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Detection of many compact binary coalescences (CBCs) is one of the primary goals of the present and
future ground-based gravitational-wave (GW) detectors. While increasing the detectors’ sensitivities will
be crucial in achieving this, efficient data analysis strategies can play a vital role. With given computational
power in hand, efficient data analysis techniques can expand the size and dimensionality of the parameter
space to search for a variety of GW sources. Matched filtering-based analyses that depend on modeled
signals to produce adequate signal-to-noise ratios for signal detection may miss them if the parameter space
is too restrained. Specifically, the CBC search is currently limited to nonprecessing binaries only, where the
spins of the components are either aligned or antialigned to the orbital angular momentum. A hierarchical
search for CBCs is thus well motivated. The first stage of this search is performed by matched filtering
coarsely sampled data with a coarse template bank to look for candidate events. These candidates are then
followed up for a finer search around the vicinity of an event’s parameter space found in the first stage.
Performing such a search leads to enormous savings in the computational cost without much loss in
sensitivity. Here we report the first successful implementation of the hierarchical search as a PyCBC-based
production pipeline to perform a complete analysis of Laser Interferometer Gravitational Wave
Observatory (LIGO) observing runs. With this, we analyze Advanced LIGO’s first and second observing
run data. We recover all the events detected by the PyCBC (flat) search in the first GW catalog, GWTC-1,
published by the LIGO-Virgo collaboration, with nearly the same significance using a scaled background.
In the analysis, we get an impressive factor of 20 reduction in computation compared to the flat search.
With a standard injection study, we show that the sensitivity of the hierarchical search remains comparable
to the flat search within the error bars.
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I. INTRODUCTION

Gravitational-wave (GW) astronomy began with the detec-
tion of GW signal from a binary black hole (BBH) merger,
GW150914 [1], using the Advanced Laser Interferometer
Gravitational Wave Observatory (LIGO) [2,3] observatories.
With the latest advancements in the sensitivities of detectors

and search techniques like cWB [4], Gstreamer wrappings of
the LIGOAlgorithmLibrary (GstLAL) [5], PyCBC [6], LIGO-
Virgo (LV) collaboration detectedGWsignals from tenBBHs
andone binary neutron star (BNS) coalescence in the first two,
O1 and O2, observing runs [7]. During this period, several
independent searches [8–10] over publicly available data
detected a few additional BBH events. A paradigm shift in the
number of detections occurred with the improvement in the
sensitivities of Advanced LIGO [11] and Advanced Virgo
[12] detectors in the third observing run. This has led to
the detections of many GW events [13–15] including
GW190425 [16], the second BNS event, GW190412 [17],
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andGW190814 [18], the first twohighly asymmetric compact
binary coalescences (CBCs) that emit a significant amount of
gravitational radiation beyond the quadrupole moment, and
GW190521 [19], the first binary merger to form an inter-
mediate-mass black hole.
Matched filtering [20–24], a primary and most sensitive

algorithm, is used to detect signals that can be well modeled.
Since theGW signals frommerging binaries in circular orbits
can be modeled using their intrinsic1 and extrinsic2 param-
eters, the matched-filtering method is employed for their
detection. The method involves correlating an interferome-
ter’s output, time-series data, with the modeled waveforms
(templates) for each detector in the network. If a GW signal is
present in the detector’s output, the correlation results in a
peak (trigger) in the signal-to-noise ratio (SNR) correspond-
ing to the best-matching template. Since the prior knowledge
of the source parameters, like its component masses, spins,
and location in the sky, remains unknown to the observers, the
search is required to be performedover awide rangeof several
source parameters using a “bank of templates.”The templates
in the bank are closely placed to ensure that the search does
not miss any signal. Since the data contain non-Gaussian
noise, a coincidence search over the time of arrival, phase, and
other source parameters is performed between different
detectors to reduce the rate of false alarms. The coincident
candidates obtained are then assigned significance based on
the noise background.
The above procedure for detecting GW signals from

CBCs is followed by the search pipelines like GstLAL
[5,25,26], MBTA [27,28], PyCBC [6,8,9,29], and SPIIR
[30]. These pipelines perform a one-step search3 for the
nonprecessing coalescing binaries in quasicircular orbits.
One of the challenges that template-based search pipe-

lines face is the high computational cost of matched
filtering, typically a year’s worth of data over ∼Oð105Þ
templates. Since this process, especially in the PyCBC (or
flat) search, involves fast Fourier transform (FFT) of the
product of uniformly sampled time-series data and a
template, the number of floating-point operations scales
as N log2 N, where N is the number of data points. These
operations repeat over ∼Oð105Þ templates [31], even in the
restricted parameter space of nonprecessing binaries with
quasicircular orbits, which amounts to sizable computa-
tional cost. The cost further increases when a search is
envisaged for precessing binaries where the orbital plane
precesses due to the misalignment of component spins with
the orbital angular momentum. In such cases, the number of
templates and the matched-filtering operations increases at

least tenfold [32], thus making the search computationally
expensive to pursue with the current capabilities.
Furthermore, the search for primordial black holes in the
subsolar region requires templates ∼Oð105–106Þ [33,34],
which makes the search more expensive. To reduce the
search’s cost, matched filtering over the data is performed
above a frequency of 45 Hz [33,34] while compromising
with the overall reduction of ∼24% in the sensitive volume.
While another [35] search still uses a lower frequency of
20 Hz with waveforms having low eccentricities, it assumes
very low nonprecessing spins to make searches computa-
tionally manageable. These limitations can be reduced if
faster matched-filtering search algorithms are developed.
With the advancements in current detectors and upcom-

ing new detectors, e.g., KAGRA [36] and LIGO-India [37],
the CBC detection rate is bound to increase, and finer
details of the detected sources would be sought to unravel
their exact dynamics, formation, and evolution scenarios.
However, this would significantly increase the volume of the
search parameter space. The increment in volume would
happen in two ways: first, the number of parameters
(dimension of the parameter space) of different CBC sources
would increase, and secondly, their ranges may increase.
Nevertheless, a comprehensivematched-filter based search is
important because one would like to capture the nontrivial
dynamics of interesting astrophysical sources. Therefore, to
facilitate this quest, we assert that a matched-filter based
search pipeline needs speeding up by orders of magnitude.
One way to speed up the search is by performing matched

filtering hierarchically using multiple banks of varying
densities. The idea of performing matched filtering in
hierarchical steps was formally introduced in Mohanty and
Dhurandhar [38], where hierarchy was performed over the
chirp mass of binaries using Newtonian waveforms. This
work was later extended to the post-Newtonian waveforms
[39], where hierarchy was performed over the component
masses of a binary system. A further improvement was
realized by reducing the sampling rate in the first stage of
the hierarchy. In the recentwork of Gadre et al. [40] hierarchy
was performed over all the three intrinsic parameters,
including the effective spin of the binary. This algorithm
had used two-detector coincidence analysis and had provided
an order ofmagnitude speed-up compared to the flat analysis.
In this paper, we revisit the hierarchical search formu-

lated in Gadre et al. [40], and for the first time, implement it
as a working PyCBC-based pipeline to analyze the data from
an entire LIGO observing run. We describe an efficient
two-stage hierarchical search pipeline to search for GW
signals from CBCs in the two detectors. This pipeline
improves the hierarchical search sensitivity by incorporat-
ing better detection statistics for the single-detector and
coincident triggers, as used by the flat analysis in Abbott
et al. [13]. For this work, we construct two template
banks—coarse and neighborhood(nbhd) bank, to target
GW signals from nonprecessing CBC sources that have

1Component masses (m1; m2) and individual spins (s⃗1; s⃗2)
vectors of the coalescing binary.

