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We consider gravitational lensing under a weak-field approximation and in a strong deflection limit by a
Bronnikov-Kim wormhole with the same metric as the one of a wormhole which has been suggested in
Einstein-Dirac-Maxwell theory. The metric approaches into the metric of an extreme charged Reissner-
Nordstrom black hole in a black hole limit and it becomes the metric of a spatial Schwarzschild wormhole
in an ultrastatic limit. In both of the black hole limit and the ultrastatic limit, the coefficient of a divergent
term and the constant term of the deflection angle of a light in the strong deflection limit can be obtained
exactly without expanding parameters of the spacetime. Interestingly, in the both limits to the black hole
and the ultrastatic wormhole, we obtain exactly the same coefficient and constant term in the strong

deflection limit.
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I. INTRODUCTION

Gravitational lensing under a weak-field approximation
is a useful tool to find dark and massive objects [1,2].
Recently, the direct observations of gravitational waves
from compact objects have been reported by LIGO
Scientific and Virgo Collaborations [3] and the shadow
image of a supermassive black hole candidate at the center
of galaxy M87 has been reported by Event Horizon
Telescope Collaboration [4]. Gravitational lensing in a
strong gravitational field by compact objects also can
become an important tool to search them in future.
Gravitational lensing in a strong deflection limit [5] can
be used to obtain observables by a light ray reflected by a
photon sphere, which is a sphere formed by unstable
circular light orbits, around a compact object [5-24].
The strong deflection limit analysis in the Schwarzschild
spacetime was investigated by Bozza et al. [16] and its
extensions and alternatives were investigated by several
authors [5,6,20-41,41-46].

A wormhole is a hypothetical spacetime structure with
nontrivial topology in general relativity [47] and it can be a
black hole mimicker [48-50]. It is known that energy
conditions are violated at the throat of any asymptotically
flat, static, and spherically symmetric wormhole, at least if
general relativity without a cosmological constant is
assumed [51]. Many passable wormholes were suggested
after an Ellis-Bronnikov wormhole [52-54] which is
known as the earliest passable wormhole. In 2001,
Dadhich et al. considered wormhole metrics with a
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vanishing Ricci scalar [55] and then Bronnikov and Kim
also suggested wormhole metrics with a vanishing Ricci
scalar in a braneworld scenario [56,57]. Gravitational
lensing by a spatial Schwarzschild wormhole with the
vanishing Ricci scalar [55] in the strong deflection limit [5]
has been investigated in Ref. [6].

Recently, a wormhole filled with massless and neutral
fermions in Einstein-Dirac-Maxwell theory was obtained
numerically [58] and the existence of a thin shell at the
wormbhole throat was discussed in Refs. [59-62]. Its metric
corresponds with the Bronnikov-Kim wormhole as a
simple and analytical metric case [56,59,60]. Its shadow
size also was investigated by Bronnikov ef al. [63] and the
orbit of a star around the wormhole was investigated by
Jusufi et al. [64]. Moreover, Churilova et al. [65] discussed
the shadow or the apparent size of a photon sphere of an
asymmetric wormhole [62] in a small asymmetry case.

In this paper, we consider gravitational lensing under
the weak-field approximation and in the strong deflection
limit by the Bronnikov-Kim wormhole [56,57] with the
same metric as the one of the wormhole which was
suggested in Einstein-Dirac-Maxwell theory [58]. The
metric approaches into the metric of an extreme charged
Reissner-Nordstrom black hole in a black hole limit and it
approaches into the metric of the spatial Schwarzschild
wormhole [55] in an ultrastatic limit.

This paper is organized as follows. The deflection angle
of a ray in the Bronnikov-Kim wormhole spacetime is
obtained in Sec. II, a lens equation is introduced in Sec. III,
and observables under a weak-field approximation are
obtained in Sec. IV. We review a Schwarzschild spacetime
as a reference in Sec. V. The deflection angle and
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observables by the Bronnikov-Kim wormhole in the strong
deflection limit are investigated in Sec. VI and then we
discuss and conclude our results in Sec. VII. We investigate
an Arnowitt-Deser-Misner (ADM) mass in the Appendix.
In this paper, we use the units in which the light speed and
Newton’s constant are unity.

