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All solutions of Einstein-Maxwell equations with
a cosmological constant in 2 +1 dimensions

Jifi Podolsky®" and Matd§ Papajéik®’
Charles University, Faculty of Mathematics and Physics, Institute of Theoretical Physics,
V Holesovickdch 2, 18000 Prague 8, Czech Republic

® (Received 27 August 2021; accepted 16 December 2021; published 2 March 2022)

We present a general solution of the coupled Einstein-Maxwell field equations (without the source
charges and currents) in three spacetime dimensions. We also admit any value of the cosmological constant.
The whole family of such A-electrovacuum local solutions splits into two distinct subclasses, namely the
nonexpanding Kundt class and the expanding Robinson-Trautman class. While the Kundt class only admits
electromagnetic fields which are aligned along the geometrically privileged null congruence, the Robinson-
Trautman class admits both aligned and also more complex nonaligned Maxwell fields. We derive all the
metric and Maxwell field components, together with explicit constraints imposed by the field equations.
We also identify the most important special spacetimes of this type, namely the coupled gravitational-

electromagnetic waves and charged black holes.
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I. INTRODUCTION

Recently, in paper [1] we derived the most general
solution of the Einstein equations with a cosmological
constant A and also an aligned pure radiation matter field
(possibly gyrating null dust/particles) in three spacetime
dimensions. Here we extend this study to another important
nonvacuum case, which is the presence of an electromag-
netic field. In fact, we explicitly derive all solutions of the
Einstein-Maxwell field equations with any value of A.

For many decades, the 2 + 1-dimensional Einstein gravity
has attracted a great deal of attention. The main reason is that
such gravity theory is mathematically simpler than standard
general relativity because the number of independent com-
ponents of the curvature tensor is much lower. In fact, the
Weyl tensor identically vanishes, and the Riemann and Ricci
tensors have the same number of components. Consequently,
there is no classic dynamical degree of freedom in 2 + 1
spacetimes. The Ricci tensor—directly given by the Einstein
field equations—fully determines the local curvature of the
spacetime. This implies that a general vacuum solution of
Einstein’s equations is just the maximally symmetric
Minkowski, de Sitter (dS), or anti—de Sitter (AdS) spacetime
for A =0, A > 0, or A <0, respectively.

Despite such local simplicity/triviality of the 241
gravity theory, it can serve as a very useful playground
for various investigations, ranging from the black hole
properties and cosmology to high-energy physics and
quantum gravity. While the Einstein equations determine
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the spacetime locally, there can be global topological
degrees of freedom reflected in the appropriate domains
of the coordinates employed: It is possible to construct
globally different geometries from locally identical space-
times by various identifications. In the context of black
holes, this has been successfully used for construction of
famous Bafiados-Teitelboim-Zanelli (BTZ)-type solutions
with horizons when A < 0 by performing nontrivial iden-
tifications of the local AdS vacuum spacetime, pure
radiation solutions, or spacetimes with electromagnetic
field [2-4]. The corresponding topological degrees of
freedom play a crucial role in quantum gravity models
[5]. However, it is still not clear if they represent all possible
nonvacuum spacetimes. It is thus desirable to obtain and
investigate more general exact solutions in the presence of
matter.

Many exact spacetimes in 2 + 1-dimensional Einstein
gravity have already been found. They are nicely summa-
rized, classified, and described in a helpful comprehensive
catalog [6]. Such solutions were found in a great number of
works by making various specific assumptions on their
symmetry, algebraic structure, or other geometrical or
physical constraints. A general study of solutions of
2 4 1-dimensional Einstein-Maxwell theory using the
Rainich geometrization of the electromagnetic field was
presented in [7]. Using a different approach, in this paper
we solve the Einstein-Maxwell field equations generically,
without making any assumption. In fact, we systematically
derive all possible such spacetimes, extending and general-
izing previously known exact electrovacuum solutions.

Specifically, in Sec. II we recall the key result of [1] that
(virtually) all 2 + 1 geometries belong either to the family

© 2022 American Physical Society
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of (nonexpanding) Kundt spacetimes or to the family
of (expanding) Robinson-Trautman spacetimes. We also
present the canonical metric form and the natural null triad.
The related Appendix contains the corresponding Christoffel
symbols and all components of the Riemann and Ricci
tensors. In Sec. III we present the most general electromag-
netic 2-form field in 2 4+ 1 gravity, together with its dual
1-form, the equivalent Newman-Penrose scalars, and the
energy-momentum tensor. In Sec. IV we formulate the
(source-free) FEinstein-Maxwell field equations with A,
expressed in a simple form. Section V contains an explicit
step-by-step integration of these field equations in the Kundt
case, while Sec. VI contains an analogous procedure for the
complementary Robinson-Trautman case. In both cases, the
electromagnetic field is aligned with the privileged null
direction of the gravitational field. The resulting complete
families of such spacetimes are summarized in Secs. V H and
VIH, respectively. The distinct family of Robinson-
Trautman geometries with nonaligned electromagnetic fields
is presented in Sec. VII, with a specific particular solution
obtained in Sec. VII F. Final summary and further remarks
can be found in concluding Sec. VIIL

II. ALL GEOMETRIES AND THEIR CANONICAL
FORM IN 2+1 GRAVITY

In Sec. II of our previous work [1], we investigated
general three-dimensional Lorentzian spacetimes (M, g,;,)
with the metric signature (++ —). We proved the
uniqueness theorem, namely that the only possible such
spacetimes are either expanding geometries of the
Robinson-Trautman type (with ® # 0) or nonexpanding
geometries of the Kundt type (with ©® = 0). They are
necessarily twist-free and shear-free; see Theorem 1 in
[1] (this observation was already made in [8]).

In a C' spacetime there exists a geodesic null vector field
k (defined as a tangent vector of null geodesics at any
point), which in D =3 is equivalent to hypersurface-
orthogonality; see Theorem 2 in [1]. Recall that the
expansion O is the only nontrivial optical scalar,

O = p = kyymm, (1)

which characterizes the properties of a null congruence
generated by Kk, in a triad e; = {k, 1, m} of two null vectors
k, I and one spatial vector m, normalized as

k-1=-1, m-m = 1I. (2)

In [1], we also introduced canonical coordinates
{r,u,x} for all Robinson-Trautman and Kundt metrics;
see Theorem 3,

ds? = g, (r, u, x)dx* + 2g,,.(r, u, x)dudx
—2dudr + g,,,(r, u, x)du?. (3)

These coordinates are adapted to their unique geometry,
namely r is an affine parameter along the null congruence
generated by K, the coordinate u labels null hypersurfaces
(such that k, o u ,) which naturally foliate the spacetimes,
and the spatial coordinate x spans the one-dimensional
“transverse” subspace with constant # and r.

It is also convenient to recall that the nonvanishing
contravariant metric components g** are

gxx = l/gxxv gur = _1’ grx = gux/gxx’

grr = —Guu + ggx/gxx’ (4)

equivalent to the inverse relations

Gxx = 1/.9”’ Gur = -1, Gux = 99",
G = —9" + gxx(grx)z' (5)

The most natural choice of the null triad frame {k,1, m}
satisfying (2) is

1
m = \/ﬁ(guxar + ax)
(6)

A direct calculation for the metric (3) reveals that
kop = % Jap.r- An explicit form of the expansion scalar
(1) thus becomes ® = k,.,.m*m*, implying an important
relation:

1
k :arv lziguuar+aw

Ixxr = 2®gxx’ (7)

For our next investigation it seems convenient to
introduce a new function G(r, u, x), which fully encodes
the spatial metric function g,, > 0 via the simple relation

1
xx

G=

S Gyx = G (8)

The key relation (7) then takes the form
0 =—-(InG),. 9)

Now it immediately follows that for vanishing expansion,
® =0, the function G and thus also the spatial metric
9xc (1, x) must be independent of the coordinate r. It yields
the Kundt class of nonexpanding, twist-free, and shear-free
geometries [9-13]. The complementary case ® # 0 gives
the expanding Robinson-Trautman class of geometries
[10,11,13-18], as summarized in Theorem 4 of our work [1].

The Christoffel symbols and all coordinate components
of the Riemann and Ricci curvature tensors for the general
metric (3), calculated using the relation (7), are listed in the
Appendix.
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III. GENERIC ELECTROMAGNETIC
FIELD IN 2 +1 GRAVITY

The aim of this work is to systematically investigate all
possible gravitational and electromagnetic fields in 2 + 1
dimensions, solving the coupled Einstein-Maxwell field
equations.