2Sky location (ζ;ϕ), luminosity distance (dL), orbital inclina-
tion (ι), polarization angle (ψ), and time and phase of coalescence
(tc;ϕc) of the coalescing binary with respect to the detector.

3Search involving match-filtering data, sampled at a fixed rate
using a bank of templates.
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quasicircular orbits. Using the former bank in the first stage
and a dynamical subset of the latter bank in the second
stage of the hierarchical search, we test the potency of the
pipeline by applying it to the data from the first two
observing runs of Advanced LIGO. Our pipeline recovers
all the GW events observed by the flat search from the first
gravitational wave catalog (GWTC-1) [7].
In our work, we assign the significance to the detected

events using a scaled background [40], constructed by
scaling the background obtained in the first stage by time
sliding the filtered output across detectors using a coarse
bank. To justify the accuracy of this background, we
perform simulations that involve the injection of the GW
signals into the data and compare their recoveries with the
hierarchical and flat search separately. Furthermore, we
compare the sensitivities of the two searches through
“volume-time” (VT) ratio curves. Lastly, we conclude
our findings from the injection study by discussing the
two searches’ matched-filter computational costs.
The paper is organized as follows:
(i) In Sec. II we state the prerequisites and describe the

search methodology for the hierarchical search. The
section segregates into subparts. In Sec. II A, we
describe the generation of template banks. Section II
B elaborates on the matched-filtering process and
selection criteria for the generated triggers in two
stages. The strategy to collect coincident triggers is
described in Sec. II C. The final step in the pipeline
is to assign significance to the coincident candidates.
We describe this process in Sec. II D.

(ii) In Sec. III, we implement the hierarchical search
pipeline over the first two observing runs of Ad-
vanced LIGO and present our findings.

(iii) In Sec. IV, we compare the sensitivities of the
hierarchical search with flat search. We also discuss
the computational advantages of the former search
with the latter.

(iv) In Sec. V, we summarize our findings and point out
the directions of future research.

II. PREREQUISITES AND SEARCH
METHODOLOGY

The idea of the hierarchical search is straightforward; the
flat search algorithm is divided into two stages, stage 1 and
stage 2, such that the number of matched-filter operations
reduces successively. Stage 1 search ensures matched filter-
ing of the data sampled at the lower sampling rate (512 Hz)
using a sparsely sampled bank called the coarse bank. Having
fewer templates in a coarse bank significantly reduces the
computational cost of matched filtering. Further reduction in
the computation is achieved by sampling data at a lower rate
than the value used in the flat search. The coarse bank can
reduce the SNRs for a good fraction of events because of the
sparsely placed templates. To compensate for the loss in
SNRs, we identify triggers in each detector above coarse

thresholds, set at lower values than those used in the flat
search.We then perform a coincidence test on these identified
triggers, using optimal detection statistics and obtain the zero-
lag (or foreground) candidates. These foreground candidates
are then followed up in stage 2 to ascertain whether they are
signals or false alarms.
In stage 2, we again perform matched filtering over the

data segments containing followed-up foreground candi-
dates from the stage-1 search. These data segments are
sampled at a flat search sampling rate (2048 Hz) and
filtered using a dynamic union of nbhds of mismatch
extending up to 0.75 around the followed-up stage-1 trigger
templates. We refer to this union of nbhds as the stage-2
bank from now on. The triggers generated for each detector
in this stage are identified above fine thresholds, equal to
the thresholds set for SNRs in the flat search. These triggers

FIG. 1. A flowchart depicting the working of a two-stage
hierarchical search pipeline. The choice of color describes the
stage: yellow for stage 1 and blue for stage 2. The first step
generates the harmonic-mean power spectral density (PSD) using
the strain data from the two detectors. The generated PSD is used
to create flat (in dotted box) and coarse banks. Using these two
banks, a nbhd bank is thus constructed. Stage-1 search begins
with matched filtering of the strain data from the two detectors
using a coarse bank. The generated triggers are then identified
above SNRs and reweighted SNRs of 3.5. Next, a coincidence test
is made to collect the foreground candidates (in diamond box),
which are then followed up in stage 2 for a finer search. In stage 2,
a search over the segments containing these followed-up candi-
dates is performed using a subset of nbhd bank, stage-2 bank. The
triggers generated are then identified above SNR and reweighted
SNR of 4. At last, the selected triggers are then subjected to a
coincidence test to obtain a final list of foreground candidates.
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are then subjected to a coincidence test before generating
the final list of foreground candidates.
Our two-stage hierarchical search pipeline is described

through the flowchart in Fig. 1.

A. Template banks

One of the most crucial steps in a template-based search
is to adequately grid up the parameter space. A pragmatic
approach suggests densely populating the search space to
minimize the loss in SNR. However, such dense placement
of templates makes the search computationally expensive
and limits the volume and dimensionality of the parameter
space that can be covered, given a fixed amount of
computation power. Generally, the templates are placed
such that the “match” (M) does not fall below a certain
minimum value called the minimal match (MM). For
instance, if MM is chosen as 0.97, it means that the
expected SNR for a signal does not fall more than 3%
(1 −MM ¼ 0.03), corresponding to a loss of ∼10%
(≈1 −MM3) in the astrophysical events.
The match between two normalized templates is their

scalar product, maximized over the extrinsic parameters,
namely, the time tc and phase ϕc at coalescence. If

hðtc;ϕc; θ⃗Þ and hðt0c;ϕ0
c; θ⃗0Þ are normalized templates

defined by the intrinsic parameters θ⃗ and θ⃗0, where

t0c ¼ ðtc þ ΔtcÞ;ϕ0
c ¼ ðϕc þ ΔϕcÞ; θ⃗0 ¼ ðθ⃗ þ Δθ⃗Þ for θ⃗ ¼

fm1; m2; s1z; s2zg, then the match is

Mðθ⃗;Δθ⃗Þ ¼ max
Δtc;Δϕc

ðhðtc;ϕc; θ⃗Þ; hðt0c;ϕ0
c; θ⃗0ÞÞ; ð1Þ

where the scalar product of arbitrary data trains xðtÞ and yðtÞ
is defined as

ðx; yÞ ≔ 4R
�Z

fhigh

flow

x̃ðfÞỹ�ðfÞ
SnðfÞ

df

�
: ð2Þ

Note that the match does not depend (or weakly depends) on
the absolute values of the extrinsic parameters tc and ϕc, and
hence they have been dropped as arguments of M.
In Eq. (2), R denotes the real part of a complex quantity

evaluated under the sensitive frequency band, i.e., flow to
fhigh of the detector and weighted by the detector’s one-
sided noise PSD SnðfÞ defined by

hñðfÞñðf0Þi ¼ 1

2
SnðfÞδðf − f0Þ: ð3Þ

The angular brackets denote the ensemble average of the
noise (nðfÞ) realizations. The tilde in Eqs. (2) and (3)
represents Fourier transform of the quantity in question,
e.g., x̃ðfÞ is the Fourier transform of xðtÞ and is given by

x̃ðfÞ ¼
Z

∞

−∞
xðtÞe−2πiftdt: ð4Þ

Assuming a slowly varying metric gmnðθ⃗Þ around the
targeted templates, we Taylor expand Mðθ⃗;Δθ⃗Þ to the
lowest order of Δθ as

