‘

Z (A28)

Using the linear relation (3.22), let us write the products in
Egs. (A27) and (A28) as the form

(D) JagJcp = WagwépTAT®, (A29)

1
(In) TAT® = ZU/QBW%DJABJCD- (A30)
Applying the relations in Eqgs. (A27) and (A28) on both
sides in products (I) and (I) leads to useful algebraic
relations for the psi symbols (3.23). From product (I),
we get

WagWep = Sacsp — Sandic. (A31)

SRR wE D = Sacwip — SapWic — SpcWip + SppWic
(A32)

where Tr(y;T*) = Tr(TCT*) = 0 were used. Similarly,
from product (IT), we get

Vsl = 265, (A33)

TG = WicWhe —WhcWic.  (A34)
where Tr(yzJ 5) = Tr(TJ 45) = 0 were used. The above
relations are analogous to those in Egs. (A9)-(Al5).
Actually, those identities have been derived by applying
a similar technique to Eq. (A20). If we define 5 x5
matrices by

(T*) a5 = Vg (A35)
Eq. (A34) reduces to the commutation relations
[TA, TB] — _f/\[BCTC’ (A36)

while Eq. (A33) gives us the trace Tr(TATE) = —25%E,
Therefore, the generators in Eq. (A35) provide the five-
dimensional representation of sp(2) Lie algebra which is
isomorphic to the defining representation of so(5) Lie
algebra with generators given by

(JAB)CD = 0ac08p — 0apOpC- (A37)
The relation (A31) corresponds to the Fierz identity for
the sp(2) Lie algebra generators in Eq. (A35) and the
identity (A32) can be transformed into Eq. (A34) by using

the trace (A33) or vice versa by using the Fierz iden-
tity (A31).

APPENDIX B: KALUZA-KLEIN GRAVITY

On a five-dimensional Riemannian manifold N, the
spin connection Q = $Q,JA% =1Q 5, JABdXM consti-
tutes an SO(5) gauge field with respect to the local SO(5)
rotations

Q- Q' =AQA! + AdA7!,

where A = exp(3445(X)J4%) € SO(5) and J*? are so(5)
Lorentz generators in Eq. (Al8). Then the covariant
derivatives for the vectors E, and E“ are defined by

DMSA = aMgA - QBAM‘E‘Bv
Dy EA = Oy EA + QA gy EB.

The connection 1-forms Q45 = Q4. dXY satisfy the
Cartan structure equations [14,18]

TA = dE* + Q5 A EB, (B1)

RAB = dQAB + QAC AN QCB, (B2)

where T4 are the torsion 2-forms and R* are the curvature
2-forms. We impose the torsion-free condition T4, =
Dy Ex — DyEY, =0 to recover the standard content of
general relativity which determines €, as

1
Qupc = Qpuél = 5 (fBca + fcap = fagc),  (B3)

where f,pc are the structure functions defined by

[E4. €] = ~faEc (B4)
or its dual equations
1
dEA = 3 fecEB A EC. (B5)

In order to formulate gravity as a gauge theory of local
Lorentz symmetry, it is necessary to introduce a local basis
for the Kaluza-Klein geometry (3.6):

EA = (E*, E%) = (e7#e", e3%¢), (B6)
where
dsi =" @ ¢ = g, (x)dx"dx" (B7)
and
€’ = dx> + kA, (x)dx". (B8)

By solving the torsion-free condition 74 = 0 in Eq. (B1),
one can determine the spin connections as
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1, K 2 are orthonormal tangent vectors dual to the covectors ¢4, i.e.,

Qup = @ap = ¢ e (OpPE" — O PE”) =5 ¢ F o B, (BY) (e, e,) =67. In pal%ticular, the exterior derivative acting on

! M x S! is defined by d = dx*9, = ¢“d,, since we have

Qs = — 3 9, PpES — §e§¢ F,,E”, (B10)  assumed the cylinder condition (i.e., no dependence on x°).

After a little algebra, the curvature 2-forms for the

where @, is the four-dimensional spin connection for the ~ Kaluza-Klein geometry (3.6) can be determined by the
local frames in Eq. (B7) and 0, = e, = ¢}(x)9, € [(TM)  Structure equation (B2):

|

2
K K .
Rab = (4>Rab _Zed)(Fachd + Fachd)ec A ed _56¢D0Fabec A eS

_§e¢(2Fah8c'¢ - Fbcaa¢ + Fucabd))ec A 65
LK
12

+ % (ab¢ac¢ea N e — 8a¢66¢eb N el — 3C¢8C¢e“ AN eb)

e?(F,.0.pe’ N & — Fp,.0.pe® A &)

+é(D08a¢e" A e? — D Oypec A e?), (B11)