Based on the results summarized in previous Sec. II, all
such spacetimes can be conveniently written in the canoni-
cal coordinates {r,u,x} for the general metric (3).
Consequently, generic electromagnetic field takes the form
of an antisymmetric 3 x 3 Maxwell tensor

0 Fru Frx
Fab - _Fru 0 Fux ’ (10)
_Frx _Fux 0

which is equivalent to considering the 2-form

F =1F,,dx® A dx’, that is explicitly
F=F,dr Adu+ F,dr Adx+ F,du Adx. (11)
The field has only three independent components. These
can be obtained from the electromagnetic potential 1-form
A = A,dx* by the standard relation
F =dA. (12)

Using (4), the corresponding contravariant components
Fab = gacgbdFCd read

Fru:_i Frx:ﬂ Fux:_i (13)
xx Ixx xx
where the useful functions are
F,=F,, (14)
FngxxFru_guxFrx’ (15)
Fu = guxFru - Fux - guuFrx' (16)

In fact, these three functions are directly related to the
components of the dual Maxwell field 1-form *F = *F ,dx*
defined using the Hodge star operator,

1 1
*Fi=—wF,., where 0 =——g%c (17)
2 < /=g

Here g denotes the determinant of the metric g,j,, while ¢
is the completely antisymmetric Levi-Civita symbol, for
which we employ the convention that ¢ = ¢,,. = +1 if
abc is an even permutation of rux, it is —1 for odd
permutation of rux, and 0 otherwise. For the metric (3) we
immediately get

—g:gXXEG_z, (18)
and in view of (10) we obtain
*Fr:GFux, *EU —

—GF,,,  *F*=GF,,. (19)

Using (14)—(16), the corresponding covariant components
*F, = g, F are

*F,=GF,, (20)
so that the dual 1-form Maxwell field reads
‘F = G(F,dr + F,du + F,dx). (21)

For completeness let us also recall the inverse relation
to (17),

— Wape =/ ~"Y€abe = G_lgabc"
(22)

Fu = —o4,.'F¢  where

Next, it is necessary to evaluate the electromagnetic
invariants

F?=F, ,F®, *F? = *F *F°. (23)

A direct evaluation yields

F?=-2'F? = _2G2(guuF%x + 2Frx<Fux - guxFru)
+ gxxF%u)' (24)

Moreover, F,,*F**F” = 0 due to the symmetry reasons.

Similarly as for general relativity in D =4, it is
convenient to define Newman-Penrose scalars of the
Maxwell field by its three independent projections onto
the frame (6),

po = Fapkim®,
¢1 = Fuhkalb’
¢2 = Fahmalb. (25)

Explicit calculation reveals that
¢0 = GFrx = GFra (26)

¢l = Fru = G2(Fx +guxFr)’ (27)

1 1
¢2 = G(.guxFru _Fux _EguuFrx> = G<Fu +59L¢MFI”)’

(28)

so that the invariant can be expressed as
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1
EFZ = 2o — 7. (29)

These scalars have distinct boost weights +1, 0, —1,
respectively, and can be used for invariant algebraic
classification of the electromagnetic field [13], based on
its (non-)alignment with the geometrically privileged null
vector field k = 0, of the metric. By definition the field is
aligned if its component with the highest boost weight
vanishes. From (26) we immediately observe that

electromagnetic field is aligned with k

SPpy=0F, =0sF,=0. (30)

It can also be shown that this is equivalent to the special
property of the field, namely

F kb = Nk, (31)

Such an aligned field has just two components, namely
¢1 = Fru and ¢2 = G(guxFru - Fux)> and F? = _2¢%
When ¢ =0s F, =0, the field is null. When
¢, =0& F, =0, it is non-null.

In the case when the electromagnetic field is both aligned
and null, the invariant vanishes, F2 = 0. This describes
purely radiative field, i.e., a propagating electromagnetic
wave characterized by the only nonvanishing compo-
nent F,.

There is a freedom in the choice of the frame normalized
as (2), given by the local Lorentz transformations. It
consists of a boost k/ = Bk, I’ = B!l which determines
the distinct boost weights +1, 0, —1 of (25), respectively.
The second Lorentz transformation is a null rotation with
fixed k of the form

m’ =m + V2LKk.
(32)

k'=k, V=1++v2Lm+ L2k,

There is also an analogous null rotation with fixed 1 which
changes k. However, in our case the direction of k is
geometrically privileged (being twist-free and shear-free).
Only (32) thus needs to be considered. It is easy to prove
that the Maxwell scalars (25) transform as

by = o,
¢ = ¢y + V2L,
¢y = ¢y + V2L, + L2, (33)

Of course, the expression (29) 1is invariant since

245647/2 - /12 = 2o — ¢%-

Finally, we need to evaluate the energy-momentum
tensor for a generic electromagnetic field which (in any
dimension, including D = 3) is defined as

Ko
Tab =5 <FachC

1
——gabFz), (34)
8

4

where k; > 0 is a constant depending on the choice of the
physical units. Interestingly, in arbitrary dimension D > 3
the Maxwell field satisfies all the standard energy con-
ditions; see Proposition 21 in [19].

A straightforward (but somewhat lengthy) calculation
reveals that

87
—T,, = Gngxv
Ko
8
_Trx = GzFrx(gxxFru - guxFrx)’
Ko
8 1
_Tru = _Gz(gxszu - guuF%x)7
Ko 2
87 1, )
K_OTxx = _Frx(guxFru —+ Fux) + EG (29L2¢x - gxxguu)Frx
1
Zg. F? ,

+ ngx ru
87 1
_Tux = _Gz[guxguuF%x - 2gxxguuFruFrx
Ko 2

+ gxxFru(guxFru - ZFM)L
8z L o 2
K__OTuu = EG [2Fux + 2gut,tFr)chr + guuFrx - 4guxFruFux

- ZguxguuFerru + (29124x - gxxguu)F%uL (35)
and the corresponding trace T = ¢*’T,,, is

&n
—T = GzFrx(guxFru

1
- Fux) - 7G2(gxxF%u + guuF%x)'
Ko 2

(36)

Now, it is a nice fact that, by combining (35) with (36) as
T . — T gy, the result for all components can be written in a
simple factorized form as

8
 (Tup = Tgay) = G*F,F), (37)
Ko

in terms of the functions F, encoding the electromagnetic
field, which we have introduced in (14)-(16).

IV. EINSTEIN-MAXWELL FIELD
EQUATIONS WITH A

Having identified all three-dimensional Lorentzian
geometries—which can be written in the canonical form
(3)—and also the generic form of the electromagnetic field
(10) with the energy-momentum tensor of the form (35)
implying (37), we can now apply the field equations.

064004-4



ALL SOLUTIONS OF EINSTEIN-MAXWELL EQUATIONS WITH ...

PHYS. REV. D 105, 064004 (2022)

Einstein’s equations are R, — %Rgab + Agy, = 87T,
in which we also admit a nonvanishing cosmological
constant A. Their trace is R = 2(3A — 8xT), so that the
equations can be put into the form R,, =2Ag,,+
87(T 4 — Tg,p)- For the generic electromagnetic field F,,
we have derived the nice relation (37), and thus the Einstein
field equations in 2+ 1 gravity with A, coupled to an
electromagnetic field, are simply

Rup = 2Agap + koG*F ,F ), (38)

where the functions F, are defined by (14)—(16). Expressed
in terms of the dual Maxwell field *F 1-form components [see
(21) and (20)] these are even simpler, namely

Ry = 2Agap + k0"F " F). (39)

In addition to these equations for the gravitational field
represented by the metric g,,, we must also satisfy the
Maxwell equations d*F = 47*] and dF = 0 for the electro-
magnetic field F ;. In the absence of electric charges and
currents, in components these read F® b =0, Flap,e) = 0.
They are equivalent to

(V=9F®), =0, (40)
Flape =0, (41)

where, using (18),

V= Vi =G #2)

Recall also that the source-free Maxwell equation
d*F = 0, which is equivalent to (40), in components reads
*Flap) = 0. In view of (20), it can be directly written as

(GFo) ), = (GF)) 4 (43)

Our task is to completely integrate the coupled system of
the field equations (38) and (40), (41) [or, equivalently, (43)
instead of (40)] in 2 + 1 dimensions for (3) and (10), both for
the nonexpanding Kundt spacetimes (Sec. V) and the
expanding Robinson-Trautman spacetimes (Sec. VI and
Sec. VII). Explicit components of the Ricci tensor R,
which enter (38), for these twist-free and shear-free geom-
etries are given by Eqs. (A24)—-(A29) in the Appendix.

A. Einstein field equations with a massless scalar field

Let us also remark that in three dimensions there is a
relation between the Einstein-Maxwell system (39) and the
Einstein gravity equations (minimally) coupled to a mass-
less scalar field ® such that

g, = 0. (44)

Indeed, the corresponding energy-momentum tensor reads
1 c
Tab = q),aq),b - Egabq),cq)’ ’ (45)

implying the trace 7 = —%d)’cd)"'c, so that the Einstein
equations R, = 2Ag,, + 87(Ty, — Tg,;,) become

Ry =2A g, + 87D, @ . (46)

With the identification

Ko
O, ,=,/—"F 47
.a Sﬂ as ( )

this system of equations is clearly equivalent to (39). The
dual Maxwell field 1-form is thus

I8
F =, L do. (48)
Ko

V. ALL KUNDT SOLUTIONS

In this section, we explicitly perform a step-by-step
integration of the field equations in the nonexpanding case
® =0, which defines the Kundt family of spacetimes.
Recall a consequence of (8) and (9), namely that the
function G is now r independent. It can be renamed as
G(u,x) = P(u, x). Also, the one-dimensional spatial met-
ric g,, = G~2 must be r independent, that is

o = P72 (u, x). (49)

Of course, ¢** = P>. Now, we will employ the Einstein
field equations (38), which for the Kundt spacetimes take
the form

Rab = 2Agab + K'0P2Fan. (50)

A. Integration of R,, = P>F?

In view of Eq. (A24), R,, = 0 for ® = 0. Therefore, this
Einstein equation immediately requires F, = 0, that is

F,. =0. (51)

It means that, inevitably, any electromagnetic field in the
2 4+ 1 Kundt spacetimes must be aligned with kK = 0,.. Such
fields are fully described by the functions

Fr:()’ Fx:P_zFrw Fy = 9uFr— Fu (52)
There are only rwo possible components of the electro-
magnetic field, namely F,, and F,,.
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In fact, this result is analogous to the situation in standard
3 + 1 general relativity, for which it is well known that (due
to the Mariot-Robinson theorem) any Einstein-Maxwell
field (including a cosmological constant A) in the Kundt
class of geometries must be aligned; see the introductions
to Chapter 31 of [10] and Chapter 18 of [11].