Mðθ⃗;Δθ⃗Þ ≈ 1 − gmnðθ⃗ÞΔθmΔθn: ð5Þ
where the parameter-space metric is defined as

gmn ¼ −
1

2

∂2M
∂Δθm∂Δθn ðθ⃗Þ: ð6Þ

Therefore, by varying the source parameters θ⃗ and
calculating the metric gmn, templates can be effectually
placed in the bank. However, generally, the metric does not
have a closed-form expression for aligned-spin waveforms
having inspiral, merger, and ringdown phases for a wide
range of source parameters, e.g., SEOBNR [41]. Moreover,
in some cases, metric changes rapidly across the parameter
space, making the sphere-covering problem [42] highly
nontrivial. Therefore, techniques like stochastic placement
[43] are used to construct the bank, where a direct match is
computed between templates for varying source parame-
ters. This technique efficiently places the templates in a
bank. However, if the volume of the parameter space (as
defined via the metric) is large, then the template bank also
becomes large and increases the computational cost for
bank generation. In such a case, techniques like hybrid
geometric-random placements [44,45] efficiently generate
a full nonprecessing bank.
The density of templates in a bank relies on time-average

noise PSD across all the detectors. Since the search pipeline
uses a common template bank for all the detectors, a time-
averaged noise PSD for each detector is estimated. These
time-averaged PSDs are then combined as a harmonic
mean [46–48] for the bank’s construction.
In this work, we construct a coarse and nbhd bank for

targeting GW signals from nonprecessing sources with
quasicircular orbits, using Advanced LIGO-Virgo noise
PSD as used in GWTC-2 [13]. We describe the construc-
tion of banks for the parameter ranges provided in Table I in
the following sections.

1. Coarse bank

We construct a coarse bank with a mismatch of 10% (or
MM ¼ 0.90) following Gadre et al. [40], using the hybrid
geometric-random method [44,45]. The templates in the
bank are generated at a minimum frequency of 15 Hz. We
discard the templates with a duration of less than 150 ms to
avoid artifacts in the matched-filtering steps. The bank is
designed to search for quadrupolar, quasicircular, and
nonprecessing CBC sources with the redshifted total mass
(Mtot) of the binary in the range ½2 M⊙; 500 M⊙�. We
restrict the primary (m1) and secondary (m2) mass observed
in the detector’s frame in the ranges ½1 M⊙; 500 M⊙� and
½1 M⊙; 120 M⊙�, respectively. The ranges for individual
dimensionless spins of the binaries comprising a black hole
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(χBH) and a neutron star (χNS) are provided in Table I. Thus,
we construct a nonprecessing coarse bank (see Fig. 2)
consisting of 85,080 templates.
To check whether the bank does not possess holes in the

parameter space, we test the bank’s performance in terms of
fitting factor (FF) [49]. In this test, we estimate FF for ∼80,
000 quasicircular, quadrupolar, spin-aligned, and nonpre-
cessing CBC signals that span the bank’s search parameter
space. We use TaylorF2RedSpin [50] with Mtot in the
range ½2 M⊙; 5 M⊙� and jχeff j ≤ 0.05, and SEOBNRv4_
ROM [41] in ½5 M⊙; 500 M⊙�with jχeff j ≤ 0.998.We recover
FF greater than 0.90, as can be seen in Fig. 3. This result
signifies that our bank is effectual and suffices the design
criteria as per Table I.

2. Neighborhood bank

For a template corresponding to stage-1 coincident
trigger, the template nbhd is the region in parameter space
where mismatch with neighboring templates can be up to
25%, as described in Sec. IIIB2 of Gadre et al. [40]. To
sample these nbhds, we use a pregenerated flat bank with
MM ¼ 0.97 with the search parameter space provided in
Table I. We include flat bank’s templates having MM ≥
MMnbhd ≡ 0.75 with the trigger template. We calculate
nbhds for all the coarse templates. This precomputed bank
with assigned nbhds is referred to as a nbhd bank, and a
dynamic subset of it is termed as a stage-2 bank. The
stage-2 bank is dynamic because the number of templates

residing in this bank changes depending on the noise
realization of each segment.
To identify the nbhds of coarse templates, we adopt the

following strategy. For coarse templates with Mtot≥12M⊙,
we perform an exact match calculation with all the flat bank
templates. For templates with Mtot < 12 M⊙ [50], we first
shortlist a set of templates that may be able to satisfy the
nbhd criteria. For that, we define a minimal match ellipsoid
with MM ¼ MMnbhd in the following way: Consider a
coarse template of Mtot < 12 M⊙ for which nbhd has to
be calculated. We first construct a minimal-match ellipsoid
centered at this template in a coordinate system where the
metric varies slowly over the parameter space, i.e., the metric
is almost constant, and the signal manifold is almost flat.
Therefore we choose chirp-time coordinates τ0, τ3, τ3s,
collectively labeled as τα. These coordinates are given by
scaling θ0, θ3, θ3s, described in Ref. [44], with ð2πfoÞ−1 at
fo ¼ 20 Hz. In these coordinates, we estimate the metric
components using TaylorF2RedSpin waveform model.
Once the metric is known, we, following [44], diagonalize it
by an orthogonal transformation O, and obtain the eigen-
values γα with new coordinates ξα ¼ Oα

βτ
β. The metric in

these coordinates is in a diagonal form and is given by

ds2 ¼
X3
α¼1

γαðdξαÞ2: ð7Þ

FIG. 2. The distribution of coarse bank templates in m1 −m2

mass plane. Each plot point represents a template with an
MM ¼ 0.90 with the neighboring templates.

TABLE I. Table summarizing the minimal match values and the ranges of the source parameters for the coarse,
nbhd, and flat banks. The χBH and χNS are the dimensionless effective spins for a black hole and neutron star,
respectively.

