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We present a general solution of the coupled Einstein-Maxwell field equations (without the source
charges and currents) in three spacetime dimensions. We also admit any value of the cosmological constant.
The whole family of such Λ-electrovacuum local solutions splits into two distinct subclasses, namely the
nonexpanding Kundt class and the expanding Robinson-Trautman class. While the Kundt class only admits
electromagnetic fields which are aligned along the geometrically privileged null congruence, the Robinson-
Trautman class admits both aligned and also more complex nonaligned Maxwell fields. We derive all the
metric and Maxwell field components, together with explicit constraints imposed by the field equations.
We also identify the most important special spacetimes of this type, namely the coupled gravitational-
electromagnetic waves and charged black holes.
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I. INTRODUCTION

Recently, in paper [1] we derived the most general
solution of the Einstein equations with a cosmological
constant Λ and also an aligned pure radiation matter field
(possibly gyrating null dust/particles) in three spacetime
dimensions. Here we extend this study to another important
nonvacuum case, which is the presence of an electromag-
netic field. In fact, we explicitly derive all solutions of the
Einstein-Maxwell field equations with any value of Λ.
Formany decades, the 2þ 1-dimensional Einstein gravity

has attracted a great deal of attention. The main reason is that
such gravity theory is mathematically simpler than standard
general relativity because the number of independent com-
ponents of the curvature tensor is much lower. In fact, the
Weyl tensor identically vanishes, and the Riemann and Ricci
tensors have the same number of components. Consequently,
there is no classic dynamical degree of freedom in 2þ 1
spacetimes. The Ricci tensor—directly given by the Einstein
field equations—fully determines the local curvature of the
spacetime. This implies that a general vacuum solution of
Einstein’s equations is just the maximally symmetric
Minkowski, de Sitter (dS), or anti–de Sitter (AdS) spacetime
for Λ ¼ 0, Λ > 0, or Λ < 0, respectively.
Despite such local simplicity/triviality of the 2þ 1

gravity theory, it can serve as a very useful playground
for various investigations, ranging from the black hole
properties and cosmology to high-energy physics and
quantum gravity. While the Einstein equations determine

the spacetime locally, there can be global topological
degrees of freedom reflected in the appropriate domains
of the coordinates employed: It is possible to construct
globally different geometries from locally identical space-
times by various identifications. In the context of black
holes, this has been successfully used for construction of
famous Bañados-Teitelboim-Zanelli (BTZ)-type solutions
with horizons when Λ < 0 by performing nontrivial iden-
tifications of the local AdS vacuum spacetime, pure
radiation solutions, or spacetimes with electromagnetic
field [2–4]. The corresponding topological degrees of
freedom play a crucial role in quantum gravity models
[5]. However, it is still not clear if they represent all possible
nonvacuum spacetimes. It is thus desirable to obtain and
investigate more general exact solutions in the presence of
matter.
Many exact spacetimes in 2þ 1-dimensional Einstein

gravity have already been found. They are nicely summa-
rized, classified, and described in a helpful comprehensive
catalog [6]. Such solutions were found in a great number of
works by making various specific assumptions on their
symmetry, algebraic structure, or other geometrical or
physical constraints. A general study of solutions of
2þ 1-dimensional Einstein-Maxwell theory using the
Rainich geometrization of the electromagnetic field was
presented in [7]. Using a different approach, in this paper
we solve the Einstein-Maxwell field equations generically,
without making any assumption. In fact, we systematically
derive all possible such spacetimes, extending and general-
izing previously known exact electrovacuum solutions.
Specifically, in Sec. II we recall the key result of [1] that

(virtually) all 2þ 1 geometries belong either to the family
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of (nonexpanding) Kundt spacetimes or to the family
of (expanding) Robinson-Trautman spacetimes. We also
present the canonical metric form and the natural null triad.
The related Appendix contains the correspondingChristoffel
symbols and all components of the Riemann and Ricci
tensors. In Sec. III we present the most general electromag-
netic 2-form field in 2þ 1 gravity, together with its dual
1-form, the equivalent Newman-Penrose scalars, and the
energy-momentum tensor. In Sec. IV we formulate the
(source-free) Einstein-Maxwell field equations with Λ,
expressed in a simple form. Section V contains an explicit
step-by-step integration of these field equations in the Kundt
case, while Sec. VI contains an analogous procedure for the
complementary Robinson-Trautman case. In both cases, the
electromagnetic field is aligned with the privileged null
direction of the gravitational field. The resulting complete
families of such spacetimes are summarized in Secs.V H and
VI H, respectively. The distinct family of Robinson-
Trautman geometrieswith nonaligned electromagnetic fields
is presented in Sec. VII, with a specific particular solution
obtained in Sec. VII F. Final summary and further remarks
can be found in concluding Sec. VIII.

II. ALL GEOMETRIES AND THEIR CANONICAL
FORM IN 2+ 1 GRAVITY

In Sec. II of our previous work [1], we investigated
general three-dimensional Lorentzian spacetimes ðM; gabÞ
with the metric signature ðþ þ −Þ. We proved the
uniqueness theorem, namely that the only possible such
spacetimes are either expanding geometries of the
Robinson-Trautman type (with Θ ≠ 0) or nonexpanding
geometries of the Kundt type (with Θ ¼ 0). They are
necessarily twist-free and shear-free; see Theorem 1 in
[1] (this observation was already made in [8]).
In a C1 spacetime there exists a geodesic null vector field

k (defined as a tangent vector of null geodesics at any
point), which in D ¼ 3 is equivalent to hypersurface-
orthogonality; see Theorem 2 in [1]. Recall that the
expansion Θ is the only nontrivial optical scalar,

Θ ¼ ρ≡ ka;bmamb; ð1Þ
which characterizes the properties of a null congruence
generated by k, in a triad eI ≡ fk; l;mg of two null vectors
k, l and one spatial vector m, normalized as

k · l ¼ −1; m ·m ¼ 1: ð2Þ

In [1], we also introduced canonical coordinates
fr; u; xg for all Robinson-Trautman and Kundt metrics;
see Theorem 3,

ds2 ¼ gxxðr; u; xÞdx2 þ 2guxðr; u; xÞdudx
− 2dudrþ guuðr; u; xÞdu2: ð3Þ

These coordinates are adapted to their unique geometry,
namely r is an affine parameter along the null congruence
generated by k, the coordinate u labels null hypersurfaces
(such that ka ∝ u;a) which naturally foliate the spacetimes,
and the spatial coordinate x spans the one-dimensional
“transverse” subspace with constant u and r.
It is also convenient to recall that the nonvanishing

contravariant metric components gab are

gxx ¼ 1=gxx; gur ¼ −1; grx ¼ gux=gxx;

grr ¼ −guu þ g2ux=gxx; ð4Þ

equivalent to the inverse relations

gxx ¼ 1=gxx; gur ¼ −1; gux ¼ gxxgrx;

guu ¼ −grr þ gxxðgrxÞ2: ð5Þ

The most natural choice of the null triad frame fk; l;mg
satisfying (2) is

k¼ ∂r; l¼ 1

2
guu∂r þ ∂u; m¼ 1ffiffiffiffiffiffi

gxx
p ðgux∂r þ ∂xÞ:

ð6Þ

A direct calculation for the metric (3) reveals that
ka;b ¼ 1

2
gab;r. An explicit form of the expansion scalar

(1) thus becomes Θ ¼ kx;xmxmx, implying an important
relation:

gxx;r ¼ 2Θgxx; ð7Þ

For our next investigation it seems convenient to
introduce a new function Gðr; u; xÞ, which fully encodes
the spatial metric function gxx > 0 via the simple relation

G≡ 1ffiffiffiffiffiffi
gxx

p ⇔ gxx ¼ G−2: ð8Þ

The key relation (7) then takes the form

Θ ¼ −ðlnGÞ;r: ð9Þ

Now it immediately follows that for vanishing expansion,
Θ ¼ 0, the function G and thus also the spatial metric
gxxðu; xÞ must be independent of the coordinate r. It yields
the Kundt class of nonexpanding, twist-free, and shear-free
geometries [9–13]. The complementary case Θ ≠ 0 gives
the expanding Robinson-Trautman class of geometries
[10,11,13–18], as summarized in Theorem 4 of our work [1].
The Christoffel symbols and all coordinate components

of the Riemann and Ricci curvature tensors for the general
metric (3), calculated using the relation (7), are listed in the
Appendix.
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III. GENERIC ELECTROMAGNETIC
FIELD IN 2+ 1 GRAVITY

The aim of this work is to systematically investigate all
possible gravitational and electromagnetic fields in 2þ 1
dimensions, solving the coupled Einstein-Maxwell field
equations.
Based on the results summarized in previous Sec. II, all

such spacetimes can be conveniently written in the canoni-
cal coordinates fr; u; xg for the general metric (3).
Consequently, generic electromagnetic field takes the form
of an antisymmetric 3 × 3 Maxwell tensor

Fab ¼

0
B@

0 Fru Frx

−Fru 0 Fux

−Frx −Fux 0

1
CA; ð10Þ

which is equivalent to considering the 2-form
F ¼ 1

2
Fabdxa ∧ dxb, that is explicitly

F ¼ Frudr ∧ duþ Frxdr ∧ dxþ Fuxdu ∧ dx: ð11Þ

The field has only three independent components. These
can be obtained from the electromagnetic potential 1-form
A ¼ Aadxa by the standard relation