B. Integration of R,, =k P*F,F,
The Ricci tensor component (A25) for ® = 0 reduces to
R, =— %gux,,,. Since F, = 0, we obtain a general solution
of this Einstein equation:

Gux = e(u, x) + f(u, x)r, (53)

where e and f are arbitrary functions of « and x. In view of
Egs. (4) and (49), the corresponding contravariant compo-
nent of the Kundt metric is

g~ = P*e(u,x) + f(u,x)r]. (54)

C. Integration of R,, = —2A +kP*F,F,

Using Egs. (49) and (53), the Ricci tensor component
(A26) is Rru = _%guu.rr + %Pz(‘fo +f2), where

f||fo,x+%f<=>PfoE (Pf) . (55)

Actually, the symbol | denotes the covariant derivative (of
a 1-form f) related to the spatial metric g,, on the one-
dimensional “transverse” subspace with constant u and r,
namely f, = f,— 5. f, where I}, =1g%g,,, is the
corresponding Christoffel symbol (see the Appendix).
Although this notation seems to be superficial here, we
employ it in order to see the relation to our previous studies
[20-22] of Kundt and Robinson-Trautman spacetimes in
any higher dimension D > 4 where this geometric notation
plays a key role.

Because F, =0, the corresponding Einstein equation
thus simplifies, and can be integrated to

Guw = a(u,x) + b(u,x)r + c(u, x)r?, (56)

where a(u,x) and b(u, x) are arbitrary functions, while

c(u,x) EZA—l—%PZ(fHX—I—fZ). (57)

D. Integration of the Maxwell equations

The crucial r dependence of all metric functions for the
2 4 1 Kundt spacetimes is thus determined. In general, g,
is quadratic, g,, is linear, and g,, = P~%(u, x) is indepen-
dent of r. Now, applying the Maxwell equations (40), (41)

with /=g = P~!, we will determine the r dependence of
the electromagnetic field.

In the present setting, there are only four independent
Maxwell equations, namely three components of
(/=gF“), =0 and just one component of Flape) = 0.
Because (13) with (52) implies

F=-F,,, Fr*= Pz(guxFru =0,

(58)

_Fux)7

these four equations for the electromagnetic field have the
form

Fru,r =0, (59)

(guxFru - Fux),r =0, (60)
Fru

(P(guxFru - Fux)),x = ( P ) ’ (61)

Fux,r + Fru.x =0. (62)

These equations can be completely solved for the two
nontrivial components F,, and F,,. Starting with (59), we
immediately obtain that

Fru = Q(M,X), (63)

where Q(u, x) is an arbitrary function independent of r. By
employing (62), we thus get

Fu = _Q,xr - f(u,x), (64)

where &(u,x) is another arbitrary function. Equation (60)
gives the constraint

Q.x = _fQ7 (65)
and (61) reduces to the equation
(@
Pleo+9).= (2) . (66)

To summarize, by integrating all the Maxwell equations
we obtained explicit components of the (necessarily
aligned) electromagnetic field in any 2 + 1 Kundt space-
time,

F.=0, F.. =0, F,=f0r-¢ (67)
where the functions Q(u, x) and £(u, x) are constrained by
Egs. (65), (66). Consequently,

F,=0,

Fx:P_2Q7 Fu:eQ+§’ (68)
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and, due to (26)—(28),

¢y = P(eQ +&). (69)

$o =0,
When ¢y =0 Q =0, the field is null, and then
¢, = PE. When ¢, =0 eQ = =¢, it is non-null, and
then ¢, = Q.
Now, we can integrate the remaining three Einstein
equations, which impose the unique relation between the
gravitational and electromagnetic field components.

E. Integration of R, =2Ag,, +x,P*F?

For ® = 0, using Eqgs. (A36) and (53), the Ricci tensor
component (A27) reduces to R, = —f = —(f|x +3/7).
The field equation R,, = 2Ag,, + koP*(P72Q)* = (2A +
ko Q?)P~2 implies

KOQZ——[2A+P2<f||x+%f2>:|. (70)

The electromagnetic field component F,, = ¢; = Q(u, x)
is thus explicitly determined by the cosmological constant
A and by the metric functions P, f [provided the right-hand
side of (70) is non-negative]. It is now convenient to
introduce a rescaled form of f entering the metric function
Gux = e + fr [see (53)], namely

F = P?f%. (71)
Then the field equation (70) can be rewritten as
1
P2 (fx + f?) =5 F = 2A — ko Q. (72)

2

We can thus simplify the metric function g,,, namely its
coefficient ¢ in (56) given by (57), to

1
c(u, x) —A+-F-2002

4 2 (73)

At this stage, the most general Kundt solution in D =3
takes the form

, dx?
ds® = 3 +2(e + fr)dudx — 2dudr

1
+ [a—l—br—i— (A+ZF—K—20Q2)}’2:|du2, (74)

and the Einstein-Maxwell field equation (72) using (55)
reads

P(Pf), = —(2A+%F+K0Q2>. (75)

F. Integration of R,, =2Ag,, +x,P>F,F,
Equation (A28) with ® = 0 for the metric (74) gives
Rux = %[fu - b,x - €P2(f||x +f2) _f(lnP>,u] _%[(F_
2600%)  + 2f P2(fy + f?)]r. Applying (72) and (68),
(53), the corresponding field equation R, = 2Ag,, +
koQ(eQ + &) = 2Ae + ko(eQ? + Q&) + 2Afr splits into

two conditions, resulting from the coefficients for the
1

powers r' and 7, namely
F = 2(0%) , + (F —4A — 26,0%)f = —8Af. (76)
f,Ll - b.x - <;F_ 2N - K0Q2>€ _f(lnp)ﬁu
= 4Ae + 2ky(eQ? + QE). (77)

Using the field equation (75), Eq. (76) simplifies to
(0%, = —2Q°f which is identically satisfied due to
(65). Only the constraint (77) thus remains, which can
be put into the form

b,=f,—f(InP), —%(F +4A + 2Kk)0%)e — 2k, OF,
(78)

that is

f

b, = P(F) + Pe(Pf) , — 2K00%. (79)

This is an explicit expression determining the metric
Sunction b(u, x).

G. Integration of R, =2Ag,, +x P*F?

For ® = 0 and the Kundt metric (74), using the relation
e|x = e+ eP,/P and similar for f, €0 foufrs x>
b« and c|, (see the Appendix), the last Ricci tensor
component (A29) reads

R,, = A+ Br+Cr?, (80)
where
1 1 1 P
A=a|lc—ZF ) +P*—= = -
a<c > )—l— [2a,xx+2a7x<f P>
1 P, P,
A

P P, P2
+(fu—b,—ce)e+ (e,ux—k?xe.u) + P —2P—'4},

(81)

064004-7



JIRf PODOLSKY and MATUS PAPAJCIK

PHYS. REV. D 105, 064004 (2022)

1 1 1
B = b(c —EF—EP(Pf)’x) + P? [(f _Eb”‘)x

lb P,x
+( “73 ’x> (”?)

—c<e +I; +§;3>—26(c7x+fc)}, (82)

1 1 P
C=c(c—F)-P? [Ec,” +§c,x<3f+7j‘>

+c<f,x+%f+%f2)]. (83)

Due to (56), (68), the corresponding field equation is
R, = 2A(a+ br+ cr?) + kgP*(eQ + &)?, which splits
into the following three constraints:

A =2Aa + koP2(eQ + &), (84)
B = 2Ab, (85)
C = 2Ac. (86)

From (73), (75), (65) we easily derive interesting
identities for spatial derivatives of c,

Cy= —fC, Crxx = (f2 - f,x)c‘ (87)

By using (87), the expression (83) reduces to C =
cle =3F -4 P(Pf),], and substituting from (73), (75) we
obtam C = 2Ac. Equation (86) is thus identically satisfied.
Surprisingly, Eq. (85) is also identically satisfied.
Applying (75), the first term in (82) yields 2Ab, while
the complicated combination of various terms in the square
brackets vanishes by using the relations (87), (78), (73) and
the field equations (65), (66). Therefore, B = 2Ab, which
is Eq. (85).
We are thus left with only one equation, namely (84).
Using (70), (73), (75), and (78), it can be simplified to

axx_a.x(f_%) _a<f,x+%f>
P, P
:—b<e,x P e—I—P3> +2<

- Pe*(Pf)  +2 f—+2<

P,x
7e,u

Juu P2
— 2?) - 2K052

(88)

This equation determines the last metric function a(u, x).

Alternatively, it can be understood as an explicit expres-
sion for the &(u,x) component of the Maxwell field, in
terms of the metric functions P, e, f, a, b. Such an equation
can be expressed in a covariant form as

P
2K0§2 = —d|xx + (fa)Hx —-b <e||x P3> + 2( )Hx

uu qu
— P 2fx+2ef—+2<P3 —2—) (89)

where a|, = a . + %a’x andy |, =y, +yP,/P, fory

representing a ,, f, e, and e ,.