2
Rs, = Kze%‘/’Fabece" N +ge%¢DCFabec A eb
+ Ze%¢(FbC(9a¢ — F,0.¢)e” N e — 1—K26%¢Fb68b¢e” A €€
1 1
+ §e%¢ (20,00, + 3D Dup)e® A €° — 1—8e%¢ab¢ab¢ea NS (B12)

Here, (YR, is the curvature 2-form determined by the four-dimensional metric (B7), and the covariant derivatives are
defined by

Daab¢ = aa8b¢ - wcbaac¢’

D.F,, = 8cFab = WgacFap — OapeF ag-
Note that the derivations d, = e, do not commute, but they satisfy the structure equation similar to Eq. (B4),
[aa’ ah] = _fabcac' (B13)

The curvature 2-forms above have the following expansion in the basis (e A e, e A €°):

1 —1 d 1o 5
R, = Ee PR peae N e’ + e’ R, .5 A e,
1, b 1 5 0 b
Rs, = Ee P Rsypee” N e + es?Rsys,e” A e’

Therefore, one can read off the components of Riemann curvature tensors from Eqs. (B11) and (B12):

2
1 K
Rabcd = e3¢{(4)Rabcd - Ze¢(2Fachd =+ Fachd - FadeC)

+ (aa¢ac¢6bd - aa¢ad¢5bc - ab¢ac¢6ad + ah¢ad¢5ac - ae¢ae¢(5a05bd - éadébc))

AN = W

+—(D:0,$8pg — D 40,pSpc — D 0ppS g + Ddab¢5ac)}’ (B14)
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1 1 1 1
Rach = _5K6%¢{Fabac¢ _EFbcaagb + EFacab(ﬁ - €<Fad5bc - deéac)ad¢ + DcFab},

K2 2 1 1
Rsasp = €7 {Z e’F . Fpe — ) 0,90, + 3 0.0 pS,p — 3 Dh8u¢}-

Note that
Daab¢ - Dbaa¢ = (_fabc + Ocqp — wcba)ac¢ =0,
(B17)

because f,,, = ®pqp — ®epq- Therefore, Rs,s, = Rsps, as it
should be.

Now it is easy to determine the Ricci tensors and the
Ricci scalar using the above results:

Rab = Rcacb + R5a5b

2 1 1
= e%qﬁ <<4)Rab _%6¢Fachc _88a¢ab¢ +8Dcac‘¢5ab> s

(B18)
Ris = Rpaps
= ge%¢(Fabab¢ + DyFyp). (B19)
R55 = Ra5a5

wWis 1
= e <KZ e¢FabFab - gDaaa¢> ’ (BZO)

Rapep € 10010 =HoH= (50

(B15)

(B16)

|
R = R;,6" 4 Rss

1 2 1 1
— e§¢ ((4)R —_ KzequabFab —_ 68a¢8a¢ + §Da8a¢> ’

(B21)

where “R,, = @R, and @R = “R,, are the Ricci
tensors and the Ricci scalar, respectively, determined by
the four-dimensional geometry (B7) and the Laplacian
operator is defined by

1
Ap=D,0,p =—0,(/99"0,¢). B22
Vi (V9 ) (B22)
APPENDIX C: REPRESENTATION OF RICCI
TENSORS

The Riemann curvature tensors in Eq. (3.24), under the
group SO(5), correspond to the tensor product

Rapep € 1010 =HoH (C1)

The Clebsch-Gordan decomposition of this tensor product
is given by

=Bﬂ)@<45=ﬁ3)@(5=@.

(€2)

The last two representations, 45 @ 5, are removed by the first Bianchi identity (3.26). In particular, the last one, 5,
corresponds to the five constraints (3.29). The Clebsch-Gordan decomposition (C2) can be further decomposed according
to the symmetry breaking pattern (3.10) or, more precisely, Eq. (3.44), as was shown in Sec. III. It is straightforward to
determine the decomposition of the Ricci tensors and Ricci scalar in Eqs. (B18) and (B21) using the result (3.50):

i B i . i o 1
Ruh = e%qs{(f(ﬂrJr)al] + f<]__>6])5ab + Zf('ﬁr_)nacrlic - 8 (aa¢ah¢ - A¢§ah)

2

= e TN+ 2 ) |
R =l {4<f’¢’++>5"f +f50) ~ é (0upOutp — 20¢) — K2 (FLV 0Ny fO1 pNiy } (C3)
The energy-momentum tensor in Eq. (3.16) takes the form [10]
Top = €/7OF o Fyo + 0,80,® = 3 G IV GF g+ (6@)2)
= 2030 [ O ]+ 0,00, — 36,(0.9)" (c4)
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