F ¼ dA: ð12Þ

Using (4), the corresponding contravariant components
Fab ≡ gacgbdFcd read

Fru ¼ −
Fx

gxx
; Frx ¼ Fu

gxx
; Fux ¼ −

Fr

gxx
; ð13Þ

where the useful functions are

Fr ≡ Frx; ð14Þ

Fx ≡ gxxFru − guxFrx; ð15Þ

Fu ≡ guxFru − Fux − guuFrx: ð16Þ

In fact, these three functions are directly related to the
components of the dual Maxwell field 1-form �F ¼ �Fadxa

defined using the Hodge star operator,

�Fa ≡ 1

2
ωabcFbc; where ωabc ¼ 1ffiffiffiffiffiffi−gp εabc: ð17Þ

Here g denotes the determinant of the metric gab, while εabc

is the completely antisymmetric Levi-Civita symbol, for
which we employ the convention that εabc ¼ εabc ≡þ1 if
abc is an even permutation of rux, it is −1 for odd
permutation of rux, and 0 otherwise. For the metric (3) we
immediately get

−g ¼ gxx ≡G−2; ð18Þ

and in view of (10) we obtain

�Fr ¼ GFux; �Fu ¼ −GFrx; �Fx ¼ GFru: ð19Þ

Using (14)–(16), the corresponding covariant components
�Fa ¼ gab�Fb are

�Fa ¼ GFa; ð20Þ

so that the dual 1-form Maxwell field reads

�F ¼ GðFrdrþ Fuduþ FxdxÞ: ð21Þ

For completeness let us also recall the inverse relation
to (17),

Fab ¼ −ωabc
�Fc where − ωabc ¼

ffiffiffiffiffiffi
−g

p
εabc ¼ G−1εabc:

ð22Þ

Next, it is necessary to evaluate the electromagnetic
invariants

F2 ≡ FabFab; �F2 ≡ �Fa
�Fa: ð23Þ

A direct evaluation yields

F2 ¼ −2�F2 ¼ −2G2ðguuF2
rx þ 2FrxðFux − guxFruÞ

þ gxxF2
ruÞ: ð24Þ

Moreover, Fab
�Fa�Fb ¼ 0 due to the symmetry reasons.

Similarly as for general relativity in D ¼ 4, it is
convenient to define Newman-Penrose scalars of the
Maxwell field by its three independent projections onto
the frame (6),

ϕ0 ≡ Fabkamb;

ϕ1 ≡ Fabkalb;

ϕ2 ≡ Fabmalb: ð25Þ

Explicit calculation reveals that

ϕ0 ¼ GFrx ¼ GFr; ð26Þ

ϕ1 ¼ Fru ¼ G2ðFx þ guxFrÞ; ð27Þ

ϕ2 ¼ G

�
guxFru − Fux −

1

2
guuFrx

�
¼ G

�
Fu þ

1

2
guuFr

�
;

ð28Þ

so that the invariant can be expressed as
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1

2
F2 ¼ 2ϕ0ϕ2 − ϕ2

1: ð29Þ

These scalars have distinct boost weights þ1, 0, −1,
respectively, and can be used for invariant algebraic
classification of the electromagnetic field [13], based on
its (non-)alignment with the geometrically privileged null
vector field k ¼ ∂r of the metric. By definition the field is
aligned if its component with the highest boost weight
vanishes. From (26) we immediately observe that

electromagnetic field is aligned with k

⇔ ϕ0 ¼ 0 ⇔ Frx ¼ 0 ⇔ Fr ¼ 0: ð30Þ

It can also be shown that this is equivalent to the special
property of the field, namely

Fabkb ¼ N ka: ð31Þ

Such an aligned field has just two components, namely
ϕ1 ¼ Fru and ϕ2 ¼ GðguxFru − FuxÞ, and F2 ¼ −2ϕ2

1.
When ϕ1 ¼ 0 ⇔ Fx ¼ 0, the field is null. When
ϕ2 ¼ 0 ⇔ Fu ¼ 0, it is non-null.
In the case when the electromagnetic field is both aligned

and null, the invariant vanishes, F2 ¼ 0. This describes
purely radiative field, i.e., a propagating electromagnetic
wave characterized by the only nonvanishing compo-
nent Fux.
There is a freedom in the choice of the frame normalized

as (2), given by the local Lorentz transformations. It
consists of a boost k0 ¼ Bk, l0 ¼ B−1l which determines
the distinct boost weights þ1, 0, −1 of (25), respectively.
The second Lorentz transformation is a null rotation with
fixed k of the form

k0 ¼ k; l0 ¼ lþ
ffiffiffi
2

p
LmþL2k; m0 ¼mþ

ffiffiffi
2

p
Lk:

ð32Þ

There is also an analogous null rotation with fixed l which
changes k. However, in our case the direction of k is
geometrically privileged (being twist-free and shear-free).
Only (32) thus needs to be considered. It is easy to prove
that the Maxwell scalars (25) transform as

ϕ0
0 ¼ ϕ0;

ϕ0
1 ¼ ϕ1 þ

ffiffiffi
2

p
Lϕ0;

ϕ0
2 ¼ ϕ2 þ

ffiffiffi
2

p
Lϕ1 þ L2ϕ0: ð33Þ

Of course, the expression (29) is invariant since
2ϕ0

0ϕ
0
2 − ϕ02

1 ¼ 2ϕ0ϕ2 − ϕ2
1.

Finally, we need to evaluate the energy-momentum
tensor for a generic electromagnetic field which (in any
dimension, including D ¼ 3) is defined as

Tab ≡ κ0
8π

�
FacFb

c −
1

4
gabF2

�
; ð34Þ

where κ0 > 0 is a constant depending on the choice of the
physical units. Interestingly, in arbitrary dimension D ≥ 3
the Maxwell field satisfies all the standard energy con-
ditions; see Proposition 21 in [19].
A straightforward (but somewhat lengthy) calculation

reveals that

8π

κ0
Trr ¼ G2F2

rx;

8π

κ0
Trx ¼ G2FrxðgxxFru − guxFrxÞ;

8π

κ0
Tru ¼

1

2
G2ðgxxF2

ru − guuF2
rxÞ;

8π

κ0
Txx ¼ −FrxðguxFru þ FuxÞ þ

1

2
G2ð2g2ux − gxxguuÞF2

rx

þ 1

2
gxxF2

ru;

8π

κ0
Tux ¼

1

2
G2½guxguuF2

rx − 2gxxguuFruFrx

þ gxxFruðguxFru − 2FuxÞ�;
8π

κ0
Tuu ¼

1

2
G2½2F2

ux þ 2guuFrxFux þ g2uuF2
rx − 4guxFruFux

− 2guxguuFrxFru þ ð2g2ux − gxxguuÞF2
ru�; ð35Þ

and the corresponding trace T ≡ gabTab is

8π

κ0
T ¼ G2FrxðguxFru − FuxÞ −

1

2
G2ðgxxF2

ru þ guuF2
rxÞ:

ð36Þ

Now, it is a nice fact that, by combining (35) with (36) as
Tab − Tgab, the result for all components can be written in a
simple factorized form as

8π

κ0
ðTab − TgabÞ ¼ G2FaFb; ð37Þ

in terms of the functions Fa encoding the electromagnetic
field, which we have introduced in (14)–(16).

IV. EINSTEIN-MAXWELL FIELD
EQUATIONS WITH Λ

Having identified all three-dimensional Lorentzian
geometries—which can be written in the canonical form
(3)—and also the generic form of the electromagnetic field
(10) with the energy-momentum tensor of the form (35)
implying (37), we can now apply the field equations.
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Einstein’s equations are Rab − 1
2
Rgab þ Λgab ¼ 8πTab,

in which we also admit a nonvanishing cosmological
constant Λ. Their trace is R ¼ 2ð3Λ − 8πTÞ, so that the
equations can be put into the form Rab ¼ 2Λgabþ
8πðTab − TgabÞ. For the generic electromagnetic field Fab
we have derived the nice relation (37), and thus the Einstein
field equations in 2þ 1 gravity with Λ, coupled to an
electromagnetic field, are simply

Rab ¼ 2Λgab þ κ0G2FaFb; ð38Þ

where the functions Fa are defined by (14)–(16). Expressed
in terms of thedualMaxwell field �F 1-form components [see
(21) and (20)] these are even simpler, namely

Rab ¼ 2Λgab þ κ0
�Fa

�Fb: ð39Þ

In addition to these equations for the gravitational field
represented by the metric gab, we must also satisfy the
Maxwell equations d�F ¼ 4π�J and dF ¼ 0 for the electro-
magnetic field Fab. In the absence of electric charges and
currents, in components these read Fab

;b ¼ 0, F½ab;c� ¼ 0.
They are equivalent to

ð ffiffiffiffiffiffi
−g

p
FabÞ;b ¼ 0; ð40Þ

F½ab;c� ¼ 0; ð41Þ

where, using (18),

ffiffiffiffiffiffi
−g

p ¼ ffiffiffiffiffiffi
gxx

p ¼ G−1: ð42Þ

Recall also that the source-free Maxwell equation
d�F ¼ 0, which is equivalent to (40), in components reads
�F½a;b� ¼ 0. In view of (20), it can be directly written as

ðGFaÞ;b ¼ ðGFbÞ;a: ð43Þ

Our task is to completely integrate the coupled system of
the field equations (38) and (40), (41) [or, equivalently, (43)
instead of (40)] in 2þ 1 dimensions for (3) and (10), both for
the nonexpanding Kundt spacetimes (Sec. V) and the
expanding Robinson-Trautman spacetimes (Sec. VI and
Sec. VII). Explicit components of the Ricci tensor Rab,
which enter (38), for these twist-free and shear-free geom-
etries are given by Eqs. (A24)–(A29) in the Appendix.