Bank MM MtotðM⊙Þ χBH χNS fmin (Hz)

Coarse 0.90 2–500 −0.998–0.998 −0.05–0.05 15
Flat and nbhd 0.97 2–500 −0.998–0.998 −0.05–0.05 15

FIG. 3. Recovered fitting factor as a function of effective spin
(χeff ) and redshifted total mass (Mtot) plot for injected signals
with Mtot in the range ½2 M⊙; 500 M⊙� with the signal duration
cutoff of 150 ms.
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This is just a principal axis transformation to an orthogonal
basis. Along the eigendirections, the lengths of the semiaxes
[rαðMMÞ] of the ellipsoid for a given value of MM are
given by

rαðMMÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −MM

γα

s
: ð8Þ

As MM reduces from its maximum value of unity, the
ellipsoid increases in size. In the ξα coordinates, let the
coarse and flat templates be labeled by ξα0 and ξα, respec-
tively. Let Δξα ¼ ξα − ξa0, and define the distance dðξα; ξα0Þ
by the equation

d2ðξα; ξα0Þ ¼
X3
α¼1

γαðΔξαÞ2: ð9Þ

Then, the relation dðξα; ξα0Þ ≤
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −MMnbhd

p
defines the

ellipsoid in ξα coordinates. We use this ellipsoid to guide our
selection of flat templates. Note that the metric approxima-
tion is extrapolated beyond its validity regime, so the
ellipsoid is only a crude estimate of the nbhd. In any
case, since we have made a conservative choice of
MM ¼ MMnbhd, we do not expect to miss out on any
signals. We choose templates accordingly in this region and
compute the match between a flat template and a given
coarse template. If the match is above the stipulated MMnbhd,
we retain the template in the nbhd. Thus, the final list of
templates in the nbhd is obtained by the actual computation
of the match between coarse and fine templates inside the
ellipsoid.
In general, we find that a single nbhd around a coarse

template (not very close to the boundary of the parameter
space) contains ∼40–150 templates. Since the match falls
gradually with an increasing mismatch in the τ3 mass
parameter (as compared to τ0), the nbhd tends to extend
considerably along with this coordinate (see Fig. 3 in
Sengupta et al. [51]). Therefore, a large portion of the nbhd
can extend outside the physical parameter space considered
for the search, especially for higher τ0. This causes a
significant variation in the number of templates in the nbhd,
as reflected in the top panel of Fig. 4. It is also interesting to
note that the variation in the number of templates in the
nbhd (bottom panel of Fig. 4) resembles the actual template
density of the flat bank plotted in τ0 and χeff coordinates
(Fig 5). The figure indicates that there is a higher template
density around high χeff and low τ0.

B. Matched filter

The model-dependent search for GWs from CBCs using
templates in the LIGO-Virgo data exploits the matched
filtering [20] technique rigorously. This technique corre-
lates discretely sampled time-series data sðtÞ with the
normalized templates hðtc;ϕc; θ⃗Þ for the source parameters

(θ⃗) within the detectors’ sensitive band. The correlation
generates matched-filter SNR time series ρðtcÞ maximized
over the coalescence phase ϕc, and it is defined as

ρðtc; θ⃗Þ≡ jðs; ð1þ iÞhðtc;ϕc ¼ 0; θ⃗ÞÞj: ð10Þ

Generally, the data obtained from the detectors are non-
stationary and non-Gaussian [52–54]. Preprocessing steps

FIG. 4. The distribution of nbhd bank templates in τ3 − τ0 (top)
and χeff − τ0 plane (bottom). The color scale represents the
number of templates in the nbhd of each coarse template.
Typically, there are ∼40–150 flat templates in the nbhd of a
coarse template.

FIG. 5. Plot showing the density of flat bank’s templates in
χeff − τ0 plane. The color scale represents the log-normalized
number density.
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involving data-quality checks and application of vetoes flag
most of the artifacts present in the data [55]. Nevertheless,
the short-duration glitches or long-duration correlations, as
described in Venumadhav et al. [10], still remain in it.
Matched filtering over these noise transients often leads to
high SNRs. These short-duration noise transients are
removed from the standard search pipelines by nullifying
noise contributions in the time-series data via gating [6].
We, therefore, apply a similar gating priory to the matched
filtering for each detector to remove the nonstationary
transients from the strain data in our analysis.
Matched filtering the data produces several triggers with

varying SNRs for each template in the bank. These triggers
are first clustered within a time window of 0.5 s to retain
only the ones with high SNRs [24]. In the second step, the
SNRs of triggers due to loud noise artifacts are suppressed
using signal consistency tests like the standard chi square
(χ2r) [6,56], and sine-Gaussian chi square (χ2sg) [57].
Like in flat search, the trigger SNRs (ρ) generated in both

the stages of the hierarchical search are down-weighted
with their reduced chi-square values using χ2r [6,56] veto
defined as

ρ̃ ¼
� ρ

½ð1þðχ2rÞ3Þ=2�1=6 if χ2r > 1;

ρ otherwise:
ð11Þ

Usually, χ2r veto is ineffective in the region where signals
are too short. In such cases, the short-duration templates
ring with “blip” glitches present in the data. Therefore, we
further down-weight ρ̃ for the templates with Mtot >
30 M⊙ using χ2sg [57] veto defined as

ρ̂ ¼
�
ρ̃ðχ2r;sgÞ−1=2 if χ2r;sg > 6;

ρ̃ otherwise:
ð12Þ

In each stage of the hierarchical search, the triggers that
surpass the two tests above specific thresholds on ρ and ρ̃
(see Sec. III) are subjected to a coincidence test to recover
the real GW events. The coincident events are obtained
based on the optimal detection statistics as defined in
[29,58], which we elaborate on in the following section.

C. Ranking statistics

A pair of triggers from the two detectors is coincident if it
simultaneously occurs within the light travel time between
them and is recovered with identical template parameters.
The coincidence is evaluated based on optimal detection or
ranking statistics (Λopt), defined as the ratio of the like-
lihood for data containing signal to the likelihood for data
having noise [59]. These likelihoods are the functions of
the template parameters (θ⃗) and ρ̂, χ2r .
In the recent works [7–9,29], the optimal detection

statistics were approximated by taking the ratio of coinci-
dent event rate densities due to signal (pðκ⃗jSÞ) and noise

ðpðκ⃗jNÞÞ. Therefore, for an unknown coincident with
template parameters κ⃗ ¼ fρ̂H; ρ̂L; χ2H; χ2L; δtc; δϕc; θ⃗g,
where δtc; δϕc is the time and phase difference in between
two detectors, Λopt is given as

Λopt ¼
pðκ⃗jSÞ
pðκ⃗jNÞ≡

pðκ⃗jSÞ
rHL
θ⃗

pðθ⃗; δtc; δϕcjNÞ
: ð13Þ

For the statistics, pðδtc; δϕcjNÞ is expected to be uniform
over ðθ⃗; δtc; δϕcÞ [59]; thereby, it is marginalized and
treated as a constant. If the noise is uncorrelated between
detectors, pðκ⃗jNÞ (≈rHL

θ⃗
) can be safely written as a product

of single-detector noise rate densities [29] (rθ⃗;H; rθ⃗;L)
given by

rHL
θ⃗

¼ 2τHLðrθ⃗;Hðρ̂HÞrθ⃗;Lðρ̂LÞÞ; ð14Þ

where, τHL is the allowed time window for a coincidence of
trigger in twin LIGO detectors at Hanford (H) and
Livingston (L).
Thus, by estimating rHL

θ⃗
and pðκ⃗jSÞ through accurate

modeling [29,57], one can obtain Λopt for the coincident
triggers.
In each stage of the hierarchical search, we model rHL

θ⃗
and pðκ⃗jSÞ separately to obtain the ranking statistics of
coincident and time-shifted events. In the first stage (and
flat search), we adopt a similar methodology of modeling
coincident signal and noise rate densities for a two-detector
configuration as described in Davies et al. [29]. However,
we model coincident noise rate density slightly differently
in the second stage. In the following sections, we first
review the existing modeling procedure for signal and noise
rate densities used by the flat and stage-1 search and then
elaborate on modeling noise rate densities for stage-2
search.