II. DEFLECTION ANGLE IN THE
BRONNIKOV-KIM WORMHOLE SPACETIME

The line element of a Bronnikov-Kim wormhole space-
time [56,57] is given by

ds> = —A(r)df* + B(r)dr* + r*(d9* + sin® 8d¢p?), (2.1)

where A(r) and B(r) are defined by

and

1 1

B(r) = 7y = ,
RE A (T = R

(2.3)

respectively, where M and Q are positive constants which
hold 0 < M < Q, and where r_. is defined by

Q2

(A4
ry = ﬁ W — Q2. (24)

There is a wormhole throat at » = r,. Note that M/2 <
r_ <M < r, as shown Fig. 1. In a black hole limit
Q — M, the metric approaches into the metric of the
extreme charged Reissner-Nordstrom black hole spacetime
and we obtain r,. = M = Q. There are time translational
and axial Killing vectors #0, = 0, and ¢*0, = 0, since
the spacetime has stationarity and axisymmetry, respec-
tively. If the norm of the time translational Killing vector is
a constant, the spacetime is called ultrastatic spacetime.
Notice that a relation M = 20Q°r, /(Q? + r%). As shown in
the Appendix, an ADM mass m is given by

QZ

If we consider an ultrastatic limit M — 0 under a fixed
ADM mass m, we obtain the metric of a spatial
Schwarzschild wormhole [6,55] in the following form:

m (2.3)

dr?

" m
1 r

ds? = —dr* +

+ r2(d9? +sin’8dg?),  (2.6)

which has a vanishing Ricci scalar while it has nonzero
components of Ricci tensors. We can assume & = z/2
without loss of generality.

From k*k, = 0, where k* = Xx# is a wave number vector
and the overdot denotes a differentiation with respect to an
affine parameter, the trajectory of a ray is given by

—A? 4+ Bi* + 1’y =0 (2.7)
and it can be expressed by i? + V(r)/E?* = 0, where V(r)
is an effective potential defined by

1 r?
=— (bt ——
Vi =gz < A)’

where b= L/E is the impact parameter of the ray and

= —g,, "k’ = At, and L = g, ¢*k* = r’¢ are the con-
served energy and angular momentum of the light ray,
respectively. We assume that L and b are positive unless we
focus on negative ones. We assume that the closest distance
of the light ray is at r = r. Note that Vo=V (rg) =0
holds. Here and hereinafter, any function with the subscript
0 denotes the function at the closest distance r = r.
Light rays can exist in a region for V(r) <0. For
1 < Q/M < 2//3, a ray with b = b,, =4M has V,, =
Vi, = 0 and V}, < 0 on the photon sphere at r = r,, = 2M
andaray withb = r1/(ry, —M) has V(r,) = V'(r,) =0
and V”(r,) >0 on the throat acting as an antiphoton
sphere, which is a sphere formed by stable circular light

(2.8)
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FIG. 1. The reduced radial coordinates of a photon sphere
rm/M, throat r, /M, and r_/M for given Q/M. A (red) solid line,
a (green) dashed curve, a (blue) dotted curve, and a (black) dash-

dotted curve denote r,/M for 1 < Q/M <2/+/3, r./M for
1<Q/M<2/V3,r_/Mforl < Q/M,and r,/M = r,/M for
2/V/3 < Q/M, respectively.
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FIG. 2. Effective potentials V with Q/M = 1.05. Solid (red),
dashed (green), dot-dashed (black) curves denote effective
potentials V with b/M = 1.01b,,/M = 4.04, b/M = b,/M =
4.00, and b/M = 12 /(r,. — M) = 4.72, respectively.