H. Summary of the Kundt solutions

We have thus solved all the Einstein-Maxwell equations
with a cosmological constant A in 2 4 1 gravity for the
complete Kundt family of nonexpanding spacetimes. The
generic gravitational field of this type is

Gx = P_Z(M,X),
gllX = (u’ x) +f(u’ 'x)r
Guw = a(u, x) + b(u, x)r + c(u, x)r?, (90)
where
c—A—|—4F——Q2 (1)
with
F=p (92)

cf. (73), (71),while the electromagnetic field (67) reads

F,.. =0,
= Q(u,x)
Foo= flu,x)0(u,x)r —

"q

E(u, x). (93)
Written explicitly in a compact form,

dx 2
ds? = 3 +2(e + fr)dudx — 2dudr

1
+ <a brt (A 4 F —K20Q2>r2>du2, (94)
and
F = Qdr Adu+ (fOr —&)du A dx, (95)
corresponding to the potential
A = A,dr+ A,dx, (96)

where, considering (65),
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A,E—/Qdu, szr/deu—/gdu. (97)

It is now important to recall the Maxwell scalars given
by (69),

$o = 0.
$ =0,
¢y = P(eQ + ). (98)

We have thus proved that all electromagnetic fields in the
Kundt spacetimes in 2 + 1 gravity are necessarily aligned
(¢po = 0). Moreover, they split into two distinct subclasses:
(i) The case ¢p; =0< Q = 0: The field is null, in
which case ¢, = P¢ and F,, = —¢, so that

F = —&du A dx. (99)

(i) The case ¢ = 0 & & = —eQ: The field is non-null
with only ¢; = Q, corresponding to

F = Qdr Adu+ Qe+ fr)du Adx.  (100)

Notice also that, applying the Lorentz null rotation (32)

with fixed k and the uniquely chosen parameter L =

—%eP in (33), the scalars (98) transform to

#y =0,
¢,1 = Q’
# = PE. (101)

Therefore, with respect to the triad with m’ = m+
V2Lk = P(9, + frd,), the condition for the Maxwell
field being non-null is ¢, =0 & £ = 0.

The two electromagnetic components Q, & and the five
metric functions P, e, f, a, b describing the gravitational
field are mutually constrained by the following Einstein-
Maxwell field equations:

0.=-f0. (102)
_ (2

(QPe +P¢) = (;) : (103)

P(Pf), = —<2A+%F—|—K0Q2), (104)

b, = P(%) + Pe(Pf) , — 2K, 0¢, (105)

P,uu qu )
3 —ZF —2K0§;

— P& (Pf) , + 2ef& +2
* P P

(106)

see Egs. (65), (66), (75), (79), and (88).

Interestingly, the form of the electromagnetic field (95)
and also the same field equations (102)—(106) can formally
be obtained by setting D = 3 in the corresponding equa-
tions for higher-dimensional Kundt spacetimes with an
aligned Maxwell field [12].

Let us now separately discuss two geometrically distinct
subclasses, namely f = 0 and f # 0.

1. The subclass f=0

From (92) it follows that f =0« F =0, so that
Egs. (102)—(106) considerably simplify to

0.=0, (107)
(QPe +P¢) , = (%) (108)
K002 = —2A, (109)
b= —2k00¢, (110)

(Pa). = -b((Pe). +74) +2APe.),
+ 2(%) 2P (111)

In this case, Q is necessarily a constant, and A < 0 because

2A = —xy Q. (112)
Therefore, the electromagnetic component ¢; is also
independent of u and x,

[ 2
Fo=d=0= _K_()A

Keeping both the functions P(u, x) and &(u, x) arbitrary,
Eq. (108) determines the metric function e(u, x). Moreover,
the function b(u, x) is directly determined by the spatial
integral of ¢ via (110). Finally, integrating (111) we
obtain a(u, x).

Thus, we have obtained a complete and explicit family of
such electrovacuum Kundt spacetimes in 2 4 1 gravity,
namely

(113)
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ds? = dP_x; + 2edudx — 2dudr + (a + br 4+ 2Ar?)du?,
(114)
and
F = Odr A du — &du A dx. (115)

It admits four physically distinct subcases:
(i) The case Q = 0 = &: The electromagnetic field F
vanishes, and necessarily A = 0. The metric is

de
ds? =+ 2edudy —2dudr + (a+br)du?, (116)

where b(u) is independent of x. It is a vacuum
solution without a cosmological constant, and thus
in 2 4 1 gravity it must be flat Minkowski space. We
derived this metric in our previous work [1]; see
Eq. (82) with 7 = 0 = N therein.

(ii) Thecase Q = 0: Again, A = 0 and b = b(u), so that
the metric has the form (116), but there is now a
radiative (null) electromagnetic field

F = —¢&du A dx. (117)

The amplitude &(u, x) must satisfy the field equa-

tion (108), which is (P¢) , = 0. Therefore,

r(u) (118)

where y(u) is an arbitrary profile function of the
retarded time u. Finally, a(u, x) is then obtained by
integrating the remaining field equation (111).
(iii) The case & = 0: The electromagnetic field is non-
null, and has the form
F = Qdr A du, (119)
where Q is a constant uniquely determined by
negative cosmological constant A via (113). The
electromagnetic field is thus uniform, and positive
(or zero) A is not allowed.
The metric is of the form (114). The field
equation (110) implies that b = b(u), while the
remaining (108) and (111) reduce to

(Pe) , = —PP; , (120)
(Pa,x>,x = Z(Pe,u),x - 2(Pe).ux' (121)

The latter can be immediately integrated to

2 6(u)
— e, — (P oY)
a.x e,u P( e).u + P ’

(122)
where 5(u) is any function of u. After prescribing an
arbitrary metric function P(u, x), we obtain e(u, x) by
integrating (120), and a(u, x) by integrating (122).

(iv) The general case Q # 0, £ # 0: In the generic case
with both the non-null component of the electro-
magnetic field Q = const and its null component
&(u, x), we obtain the superposition (115). The
metric reads (114), with a cosmological constant
A < 0 [notice that A =0 implies Q =0 due to
(112), while A > 0 is forbidden]. The metric func-
tions a and b are determined by the differential
equations (110) and (111), respectively, and there is
also the constraint (108) determining e.

This family of Kundt spacetimes in 2 4 1 gravity
can be interpreted as mutually coupled exact gravi-
tational and electromagnetic waves [characterized
by the functions a(u,x) and &(u, x), respectively]
which propagate on the background with A < 0 and
uniform Maxwell field (characterized by the constant
Q). The simplest such background is

ds? = dx? — 2dudr + 2Ar2du?,  (123)
which is the 2 4 1 analog of the exceptional electro-
vacuum type D metric with A < 0 found by Ple-

banski and Hacyan [23]; see also Eq. (7.20) in [11].

Indeed, introducingf = 1/(2Au) and V=2(u+1/

(Ar)), the metric (123) takes the form ds? = dx* —

2diUdV/(1 = AUV)? which is clearly the direct-

product E' x AdS, spacetime.

2. The subclass f # 0

Recalling F = P2f?, cf. (92), in this case F # 0. The
Kundt metric takes the general form (94), the aligned
electromagnetic field is (95), and the corresponding
Einstein-Maxwell field equations are (102)—(106).

By inspecting this system, it is seen that the first three
differential equations (102), (103), (104) relate the metric
functions P, e, f and the electromagnetic field components
0, &£. Subsequently, the remaining two equations (105) and
(106) can be used to evaluate the metric functions b and «a,
respectively.

Starting with (102), we immediately observe that there
are two distinct subcases:

(1) The case Q = 0: The electromagnetic field is null

(with ¢ = 0, ¢, = P§),

F = —&du A dx. (124)
The field equation (102) is identically satisfied,
putting no restriction on the function f, while
(103), (104) reduce to
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(i)

P¢ =y(u), (125)

P(Pf), = —<2A + % (Pf)2>. (126)

The first equation determines &, giving the same
expression as (118), i.e., &(u, x) = P~'y(u), while
the second equation can be integrated for the
variable (Pf) in terms of the integral of P!,
yielding

f(u,x) ==2vAP 'tan {\/K/P‘ldx] for A >0,

(127)

and the expression for A < 0 is analogous, replacing
tan by tanh.

In the final step, the metric functions » and a are

obtained by integrating the field equations (105) and
(106), respectively.
The case Q # 0: In this generic case, the field
equation (102) explicitly determines the metric
function f in terms of the electromagnetic field
component Q, which occurs in

F = Qdr Adu+ (fQr —&)du A dx, (128)
as
flu.x) ==(nQ),. (129)

However, there is a further constraint given the field
equation (104),

P(Pf), = —<2A —|—%(Pf)2 +K0Q2>. (130)

Notice that it can also be rewritten as

F, =—f(F+4A + 2x,0?), (131)
or, equivalently,
1
kgQ? = ——[F .+ (F+4A)f]. (132)

2f

It remains to be investigated what are the constraints
resulting from the simultaneous solution of
Eqgs. (129) and (132).

VI. ALL ALIGNED ROBINSON-TRAUTMAN
SOLUTIONS

After completing the derivation and preliminary descrip-
tion of the nonexpanding Kundt class, we will now
concentrate on systematic integration of the field equations
in the expanding case ©® # 0, which defines the Robinson-
Trautman family of spacetimes.

Recall that the field equations (38) take the form

Rah = 2Agah + KOGzFuF/J’ (133)
where F, are defined by (14)—(16). In this section we

assume that the electromagnetic field is aligned with k =
0, [see (31)], that is

(134)

This considerably simplifies the field equations (133)
whenever at least one of the index a, b is r.