1. Signal model: For flat, stage 1, and stage 2

To model pðκ⃗jSÞ, one requires the probable astrophysical
distribution of the binary sources that Advanced LIGO
detectors can detect. In reality, the exact distribution is
unknown to the observers. Nevertheless, the source pop-
ulation can be approximated as uniform in volume and
isotropic in the sky location and orientation of the binary.
Assuming these distributions for sources, we can estimate
how their detection parameters like signal amplitudes, time,
and phase differences vary with respect to the pair of the
LIGO detectors.
As described in [29,58], pðκ⃗jSÞ is precomputed by

performing Monte Carlo simulations assuming fixed detec-
tor sensitivity. Then the corresponding pðκ⃗jSÞ is used to
rank each coincident trigger with parameter closed to
κ⃗ [58].
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We use the above recipe to generate pðκ⃗jSÞ in the flat and
both stages of the hierarchical search.

2. Noise model: For flat and stage 1

The coincident noise event rate density, rHL
θ⃗
, for the flat

and stage-1 search is obtained by first estimating the single-
detector noise rate densities (rθ⃗;djd¼fH;Lg). Like in Davies
et al.[29], this quantity in the flat and stage-1 search is
calculated by modeling the tail of the trigger distribution for
each detector (d) and template with a falling exponential
function as

rθ⃗;dðρ̂d; NÞ ¼ μðθ⃗Þpðρ̂djθ⃗; NÞ; ð15Þ

given

pðρ̂djθ⃗;NÞ ¼
�
αðθ⃗Þexp½−αðθ⃗Þðρ̂d − ρ̂th;dÞ� if ρ̂d > ρ̂th;d;

0 otherwise;

ð16Þ

where μðθ⃗Þ and αðθ⃗Þ denote trigger count above the
threshold (ρ̂th;d) and exponential decay rate, respectively.
The fit parameter αðθ⃗Þ is obtained by maximum loga-

rithmic likelihood fitting method. For discrete samples of
ρ̂d of kth trigger, we maximize

lnpðρ̂djα; nÞ ¼ n ln α − α
Xn
k

ðρ̂k;d − ρ̂th;dÞ; ð17Þ

at a fixed ρ̂th;d (≡6) to obtain αmax ¼ ð ¯̂ρd − ρ̂th;dÞ−1. Here,
¯̂ρd is the mean of ρ̂d and the variance (σd) in fit parameter is
given by 1=

ffiffiffi
n

p
, where n denotes the number triggers

generated for a particular template.
In the flat and stage-1 search, we calculate αmax and n for

each flat and coarse template, respectively. Generally, not
all the templates have sufficient triggers above 6 to fit the
trigger distribution’s exponential tail. In such cases, the low
number of triggers gives a high variance to the fit parameter
values. To avoid such problems, we take the moving
average of the fit parameters and smooth μðθ⃗Þ by taking
mean over nearby templates with similar values of effective
spin, template duration, and symmetric mass ratio as
performed in Davies et al. [29].

3. Noise model: For stage 2

In principle, the procedure for obtaining single-detector
noise rate densities described previously can be applied in
stage 2. However, it cannot be implemented, as this stage
possesses insufficient triggers above ρ̂th;d to obtain mean-
ingful fit parameters. The reason is, we follow only
foreground candidates from stage 1 that have Λopt ≥ 7.
Matched filtering over these followed-up triggers utilizes

fewer nbhds and corresponding templates to generate fewer
triggers. Having an inadequate and biased set of triggers for
a template can give a significant variance in the values of fit
parameters, leading to overestimating single-detector noise
rates if we only use stage-2 triggers. We, therefore, do not
explicitly calculate the fit parameters in stage 2. Instead, we
reuse the fit values of the “closest” coarse template to the
stage-2 trigger template. The “closeness” relies on the
highest match value between the coarse and stage-2 bank
templates.
To verify the applicability of the above procedure, we

perform a flat and hierarchical search on 14 days and obtain
fit parameters. Figure 6 compares the fit parameters
obtained in both the searches. The scatter points in the
diagonal signify that the values are comparable for the two
searches in both the detectors. A few templates in the
Hanford detector show low α indicating small fluctuations
in their values due to noise. These small fluctuations can
appear at different periods of observational time. However,
these variations in α negligibly affect the modeling of
single-detector noise rate density, as can be seen later
in Sec. IV.

D. Assigning significance

The significance of any event is evaluated based on their
false alarm rate (FAR) estimate above a fixed statistic Λ� as

FARðΛ�Þ ¼
Z

dnκ⃗rHLκ ΘðΛoptðκ⃗Þ − Λ�Þ; ð18Þ

where rHLκ⃗ ≡ rHL
θ⃗

by construction. FAR signifies the rate of

occurrence of a nonastrophysical coincident candidate with
a similar or higher Λopt [see Eq. (13)] in the observing
period. FAR is estimated in the flat and stage-1 search with
respect to a noise background constructed by time-sliding
data by a minimum of 100 ms across the detectors. Such a
procedure omits all the possibilities to have a coincidence
due to a real GW signal. At each time shift, Λopt is
recomputed to rank the candidates above a certain threshold
(Λ�). Performing several time shifts generates many

FIG. 6. Comparison plot for the fit coefficients, α and μ,
obtained from the flat and hierarchical search for (a) Hanford
(H) and (b) Livingston (L) detectors.
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plausible candidates that could be cumbersome to store.
In order to mitigate the storage problem, the background
computation is optimized in the standard PyCBC search.
At first, a clustering over time is performed such that
candidates with the highest statistic value, falling within
10 s, are kept. In the next step, candidates are selectively
chosen with all or few time slides falling in the ranking
statistic value’s bin. For instance, candidates with all
possible time slides with ranking statistics greater than 9
are chosen, but only some are selected with time slides of
30 s for which statistic value lies between 8 and 8.5.
In principle, a similar strategy can be implemented to

assign FARs to the detected candidates in stage 2 of the
hierarchical search. However, the background constructed
by time-sliding stage-2 triggers using a union of stage-2
banks can bias the detected candidates’ FAR estimates, as
shown in Gadre et al. [40]. Therefore, we avoid such biases
by constructing an approximate background that would
mimic a background constructed in the flat search. As
proposed in Gadre et al. [40], we construct a scaled stage-1
background for assigning significance to the final list of
coincident triggers. First, we construct a stage-1 back-
ground by time-sliding stage-1 triggers by 100 ms across
the detectors as done in the flat search. We then scale this
background by a factor equal to the ratio of the number of
templates times the sampling frequency used in a flat search
to stage 1. This number turns out to be close to the
computational gain and is approximately 20.
To justify our argument on mimicking a flat background,

we compare the foreground and background obtained from
the flat and hierarchical search performed over 14 days of
data around the first BBH, GW150914 [1], event. We find
that the foregrounds due to noise candidates match their
respective backgrounds for both the searches, as shown in
Fig. 7. We observe that the noise background is higher in

the lower ranking statistics region than that of flat. This
observation is expected as the scaling factor linearly
increases the number density of noise triggers in a
particular ranking statistics bin. We also notice that the
scaled stage-1 background roughly matches the flat back-
ground above ranking statistic value 8. Therefore, the
reliability of the FARs will be limited to the ranking
statistic value ≳8. Another way to justify the reliability
of the background is by looking at the effects of variations
in sampling rates and the number of templates for each pair
of the search. Figure 8 compares the backgrounds obtained
from the flat search at 512 Hz and the stage-1 search at
2048-Hz sampling rates. We show that if these back-
grounds are scaled with a factor of 4 and 5, respectively,
both nearly match the standard flat search background at
2048-Hz sampling. Thus, the factor of 5 reductions in the
number of templates and 4 reductions in the sampling rate,
whose product gives us the final scaling factor of 20, are
valid scaling factors on their own. While the scaling