orbits, at r = r+.] Here and hereinafter, the prime denotes
the differentiation with respect to the radial coordinate r or
the closest distance r, and functions with the subscript m
denote the functions at r = r,,, or ry = ry,. The effective
potentials are shown in Fig. 2. For Q/M > 2/+/3, a ray
withb = b, =r2/(r, —M) has V,, =V, = 0and V), <
0 on the throat which works as the photon sphere at r =
r, =ry, as shown Fig. 3. For a marginal case
Q/M =2/\/3~1.1547, a ray with b = b, =4M has
Vo=V =Vl =0and V) = —4/M? < 0 on the throat
working as a marginally unstable photon sphere at
r=ry=r, =2M. A light ray falls into the throat at
r=r, for b < by, it rotates around the photon sphere
at r = ry, infinite times for b = b, and it is reflected by the
throat for b > b,,. In this paper, we concentrate on light
rays in the scattered case with b > b,, and gravitational
lensing in a usual lens configuration.
From Eq. (2.7), we obtain

Aol = %5 (2.9)
and the impact parameter of the light can be expressed by,
as a function of ry,

L 7o 70 r?
b = — = 0 3 = = 0 . 2.10
(ro) E Ay Ay ro-M (2.10)

"It is a concern that stable circular light orbits may cause
instability of ultracompact objects because of the slow decay of
linear waves [66—-68].
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FIG. 3. Effective potentials V with Q/M = 1.2. Solid (red) and

dashed (green) curves denote effective potentials V with b/M =
1.01b,,/M = 4.09 and b/m = b,,/M = 4.05, respectively.

From the equation of the trajectory of the ray (2.7), the
deflection angle of the ray is given by

a=1(ry) —x, (2.11)
where I(rg) is defined as
r bdr
I(rg) =2 —_—. 2.12
( 0) /oo I’z\/T(I") ( )

III. LENS EQUATION

We assume that an observer O and a source S are on the
same side of a throat. A light ray with an impact parameter
b is emitted by S with a source angle ¢, it is reflected with a
deflection angle @ by a wormhole as a lens L, and it is
observed by O as an image I with an image angle 6. We
assume small angles a < 1, § =b/D, < 1, and ¢ < 1,
where D, is a distance between O and L and @ is an
effective deflection angle of the light ray defined by

a=a (mod 2rx). (3.1)

We introduce the winding number N of the light, and we

can express the deflection angle as

a=a+2zN. (3.2)

A small-angle lens equation [69] is obtained from the lens
configuration in Fig. 4 as
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FIG. 4. Lens configuration. A source S with a source angle ¢
emits a light ray with an impact parameter b. It is reflected by a
lens L with an effective deflection angle & on a lens plane. An
observer O sees it as an image [ with an image angle 0. Note that
S and O are the same side of a wormhole throat. The distances
between O and S, between L and S, and between O and L are
denoted by D, D), and D, respectively.

Dlsa:Dos(e_(b)’ (33)

where D\ and D, = D, + D are the distances between L
and S and between O and S, respectively.

IV. GRAVITATIONAL LENSING UNDER
A WEAK-FIELD APPROXIMATION

Under a weak-field approximation r,, < r( or b,, < b,
since M < r and Q*/M < r must be satisfied, the line
element (2.1) can be expanded as

M 2yM
ds2~—<1 —>dt2+ <1 +7)dr2
r r

+ r2(d9? + sin*8d¢p?)

2M 207
= —(1 —>er+ (1 +Q>dr2
r Mr

+ r2(d9? + sin*8dgp?), (4.1)
where y is given by y = Q?/M?. From Eq. (8.5.8) in
Ref. [70] and ry ~ b, the deflection angle under the weak-
field approximation is given by

Note that the winding number N vanishes under the weak-
field approximation.