A. Einstein field equations with a massless scalar field

Let us also remark that in three dimensions there is a
relation between the Einstein-Maxwell system (39) and the
Einstein gravity equations (minimally) coupled to a mass-
less scalar field Φ such that

gabΦ;ab ¼ 0: ð44Þ

Indeed, the corresponding energy-momentum tensor reads

Tab ≡Φ;aΦ;b −
1

2
gabΦ;cΦ;c; ð45Þ

implying the trace T ¼ − 1
2
Φ;cΦ;c, so that the Einstein

equations Rab ¼ 2Λgab þ 8πðTab − TgabÞ become

Rab ¼ 2Λ gab þ 8πΦ;aΦ;b: ð46Þ

With the identification

Φ;a ≡
ffiffiffiffiffiffi
κ0
8π

r
�Fa; ð47Þ

this system of equations is clearly equivalent to (39). The
dual Maxwell field 1-form is thus

�F ¼
ffiffiffiffiffiffi
8π

κ0

s
dΦ: ð48Þ

V. ALL KUNDT SOLUTIONS

In this section, we explicitly perform a step-by-step
integration of the field equations in the nonexpanding case
Θ ¼ 0, which defines the Kundt family of spacetimes.
Recall a consequence of (8) and (9), namely that the
function G is now r independent. It can be renamed as
Gðu; xÞ≡ Pðu; xÞ. Also, the one-dimensional spatial met-
ric gxx ¼ G−2 must be r independent, that is

gxx ≡ P−2ðu; xÞ: ð49Þ

Of course, gxx ¼ P2. Now, we will employ the Einstein
field equations (38), which for the Kundt spacetimes take
the form

Rab ¼ 2Λgab þ κ0P2FaFb: ð50Þ

A. Integration of Rrr = κ0P2F2
r

In view of Eq. (A24), Rrr ¼ 0 for Θ ¼ 0. Therefore, this
Einstein equation immediately requires Fr ¼ 0, that is

Frx ¼ 0: ð51Þ

It means that, inevitably, any electromagnetic field in the
2þ 1 Kundt spacetimes must be aligned with k ¼ ∂r. Such
fields are fully described by the functions

Fr ¼ 0; Fx ¼ P−2Fru; Fu ¼ guxFru − Fux: ð52Þ

There are only two possible components of the electro-
magnetic field, namely Fru and Fux.
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In fact, this result is analogous to the situation in standard
3þ 1 general relativity, for which it is well known that (due
to the Mariot-Robinson theorem) any Einstein-Maxwell
field (including a cosmological constant Λ) in the Kundt
class of geometries must be aligned; see the introductions
to Chapter 31 of [10] and Chapter 18 of [11].

B. Integration of Rrx = κ0P2FrFx

The Ricci tensor component (A25) for Θ ¼ 0 reduces to
Rrx ¼ − 1

2
gux;rr. Since Fr ¼ 0, we obtain a general solution

of this Einstein equation:

gux ¼ eðu; xÞ þ fðu; xÞr; ð53Þ

where e and f are arbitrary functions of u and x. In view of
Eqs. (4) and (49), the corresponding contravariant compo-
nent of the Kundt metric is

grx ¼ P2½eðu; xÞ þ fðu; xÞr�: ð54Þ

C. Integration of Rru = − 2Λ+ κ0P2FrFu

Using Eqs. (49) and (53), the Ricci tensor component
(A26) is Rru ¼ − 1

2
guu;rr þ 1

2
P2ðfjjx þ f2Þ, where

fjjx ≡ f;x þ
P;x

P
f ⇔ Pfjjx ≡ ðPfÞ;x: ð55Þ

Actually, the symbol k denotes the covariant derivative (of
a 1-form f) related to the spatial metric gxx on the one-
dimensional “transverse” subspace with constant u and r,
namely fkx ¼ f;x − SΓx

xxf, where SΓx
xx ≡ 1

2
gxxgxx;x is the

corresponding Christoffel symbol (see the Appendix).
Although this notation seems to be superficial here, we
employ it in order to see the relation to our previous studies
[20–22] of Kundt and Robinson-Trautman spacetimes in
any higher dimension D ≥ 4 where this geometric notation
plays a key role.
Because Fr ¼ 0, the corresponding Einstein equation

thus simplifies, and can be integrated to

guu ¼ aðu; xÞ þ bðu; xÞrþ cðu; xÞr2; ð56Þ

where aðu; xÞ and bðu; xÞ are arbitrary functions, while

cðu; xÞ≡ 2Λþ 1

2
P2ðfkx þ f2Þ: ð57Þ

D. Integration of the Maxwell equations

The crucial r dependence of all metric functions for the
2þ 1 Kundt spacetimes is thus determined. In general, guu
is quadratic, gux is linear, and gxx ≡ P−2ðu; xÞ is indepen-
dent of r. Now, applying the Maxwell equations (40), (41)

with
ffiffiffiffiffiffi−gp ¼ P−1, we will determine the r dependence of

the electromagnetic field.
In the present setting, there are only four independent

Maxwell equations, namely three components of
ð ffiffiffiffiffiffi−gp

FabÞ;b ¼ 0 and just one component of F½ab;c� ¼ 0.
Because (13) with (52) implies

Fru ¼ −Fru; Frx ¼ P2ðguxFru − FuxÞ; Fux ¼ 0;

ð58Þ

these four equations for the electromagnetic field have the
form

Fru;r ¼ 0; ð59Þ

ðguxFru − FuxÞ;r ¼ 0; ð60Þ

ðPðguxFru − FuxÞÞ;x ¼
�
Fru

P

�
;u
; ð61Þ

Fux;r þ Fru;x ¼ 0: ð62Þ

These equations can be completely solved for the two
nontrivial components Fru and Fux. Starting with (59), we
immediately obtain that

Fru ¼ Qðu; xÞ; ð63Þ

where Qðu; xÞ is an arbitrary function independent of r. By
employing (62), we thus get

Fux ¼ −Q;xr − ξðu; xÞ; ð64Þ

where ξðu; xÞ is another arbitrary function. Equation (60)
gives the constraint

Q;x ¼ −fQ; ð65Þ

and (61) reduces to the equation

ðPðeQþ ξÞÞ;x ¼
�
Q
P

�
;u
: ð66Þ

To summarize, by integrating all the Maxwell equations
we obtained explicit components of the (necessarily
aligned) electromagnetic field in any 2þ 1 Kundt space-
time,

Frx ¼ 0; Fru ¼ Q; Fux ¼ fQr − ξ; ð67Þ

where the functions Qðu; xÞ and ξðu; xÞ are constrained by
Eqs. (65), (66). Consequently,

Fr ¼ 0; Fx ¼ P−2Q; Fu ¼ eQþ ξ; ð68Þ
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and, due to (26)–(28),

ϕ0 ¼ 0; ϕ1 ¼ Q; ϕ2 ¼ PðeQþ ξÞ: ð69Þ

When ϕ1 ¼ 0 ⇔ Q ¼ 0, the field is null, and then
ϕ2 ¼ Pξ. When ϕ2 ¼ 0 ⇔ eQ ¼ −ξ, it is non-null, and
then ϕ1 ¼ Q.
Now, we can integrate the remaining three Einstein

equations, which impose the unique relation between the
gravitational and electromagnetic field components.

E. Integration of Rxx = 2Λgxx + κ0P2F2
x

For Θ ¼ 0, using Eqs. (A36) and (53), the Ricci tensor
component (A27) reduces to Rxx ¼ −fxx ≡ −ðfkx þ 1

2
f2Þ.