FIG. 7. Plot showing FAR vs ranking statistic curves for the
foreground candidates (foreground) and the time-shifted candi-
dates (background) from a flat and hierarchical search. The
foreground (triangle) overlays the background (circle) in each
search. The loudest event, GW150814, is hierarchically removed
from the background in both searches. Note that the scaled
stage-1 background (black) roughly matches the flat background
(gray) above ranking statistic value 8.

FIG. 8. Plot depicting FAR vs ranking statistic curves for the
backgrounds obtained for the flat and stage-1 search at different
sampling rates. The top panel shows the backgrounds obtained
for the flat search performed at sampling rates 512 Hz (gray) and
2048 Hz (orange). The bottom panel shows the background
obtained at a sampling rate of 2048 Hz for the flat (orange)
and stage-1 search (gray). On scaling the flat background
obtained at a sampling rate of 512 Hz by a factor of 4 (top),
and stage-1 background obtained at 2048 Hz by 5 (bottom), the
resultant backgrounds (black) approximately match the standard
flat background (orange) obtained at 2048-Hz sampling rate.
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argument still lacks concrete proof, we think it makes our
argument much more robust, at least for the standard search
with a bank of mismatch 0.97.
While the scaled background may not precisely match

the background of the flat search, it is still a monotonic
function of the detection statistic and reasonably close to
the flat search background. Hence, the FAR estimate based
on the scaled background can be used for detection, as long
as a reasonable FAR threshold to claim a detection is
decided by comparing it with the corresponding flat search.

III. SEARCH FOR CBC IN O1 AND O2 DATA

We search for CBCs using the two-stage hierarchical
search [60] over the data from the first (O1) and second
(O2) observing runs of twin LIGO detectors. We use
21.39 days of coincident data from O1 and 31.4 days from
O2.
The periods of poor-quality data are marked and

removed from the analysis using data-quality flags,
Category 1 (CAT-1) and Category 2 (CAT-2) [55]. CAT-
1 vetoes remove the times during which at least one of the
key components of a detector was not operational in the
nominal configuration due to critical issues. The duration
over which excessive noise is observed due to instrumental
artifacts is marked and removed by CAT-2 flags.
As described in Sec. II B, the data undergo preprocessing

before entering the matched filtering step. In both stages,
we use 512 s of overlapping data segments for matched-
filter computation. We pad data segments with zeros 144 s
at the beginning and 16 s at the end to avoid the artifacts
generated from the discrete Fourier transform. Once the
data segment is prepared, we perform a hierarchical search
in two stages.
We begin the search by matched-filtering data segments

sampled at 512 Hz with a coarse bank (see Sec. II A 1) and

obtain a list of stage-1 triggers above coarse thresholds
on ρ and ρ̃. Triggers with ρ > 3.5 that pass the χ2r test with
ρ̃ > 3.5 get further reweighted by χ2sg veto. The choice of
coarse thresholds for stage-1 search may seem arbitrary.
However, we tested out different values for ρ and ρ̃ and
found that setting both values at 3.5 gives the optimal
computational cost of handling bulk triggers.
The surviving single-detector triggers then undergo a

coincidence test (see Sec. II C) to obtain foreground
candidates. These foreground candidates are then followed
up in stage 2.
Stage 2 of the hierarchical search begins with matched-

filtering data segments sampled at 2048 Hz that contain
foreground candidates with Λopt ≥ 7 [40] from stage 1.
Each segment is filtered using a unique stage-2 bank (see
Sec. II A 2) constructed from the dynamic union of the nbhds
around each followed-up trigger template. The matched-
filter SNRs generated in this stage are then reweighted with
fine thresholds on ρ and ρ̃ of 4. As described in Sec. II C, the
resultant triggers are then subjected to a coincidence test to
obtain the second stage’s foreground candidates.
The final step in the search involves assigning significance

to the potential foreground candidates (Λopt > 8) obtained in
stage 2. We assign FARs to these candidates using a scaled
stage-1 background, as described in Sec. II D. Based on this
background, we present the results from the analysis in the
next section.
We report the recovery of all ten confirmed GW events

with FAR below 1 per year in stage 2 of hierarchical search.
These events were previously detected by the flat analysis
in GWTC-1. Although the detection statistics used in both
the stages of hierarchical search are more recent than those
used in the flat analysis of GWTC-1, we still detect these
events with nearly similar detection confidence levels in
stage 2 but with a computational gain in the matched

TABLE II. List of GW events detected via hierarchical search. The events are arranged in the ascending order of their event time. We
report and compare detected events’ FARs, network SNRs (ρ̂T), and redshifted chirp masses (Mchirp) in the stage-1 and stage-2 search
with the events reported by the flat search in Abbott et al. [7]. We see an improvement in the FAR and network SNR values for the
events, with network SNR varying between 9 and 12 from stage 1 to stage 2.

Flat Hierarchical

Stage 1 Stage 2

Sl. no. Event UTC FAR (yr−1) ρ̂T Mchirp (M⊙Þ FAR (yr−1) ρ̂T Mchirp (M⊙Þ FAR (yr−1) ρ̂T Mchirp (M⊙Þ
1 GW150914 09:50:45.4 ≤1.53 × 10−5 23.6 32.75 1.52 × 10−5 23.3 29.71 1.52 × 10−5 24.0 31.96
2 GW151012 09:54:43.4 0.17 9.5 18.47 0.42 8.9 18.68 0.05 9.8 18.31
3 GW151226 03:38:53.6 ≤1.70 × 10−5 13.1 9.70 1.69 × 10−5 11.9 9.89 1.69 × 10−5 13.1 9.72
4 GW170104 10:11:58.6 ≤1.39 × 10−5 13.0 20.19 1.37 × 10−5 12.2 18.37 1.37 × 10−5 12.9 29.17
5 GW170608 02:01:16.5 ≤3.09 × 10−4 15.4 8.61 3.08 × 10−4 8.9 8.65 3.08 × 10−4 14.8 9.03
6 GW170729 18:56:29.3 1.36 9.8 40.27 1.68 9.3 54.41 0.05 10.6 47.51
7 GW170809 08:28:21.8 1.45 × 10−4 12.2 23.53 0.56 11.3 29.71 1.70 × 10−3 12.1 23.65
8 GW170814 10:30:43.5 ≤1.25 × 10−5 16.3 25.20 1.25 × 10−5 16.0 25.09 1.25 × 10−5 17.2 26.58
9 GW170817 12:41:04.4 ≤1.25 × 10−5 30.9 1.20 2.51 × 10−5 28.7 1.20 1.25 × 10−5 31.5 1.20
10 GW170823 13:13:58.5 ≤3.29 × 10−5 11.1 23.61 3.30 × 10−5 11.3 32.32 3.30 × 10−5 11.1 46.85
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filtering by a factor of ∼20. A comparison of the recovered
events’ FARs, network SNRs (ρ̂T ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ρ̂2H þ ρ̂2L
p

), and
redshifted chirp mass from the flat search in GWTC-1
and both the stages of the hierarchical search, is given in
Table II.
In our analysis, we recover the loudest events—

GW150914, GW151226, GW170104, GW170608,
GW170814, GW170817, and GW170823, with compa-
rable FARs in both the stages of the hierarchical search.
However, the network SNRs of these events improve in
stage 2. The remaining events—GW151012, GW170729,
and GW170809, see improvements in their FARs and
network SNRs in the stage-2 search.