From Egs. (3.2) and (4.2), N =0, and 0 = b/D,,, the
lens equation (3.3) can be written as

0> — PO = 62, (4.3)
where g is defined as
2(M —+ I’Yl)D]g
= 4.4
Oro DD, (4.4)

The positive and negative solutions of the lens equa-
tion (4.3) are obtained as 6 = 6y = 6, (¢), where

1
O =3 <¢i \/ @ +491250)-

Here and hereinafter, the upper (lower) sign is chosen
for the positive (negative) image angle with a positive
(negative) impact parameter. In a perfect-aligned case with
¢ =0, a ring-shaped image, which is called an Einstein
ring, can be observed. The radius of the Einstein ring is
given by

(4.5)

0 = 0,(0) = —6p_(0) = Oxy. (4.6)
The magnifications for the images are given by

4o QOi dGOi
L =—
¢ do

1 ¢ Vo + 49%50)
o (2 + N £ (4.7)

and its total magnification becomes

Hotot = Mo+ | + |Ho-|

:1< ¢ +\/¢2+491230> (48)
2\\/¢? +40%, 9| o

V. GRAVITATIONAL LENSING IN
A STRONG DEFLECTION LIMIT

A. Deflection angle in a strong deflection limit

We investigate the deflection angle of a ray in a strong
deflection limit b — b, in the following form:
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b _
=—-al ——1 b
a alog <bm ) +
b b
ol (—-1]1 —=1], 5.1
i ((bm )°g<bm >) 1)
where @ and b are obtained from the line element.”

1. For1<Q/M <2/V3
In the case of 1 < Q/M < 2/+/3, the photon sphere
of a light ray with b =5b, =4M is at r = r, = 2M.
We introduce a variable [38]

i=1-20 (5.2)
and we rewrite I(ry) as
I
I(rg) = / R(z,1r9)F(z, ry)dz, (5.3)
0
where R(z, ry) is given by
2\/Mr
R(z,r0) = — - (5.4)
VMg + Q2 (1= 2] +20%r0(c - 1)
and F(z, ry) is defined by
Fz.ro) = —— (55
2,1) = ———=. .
Vf(z.ro)
where f(z,rg) is given by
g 2
Jry) = —(1—-1272)~. 5.6
JEr0) = e Mz -~ )
We expand f(z,ry) around z = 0 and obtain
flz, 1) = ei(ro)z+ ea(ro)2 + 0(2%), (5.7
where ¢ (ry) and ¢,(ry) are given by
22M —r
c1(ro) EH (5.8)
and
2M? + 2Mry — 1}
e2(r) = T (5.9)

(M —rp)*

*We should read the order of a following term O(b — b,,) in
Ref. [5] as O((b/by —1)log(b/by, — 1)) as discussed in
Refs. [33,35,38].

respectively. Here, we have used Eq. (2.10). From ¢, =
ci(rm) =0 and ¢y = ¢5(ry) =2, F(z,rg) diverges and
the leading order of the divergence is z~! in the strong
deflection limit ry — ry,.

We expand ¢(rq) and b(ry) around ry = ry, as

ci(rg) = ¢y, (ro = rm) + O((rg — rm)?), (5.10)
where ¢, =2/M, and
1
b(rg) = by +5bi(ro = rm)* + O((ro = rm)?), ~ (5.11)

2

where b}l = 2/M since we use them later.
We separate [ into a divergent part I, and a regular part
Ir. The divergent part is defined by

1
Ip = / R(0, rm)Fp(z, ro)dz, (5.12)
0
where R(0, r,) is given by
am
R(O,ry) = —— (5.13)
4M? - 307
and Fp(z, ry) is defined by
Fp(z o) ! (5.14)
plz,rg) = . .
Vei(ro)z + ea(rg)2?
We can integrate I, as [5,38]
I, = 2R(0, rm)log Vea(ro) +/ei(ry) + ea(ry) . (5.15)
c2(ro) ci(ro)

By using Egs. (5.10)—(5.15), I in a strong deflection limit
rg = rm Or b — b, is obtained as

b
ID:—é10g<b——l> + alog4, (5.16)
where a is given by
2M
G VM (5.17)
VAM? =307
The regular part I is given by
I
Iy = / G(z. ro)d=. (5.18)
0
where G(z, 1) is defined as
G(z.r9) = R(z,r0)F(z.r9) = R(0, 1) Fp(2,19).  (5.19)
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FIG. 5. Solid (red) and dashed (green) curves denote the

parameters a and b in the deflection angle, respectively.
We expand G(z, ry) in the power of ry — r, as

N - [10/G
() =S = (ro—ro)V [ S22 5.20
) = g [[5F @ (s20

ro="rm

and we consider the first term, in which we are interested,

1
Ip = / G(z,ry)dz. (5.21)
0
We can obtain b as
b=alog4+ Iy —m. (5.22)

The parameters @ and b are shown in Fig. 5. In the extreme
charged Reissner-Nordstr. In the extreme charged Reissner-
Nordstrom black hole limit Q — M, the parameters are
obtained analytically as a=+2~141 and b=
V210g[32(3 —=2v2)] =2 ~—0.733 as obtained in
Refs. [37,38].