The field equation Rxx ¼ 2Λgxx þ κ0P2ðP−2QÞ2 ¼ ð2Λþ
κ0Q2ÞP−2 implies

κ0Q2 ¼ −
�
2Λþ P2

�
fkx þ

1

2
f2
��

: ð70Þ

The electromagnetic field component Fru ≡ ϕ1 ¼ Qðu; xÞ
is thus explicitly determined by the cosmological constant
Λ and by the metric functions P, f [provided the right-hand
side of (70) is non-negative]. It is now convenient to
introduce a rescaled form of f entering the metric function
gux ¼ eþ fr [see (53)], namely

F≡ P2f2: ð71Þ

Then the field equation (70) can be rewritten as

P2ðfkx þ f2Þ ¼ 1

2
F − 2Λ − κ0Q2: ð72Þ

We can thus simplify the metric function guu, namely its
coefficient c in (56) given by (57), to

cðu; xÞ ¼ Λþ 1

4
F −

κ0
2
Q2: ð73Þ

At this stage, the most general Kundt solution in D ¼ 3
takes the form

ds2 ¼ dx2

P2
þ 2ðeþ frÞdudx − 2dudr

þ
�
aþ brþ

�
Λþ 1

4
F −

κ0
2
Q2

�
r2
�
du2; ð74Þ

and the Einstein-Maxwell field equation (72) using (55)
reads

PðPfÞ;x ¼ −
�
2Λþ 1

2
F þ κ0Q2

�
: ð75Þ

F. Integration of Rux = 2Λgux + κ0P2FuFx

Equation (A28) with Θ ¼ 0 for the metric (74) gives
Rux ¼ 1

2
½f;u − b;x − eP2ðfkx þ f2Þ − fðln PÞ;u� − 1

4
½ðF−

2κ0Q2Þ;x þ 2fP2ðfkx þ f2Þ�r. Applying (72) and (68),
(53), the corresponding field equation Rux ¼ 2Λgux þ
κ0QðeQþ ξÞ ¼ 2Λeþ κ0ðeQ2 þQξÞ þ 2Λfr splits into
two conditions, resulting from the coefficients for the
powers r1 and r0, namely

F;x − 2κ0ðQ2Þ;x þ ðF − 4Λ − 2κ0Q2Þf ¼ −8Λf; ð76Þ

f;u − b;x −
�
1

2
F − 2Λ − κ0Q2

�
e − fðlnPÞ;u

¼ 4Λeþ 2κ0ðeQ2 þQξÞ: ð77Þ

Using the field equation (75), Eq. (76) simplifies to
ðQ2Þ;x ¼ −2Q2f which is identically satisfied due to
(65). Only the constraint (77) thus remains, which can
be put into the form

b;x ¼ f;u − fðlnPÞ;u −
1

2
ðF þ 4Λþ 2κ0Q2Þe − 2κ0Qξ;

ð78Þ

that is

b;x ¼ P
�
f
P

�
;u
þ PeðPfÞ;x − 2κ0Qξ: ð79Þ

This is an explicit expression determining the metric
function bðu; xÞ.

G. Integration of Ruu = 2Λguu + κ0P2F2
u

For Θ ¼ 0 and the Kundt metric (74), using the relation
ekx ≡ e;x þ eP;x=P and similar for fkx, e;ukx, f;ukx, akxx,
bkxx and ckxx (see the Appendix), the last Ricci tensor
component (A29) reads

Ruu ¼ Aþ Brþ Cr2; ð80Þ

where

A¼ a

�
c−

1

2
F

�
þP2

�
−
1

2
a;xxþ

1

2
a;x

�
f−

P;x

P

�

−
1

2
b

�
e;xþ

P;x

P
eþP;u

P3

�

þðf;u −b;x− ceÞeþ
�
e;uxþ

P;x

P
e;u

�
þP;uu

P3
− 2

P2
;u

P4

�
;

ð81Þ
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B ¼ b

�
c −

1

2
F −

1

2
PðPfÞ;x

�
þ P2

��
f;u −

1

2
b;x

�
;x

þ
�
f;u −

1

2
b;x

��
f þ P;x

P

�

− c
�
e;x þ

P;x

P
eþ P;u

P3

�
− 2eðc;x þ fcÞ

�
; ð82Þ

C ¼ cðc − FÞ − P2

�
1

2
c;xx þ

1

2
c;x

�
3f þ P;x

P

�

þ c

�
f;x þ

P;x

P
f þ 1

2
f2
��

: ð83Þ

Due to (56), (68), the corresponding field equation is
Ruu ¼ 2Λðaþ brþ cr2Þ þ κ0P2ðeQþ ξÞ2, which splits
into the following three constraints:

A ¼ 2Λaþ κ0P2ðeQþ ξÞ2; ð84Þ

B ¼ 2Λb; ð85Þ

C ¼ 2Λc: ð86Þ

From (73), (75), (65) we easily derive interesting
identities for spatial derivatives of c,

c;x ¼ −fc; c;xx ¼ ðf2 − f;xÞc: ð87Þ

By using (87), the expression (83) reduces to C ¼
c½c − 1

2
F − 1

2
PðPfÞ;x�, and substituting from (73), (75) we

obtain C ¼ 2Λc. Equation (86) is thus identically satisfied.
Surprisingly, Eq. (85) is also identically satisfied.

Applying (75), the first term in (82) yields 2Λb, while
the complicated combination of various terms in the square
brackets vanishes by using the relations (87), (78), (73) and
the field equations (65), (66). Therefore, B ¼ 2Λb, which
is Eq. (85).
We are thus left with only one equation, namely (84).

Using (70), (73), (75), and (78), it can be simplified to

a;xx − a;x

�
f −

P;x

P

�
− a

�
f;x þ

P;x

P
f

�

¼ −b
�
e;x þ

P;x

P
eþ P;u

P3

�
þ 2

�
e;ux þ

P;x

P
e;u

�

− Pe2ðPfÞ;x þ 2ef
P;u

P
þ 2

�
P;uu

P3
− 2

P2
;u

P4

�
− 2κ0ξ

2:

ð88Þ

This equation determines the last metric function aðu; xÞ.
Alternatively, it can be understood as an explicit expres-

sion for the ξðu; xÞ component of the Maxwell field, in
terms of the metric functions P, e, f, a, b. Such an equation
can be expressed in a covariant form as

2κ0ξ
2 ¼ −akxx þ ðfaÞkx − b

�
ekx þ

P;u

P3

�
þ 2ðe;uÞkx

− P2e2fkx þ 2ef
P;u

P
þ 2

�
P;uu

P3
− 2

P2
;u

P4

�
; ð89Þ

where akxx ≡ a;xx þ P;x

P a;x and ψkx ≡ ψ ;x þ ψP;x=P, for ψ
representing a;x, f, e, and e;u.

H. Summary of the Kundt solutions

We have thus solved all the Einstein-Maxwell equations
with a cosmological constant Λ in 2þ 1 gravity for the
complete Kundt family of nonexpanding spacetimes. The
generic gravitational field of this type is

gxx ¼ P−2ðu; xÞ;
gux ¼ eðu; xÞ þ fðu; xÞr
guu ¼ aðu; xÞ þ bðu; xÞrþ cðu; xÞr2; ð90Þ

where

c ¼ Λþ 1

4
F −

κ0
2
Q2; ð91Þ

with

F≡ P2f2; ð92Þ

cf. (73), (71),while the electromagnetic field (67) reads

Frx ¼ 0;

Fru ¼ Qðu; xÞ
Fux ¼ fðu; xÞQðu; xÞr − ξðu; xÞ: ð93Þ

Written explicitly in a compact form,

ds2 ¼ dx2

P2
þ 2ðeþ frÞdudx − 2dudr

þ
�
aþ brþ

�
Λþ 1

4
F −

κ0
2
Q2

�
r2
�
du2; ð94Þ

and

F ¼ Qdr ∧ duþ ðfQr − ξÞdu ∧ dx; ð95Þ

corresponding to the potential

A ¼ Ardrþ Axdx; ð96Þ

where, considering (65),
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Ar ≡ −
Z

Qdu; Ax ≡ r
Z

fQdu −
Z

ξdu: ð97Þ

It is now important to recall the Maxwell scalars given
by (69),

ϕ0 ¼ 0;

ϕ1 ¼ Q;

ϕ2 ¼ PðeQþ ξÞ: ð98Þ

We have thus proved that all electromagnetic fields in the
Kundt spacetimes in 2þ 1 gravity are necessarily aligned
(ϕ0 ¼ 0). Moreover, they split into two distinct subclasses:

(i) The case ϕ1 ¼ 0 ⇔ Q ¼ 0: The field is null, in
which case ϕ2 ¼ Pξ and Fux ¼ −ξ, so that

F ¼ −ξdu ∧ dx: ð99Þ

(ii) The case ϕ2 ¼ 0 ⇔ ξ ¼ −eQ: The field is non-null
with only ϕ1 ¼ Q, corresponding to

F ¼ Qdr ∧ duþQðeþ frÞdu ∧ dx: ð100Þ

Notice also that, applying the Lorentz null rotation (32)
with fixed k and the uniquely chosen parameter L ¼
− 1ffiffi

2
p eP in (33), the scalars (98) transform to

ϕ0
0 ¼ 0;

ϕ0
1 ¼ Q;

ϕ0
2 ¼ Pξ: ð101Þ

Therefore, with respect to the triad with m0 ¼ mþffiffiffi
2

p
Lk ¼ Pð∂x þ fr∂rÞ, the condition for the Maxwell

field being non-null is ϕ0
2 ¼ 0 ⇔ ξ ¼ 0.