IV. COMPARISON WITH THE FLAT SEARCH

In this section, we compare the search sensitivities of
hierarchical and flat search pipelines using similar detec-
tion statistics as defined in Sec. II C. We also highlight the
computational advantages of using the former pipeline over
the latter.

A. Comparison of sensitivities

The sensitivity of a search pipeline is measured in terms
of the total number of astrophysical signals detected at a
given detection statistics and a fixed FAR threshold. In
order to measure this quantity, a population of simulated
GW signals is injected into the real data and recovered
using the search pipeline. For a population of binary
mergers, uniformly distributed over comoving volume
(V), one can compute the sensitive reach of the detectors
in terms of the volume covered in the given observable
time. Suppose that a binary’s merger rate is defined by μm;
then, the number of detection that one can make above a
certain FAR threshold in Tobs observation time is the
product of volume, time, and merger rate μmhVTi [61].
The sensitive volume-time hVTi over here is defined as

hVTifθ⃗g ¼ Tobs

Z
∞

0

pðzjfθ⃗gÞ dV
dz

1

ð1þ zÞ dz; ð19Þ

where pðzjfθ⃗gÞ is the probability of recovering a signal
with parameters θ⃗ at a redshift z. For a constant value of μm,
the ratio of VT can be exploited to compare the sensitivities
of any two search pipelines [7,29].
In our study, we compare the search sensitivities of the

hierarchical and flat search pipelines by computing the ratio
of their VT for a common injection set.
To calculate VT for each pipeline, we inject quadrupolar

GW signals from the nonprecessing BBH, BNS, and
NSBH like sources into the data. These signals are
generated using waveform models SpinTaylorT4 [62]
for BNS and SEOBNRv4_opt [41] for BBH and NSBH
systems. To remain agnostic about the binary merger
population, we distribute the signals obtained from these

models uniformly over the chirp distance between 50 and
400 Mpc. We uniformly distribute the component masses
for BNS and distribute the logarithms of component mass
of BBH and NSBH injections in the ranges provided in
Table III. Thus, we generate 12,203 BNS and 16,271 BBH
and NSBH injections each.
We inject the generated signals in 5 days of coincident

data in O1 observed from September 12, 2015, to
September 26, 2015, and analyze it using the flat and
hierarchical search pipelines separately. The matched-
filtering and coincidence studies in the hierarchical search
are carried out as per Sec. III. In the case of flat search, we
perform matched filtering over data segments sampled at
2048 Hz and identify triggers with ρ and ρ̃ above 4 in each
detector. We run a coincidence test over the collected
single-detector triggers with the appropriate clustering in
time as defined in Sec. II B. Here, triggers observed within
100 ms of a time window in two detectors are identified and
ranked according to their statistic values (see Sec. II C).
The foreground candidates obtained in both the searches

are assigned FARs based on their respective noise back-
grounds using similar ranking statistics described in
Sec. II C. In the flat search, we estimate the background
by time-sliding triggers across the detectors. Each trigger is
shifted by 100 ms in time, and then again, the statistic is
estimated. A time slide of 100 ms can generate a large
number of triggers. Therefore, we first cluster the candidates
within a time window of 10 s and then apply decimation to
the background as performed in the flat search. In the case of
hierarchical search, we assign FARs to the detected candi-
dates after scaling the stage-1 background, as described in
Sec. II D. The recovered candidates via clustering over
statistic values are then sorted with respect to their FARs. A
highly ranked candidate with a FAR value below 1 per year
[7] and falling within 1 s of merger time is marked as a
detected injection in both the searches.
Figure 9 compares the sensitivities of the hierarchical

and flat search. As can be seen in the top panel, most of the
injections are recovered with comparable FARs by both
searches. We infer this result from the high density of
scattered points lying near the diagonal of the plot. We also
see that some injections are only recovered by one search.
However, these stand-alone recoveries in the majority have
a low astrophysical significance. A few of these injections

TABLE III. Table depicting the ranges for redshifted compo-
nent masses, total mass, and dimensionless effective spins for
each compact object of injected BBH, BNS, and NSBH sources.

Parameter BBH BNS NSBH

m1ðM⊙Þ 2.5–150 1–2.5 2.5–97.5
m2ðM⊙Þ 2.5–150 1–2.5 1–2.5
MtotðM⊙Þ 5–300 2–5 3.5–100
χ1;z 0–0.998 0–0.4 0–0.998
χ2;z 0–0.998 0–0.4 0–0.4
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show low FARs, for instance, the injections recovered by
only hierarchical search represented in color in Fig. 9.
A follow-up study on these significant detections showed
that these injections were made at very low optimal SNRs
(see bottom panel Fig. 9) and were likely recovered due to
coincidence with noise fluctuation around the injection
time. In the other case where injections are recovered by
only flat search, hierarchical search misses these injections
because stage-1 search fails to recover them.
The FAR comparison in Fig. 9 shows that both flat and

hierarchical search performs similarly for loud CBC injec-
tion. However, the sensitivity towards detecting fainter
injections varies for both searches. This conclusion is further
supported by theVT comparison in Fig 10. In the top panel of
Fig. 10, we see that the sensitivity of stage-1 search is lower

than flat search across all the chirpmass and IFAR4 bins. This
result is expected as the loss in matched-filter SNRs is bound
to happen in stage 1 due to low sampling rates and the use of a
coarse bank. However, performing a stage-2 search on the
potential foreground candidates from stage 1 retains the
overall sensitivity of the search pipeline, which can be
viewed in the bottom panel of Fig. 10. In this plot, we see
that the sensitivity of hierarchical search remains consistent
with the flat search with VT ratio varying between a factor of
1� 1.042 and 1� 0.08 for IFAR of 10 y depending on the
chirp mass bins.