2. For Q/M >2//3
In the case of Q/M > 2/+/3, there is a photon sphere
with b = b, = r2/(r, — M) on the throat at r = ry,, = .
Since the factor R(0, r,,) diverges at z = 0, we rewrite [ as

1
I(rg) = / S(z.ro)H(z, ro)dz, (5.23)
0
where S(z,rq) and H(z, ry) are defined by
S(z, 1) =2V Mro[rg + M(z = 1)] (5.24)

and

1
H(z,ry) = =,

ey (5.25)

respectively, where h(z, ry) is given by

h(z,r0) = {(M = r0)* = (2= 1)*[M(z = 1) + ro]*}
x {M[Q*(z = 1)* + rg] +2Q%ro(z = 1)}
(5.26)

Here, we have used b(ry) = r3/(ro—M). We expand
h(z, ry) around z = 0 as

h(z.ry) = €1(ro)z + C2(rg)z* + 0(2%),  (5.27)

where ¢, (rg) and ¢,(ry) are given by

¢, (rg) =2(2M? —=3Mry + r(z))[M(Q2 + r(z)) —20%r)

(5.28)
and
&y (rg) = —14M>Q? + 6r3(M> + Q?) — Mr}

— Mrj(6M? +290%) + 38M*Q%ry,  (5.29)

respectively. Since we get ¢, = ¢,(r,) = 0 and
. 40%(Q* — M2
X 2M* = TM?Q? + (40% — 5M?)
x 0V 0? — M? +404, (5.30)

H(z, ry) diverges in order of 771

and b around ry = ry, as

at z = 0. We expand ¢,

¢1(ro) = &hm(ro = rm) + O((ro = rm)?), (5.31)
where ¢/, is given by
L 2MP -0V QP - M +3MPQ - 207
Cll‘l‘l - M2
X 4Q(M2 - QZ), (5.32)
and
b(ro) = by + bin(ro = rm) + O((rg = rm)?), ~ (5.33)
where b}, is given by
2 _ 2 _ a2
p = & Z20V0 =M (5.34)

M2_Q2

respectively, to use them later.
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We separate [ into a divergent part /,; and a regular part
I,. The divergent part is defined by

1
I, = / S(0, 1) Hy (2, ro)dz, (5.35)
0
where S(0, r,,) is obtained as
20V 0> - M*(\/Q* - M + Q)
S0, ry) = e (5.36)
and H4(z,rg) is defined by
Hy(z.ro) ! (5.37)
d\Z: 7o) = — = = . .
Ve(ro)z + e(ro)2
The divergent term /,; can be integrated as [5,38]
I, = 28(0, r) o Ve(ro) +/@i(ry) + &(ro) . (5.38)

V¢ (ro)

From Egs. (5.31)-(5.38), I, in a strong deflection limit

ro — rm or b — b, is given by

VO -M?-40
/Q2 _M2 ’

¢1(ro)

b 8
1, =—alog (b_ 1) +alog

m

(5.39)

where a is obtained as

0+ V@)
\/2M4 ~TM?Q* +40* + (4Q* - 5M*) 0/ 0> - M*

C_l:

(5.40)
We define the regular part /, as
1
I, = / 9(z, ro)dz, (5.41)
0
where ¢(z, ry) is given by
9(z.ro) = 8(z.ro)H(z. ro) = $(0. r) Ha(z. r0)  (5:42)

and it can be expanded in the power of rq — r, as

=1 S [1dg
Ir(ro):ZT,(ro—rm)jA orl

The first term in which we are interested is given by

dz.  (5.43)

r0="m

I, = /)] 9(z, rm)dz. (5.44)