The two electromagnetic components Q, ξ and the five
metric functions P, e, f, a, b describing the gravitational
field are mutually constrained by the following Einstein-
Maxwell field equations:

Q;x ¼ −fQ; ð102Þ

ðQPeþ PξÞ;x ¼
�
Q
P

�
;u
; ð103Þ

PðPfÞ;x ¼ −
�
2Λþ 1

2
F þ κ0Q2

�
; ð104Þ

b;x ¼ P

�
f
P

�
;u
þ PeðPfÞ;x − 2κ0Qξ; ð105Þ

a;xx − a;x

�
f −

P;x

P

�
− a

�
f;x þ

P;x

P
f

�

¼ −b
�
e;x þ

P;x

P
eþ P;u

P3

�
þ 2

�
e;ux þ

P;x

P
e;u

�

− Pe2ðPfÞ;x þ 2ef
P;u

P
þ 2

�
P;uu

P3
− 2

P2
;u

P4

�
− 2κ0ξ

2;

ð106Þ

see Eqs. (65), (66), (75), (79), and (88).
Interestingly, the form of the electromagnetic field (95)

and also the same field equations (102)–(106) can formally
be obtained by setting D ¼ 3 in the corresponding equa-
tions for higher-dimensional Kundt spacetimes with an
aligned Maxwell field [12].
Let us now separately discuss two geometrically distinct

subclasses, namely f ¼ 0 and f ≠ 0.

1. The subclass f = 0

From (92) it follows that f ¼ 0 ⇔ F ¼ 0, so that
Eqs. (102)–(106) considerably simplify to

Q;x ¼ 0; ð107Þ

ðQPeþ PξÞ;x ¼
�
Q
P

�
;u
; ð108Þ

κ0Q2 ¼ −2Λ; ð109Þ

b;x ¼ −2κ0Qξ; ð110Þ

ðPa;xÞ;x ¼ −b
�
ðPeÞ;x þ

P;u

P2

�
þ 2ðPe;uÞ;x

þ 2

�
P;u

P2

�
;u
− 2κ0Pξ2: ð111Þ

In this case,Q is necessarily a constant, and Λ ≤ 0 because

2Λ ¼ −κ0Q2: ð112Þ
Therefore, the electromagnetic component ϕ1 is also
independent of u and x,

Fru ¼ ϕ1 ¼ Q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
−

2

κ0
Λ

s
: ð113Þ

Keeping both the functions Pðu; xÞ and ξðu; xÞ arbitrary,
Eq. (108) determines the metric function eðu; xÞ. Moreover,
the function bðu; xÞ is directly determined by the spatial
integral of ξ via (110). Finally, integrating (111) we
obtain aðu; xÞ.
Thus, we have obtained a complete and explicit family of

such electrovacuum Kundt spacetimes in 2þ 1 gravity,
namely
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ds2 ¼ dx2

P2
þ 2edudx − 2dudrþ ðaþ brþ 2Λr2Þdu2;

ð114Þ

and

F ¼ Qdr ∧ du − ξdu ∧ dx: ð115Þ

It admits four physically distinct subcases:
(i) The case Q ¼ 0 ¼ ξ: The electromagnetic field F

vanishes, and necessarily Λ ¼ 0. The metric is

ds2¼ dx2

P2
þ2edudx−2dudrþðaþbrÞdu2; ð116Þ

where bðuÞ is independent of x. It is a vacuum
solution without a cosmological constant, and thus
in 2þ 1 gravity it must be flat Minkowski space. We
derived this metric in our previous work [1]; see
Eq. (82) with J ¼ 0 ¼ N therein.

(ii) The caseQ ¼ 0: Again,Λ ¼ 0 and b ¼ bðuÞ, so that
the metric has the form (116), but there is now a
radiative (null) electromagnetic field

F ¼ −ξdu ∧ dx: ð117Þ

The amplitude ξðu; xÞ must satisfy the field equa-
tion (108), which is ðPξÞ;x ¼ 0. Therefore,

ξðu; xÞ ¼ γðuÞ
Pðu; xÞ ; ð118Þ

where γðuÞ is an arbitrary profile function of the
retarded time u. Finally, aðu; xÞ is then obtained by
integrating the remaining field equation (111).

(iii) The case ξ ¼ 0: The electromagnetic field is non-
null, and has the form

F ¼ Qdr ∧ du; ð119Þ

where Q is a constant uniquely determined by
negative cosmological constant Λ via (113). The
electromagnetic field is thus uniform, and positive
(or zero) Λ is not allowed.
The metric is of the form (114). The field

equation (110) implies that b ¼ bðuÞ, while the
remaining (108) and (111) reduce to

ðPeÞ;x ¼ −
P;u

P2
; ð120Þ

ðPa;xÞ;x ¼ 2ðPe;uÞ;x − 2ðPeÞ;ux: ð121Þ

The latter can be immediately integrated to

a;x ¼ 2e;u −
2

P
ðPeÞ;u þ

δðuÞ
P

; ð122Þ

where δðuÞ is any function of u. After prescribing an
arbitrarymetric functionPðu; xÞ, we obtain eðu; xÞ by
integrating (120), and aðu; xÞ by integrating (122).

(iv) The general case Q ≠ 0, ξ ≠ 0: In the generic case
with both the non-null component of the electro-
magnetic field Q ¼ const and its null component
ξðu; xÞ, we obtain the superposition (115). The
metric reads (114), with a cosmological constant
Λ < 0 [notice that Λ ¼ 0 implies Q ¼ 0 due to
(112), while Λ > 0 is forbidden]. The metric func-
tions a and b are determined by the differential
equations (110) and (111), respectively, and there is
also the constraint (108) determining e.

This family of Kundt spacetimes in 2þ 1 gravity
can be interpreted as mutually coupled exact gravi-
tational and electromagnetic waves [characterized
by the functions aðu; xÞ and ξðu; xÞ, respectively]
which propagate on the background with Λ < 0 and
uniform Maxwell field (characterized by the constant
Q). The simplest such background is

ds2 ¼ dx2 − 2dudrþ 2Λr2du2; ð123Þ

which is the 2þ 1 analog of the exceptional electro-
vacuum type D metric with Λ < 0 found by Ple-
bański and Hacyan [23]; see also Eq. (7.20) in [11].
Indeed, introducing U ¼ 1=ð2ΛuÞ and V ¼ 2ðuþ1=
ðΛrÞÞ, the metric (123) takes the form ds2 ¼ dx2 −
2dUdV=ð1 − ΛUVÞ2 which is clearly the direct-
product E1 × AdS2 spacetime.

2. The subclass f ≠ 0

Recalling F≡ P2f2, cf. (92), in this case F ≠ 0. The
Kundt metric takes the general form (94), the aligned
electromagnetic field is (95), and the corresponding
Einstein-Maxwell field equations are (102)–(106).
By inspecting this system, it is seen that the first three

differential equations (102), (103), (104) relate the metric
functions P, e, f and the electromagnetic field components
Q, ξ. Subsequently, the remaining two equations (105) and
(106) can be used to evaluate the metric functions b and a,
respectively.
Starting with (102), we immediately observe that there

are two distinct subcases:
(i) The case Q ¼ 0: The electromagnetic field is null

(with ϕ1 ¼ 0, ϕ2 ¼ Pξ),

F ¼ −ξdu ∧ dx: ð124Þ

The field equation (102) is identically satisfied,
putting no restriction on the function f, while
(103), (104) reduce to
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Pξ ¼ γðuÞ; ð125Þ

PðPfÞ;x ¼ −
�
2Λþ 1

2
ðPfÞ2

�
: ð126Þ

The first equation determines ξ, giving the same
expression as (118), i.e., ξðu; xÞ ¼ P−1γðuÞ, while
the second equation can be integrated for the
variable ðPfÞ in terms of the integral of P−1,
yielding

fðu;xÞ¼−2
ffiffiffiffi
Λ

p
P−1 tan

� ffiffiffiffi
Λ

p Z
P−1dx

�
for Λ> 0;

ð127Þ

and the expression for Λ < 0 is analogous, replacing
tan by tanh.
In the final step, the metric functions b and a are

obtained by integrating the field equations (105) and
(106), respectively.

(ii) The case Q ≠ 0: In this generic case, the field
equation (102) explicitly determines the metric
function f in terms of the electromagnetic field
component Q, which occurs in

F ¼ Qdr ∧ duþ ðfQr − ξÞdu ∧ dx; ð128Þ

as

fðu; xÞ ¼ −ðlnQÞ;x: ð129Þ

However, there is a further constraint given the field
equation (104),

PðPfÞ;x ¼ −
�
2Λþ 1

2
ðPfÞ2 þ κ0Q2

�
: ð130Þ

Notice that it can also be rewritten as

F;x ¼ −fðF þ 4Λþ 2κ0Q2Þ; ð131Þ

or, equivalently,

κ0Q2 ¼ −
1

2f
½F;x þ ðF þ 4ΛÞf�: ð132Þ

It remains to be investigated what are the constraints
resulting from the simultaneous solution of
Eqs. (129) and (132).

VI. ALL ALIGNED ROBINSON-TRAUTMAN
SOLUTIONS

After completing the derivation and preliminary descrip-
tion of the nonexpanding Kundt class, we will now
concentrate on systematic integration of the field equations
in the expanding case Θ ≠ 0, which defines the Robinson-
Trautman family of spacetimes.
Recall that the field equations (38) take the form

Rab ¼ 2Λgab þ κ0G2FaFb; ð133Þ

where Fa are defined by (14)–(16). In this section we
assume that the electromagnetic field is aligned with k ¼
∂r [see (31)], that is

Frx ¼ 0 ⇔ Fr ¼ 0: ð134Þ

This considerably simplifies the field equations (133)
whenever at least one of the index a, b is r.