A. Integration of R,.=0
From Eq. (A24) we immediately get the constraint

0,+0*=0, (135)
which determines the r dependence of the expansion scalar
®. Its general solution can be written as ©7! =
r+ ro(u, x). Because the metric (3) is invariant under
the gauge transformation r — r — ry(u, x), without loss
of generality we can set the integration function ry(u, x) to
zero. The expansion thus simplifies to

0=-. 136
- (136)
Integrating now the key relation (9) we obtain
P 9
Glrux) = LX) (137)

where P(u, x) is any function independent of r. Using (8),
we immediately get the generic spatial metric function
Gy = G2 in the form

(138)

Of course, by inversion g** = P?r~2,

B. Integration of R,. =0

Using Egs. (A25) and (135), which implies Eq. (136),
the Ricci tensor component R, becomes
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1

Rrx =5 (gux,rr - gux,rr_l)'

5 (139)

The corresponding field equation R,. =0 can be inte-
grated, yielding a general solution

Gue = ()P + f(u.x). (140)
where e and f are arbitrary functions of # and x. In view of
Egs. (5) and (138), the contravariant component of the
Robinson-Trautman metric is

g~ = Pe(u,x) + f(u,x)r™?. (141)

C. Integration of the Maxwell equations

Now, applying the Maxwell equations (40), (41) with
V=9= G~! = r/P, we will determine the electromagnetic
field. There are only four independent Maxwell equations,
namely three components of (,/=gF*") , = 0 and just one
component of F,, . = 0. Because (13) with (134) implies

2

P
F = _Fru’ F = ?(guxFru

- Fux)v F* = 0’

(142)

these four equations for the electromagnetic field take the
form

(rF,0), = 0. (143)

(r_l (guxFru - Fux)),r =0, (144)
> F.,

r 7 = (P(guxFru - ch)).x7 (145)

Fux,r + Fm,x =0. (146)

They can be solved for the nontrivial components F',, and
F .. From (143) we get

Fru = Q(M’X) >
r

(147)

where Q(u,x) is an arbitrary function of u and x. By
employing (146), we thus obtain
Fo=-0 Inlr|—&(u,x), (148)

where £(u, x) is another arbitrary function. Equation (144)
with (140) then reduces to

<f—2Q+ qu1n|r| +§> =0,
r r r

r

(149)

which gives the following three independent constraints:

fo=0, §=0.un

so that £ =0 and Q = Q(u) is independent of x.

We thus conclude that the components of a generic
aligned electromagnetic field in any 2+ 1 Robinson-
Trautman spacetime can be written as

0,=0, (150)

F,=0, F, = Q(r”), Fn=0, (151
with the constraint
fo=0, (152)
and the Maxwell equation (145) which reduces to
<%> =0k, (153)
Consequently,
F,=0, F,.=P2Qr, F,=eQr, (154)
and, due to (26)—(28),
h=0. $=2  p=ero. (15)

When ¢, =0 < Q = 0 then ¢, = 0. Therefore, there are
no null electromagnetic fields of this type. When
¢ =0 eQ =0, it is non-null, and then ¢; = Q(u)/r.
Notice also, that due to (152), either we have a vacuum
solution (Q =0) or a non-null electromagnetic field
characterized by Q(u) in the Robinson-Trautman space-
time without the nondiagonal metric term (g,, = 0).
Now, we will integrate the remaining Einstein’s equa-
tions which couple the gravitational and electromagnetic
fields. In view of (152), there are two cases to consider,
namely Q =0 and f = 0.
(i) The case Q = 0: The electromagnetic field com-
pletely vanishes, so that the spacetimes are vacuum
(with any cosmological constant A). All such
Robinson-Trautman solutions in 2 + 1 gravity were
found and described in our previous work [I].
Interestingly, for these vacuum spacetimes the func-
tion f remains nonvanishing (which is not true
in D > 4).
(i) The case f = 0: In this case, the metric component
g reduces to
Gux = €1’ & g™ = Pe. (156)
This simplifies the generic Ricci tensor components
in the Appendix, which will now apply.
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D. Integration of R,, = —2A

Using (156), (136), and (138), the Ricci tensor compo-
nent (A26) becomes

1 1
Rru = __(rguu,r),rr_l +§Cr_l + 2P2€2’

5 (157)

where

1
¢ =2P? <ex — Eh“’“>’ ex=e,+eP,/P. (158)

from which we obtain useful identities

1

Pe|, = (Pe) ,, ePzeHx =3 (Pzez)’x, (159)

and thus

c =2[P(Pe),+ (InP),]. (160)
With Eq. (157), the Einstein equation R,, = —2A can now
be easily integrated to give

Guu = —a —bIn|r| + cr+ (A + P?e?)r?, (161)
where a(u,x) and b(u,x) are arbitrary functions. The r

dependence of all metric components is thus fully
established.

2
ds? = %dx2 + 2er*dudx — 2dudr + (—a(u) + koQ*(u) In|r| 4 2[P(Pe) . + (In P) ,Jr + (A + Pzez)r2> du?.

E. Integration of R, =2Ag,, +xyG*F>

Using Egs. (135)—(138) and (156), the general Ricci
tensor component (A27) becomes

R =—cP2r=2e*r* + P 2rg, - (162)
Substituting now the expression (161), we obtain
R,. = 2Ag,, — b/ P?. The corresponding Einstein equation
with (154) reads R, = 2Ag,, + koQ%/P?. It is satisfied if,
and only if,

b(u) = -k Q> (163)

F. Integration of R, =2Ag,, +k,G*F,F,

Using Eqgs. (136), (138), (156), and (161) with (163), the
Ricci tensor component R, given by Eq. (A28) reads

1
R, = 2Ag,, + kpeQ? — Ea,xr". (164)

The field equation with (154) is R, = 2Ag,, + koeQ?, so
that we obtain just one simple constraint:

(165)

The function a can depend only on the coordinate u, and
the most general Robinson-Trautman aligned electrovac-
uum solution thus takes the form

G. Integration of R,, =2Ag,, +Kk(G*F?

The Ricci tensor component R, for the metric (166), given generally by Eq. (A29), becomes

1 1
R, =2Ag,, +A+= [a.u— <a—§b>c—Ac] —+=[b,— bc]—,
r r

2

where

1 1 1 1
A = —P%e®b + Zcz +=P?ec, — FCu EA(Pzez) + P(Pe,),—2

2

c is given by Eq. (160), and

Ac=h"c|y = P(Pc,).

(166)
1 Inr
167
. (167)
P, P
—z =l 168
(169)
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is the covariant Laplace operator on the one-dimensional
transverse Riemannian space spanned by x, applied on the
function c. Remarkably, after substitution from (160) and
evaluation, the expression for A enormously simplifies to

A =—P?eb. (170)
Moreover, using the Maxwell equation (153) which can be
rewritten as

1
Q,u = 5 CQ»

(171)
and the relation (163), that is b = —k,Q?, we easily prove
that b, = bc. The last term in (167) thus always vanishes.
To summarize, the last Ricci tensor component takes the
form

1 1 1
R, =2AG,, +xge*P?Q? +§ [aﬂ - <a —§b> c— Ac} —.
’ r

(172)

Using (154), the corresponding field equation reads
R, = 2Ag,, + koe*P?Q?, so that we obtain only one
additional condition determined by the term proportional
to r!, namely

a,= (a + % Q2> c+ Ac. (173)
Let us observe that Eq. (171) implies
c(u)=2(InQ),, (174)

i.e., the function ¢ must necessarily be independent of the
spatial coordinate x. Due to (169), Ac = 0, and the field
equation (173) reduces to

a,= <a +K—20Q2> c. (175)
Its general solution with (174) is
a(u) = Q*(koIn|Q| - ), (176)

where u is any constant. The metric function a(u) is thus
directly related to the electromagnetic field Q(u).

H. Summary of the aligned
Robinson-Trautman solutions

We have solved all the Einstein-Maxwell equations with
a cosmological constant A and aligned electromagnetic
field in 2 4 1 gravity for the Robinson-Trautman family of
expanding spacetimes. In the canonical coordinates, the
generic gravitational field of this type is

Guu = /’lQZ(u) - K0Q2 In

%‘ +2(InQ),r+ (A + P2e*)r?,
(177)

where y is a constant, Q(u) is any function of u, and the
metric functions P, e satisfy the field equation (153), that is

(5) -oer.

The corresponding aligned electromagnetic field reads

(178)

Frx = 0’
FVM = Q(u) ’
-
F,. =0, (179)

see (151); i.e., it has only one component F,,.
Written explicitly in the usual compact form, the
solution is

2
ds? = % (dx + eP2du)? — 2dudr

r

+ <MQ2 — koQ*In

Q' +2(InQ),r+ Ar2> du?,
(180)

with

F= er A du equivalentto “F = %dx + ePQdu,
r

(181)
corresponding to the potential
p
A = QIn—du, (182)
o
and the Maxwell scalars (155)
4)0 =0,
0
¢1 )
r
¢, = ePQ. (183)

It follows that there are no aligned (purely) null electro-
magnetic fields in the Robinson-Trautman spacetimes in
2 + 1 gravity because ¢; = 0 implies ¢, = 0. Moreover,
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¢, =0< eQ =0. Either we have a vacuum solution
(Q = 0) or a non-null electromagnetic field characterized
by Q(u) in the Robinson-Trautman spacetime without the
nondiagonal metric term g, (e = 0).

The simplest e # 0 solution of the field equation (178),
which can be rewritten as

(InP),+ P(eP),= (InQ),, (184)
is

P=1,

e=x(InQ), + a(u), (185)

where a(u) is an arbitrary function of u, yielding the metric
2
ds? = r? (dx + (@ + x(In Q)M)du) — 2dudr

+ </4Q2 — K0 In

%' +2(InQ) ,r+ Ar2) du?.
(186)

Another interesting subclass of the Robinson—Trautman
spacetimes (180) with aligned Maxwell field (181) arises
when both sides of the field equation (178) vanish,
(Q/P),=0<% (eP),=0. Then the metric functions P
and e are both factorized in the coordinates u and x as

a(u)

e=——>—,

O(u)p(x)
where a(u), f(x) are arbitrary functions of the respective
coordinates. Consequently, eP = a(u). [For f=1 we
obtain simply P(u) = Q(u).] In such a case, the metric
(180) takes the form

P = Q(u)p(x). (187)

2 2
ds? = é (% + anu) — 2dudr

+ <,UQ2 — k0% In

?' +2(InQ),r+ Arz) du?,
(188)

and the Maxwell scalars are

o =0, h ==, ¢, = aQ.