B. Comparison of computational efficiencies

Now we estimate the computational cost of matched
filtering for the flat and hierarchical search.
The computational cost of matched filtering relies on the

number of FFT operations performed on a segment using a
bank of templates. As defined previously, FFT operations
scale as N log2N. In the case of flat search, we filter a data
segment sampled at 2048 Hz with the entire flat bank.
If the segment is of length 512 s, then N in the flat search is
512 × 2048, and the number of matched-filter operations is
512×2048×428;725×log2ð512×2048Þ, where 428,725
represents the number of templates in the flat bank.
In the case of hierarchical search, the total number of

matched-filter operations is the sum of the number of FFTs
performed in stage 1 and stage 2. Since in stage-1 search
we matched filter a data segment sampled at 512 Hz
using the coarse bank containing 85,080 templates, the
number of matched-filter operations becomes 512 × 512×
85080 log2ð512 × 512Þ. If the same segment gets followed
up to the stage-2 search, the number of matched-filter
operations reduces due to fewer templates in a stage-2 bank.
The number of templates in this bank can vary for each
segment and detector, as can be seen from Fig. 11. Thus, we
compute the total number of FFT operations for all the flat
and combined stages of the hierarchical search segments. To
estimate the overall gain in the computational speed, we take
the ratio of the computed FFT operations for the flat to the
hierarchical search.
We first define the following quantities:

Quantity Description

Nseg Total number of data segments in two detectors
tseg Duration of each segment
fflat Sampling rate for flat and stage-2 search
fcoarse Sampling rate for stage 1
Nflat

temp Number of templates in the flat bank

Nstage1
temp

Number of templates in the stage-1 bank

Nstage2
temp

Total number of templates for all the segments

used in the stage-2 search

FIG. 9. Scatter plots of FARs (top) and decisive optimal SNRs
(bottom) for the injections recovered in the hierarchical search vs
flat search. The injections found by both searches are represented
by circular points (black). The other markers, cross and triangle,
show the injections found by only one search. A few of these
points for the flat (yellow) and hierarchical (red) search show low
FARs and injected optimal SNRs. The concentration of the points
near the diagonal in the top panel implies that the estimated FARs
by both the searches are reasonably close. A vertical and
horizontal line in the plot shows FAR of 1 per year in the top
panel and a decisive optimal SNR of 1 in the bottom panel. The
bottom panel confirms that the injections which are not detected
by either of the searches were for low (∼ < 8) decisive
optimal SNR.

4Inverse false alarm rate (IFAR ¼ 1
FAR).

SONI, GADRE, MITRA, and DHURANDHAR PHYS. REV. D 105, 064005 (2022)

064005-12



Let

Oflat ¼ kfflattseg log2ðfflattsegÞ;
Ocoarse ¼ kfcoarsetseg log2ðfcoarsetsegÞ; ð20Þ

where Oflat and Ocoarse are the number of floating-point
operations required to perform a FFT for a segment at the
flat and coarse sampling rates, respectively. k is a factor of

few which cancels out from the numerator and denomi-
nator. Thus, the gain is given by

gain ≈
NsegNflat

tempOflat

NsegN
stage1
temp Ocoarse þ Nstage2

temp Oflat

: ð21Þ

While the number of templates in flat search and stage 1 is
fixed for all the segments, it varies for each segment in stage 2
as only specific triggers are followed up and filtered using a
stage-2 bank. The total area of the histograms for the two
detectors together shown in Fig. 11 provides us withNstage2

temp .
Since Nstage2

temp is much smaller than NsegN
stage1
temp , the compu-

tation in stage 1 dominates the cost, so the stage-2 cost does
not affect the gain.
Substituting the numerical values, Nseg ¼ 390½H�þ

225½L� ¼ 615, tseg ¼ 512 s, fflat ¼ 2048 Hz, fcoarse ¼
512 Hz, Nflat

temp ¼ 428; 725, Nstage1
temp ¼ 85; 080, andNstage2

temp ¼
ð132; 036½H� þ 132; 134½L�Þ ¼ 264; 170, the gain yielded is
22 for the analysis. We do not expect this number to change
significantly for different observing runs. We also compare
the actual CPU core hours used by the flat and hierarchical
search for performing the matched-filtering operations. We
found that the total CPU core hours used by the hierarchical
search are around 824.16 and 547.37, respectively, for the
Hanford and Livingston detectors. These numbers are nearly

FIG. 10. Comparison of volume × time (VT) ratio of (top) stage 1, and (bottom) stage 2 (or hierarchical) with flat search. The
sensitivity of stage-1 search drops for higher chirp mass bins across all IFAR bins in the top panel. In the bottom panel, the VT ratio
improves across entire chirp mass and IFAR bins, maintaining the overall sensitivity of hierarchical search comparable to flat.

FIG. 11. Histogram depicting the number of templates in stage-
2 bank generated for each data segment.
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1/19 times the number obtained for the flat search, i.e.,
15,471.81 for Hanford and 10,478.64 for Livingston. Thus,
we conclude that with the present setting, the hierarchical
search provides an overall computational speed-up by a
factor of ∼20.

V. CONCLUSION AND DISCUSSION

Efficient searches for GWs originating from CBCs can
expand the size and dimensionality of the search parameter
space to detect interesting sources with present and future
detectors. The hierarchical search is perhaps the most
straightforward approach that brings more than one order
of magnitude enhancement in the efficiency without com-
promising the robustness of the search. In this work, we
successfully demonstrate the efficiency of hierarchical
search by applying the analysis on the first two observing
runs of Advanced LIGO. By introducing essential mod-
ifications to the previously developed codes, we transform
them into a complete analysis pipeline [60]. We improve
the selection criteria for single-detector triggers using chi-
square and sine-Gaussian vetoes to reweigh matched-filter
SNRs. We also implement coincident detection statistics
formulated in [29,58] in the hierarchical search that utilizes
phase and time differences between detectors and detection
parameters, significantly reducing false alarms due to noise
events. With our pipeline, we recover all the events in the
LIGO-Virgo Collaboration’s official transient catalog,
GWTC-1, detected by the standard PyCBC analysis with
nearly the same statistical confidence and a whopping
factor of 20 computational speed-up. This work also
demonstrates that hierarchical search is at hand for pro-
duction analysis of the present and upcoming datasets from
ground-based detectors.
Following Gadre et al. [40], we estimate the detected

candidates’ significance by scaling the noise background
obtained in stage 1 with a factor close to the speed-up
factor. Although the argument on assigning significance to
detected candidates using this background may not be so
rigorous, our work shows that this prescription works. The
background estimation for the hierarchical search needs
more scrutiny, and our future goal is to address this issue. It
is outside the scope of the present investigation because an
in-depth mathematical and statistical analysis of the empir-
ical background estimation using time slides will be

required. While the outcome of this exercise builds enough
confidence for application in production runs that are
otherwise restrictive due to computational cost, we plan
to carry out an extensive study focused on accurate back-
ground estimation for the hierarchical search.
In our opinion, the hierarchical search pipeline can be

used for ambitious searches that are currently deferred due
to computational limitations. For instance, a search for
binaries with nonaligned spins and subsolar sources
requires an enormous number of templates. With hierar-
chical search, we can attempt to carry out their search at
feasible computation cost without compromising the accu-
racy of sensitivity of the search. The hierarchical strategy
could also reduce the computation cost of low-latency
searches, which we plan to demonstrate in the future.
Developing a comprehensive offline or a low-latency
search for such sources is an arduous task ahead, and
more sophisticated techniques will have to be brought in, in
the coming years. Nevertheless, the hierarchical search is a
major step in this direction that should be exploited.
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