A. Integration of Rrr = 0

From Eq. (A24) we immediately get the constraint

Θ;r þ Θ2 ¼ 0; ð135Þ

which determines the r dependence of the expansion scalar
Θ. Its general solution can be written as Θ−1 ¼
rþ r0ðu; xÞ. Because the metric (3) is invariant under
the gauge transformation r → r − r0ðu; xÞ, without loss
of generality we can set the integration function r0ðu; xÞ to
zero. The expansion thus simplifies to

Θ ¼ 1

r
: ð136Þ

Integrating now the key relation (9) we obtain

Gðr; u; xÞ ¼ Pðu; xÞ
r

; ð137Þ

where Pðu; xÞ is any function independent of r. Using (8),
we immediately get the generic spatial metric function
gxx ≡G−2 in the form

gxx ¼
r2

P2ðu; xÞ : ð138Þ

Of course, by inversion gxx ¼ P2r−2.

B. Integration of Rrx = 0

Using Eqs. (A25) and (135), which implies Eq. (136),
the Ricci tensor component Rrx becomes
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Rrx ¼ −
1

2
ðgux;rr − gux;rr−1Þ: ð139Þ

The corresponding field equation Rrx ¼ 0 can be inte-
grated, yielding a general solution

gux ¼ eðu; xÞr2 þ fðu; xÞ; ð140Þ

where e and f are arbitrary functions of u and x. In view of
Eqs. (5) and (138), the contravariant component of the
Robinson-Trautman metric is

grx ¼ P2½eðu; xÞ þ fðu; xÞr−2�: ð141Þ

C. Integration of the Maxwell equations

Now, applying the Maxwell equations (40), (41) withffiffiffiffiffiffi−gp ¼ G−1 ¼ r=P, we will determine the electromagnetic
field. There are only four independent Maxwell equations,
namely three components of ð ffiffiffiffiffiffi−gp

FabÞ;b ¼ 0 and just one
component of F½ab;c� ¼ 0. Because (13) with (134) implies

Fru ¼ −Fru; Frx ¼ P2

r2
ðguxFru − FuxÞ; Fux ¼ 0;

ð142Þ

these four equations for the electromagnetic field take the
form

ðrFruÞ;r ¼ 0; ð143Þ

ðr−1ðguxFru − FuxÞÞ;r ¼ 0; ð144Þ

r2
�
Fru

P

�
;u
¼ ðPðguxFru − FuxÞÞ;x; ð145Þ

Fux;r þ Fru;x ¼ 0: ð146Þ

They can be solved for the nontrivial components Fru and
Fux. From (143) we get

Fru ¼
Qðu; xÞ

r
; ð147Þ

where Qðu; xÞ is an arbitrary function of u and x. By
employing (146), we thus obtain

Fux ¼ −Q;x ln jrj − ξðu; xÞ; ð148Þ

where ξðu; xÞ is another arbitrary function. Equation (144)
with (140) then reduces to�

fQ
r2

þQ;x
ln jrj
r

þ ξ

r

�
;r
¼ 0; ð149Þ

which gives the following three independent constraints:

fQ ¼ 0; Q;x ¼ 0; ξ ¼ Q;x; ð150Þ

so that ξ ¼ 0 and Q ¼ QðuÞ is independent of x.
We thus conclude that the components of a generic

aligned electromagnetic field in any 2þ 1 Robinson-
Trautman spacetime can be written as

Frx ¼ 0; Fru ¼
QðuÞ
r

; Fux ¼ 0; ð151Þ

with the constraint

fQ ¼ 0; ð152Þ

and the Maxwell equation (145) which reduces to�
Q
P

�
;u
¼ QðePÞ;x: ð153Þ

Consequently,

Fr ¼ 0; Fx ¼ P−2Qr; Fu ¼ eQr; ð154Þ

and, due to (26)–(28),

ϕ0 ¼ 0; ϕ1 ¼
Q
r
; ϕ2 ¼ ePQ: ð155Þ

When ϕ1 ¼ 0 ⇔ Q ¼ 0 then ϕ2 ¼ 0. Therefore, there are
no null electromagnetic fields of this type. When
ϕ2 ¼ 0 ⇔ eQ ¼ 0, it is non-null, and then ϕ1 ¼ QðuÞ=r.
Notice also, that due to (152), either we have a vacuum
solution (Q ¼ 0) or a non-null electromagnetic field
characterized by QðuÞ in the Robinson-Trautman space-
time without the nondiagonal metric term (gux ¼ 0).
Now, we will integrate the remaining Einstein’s equa-

tions which couple the gravitational and electromagnetic
fields. In view of (152), there are two cases to consider,
namely Q ¼ 0 and f ¼ 0.

(i) The case Q ¼ 0: The electromagnetic field com-
pletely vanishes, so that the spacetimes are vacuum
(with any cosmological constant Λ). All such
Robinson-Trautman solutions in 2þ 1 gravity were
found and described in our previous work [1].
Interestingly, for these vacuum spacetimes the func-
tion f remains nonvanishing (which is not true
in D ≥ 4).

(ii) The case f ¼ 0: In this case, the metric component
gux reduces to

gux ¼ er2 ⇔ grx ¼ P2e: ð156Þ

This simplifies the generic Ricci tensor components
in the Appendix, which will now apply.
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D. Integration of Rru = − 2Λ
Using (156), (136), and (138), the Ricci tensor compo-

nent (A26) becomes

Rru ¼ −
1

2
ðrguu;rÞ;rr−1 þ

1

2
cr−1 þ 2P2e2; ð157Þ

where

c≡ 2P2

�
ekx −

1

2
hxx;u

�
; ekx ≡ e;x þ eP;x=P; ð158Þ

from which we obtain useful identities

Pekx ¼ ðPeÞ;x; eP2ekx ¼
1

2
ðP2e2Þ;x; ð159Þ

and thus

c ¼ 2½PðPeÞ;x þ ðlnPÞ;u�: ð160Þ

With Eq. (157), the Einstein equation Rru ¼ −2Λ can now
be easily integrated to give

guu ¼ −a − b ln jrj þ crþ ðΛþ P2e2Þr2; ð161Þ

where aðu; xÞ and bðu; xÞ are arbitrary functions. The r
dependence of all metric components is thus fully
established.

E. Integration of Rxx = 2Λgxx + κ0G2F2
x

Using Eqs. (135)–(138) and (156), the general Ricci
tensor component (A27) becomes

Rxx ¼ −cP−2r − 2e2r2 þ P−2rguu;r: ð162Þ

Substituting now the expression (161), we obtain
Rxx ¼ 2Λgxx − b=P2. The corresponding Einstein equation
with (154) reads Rxx ¼ 2Λgxx þ κ0Q2=P2. It is satisfied if,
and only if,

bðuÞ ¼ −κ0Q2: ð163Þ

F. Integration of Rux = 2Λgux + κ0G2FuFx

Using Eqs. (136), (138), (156), and (161) with (163), the
Ricci tensor component Rux given by Eq. (A28) reads

Rux ¼ 2Λgux þ κ0eQ2 −
1

2
a;xr−1: ð164Þ

The field equation with (154) is Rux ¼ 2Λgux þ κ0eQ2, so
that we obtain just one simple constraint:

a;x ¼ 0 ⇔ a ¼ aðuÞ: ð165Þ

The function a can depend only on the coordinate u, and
the most general Robinson-Trautman aligned electrovac-
uum solution thus takes the form

ds2 ¼ r2

P2
dx2 þ 2er2dudx − 2dudrþ

�
−aðuÞ þ κ0Q2ðuÞ ln jrj þ 2½PðPeÞ;x þ ðlnPÞ;u�rþ ðΛþ P2e2Þr2

�
du2: ð166Þ

G. Integration of Ruu = 2Λguu + κ0G2F2
u

The Ricci tensor component Ruu for the metric (166), given generally by Eq. (A29), becomes

Ruu ¼ 2Λguu þ Aþ 1

2

�
a;u −

�
a −

1

2
b

�
c −△c

�
1

r
þ 1

2
½b;u − bc� ln r

r
; ð167Þ

where

A ¼ −P2e2bþ 1

4
c2 þ 1

2
P2ec;x −

1

2
c;u −

1

2
△ðP2e2Þ þ PðPe;uÞ;x − 2

P2
;u

P2
þ P;uu

P
; ð168Þ

c is given by Eq. (160), and

△c≡ hxxckxx ¼ PðPc;xÞ;x ð169Þ
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is the covariant Laplace operator on the one-dimensional
transverse Riemannian space spanned by x, applied on the
function c. Remarkably, after substitution from (160) and
evaluation, the expression for A enormously simplifies to

A ¼ −P2e2b: ð170Þ

Moreover, using the Maxwell equation (153) which can be
rewritten as

Q;u ¼
1

2
cQ; ð171Þ

and the relation (163), that is b ¼ −κ0Q2, we easily prove
that b;u ¼ bc. The last term in (167) thus always vanishes.
To summarize, the last Ricci tensor component takes the
form

Ruu ¼ 2Λguuþ κ0e2P2Q2þ1

2

�
a;u−

�
a−

1

2
b

�
c−△c

�
1

r
:

ð172Þ

Using (154), the corresponding field equation reads
Ruu ¼ 2Λguu þ κ0e2P2Q2, so that we obtain only one
additional condition determined by the term proportional
to r−1, namely

a;u ¼
�
aþ κ0

2
Q2

�
cþ△c: ð173Þ

Let us observe that Eq. (171) implies

cðuÞ ¼ 2ðlnQÞ;u; ð174Þ

i.e., the function c must necessarily be independent of the
spatial coordinate x. Due to (169), △c ¼ 0, and the field
equation (173) reduces to

a;u ¼
�
aþ κ0

2
Q2

�
c: ð175Þ

Its general solution with (174) is

aðuÞ ¼ Q2ðκ0 ln jQj − μÞ; ð176Þ

where μ is any constant. The metric function aðuÞ is thus
directly related to the electromagnetic field QðuÞ.