Q
r
With respect to the natural triad (6), there are thus two
components of the admitted Maxwell field, namely non-
null component ¢; and the electromagnetic radiation ¢,
(¢, # Orequires @ # 0). However, let us remark that, due to
the freedom in the choice of the local null triad, under
which the Maxwell scalars transform as (33), at a given
point there exists a special triad in which ¢, = 0.

There is a special case Q = const, for which the metric
(188) simplifies to

2
ds? = r? (dgo + a(u)du) — 2dudr

+ <m —ko0Q%In

9‘ + Ar2> a2, (189)
r

where the rescaled constant reads m = Q”u, and the new
coordinate is

1 dx

NANEL (190)

@

For a(u) =0 (that is, without the electromagnetic
radiation component), and for compact coordinate ¢, this
family of spacetimes represents charged black holes with
any value of the cosmological constant A. Indeed, by
introducing the time coordinate ¢ via the transformation

du = dt + <m — koQ%In

-1
g‘ +Ar2> dr, (191)
.

we obtain the metric

ds? = — (—m +KkoQ% In g‘ - Ar2>dz‘2
r
dr?
+ + r’de?, 192
—m+xo0*In|¢| - Ar ? (192)
with the electromagnetic field

Q , r
F=—=drAdt correspondingto A =QIln—dr. (193)

r ro

This is the standard form of cyclic symmetric, electrostatic
solution with A in polar “Schwarzschild” coordinates found
by Peldan in 1993 [24], see Eq. (11.56) in [6], which
extended previous solutions by Gott, Simon and Alpert
[25,26], Deser and Mazur [27], and Melvin [28] to any
cosmological constant; see also Garcia [29]. A thorough
review and discussion of this class of solutions is contained
in [30] and also Sec. 11.2 of [6].

For a(u) # 0 the spacetime (189) in general contains
additional electromagnetic radiation component ¢, # 0. It
remains to be analyzed in detail if such a situation can be
physically interpreted as a charged black hole with a
specific radiation, or if the function a(u) is just some kind
of a kinematic parameter.

Similarly, the general Robinson-Trautman solution (180)
with aligned electromagnetic field (181) needs to be
understood and explicitly related to other known solutions
summarized in Chapter 11 of [6], in particular the nonstatic
ones. This seems to be in principle possible because, e.g.,
for e # 0 the transformation (191) introduces the metric
component g,, typical for stationary spacetimes.
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VII. ALL NONALIGNED ROBINSON-TRAUTMAN
SOLUTIONS

After completing the systematic derivation of all aligned
electromagnetic fields in the family of expanding Robinson-
Trautman geometries, we now investigate the possible
nonaligned fields.

The Einstein—Maxwell equations are (133), in which the
functions F, are defined by (14)—(16). The generic non-
aligned electromagnetic field has ¢y #0 <o F,, #0 <
F,.#0.

A. Integration of R,, =x,G*F?

Using Eq. (A24) for the Ricci tensor component R,,., we
obtain the constraint

KOF% = _gxx(®$r + 92)7 (194)

where ® # 0 is the optical scalar representing the expan-
sion of the privileged null congruence generated by k = 0,.
Let us recall that it is directly related to the spatial metric
function g,, via the relations

with ® = —(InG) , = —%’;

G =G (195)
see (8), (9). Therefore, the metric component g,, must
necessarily depend on the coordinate r, otherwise ® = 0.

It is possible to substitute from (195) into (194), but we
found it more convenient to keep the expansion scalar ® in
(194). This equation explicitly expresses the nonaligned
Maxwell field component F,. = F, in terms of the metric
component g,, (and its r derivatives via G). This relation
can be rewritten as

koF2, = G20®? <(®‘1),r - 1). (196)

Notice that (in the Robinson-Trautman family)
F,.=0% 07! =r+ry(u,x). This fully corresponds to
the previously studied aligned case, for which (136)
applies.

B. Integration of R,, =k(G*F,F,

Using Eq. (A25) for the Ricci tensor component R, and
(194), we get the relation

1
5 (Ggux,r - gux,rr) = KOGZFr(Fx + guxFr)‘ (197)
In view of (14), (15), this is equivalent to
1
KOFruFrx = 5 (®gux,r - gux.rr)' (198)

Therefore, by prescribing any metric function g,,,
the electromagnetic field component F,, is explicitly
determined.

Notice that it admits a special solution F,, =0 <
O,x.r = Gux..r- This occurs either when g, is independent
of the coordinate r,

Gux = B(u. x), (199)
or, using (195), when © = (In G‘l)’, = (Ing,, ), which
can be completely integrated as

Ixx = A<u’x) (guxf)z’ (200)

where A > 0 is any function independent of r.

C. Integration of R,, = —2A +x,G*F,F,

The generic Ricci tensor component R,, is given by
(A26), so that the corresponding Einstein-Maxwell field
equation becomes

1

1 rx 1 X 2
- Eguu,rr + Eg Guxr + ng (gux,er + (gux,r) )

1
- ®,u - 5®(gxxgxx,u + grxgux,r + guu,r)

= —2A + xG*F,F,,. (201)
This uniquely determines the third electromagnetic field
component (16) represented by F,. Using (14)—(16) and
then (194), (198), the last term on the right-hand side can be
expressed as

K0G2Frx(guxFru - Fux - guuFrx)
= KO.ngruFrx - KO.gxxFuxFrx - KogxxguuF%x

1
= _KngxFuxFrx + Egrx(ggux.r - gux,rr) + guu<®,r + 82)

(202)

The field equation (201) thus reads

1
= _gxx(guu,rr + ®guu,r + 2(®,r + ®2)guu - 4A)

KOFuxFrx )

+ gux(®gux,r - gux,rr) (gux,er + (gux,r)z)

1
2

1
+ 5 G)gxx.u =+ gxxG,u' (203)

By prescribing any metric function g,,, the third electro-
magnetic field component F,, is thus explicitly determined.

To summarize, by employing three (out of six) inde-
pendent components of the Einstein field equations, we
have now derived explicit expressions (196), (198), and
(203) which determine all three components of the
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electromagnetic field, namely F,, F,,, and F,,, respec-
tively, in terms of the three (so far) independent metric
components g, g, and g,,.

These three expressions are equivalent to Eqgs. (194),
(197), (201) for the three dual electromagnetic functions
F,="F,/G. They can be written in a very compact form:

koF? = a, (204)
KOFrFx = ﬁ — OGyx» (205)
koF,.F, =7, (206)

where the functions a, f3, y are useful shorthand for the
combination of the three metric functions:

a= _gxx(g,r + 62)’ (207)
1
ﬁ = ngx<®gux,r - gux,rr)v (208)
1 2
V= 5 gxx(4A - guu,rr) + GuxGux,rr Gux.r|x + (gux,r>
- 29xx®.u - ®(gxx,u + GuxGux.r + gxxguu,r):| . (209)
Consequently,
F,= 1’ Fx:<é_gux)Frv Fu:ZFr‘ (210)
\ %o a a

Let us recall that a is fully determined by g,,, the
function S is determined by g,, and g,,, while the third
metric component g, enters only 7.

D. The Maxwell equations

As the next step, we apply the four independent Maxwell
equations in the form (43) and (41), namely
(GF,), = (GFy)

and Fux,r + Fru.x - Frx,u =0,

(211)

which restrict the possible electromagnetic field and its
coupling to the gravitational field. For explicit evaluation of
the partial derivatives with respect to a,b = {r,u,x} we
employ the expressions directly following from (195) and
(204)—(206), implying (210), namely

1
Gy=-=GCgua
\a 2 gxx,a

F 1 /1
= —a s
r.a koF, \2 .a

(212)

(213)

Fo_ 1
x,a _KOFr

(60-agu)a =5 6-an0®). @14

(215)

Using these relations in calculating (GF,) , = (GF,) , for
ab = rx, ru, ux we obtain

G.x a,r _
<a.x +2aG> _2(ﬂ_agux),r + (ﬂ_agux) <a+2®> =0,

(216)
G a
2a—) =2 —4+20)|=0 217
(a,u+aG> y,r+r<a+ ) ! (217)
ax G,x
J/.x—y(Z—E) (f = agur)
a, G
- M) — 0, 218
9o (52 - %) 218)

respectively. Notice that the terms in the large brackets
depend only on g,, = G2 and their derivatives. The last
Maxwell equation (211), using the inversion of (14)—(16),

Frx = Frv (219)
F,. = G2(F, + g..F,), (220)
Fux = gusz(Fx + guxFr) - Fu - guqu (221)
reads
a a G
8.+ (2420 ) — (2 p P
/,x + / 2Gux T ﬂ |:gux,r Gux (2(1 =+ ) (2(1 G >:|
1 Y
- 2—G2 27/.r —a, E — Yuu + ay + 2aguu.r =0.

(222)

The four equations (216)—(218) and (222) put restrictions
on the metric functions, encoded in G, a, f3, y.