Thus, we can express b as

V0T —M? - 40

Notice that @ and b are shown in Fig. 5. The ultrastatic limit
M — 0 under a fixed ADM mass m, the deflection angle of

the ray has @ = v/2 ~ 1.41 and b = 2+/21log [4(2 — V2)] -
7 =+21og[32(3 - 2v2)] — 7 ~—0.733 as obtained by
Tsukamoto and Harada [6]. We notice that the parameters
@ and b are coincident with the ones in the case of Q — M.

- 8
b = alog

+1,—x. (545

B. Observables in the strong deflection limit

We introduce an angle 6%, defined by

a(6)) = 27N (5.46)
and we expand the deflection angle a(6) around 6 = 6%, to
obtain

da

a(0) = a(&) + 20

O-)+0((0-68)%). (547)

o=t

In the strong deflection limit » — b, + 0, the deflection
angle is expressed by

a(6) = —alog <9ﬁ— 1) +b

co((Z (L))

where 0, = b,,/D, is the image angle of the photon
sphere, and 6%, is obtained as, from Egs. (5.46) and (5.48),

b=2aN

R =(1+e7 )0 (5.49)
and we obtain, from Eq. (5.48),
d _
i I (5.50)

dOlog O — O

The effective deflection angle for the positive solution 8 =
0y of the lens equation with a positive winding number N is
given by, from Eqs. (3.2), (5.46), (5.47), (5.49), and (5.50),

a

—— o (O} — O).

a(Oy) = P
we a

(5.51)

By substituting the effective deflection angle (5.51) into the
lens equation (3.3), we obtain the positive solution of the
lens equation or the image angle for the positive winding
number N as
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b=2zN

9 e a os(e(lil_qs)

0 ~0% - .
V() s

(5.52)

the radius of an Einstein ring with the positive winding
number N as

—27N

I
a D0§

O

and the difference between the image angle with N = 1 and
the innermost image angle § as

S=0,— 0 ~ 00 — 00 =0, (5.54)
The magnification of the image with 6y(¢) for each
positive winding number N is given by

27N b=22N

Dys(1 + &)
¢aDls ’

Oy doy 0%D
¢ dop

iy = (5.55)

the sum of the magnifications from N = 1 to oo is given by

© 92 ( + Etx + 611)611
ZﬂN
N= paDi (% — 1)

: (5.56)

and the ratio of the magnification of the image with N = 1
to the others T is given by

p(€F=1)(e¥ + e

== — (5.57)
ZN:Z HN e + er + e
where Y S, puy is
°° R D. (% + 6% + eb) "
Z'L{NN 0 Oq(e +ea 4+ e )e . (558)

N=2 paDy(e% - 1)

VI. SCHWARZSCHILD SPACETIME

We consider a Schwarzschild spacetime to compare
observables with ones in the Bronnikov-Kim spacetime.
The line element in the Schwarzschild spacetime is
given by

2
ds2——<1 2ms>dﬂ d
r

- s T 2(d9? + sin>9dg?),

(6.1)
where myg is its ADM mass.

Under the weak-field approximation, the line element
can be expressed by

2 2
ds? = —(1 —ﬂ>dﬂ+ (1 +ﬂ)dr2
r r

+ r2(d9? + sin” 9dg?). (6.2)
If we read the parameters Q, M, and m in the Bronnikov-
Kim spacetime as mg, we obtain the deflection angle and
the observables under the weak-field approximation in the
Schwarzschild spacetime. The deflection angle of a ray
under the weak-field approximation is given by

4ms
~— 6.3
an (63)
and the radius of the Einstein ring is given by
4mgDyg
Oxo = . 6.4
=0 DosDol ( )

In the strong deflection limit b — b, = 3\/§ms, the
parameters @ and b in the deflection angle are obtained as
a=1 and b =10g[216(7 —4v/3)] — 7 ~ —0.40, respec-
tively [5,16].