H. Summary of the aligned
Robinson-Trautman solutions

We have solved all the Einstein-Maxwell equations with
a cosmological constant Λ and aligned electromagnetic
field in 2þ 1 gravity for the Robinson-Trautman family of
expanding spacetimes. In the canonical coordinates, the
generic gravitational field of this type is

gxx ¼ P−2ðu; xÞr2;
gux ¼ eðu; xÞr2;
gur ¼ −1;

guu ¼ μQ2ðuÞ − κ0Q2 ln

����Qr
����þ 2ðlnQÞ;urþ ðΛþ P2e2Þr2;

ð177Þ

where μ is a constant, QðuÞ is any function of u, and the
metric functions P, e satisfy the field equation (153), that is

�
Q
P

�
;u
¼ QðePÞ;x: ð178Þ

The corresponding aligned electromagnetic field reads

Frx ¼ 0;

Fru ¼
QðuÞ
r

;

Fux ¼ 0; ð179Þ

see (151); i.e., it has only one component Fru.
Written explicitly in the usual compact form, the

solution is

ds2 ¼ r2

P2
ðdxþ eP2duÞ2 − 2dudr

þ
�
μQ2 − κ0Q2 ln

����Qr
����þ 2ðlnQÞ;urþ Λr2

�
du2;

ð180Þ

with

F ¼ Q
r
dr ∧ du equivalent to �F ¼ Q

P
dxþ ePQdu;

ð181Þ

corresponding to the potential

A ¼ Q ln
r
r0
du; ð182Þ

and the Maxwell scalars (155)

ϕ0 ¼ 0;

ϕ1 ¼
Q
r
;

ϕ2 ¼ ePQ: ð183Þ

It follows that there are no aligned (purely) null electro-
magnetic fields in the Robinson-Trautman spacetimes in
2þ 1 gravity because ϕ1 ¼ 0 implies ϕ2 ¼ 0. Moreover,
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ϕ2 ¼ 0 ⇔ eQ ¼ 0. Either we have a vacuum solution
(Q ¼ 0) or a non-null electromagnetic field characterized
by QðuÞ in the Robinson-Trautman spacetime without the
nondiagonal metric term gux (e ¼ 0).
The simplest e ≠ 0 solution of the field equation (178),

which can be rewritten as

ðlnPÞ;u þ PðePÞ;x ¼ ðlnQÞ;u; ð184Þ
is

P ¼ 1; e ¼ xðlnQÞ;u þ αðuÞ; ð185Þ

where αðuÞ is an arbitrary function of u, yielding the metric

ds2 ¼ r2
�
dxþ ðαþ xðlnQÞ;uÞdu

�
2

− 2dudr

þ
�
μQ2 − κ0Q2 ln

����Qr
����þ 2ðlnQÞ;urþ Λr2

�
du2:

ð186Þ

Another interesting subclass of the Robinson–Trautman
spacetimes (180) with aligned Maxwell field (181) arises
when both sides of the field equation (178) vanish,
ðQ=PÞ;u ¼ 0 ⇔ ðePÞ;x ¼ 0. Then the metric functions P
and e are both factorized in the coordinates u and x as

P ¼ QðuÞβðxÞ; e ¼ αðuÞ
QðuÞβðxÞ ; ð187Þ

where αðuÞ, βðxÞ are arbitrary functions of the respective
coordinates. Consequently, eP ¼ αðuÞ. [For β ¼ 1 we
obtain simply PðuÞ ¼ QðuÞ.] In such a case, the metric
(180) takes the form

ds2 ¼ r2

Q2

�
dx
β
þ αQdu

�
2

− 2dudr

þ
�
μQ2 − κ0Q2 ln

����Qr
����þ 2ðlnQÞ;urþ Λr2

�
du2;

ð188Þ

and the Maxwell scalars are

ϕ0 ¼ 0; ϕ1 ¼
Q
r
; ϕ2 ¼ αQ:

With respect to the natural triad (6), there are thus two
components of the admitted Maxwell field, namely non-
null component ϕ1 and the electromagnetic radiation ϕ2

(ϕ2 ≠ 0 requires α ≠ 0). However, let us remark that, due to
the freedom in the choice of the local null triad, under
which the Maxwell scalars transform as (33), at a given
point there exists a special triad in which ϕ0

2 ¼ 0.
There is a special case Q ¼ const, for which the metric

(188) simplifies to

ds2 ¼ r2
�
dφþ αðuÞdu

�
2

− 2dudr

þ
�
m − κ0Q2 ln

����Qr
����þ Λr2

�
du2; ð189Þ

where the rescaled constant reads m≡Q2μ, and the new
coordinate is

φ ¼ 1

Q

Z
dx
βðxÞ : ð190Þ

For αðuÞ ¼ 0 (that is, without the electromagnetic
radiation component), and for compact coordinate φ, this
family of spacetimes represents charged black holes with
any value of the cosmological constant Λ. Indeed, by
introducing the time coordinate t via the transformation

du ¼ dtþ
�
m − κ0Q2 ln

����Qr
����þ Λr2

�
−1
dr; ð191Þ

we obtain the metric

ds2 ¼ −
�
−mþ κ0Q2 ln

����Qr
���� − Λr2

�
dt2

þ dr2

−mþ κ0Q2 ln j Qr j − Λr2
þ r2dφ2; ð192Þ

with the electromagnetic field

F¼Q
r
dr∧ dt correspondingto A¼Q ln

r
r0
dt: ð193Þ

This is the standard form of cyclic symmetric, electrostatic
solution withΛ in polar “Schwarzschild” coordinates found
by Peldan in 1993 [24], see Eq. (11.56) in [6], which
extended previous solutions by Gott, Simon and Alpert
[25,26], Deser and Mazur [27], and Melvin [28] to any
cosmological constant; see also García [29]. A thorough
review and discussion of this class of solutions is contained
in [30] and also Sec. 11.2 of [6].
For αðuÞ ≠ 0 the spacetime (189) in general contains

additional electromagnetic radiation component ϕ2 ≠ 0. It
remains to be analyzed in detail if such a situation can be
physically interpreted as a charged black hole with a
specific radiation, or if the function αðuÞ is just some kind
of a kinematic parameter.
Similarly, the general Robinson-Trautman solution (180)

with aligned electromagnetic field (181) needs to be
understood and explicitly related to other known solutions
summarized in Chapter 11 of [6], in particular the nonstatic
ones. This seems to be in principle possible because, e.g.,
for e ≠ 0 the transformation (191) introduces the metric
component gtx typical for stationary spacetimes.
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VII. ALL NONALIGNED ROBINSON-TRAUTMAN
SOLUTIONS

After completing the systematic derivation of all aligned
electromagnetic fields in the family of expanding Robinson-
Trautman geometries, we now investigate the possible
nonaligned fields.
The Einstein–Maxwell equations are (133), in which the

functions Fa are defined by (14)–(16). The generic non-
aligned electromagnetic field has ϕ0 ≠ 0 ⇔ Frx ≠ 0 ⇔
Fr ≠ 0.

A. Integration of Rrr = κ0G2F2
r

Using Eq. (A24) for the Ricci tensor component Rrr, we
obtain the constraint

κ0F2
r ¼ −gxxðΘ;r þ Θ2Þ; ð194Þ

where Θ ≠ 0 is the optical scalar representing the expan-
sion of the privileged null congruence generated by k ¼ ∂r.
Let us recall that it is directly related to the spatial metric
function gxx via the relations

gxx ¼ G−2 with Θ ¼ −ðlnGÞ;r ≡ −
G;r

G
; ð195Þ

see (8), (9). Therefore, the metric component gxx must
necessarily depend on the coordinate r, otherwise Θ ¼ 0.
It is possible to substitute from (195) into (194), but we

found it more convenient to keep the expansion scalar Θ in
(194). This equation explicitly expresses the nonaligned
Maxwell field component Frx ≡ Fr in terms of the metric
component gxx (and its r derivatives via G). This relation
can be rewritten as

κ0F2
rx ¼ G−2Θ2

�
ðΘ−1Þ;r − 1

�
: ð196Þ

Notice that (in the Robinson-Trautman family)
Frx ¼ 0 ⇔ Θ−1 ¼ rþ r0ðu; xÞ. This fully corresponds to
the previously studied aligned case, for which (136)
applies.