E. Remaining Einstein equations
Rab = 2Agab +K0G2Fan
Finally, it is necessary to solve the remaining three

Einstein equations (38) for the components ab = xx,
ux, uu. Using (210) we immediately derive their form:

2

G
Rxx = 2Agxx + ; (/7) - agux)27 (223)
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G2
Rux = 2Agux + ; (ﬁ - agux)% (224)

G2

R, = 2Aguu + ;y2' (225)
Substituting the explicit expressions for the corresponding
Ricci tensor components (A27)-(A29) reveals a rather
complicated system of partial differential equations for the
metric functions which must be solved together with (216)—
(218) and (222).

At this stage, it does not seem possible to find a general
solution of these equations. However, we have achieved a
separation of the variables representing the gravitational
and the electromagnetic field. Indeed, the system of seven
equations (216)—(218), (222), and (223)—(225) with (A27)-
(A29) involves only the three metric functions G, Gus> Guus
encoded also in the functions G and a, f, y defined in (195)
and (207)—(209). After their solution is found, the corre-
sponding three (dual) components of the electromagnetic
field F,, F,, F, are easily obtained by applying the
relations (210). The components F,., F,,, F,, are then
their simple combinations (219)—(221).

F. A simple particular solution

To demonstrate the usefulness of our formulation of the
most general Einstein-Maxwell field equations and also fo
show that the class of Robinson-Trautman 2 + 1 space-
times with nonaligned electromagnetic field is not empty,
we will now derive a special solution of the above system of
equations.

Let us assume that only the nonaligned component F, of
the electromagnetic field is nontrivial, i.e.,

F,—\/KEO;EO, F,=0, F,=0. (226)
The field equations (204)—(206) then imply
B = ag.. =0, (227)
y =0. (228)
Further simplification is achieved by assuming
9ux = 0. (229)

In such a case the condition (227) f = 0 is satisfied due to
(208), while (228) gives

G
Guu,rr — 4\ + 2®u +0 <guu,r - 2%) =0. (230)

The Maxwell equations (216)—(218), (222) reduce to

a, G,
;’ +2 E =0, (231)
ay  ,Gu
;’ +2 ? =0, (232)
a, G + o, +2ag,,, =0, (233)
and the final three Einstein equations simplify as
Ry = 2Agxx, (234)
R, =0, (235)
R, = 2Ag,,, (236)

where

Ri = 9u:9uu(©, + 02) + 26,0 , + O(guxGur + Grru)s
(237)

1 1
Rux = =5 uuxr + _®guu,x’ (238)

2 2

1 1 1
Ruu = Eguuguu,rr + ngxgxx.uguu,r - ngxgxx.uu

1 1 1
- 4 _ X 24 _
2gx YGuu|xx + 4 (gx gxx,u) + D) ®(guuguu,r guu,u)'
(239)

Equations (231) and (232) can be easily integrated,
yielding

a = f(r)G™ = f(r)gu (240)

where f(r) is any function of the coordinate r.
Equation (233) gives the constraint

f/ G u
- . ® - . == O,
Yuu,r <2f Guu G

(241)

in which f” is the derivative of f. It thus remains to solve
(230), (241), and (234)—(236).

Now, combining (240) with the definition (207) we
obtain

®,r+®2 = _f<r)’

which is the Ricatti-type equation for the expansion ©.
Using the substitution ® = z,./z, it can be rewritten as the
linear equation z . + f(r)z = 0. Let us consider here only
the simplest case of a constant f,

f=c2 (242)
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By applying (195) we obtain the explicit solution

0O(r) = Ccot(Cr), (243)
B P(u,x)
G= sin(Cr)’ (244)
_ sin?(Cr)
YGxx Pz(u’x) (245)

(We have applied the coordinate freedom, namely a trivial
constant shift in the coordinate r, to simplify the expres-
sions.) It is now easily seen that for the particular choice

P=1, (246)
Guu = 0, (247)
A=0, (248)

all the remaining field equations (230), (241), and (234)—
(236) are satisfied because R,, =0, R,, = 0,and R, = 0.
We have thus obtained a special Robinson-Trautman
solution,

ds? = sin?(Cr)dx? — 2dudr, (249)

with a nonaligned electromagnetic field.

C C
F, = = ——sin(Cr), F,=0, F,=0,
NI
(250)
that is,
‘F = Ldr. (251)
VKo
Using (219)—(221), this is equivalent to
F ¢ sin(Cr)dr A dx (252)
=— r)dr ,
VKo
corresponding to the potential
A= -1 cos(Cr)dx (253)
= ———cos(Cr)dx.
VKo

By rescaling the coordinates r and u the constant C can be
set to C =1, but we prefer to keep it free because it
represents the value of the electromagnetic field and r is not
dimensionless.

Actually, (249) is the metric 3) on page 133 of [31] for
q = 0, which admits four Killing vectors [see also the
metric (4.1) in [32]].

VIII. FINAL SUMMARY AND REMARKS

In this paper we systematically solved the Einstein-
Maxwell equations with A, obtaining all electrovacuum
2 41 spacetimes. We identified main geometrically dis-
tinct subclasses, and we explicitly derived the correspond-
ing metrics and electromagnetic fields. In particular:

(1) The metric of any such spacetime can be written in

canonical coordinates in the form (3)

ds?> = G2dx? + 2g,,dudx — 2dudr + g,,du’.
(254)

(2) The generic electromagnetic Maxwell 2-form field
and its dual 1-form have three independent compo-
nents (11) and (21), namely

F=F,drAndu+ F,dr Adx+ F,du A dx,
(255)

‘F = G(F,dr + F,du + F dx), (256)
where F.=F ., F,=guF ru=9ucF ros Fu = GuxF ru—
Fux - guuFrX'

(3) In terms of the Newman-Penrose scalars (25) of
distinct boost weights +1, 0, —1, the Maxwell field
invariants F*> = F,,F* and *F?> = *F *F“ are

1
The electromagnetic field is aligned with
k=0 <¢=0cF, =0sF, =0.

Such an aligned field has only two components,
namely ¢, =GF, = G(guxFru - Fux) and ¢ =
G*F,=F,,. In the case when ¢, =0 & F, =0,
the electromagnetic field is non-null, characterized
just by ¢; =F,, Contrarilyy, when ¢; =0
F,. =0, it is null (radiative), characterized just
by ¢ = —GF,.

(4) Evaluating the energy-momentum tensor (34) we
derived that, in terms of these quantities, the
Einstein-Maxwell field equations take a simple

form (38),

Rab = 2Agab + KoGzFan, (258)

(equivalentto R, =2Ag,, +xy*F,*F};)and (43), (41),

(GFa),b = (GFb).a’ F[ab.c] =0. (259)
(5) Inthetriad (6) of the metric (254), all optical scalars of
a congruence generated by the privileged null vector

field k = O, vanish except, possibly, expansion:
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(6)

(N

0 =—(InG),. (260)
There are thus two geometrically distinct classes of
spacetimes to be investigated:
(a) ® = 0, defining the nonexpanding Kundt class,
with the metric function
G=P(u,x), (261)
(b) ® # 0, defining the expanding Robinson-Traut-
man class, with the metric function
G=G(r,u,x). (262)
Keeping the full generality, we explicitly integrated
the coupled system of the field equations (258) and
(259) both for the Kundt and the Robinson-Traut-
man spacetimes. It turned out that, as in standard
3 4 1 general relativity, the Kundt class only admits
aligned electromagnetic fields while the Robinson-
Trautman class admits both aligned and nonaligned
electromagnetic fields. Therefore, we treated these
three distinct families of spacetimes in three separate
sections of our paper, namely Sec. V, Sec. VI, and
Sec. VII, respectively.
All Kundt spacetimes (Sec. V) with necessarily
aligned electromagnetic fields have the form

dx2
ds? = i +2(e + fr)dudx — 2dudr

1
+ <a+br+ (A+4P2f2—KOQ2>r2>du2,

2
(263)
and
F = Qdr A du+ (fQr — &)du A dx, (264)
corresponding to the potential
A =A,dr+Adx, (265)

where A, = — [Qdu and A, = r [ fQdu — [ &du;
see Eqgs. (94)—(97). As summarized in Sec. V H, the
function Q(u, x) represents the non-null component,
while the function &(u, x) represents the null com-
ponent of the Maxwell field. Their relation to the
metric functions P, e, f and a, b is explicitly given
by the Einstein-Maxwell equations (102)-(106). In
Sec. VH we presented a basic description of these
solutions, separately for two geometrically distinct
subclasses f =0 and f # 0.

This large family of nonexpanding Kundt space-
times contains many interesting subclasses which
represent electrovacuum universes and also waves

®)

064004-20

on these cosmological backgrounds. The simplest of
them are gravitational and electromagnetic pp waves
with A = 0. These are defined by the condition
Ky =3 Gap, =0 which requires f =0, b=0,
Q = 0. The field equations (107)—(111) then yield
the explicit metric in the Brinkmann form [33]:

2

d

ds? = 5+ Dedudx — 2dudr + adi®,  (266)

and the coupled electromagnetic wave:
_ WAy, (267)

P(u, x)
corresponding to

A=Adx where A, =-— / g, (268)

P(u,x)

Here y(u) is an arbitrary profile function of the
retarded time u, while the metric function a(u, x) is
obtained by integrating the only remaining field
equation (111).

All Robinson-Trautman spacetimes (Sec. VI) with
aligned electromagnetic fields [for which the metric
function G simplifies to G = P(u,x)/r] can be
written as

2
ds? = % (dx+ eP*du)? —2dudr

Q‘ +2(In Q).Mr—l—Ar2> du?,

r

+ (ﬂQ2 —KkoQ%In

(269)
with
F = Mdr A du  corresponding to
r
A = Q(u)In—du; (270)
o

see Eqgs. (180)—(182). Here u is a constant while the
metric functions P and e satisfy the field equa-
tion (178), that is

(9) — 0(eP),. @71)
P), ,
The dual 1-form Maxwell field reads

w9

F = Fdx + ePQdu. (272)

As summarized in Sec. VIH, the function Q(u)
gives the non-null component ¢, = Q(u)/r of the
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®

Maxwell field. Somewhat surprisingly, there is also
an additional null (radiative) component ¢, = ePQ
when ¢ # 0. However, such Maxwell fields cannot
be purely null because ¢; = 0 implies ¢, = 0.