VII. DISCUSSION AND CONCLUSION

We have investigated the gravitational lensing by the
Bronnikov-Kim wormhole under the weak-field approxi-
mation and in the strong deflection limit. The Bronnikov-
Kim wormhole metric is the same as the one of a wormhole
suggested in Einstein-Dirac-Maxwell theory3 in a simple
case [58,59]. The metric becomes the one of an extreme
charged Reissner-Nordstrom black hole in a limit Q - M
and the one of a spatial Schwarzschild wormhole [55] in an
ultrastatic limit M — O under a fixed ADM mass m. The
parameter b of the Bronnikov-Kim wormhole has been
calculated numerically partly while b of the extreme
charged Reissner-Nordstrom black hole [37,38] and
the spatial Schwarzschild wormhole [6] are obtained
analytically. Interestingly, in both cases of the extreme
charged Reissner-Nordstrom black hole and the spatial
Schwarzschild wormhole, we obtain exactly the same
parameters a = V2 and b = \/ilog [32(3 - 2\/5)] — .

Recently, in Ref. [64], Jusufi et al. have discussed
shadow images under an assumption that a supermassive
compact object at the center of our Galaxy is the
Bronnikov-Kim wormhole. From observational data on
the orbit of S2 star [71], they have concluded that the
parameters of the metric are Q~8x 10° My and
M ~4x10% M. Note that a Schwarzschild black hole
with an ADM mass mg = 4 x 10® M, which matches the
observation of orbit of S2 star, can form an Einstein ring
with a diameter 20y, ~ 2.86 arcsecond and a photon sphere

3A thin shell at the throat is discussed in Refs. [59-62].
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TABLE I. Parameters @ and b, the diameters of the photon sphere 26, and the outermost image 20, the difference of their radii
§ = Ok — 0, the magnification of the pair of the outermost images yo(¢) ~ 2|y, and the ratio of the magnification of the outermost
image to the others T = y; /> _%_, #y in the strong deflection limit for given Q/M are shown. The diameter of an Einstein ring 26,
under the weak-field approximation is also shown. As a reference, the ones of the Schwarzschild spacetime also are considered. We set
the parameters M = mg = 4 x 10° M, distances Dy, = 16 and D, = D), = 8 kpc, and the source angle ¢ = 1 arcsecond.

o/M 1 1.1 1.2 1.5 1.8 2 2.2 25 3 Schwarzschild
a 1.41 233 3.84 1.89 1.66 1.60 1.56 1.52 1.48 1.00

b ~0.733  -3312 —6.150 —0.820 —0.698 —0.689 —0.690 —0.696 —0.705 —0.400
20, (uas) 3971 3971 4015 5230  70.84 8556 1020 1297  184.1 51.58
20g, (uas) 4000 4035 4172 5351 7191 86.64  103.1 1310 1857 51.65

§ (uas) 0.14 0.32 0.76 0.60 0.53 0.54 0.57 0.61 0.82 0.03
fio(#) x 107 3.8 5.4 8.3 17 22 29 37 55 100 1.6

P 85 14 43 28 43 51 56 63 69 535
20g, (arcsecond)  2.86 3.01 3.16 3.65 4.17 452 4.89 5.45 6.40 2.86

with a diameter 26, ~ 51.58 pas if we set distances
D, = 16 and D, = Dy, = 8 kpc. On the other hand, the
Bronnikov-Kim wormhole with the parameters Q = 8 x
105 Mg and M = 4 x 10% M, has 20y, ~ 4.52 arcsecond
and 26, ~ 85.56 puas as shown in Table 1. Therefore, we
would distinguish the Schwarzschild black hole with ADM

parameters mg = 6.5 x 10° Mg and D, = 16.8 Mpc esti-
mated in Ref. [4]. We set the parameters M and Q of the
Bronnikov-Kim wormhole so that 8, of the wormhole is the
same value as 6, of the Schwarzschild black hole by using
4M = 3\/3mg forQ/M <2/\/3~1.15and r% /(r,. — M) =
3v/3mg for Q/M > 2/+/3.

mass mg = 4 x 105 M, from the Bronnikov-Kim worm-
hole with the parameters Q ~ 8 x 10° My and M ~ 4 x
10% M, at the center of our Galaxy if lensed images under
the weak-field approximation and D, are observed or if
lensed images in the strong deflection limit are observed.

The qualitative features of the gravitational lensing by the
Bronnikov-Kim wormbhole in the strong deflection limit are
the same as the ones in the Schwarzschild spacetime because
both cases follow general features of lensing by a photon
sphere. Distinguishing the Bronnikov-Kim wormhole from
the Schwarzschild black hole with only the images with
winding numbers N = 1 and N > 2 is a challenging future
work since the difference of their observables in the strong
deflection limitis small. The ratio of the magnifications of the
image with N = 1 to the others 7and §/6,, ~ ¢(’"27)/@ can be
used for careful verifications of the spacetimes in the future
since they are not affected by the details of the lens
configuration. Table II shows the observables of a super-
massive object at the center of galaxy M87 with the

TABLE I

In this paper, we do not treat the gravitational lensing by
the marginally unstable photon sphere on the throat with

Q/M = 2//3 since the deflection angle would diverge
nonlogarithmically as discussed in Ref. [22].

APPENDIX: ARNOWITT-DESER-MISNER MASS

We calculate an ADM mass [72] of the Bronnikov-Kim
wormhole. Under the weak-field approximation, the line
element can be expressed as

2M 202
dsZN—(l ——>dtz—|— (1 —|—£>er
r Mr
+ r2(d9? + sin*8dyp?)
= —(1 _ M >dt2
r(r.)

2 2
# (1430 )+ v +sivoag?). ()
r*

In the case of the parameters mg = 6.5 x 10° M, distances D, = 33.6 and D,; = D;; = 16.8 Mpc, and the source angle

¢ = 1 arcsecond is shown. The parameters M and Q are set so that 8, of the Bronnikov-Kim wormhole is the same value as 6, of the

Schwarzschild black hole.

o/M 1 11 12 15 1.8 2 22 25 3 Schwarzschild
a 1.41 233 3.84 1.89 1.66 1.60 1.56 1.52 1.48 1.00

b ~0.733 -3312 —6.150 —0820 —0.698 —0.689 —0.690 —0.696 —0.705 ~0.400
20, (uas) 3991 3991 3991 3991 3991 3991 3991 3991 3991 39.91
205, (uas) 40.19 4056 4147 4084 4051 4042 4036 4031 4027 39.96

§ (uas) 0.14 032 078 046 030 025 0.23 020 0.8 0.025
fioe () x 1077 3.9 5.4 8.2 9.7 7.1 6.2 5.7 5.2 47 0.97

P 85 14 43 28 43 51 56 63 69 535

20y, (arcsecond)  2.87 3.02 3.15 3.19 3.13 3.09 3.06 3.02 2.98 2.52
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We consider a hypersurface X, which is the surface of
constant ¢. A unit normal to the hypersurface X, is given by
n, = —(1=M/r)0, and an induced metric on the hyper-
surface is given by

2 2
hopdy®dy® = <1 +MQ

> [dr? + r2(d9? + sin*9dg?)).

*

(A2)

Its boundary S, is a two-sphere r, = R, and its unit normal

is given by
0
=|1+—)0
T ( ) o

and an induced metric on the boundary S, is given by

(A3)

2 2
UABdQAdQB = <1 +MQR

)Ri(d&z +sin?8dg?).  (A4)

*

The ADM mass m is obtained as

2
(k= ko)V/od*0 = %

1 .
m=—— lim
ﬂS[—N)o S[

(AS)

where the extrinsic curvature of S, embedded in %, is

given by
2 20?
k=r{ =—11- Q ,
fla TR, MR,

the extrinsic curvature of S, embedded in a flat space is
given by

(A6)

2 2(1 0?

kp=—— = (1=
202\1/2
(1+29)'?R, R MR,

) @

and the leading term of o is given by ¢ = R?sin? 9.
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