The simplest e # 0 solution of the field equa-
tion (271) is P =1, e = x(In Q) , + a(u), which
yields the metric (186).

Another interesting subclass (188) arises for fac-
torized P such that P = Q(u)p(x) and eP = a(u).
The special case a =0 and Q = const of these
expanding Robinson-Trautman spacetimes is equiv-
alent to the solution (192), (193),

ds? = —®(r)dr* + _dr2 + r*d¢?
®(r) ’
_ 210 € 2
D(r) = —m + koQ* In| =| — Ar-, (273)
r

which is the family of cyclic symmetric, electrostatic
black holes with A found in [24] and discussed in
Sec. 11.2 of [6].
The complementary class of Robinson-Trautman
spacetimes with nonaligned electromagnetic fields
is presented in Sec. VIL. In this more complex case, the
metric has the form (254) with a general function
G(r,u, x); cf. (262). Moreover, the electromagnetic
field now has a nontrivial component ¢, # 0 <
F,. #0 & F, # 0, which considerably complicates
the solution of the Einstein-Maxwell equations.
Nevertheless, we were able to explicitly express the
generic three components of the Maxwell field
separately in terms (of the combination) of the metric
functions as

Fr: g’ Fx:<é_gux>Frv Fu:ZFW
Ko a a

(274)

where the functions a, f, y are defined in (207)—(209).
Interestingly, « is determined only by g, f is
determined by g,, and g,,, while the third metric
component g,, enters only y.

We also derived a fully explicit form (216)—(218),
(222) of all four Maxwell equations (259). Finally,
there are three remaining Einstein equations (223)—
(225). This system of seven equations involves only
three metric functions. After their solution is found, all
components F,, F, F, of the corresponding electro-
magnetic field are easily obtained using (274). In this
sense, we have achieved a separation of the variables
representing the gravitational and the electromag-
netic field.

Although at present it is not possible for us to
find a general solution to these seven equations, the

formulation of the problem presented here seems to be
useful. This fact has been demonstrated in Sec. VII'F,
where we have explicitly identified a particular
solution with nonaligned electromagnetic field

ds? = sin?(Cr)dx? — 2dudr, (275)
with
Cc . .
F = ——sin(Cr)dr A dx  corresponding to
VKo
1
A = ———cos(Cr)dx. 276

This special exact Robinson-Trautman spacetime
contains electromagnetic field which has only the
nonaligned component F, = (C/,/k;)sin(Cr). It
admits four Killing vectors [31,32,34].

Of course, many questions have remained open. First of
all, it is necessary to find explicit relations to already known
solutions summarized in [6]. Some basic identifications
have already been presented here, namely:

®

(i)

(iii)

@iv)

Maximally symmetric backgrounds (Minkowski, de
Sitter, AdS) are contained both in the Kundt and
Robinson-Trautman class of spacetimes (263) and
(269), respectively.

There are electrovacuum backgrounds in the form of
direct-product geometries, such as the 2 + 1 analog
of the exceptional Plebanski-Hacyan metric with
A < 0 and uniform Maxwell field (123).

We identified the complete family of pp waves in flat
space, which are spacetimes admitting a covariantly
constant null vecor field. In the Brinkmann form
(266) they include the off-diagonal metric terms.
Within the Robinson-Trautman class with aligned
fields we explicitly identified the cyclic symmetric
charged black holes with any cosmological constant
and electrostatic field (273).

Our main problem now is to identify all other known
classes of solutions in 2 4+ 1 dimensions by using specific
invariant geometrical characterizations (such as an alge-
braic structure, symmetries, identification of rotation, and
acceleration of the sources, etc.). Subsequently, explicit
coordinate transformation must be found to relate our form
of the solutions to those derived previously.

After identification of new spacetimes, their geometrical
and physical analysis should be performed. Also, a sys-
tematic integration of the field equations for nonaligned
Maxwell fields in the Robinson-Trautman class is desir-
able. However, these tasks are left for future works.

ACKNOWLEDGMENTS

This work was supported by the Czech Science
Foundation Grant No. GACR 20-05421S. We are also

064004-21



JIRf PODOLSKY and MATUS PAPAJCIK

PHYS. REV. D 105, 064004 (2022)

grateful to the referee for many useful comments and

1
suggestions which helped us to improve this paper. I = EQX *Gux.rs (A12)
APPENDIX: CONNECTIONS AND CURVATURE T}, =0, (A13)
COMPONENTS IN CANONICAL COORDINATES
1
The Christoffel symbols for the general nontwisting I, = 3 [—g"‘guu,r + 7 (2915 — gum)], (A14)
spacetime (3) after applying the condition (7) are
. 1
Frr =0, A = 5 {—g”‘gm,r + fxgxx.u] , (Al5)
rr, = ! + L (A2)
ru zguu,r 2g gux,r’ F;x — _@grxgxx + Sl—‘ix, (A16)
1
F;x = Egux,r + ®gux’ (A3) where
1 G
1 SFxxzf * xxx — —= Al7
rtrm = 5 |:_grrguu~r ~ Juuu + grx<2gux.u - guu,x>:| s (A4) ng I, G ( )
is the Christoffel symbol with respect to the only spatial
. = l {_ 9" Guer = G + G gxx’u} 7 (A5) coordinate x, i.e., co§fficiept of the covariant derivative on
2 the transverse one-dimensional space spanned by x.
| The nonvanishing Riemann curvature tensor components
F)rcx = _G)grrgxx ~ Gux||x + ngx,uv (A6) are then
Ry =—(0, + e’ xx Al8
r = F;qu = F?x =0, (A7) ( . )g ( )
1 1
r‘ﬁu — Eguu’r, <A8) rxru 2gMXJ’V + 2 ngX,r ( )
, | R = =3 Guurr + 39 (G0 (A20)
re. = Egux,ra (AQ) ruru o Juurr Ty ux,r) s
Y, = 0g,,. a10) g 1 Lo v_ oo Lo
xx xx rxux — Egux,rﬂx +Z(gux,r) —0xx9u _E (gxx,u + gxxguu,r)’
I, =0, (A11) (A21)
|
R _ + 1 rx( )2 lgxx +0 1 1 (A22)
ruux — gu[u,x],r 4 9 \Gux,r 4 Gxx.uGux,r Gux,u D) Guux > GuxGuu,r |
1 1 1 1 1 1 1
R — __ _ T 2_ _ P XX 2
uxux 2 (guu)Hxx + gux,uHx 2gxx,uu + 4g (gux,r) 2guu,rexx + 2guu,xgux,r 2 g gxx,ugux,r + 4gx (gxx,u)
1
_§®gxx[grrguu,r + uuu — gm(zgux.u - guu,x)]' (A23)
Finally, the components of the Ricci tensor are
Rrr = _<®,r + ®2)’ (A24)
1 1 5
R, =- Egumrr + §®gux,r + (®r +0 )gum (A25)
1 1 rx 1 X 2 1 X rx
R,, = _Eguu,rr + Eg Gux,rr T ng (gux,rllx + (gux,r) )_G)u - EG)(gx Gex T 97 Guxr + guu,r)’ (A26)
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Rxx = _gxxgrr(®,r + ®2) + zgxx(®,u - grx®’x) + Zgux®,x - fxx + ®[2guxHx + 2gux.rgux + gxx(guu,r - 2grxgux,r) - Zexx]’

1

1
Rux = _Egrrgux,rr

2

1 1 1
+ (S |:guxguu,r A (guugux,r - guu,x) ~ Guxu + _grxgux.rgux + _grxgxx,u:| s

1 1 1
Ruu = _Egrrguu,rr - grxguu.rx - ngxexxguu,r + grxgux,ru - ngxgxx,uu

X 1 1 rr XX rX AFX 2 1 X 1 X 2
+g* gux.ullx_iguu\lxx +§(g gt —=9"g )(gux,r) +§gx gux,rguu,x+1(gx gxx,u)

1
+§® |:_grx(2.gux~u ~ Juux — guxguu,r) + guuguu,r - guu,u:| 5

and the Ricci scalar is

(A27)
1 1 1 1
- Eguu,rx + Egu)nru - Eg |:gux,r||x + (gux~r)2:| + gx <§ Gux,rGux|x — Eexxgux,r> + gux®,u
A28
(A29)

3
R= guu,rr - 2grxgux,rr - ngxgux.er - ngx (gux,r)2+2®,rguu + 4®,u + 2®2guu + ®(2.guu,r + Zgrxgux,r + zgxxgxx.u)' (A3O)

The symbol | denotes the covariant derivative with respect
{0 gyt

Gurlx = Gurx = Jux L (A31)
Gurrlx = Gurrx = Jurr e (A32)
Gurulr = Jurx = G L (A33)
(Gu) fxx = Guwoer = G Ui (A34)

|
where e,, and f,, are convenient shorthand defined as

1
€xx = Gux||x — ngx,u’ (A35)
1 2
fxx = Gux,r||x + 5 (gux,r) . (A36)

The expressions (A24)—(A29) of the Ricci tensor enable us
to write explicitly the gravitational field equations for any
D = 3 Kundt or Robinson-Trautman spacetime.
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