B. Integration of Rrx = κ0G2FrFx

Using Eq. (A25) for the Ricci tensor component Rrx and
(194), we get the relation

1

2
ðΘgux;r − gux;rrÞ ¼ κ0G2FrðFx þ guxFrÞ: ð197Þ

In view of (14), (15), this is equivalent to

κ0FruFrx ¼
1

2
ðΘgux;r − gux;rrÞ: ð198Þ

Therefore, by prescribing any metric function gux,
the electromagnetic field component Fru is explicitly
determined.
Notice that it admits a special solution Fru ¼ 0 ⇔

Θgux;r ¼ gux;rr. This occurs either when gux is independent
of the coordinate r,

gux ¼ Bðu; xÞ; ð199Þ

or, using (195), when Θ ¼ ðlnG−1Þ;r ¼ ðln gux;rÞ;r which
can be completely integrated as

gxx ¼ Aðu; xÞðgux;rÞ2; ð200Þ

where A > 0 is any function independent of r.

C. Integration of Rru = − 2Λ+ κ0G2FrFu

The generic Ricci tensor component Rru is given by
(A26), so that the corresponding Einstein-Maxwell field
equation becomes

−
1

2
guu;rr þ

1

2
grxgux;rr þ

1

2
gxxðgux;rkx þ ðgux;rÞ2Þ

− Θ;u −
1

2
Θðgxxgxx;u þ grxgux;r þ guu;rÞ

¼ −2Λþ κ0G2FrFu: ð201Þ

This uniquely determines the third electromagnetic field
component (16) represented by Fu. Using (14)–(16) and
then (194), (198), the last term on the right-hand side can be
expressed as

κ0G2FrxðguxFru − Fux − guuFrxÞ
¼ κ0grxFruFrx − κ0gxxFuxFrx − κ0gxxguuF2

rx

¼ −κ0gxxFuxFrx þ
1

2
grxðΘgux;r − gux;rrÞ þ guuðΘ;r þ Θ2Þ:

ð202Þ

The field equation (201) thus reads

κ0FuxFrx ¼
1

2
gxxðguu;rr þ Θguu;r þ 2ðΘ;r þ Θ2Þguu − 4ΛÞ

þ guxðΘgux;r − gux;rrÞ −
1

2
ðgux;rkx þ ðgux;rÞ2Þ

þ 1

2
Θgxx;u þ gxxΘ;u: ð203Þ

By prescribing any metric function guu, the third electro-
magnetic field component Fux is thus explicitly determined.
To summarize, by employing three (out of six) inde-

pendent components of the Einstein field equations, we
have now derived explicit expressions (196), (198), and
(203) which determine all three components of the
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electromagnetic field, namely Frx, Fru, and Fux, respec-
tively, in terms of the three (so far) independent metric
components gxx, gux, and guu.
These three expressions are equivalent to Eqs. (194),

(197), (201) for the three dual electromagnetic functions
Fa ≡ �Fa=G. They can be written in a very compact form:

κ0F2
r ¼ α; ð204Þ

κ0FrFx ¼ β − αgux; ð205Þ

κ0FrFu ¼ γ; ð206Þ

where the functions α, β, γ are useful shorthand for the
combination of the three metric functions:

α≡ −gxxðΘ;r þ Θ2Þ; ð207Þ

β≡ 1

2
gxxðΘgux;r − gux;rrÞ; ð208Þ

γ ≡ 1

2

�
gxxð4Λ − guu;rrÞ þ guxgux;rr þ gux;rkx þ ðgux;rÞ2

− 2gxxΘ;u − Θðgxx;u þ guxgux;r þ gxxguu;rÞ
�
: ð209Þ

Consequently,

Fr¼
ffiffiffiffiffi
α

κ0

r
; Fx¼

�
β

α
−gux

�
Fr; Fu ¼

γ

α
Fr: ð210Þ

Let us recall that α is fully determined by gxx, the
function β is determined by gxx and gux, while the third
metric component guu enters only γ.

D. The Maxwell equations

As the next step, we apply the four independent Maxwell
equations in the form (43) and (41), namely

ðGFaÞ;b ¼ ðGFbÞ;a and Fux;r þ Fru;x − Frx;u ¼ 0;

ð211Þ

which restrict the possible electromagnetic field and its
coupling to the gravitational field. For explicit evaluation of
the partial derivatives with respect to a; b ¼ fr; u; xg we
employ the expressions directly following from (195) and
(204)–(206), implying (210), namely

G;a ¼ −
1

2
G3gxx;a; ð212Þ

Fr;a ¼
1

κ0Fr

�
1

2
α;a

�
; ð213Þ

Fx;a ¼
1

κ0Fr

�
ðβ − αguxÞ;a −

1

2
ðβ − αguxÞ

α;a
α

�
; ð214Þ

Fu;a ¼
1

κ0Fr

�
γ;a −

1

2
γ
α;a
α

�
: ð215Þ

Using these relations in calculating ðGFaÞ;b ¼ ðGFbÞ;a for
ab ¼ rx; ru; ux we obtain

�
α;xþ2α

G;x

G

�
−2ðβ−αguxÞ;rþðβ−αguxÞ

�
α;r
α
þ2Θ

�
¼0;

ð216Þ
�
α;u þ 2α

G;u

G

�
− 2γ;r þ γ

�
α;r
α

þ 2Θ
�

¼ 0; ð217Þ

γ;x − γ

�
α;x
2α

−
G;x

G

�
− ðβ − αguxÞ;u

þ ðβ − αguxÞ
�
α;u
2α

−
G;u

G

�
¼ 0; ð218Þ

respectively. Notice that the terms in the large brackets
depend only on gxx ≡G−2 and their derivatives. The last
Maxwell equation (211), using the inversion of (14)–(16),

Frx ¼ Fr; ð219Þ

Fru ¼ G2ðFx þ guxFrÞ; ð220Þ

Fux ¼ guxG2ðFx þ guxFrÞ − Fu − guuFr; ð221Þ

reads

β;x þ β;rgux þ β

�
gux;r − gux

�
α;r
2α

þ 2Θ
�
−
�
α;x
2α

− 2
G;x

G

��

−
1

2G2

�
2γ;r − α;r

�
γ

α
− guu

�
þ α;u þ 2αguu;r

�
¼ 0:

ð222Þ

The four equations (216)–(218) and (222) put restrictions
on the metric functions, encoded in G, α, β, γ.

E. Remaining Einstein equations
Rab = 2Λgab + κ0G2FaFb

Finally, it is necessary to solve the remaining three
Einstein equations (38) for the components ab ¼ xx;
ux; uu. Using (210) we immediately derive their form:

Rxx ¼ 2Λgxx þ
G2

α
ðβ − αguxÞ2; ð223Þ
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Rux ¼ 2Λgux þ
G2

α
ðβ − αguxÞγ; ð224Þ

Ruu ¼ 2Λguu þ
G2

α
γ2: ð225Þ

Substituting the explicit expressions for the corresponding
Ricci tensor components (A27)–(A29) reveals a rather
complicated system of partial differential equations for the
metric functions which must be solved together with (216)–
(218) and (222).
At this stage, it does not seem possible to find a general

solution of these equations. However, we have achieved a
separation of the variables representing the gravitational
and the electromagnetic field. Indeed, the system of seven
equations (216)–(218), (222), and (223)–(225) with (A27)–
(A29) involves only the three metric functions gxx, gux, guu,
encoded also in the functionsG and α, β, γ defined in (195)
and (207)–(209). After their solution is found, the corre-
sponding three (dual) components of the electromagnetic
field Fr, Fx, Fu are easily obtained by applying the
relations (210). The components Frx, Fru, Fux are then
their simple combinations (219)–(221).

F. A simple particular solution

To demonstrate the usefulness of our formulation of the
most general Einstein-Maxwell field equations and also to
show that the class of Robinson-Trautman 2þ 1 space-
times with nonaligned electromagnetic field is not empty,
we will now derive a special solution of the above system of
equations.
Let us assume that only the nonaligned component Fr of

the electromagnetic field is nontrivial, i.e.,

Fr ¼
ffiffiffiffiffi
α

κ0

r
≠ 0; Fx ¼ 0; Fu ¼ 0: ð226Þ

The field equations (204)–(206) then imply

β − αgux ¼ 0; ð227Þ

γ ¼ 0: ð228Þ

Further simplification is achieved by assuming

gux ¼ 0: ð229Þ

In such a case the condition (227) β ¼ 0 is satisfied due to
(208), while (228) gives

guu;rr − 4Λþ 2Θ;u þ Θ
�
guu;r − 2

G;u

G

�
¼ 0: ð230Þ

The Maxwell equations (216)–(218), (222) reduce to

α;x
α

þ 2
G;x

G
¼ 0; ð231Þ

α;u
α

þ 2
G;u

G
¼ 0; ð232Þ

α;rguu þ α;u þ 2αguu;r ¼ 0; ð233Þ

and the final three Einstein equations simplify as

Rxx ¼ 2Λgxx; ð234Þ

Rux ¼ 0; ð235Þ

Ruu ¼ 2Λguu; ð236Þ

where

Rxx ¼ gxxguuðΘ;r þ Θ2Þ þ 2gxxΘ;u þ Θðgxxguu;r þ gxx;uÞ;
ð237Þ

Rux ¼ −
1

2
guu;xr þ

1

2
Θguu;x; ð238Þ

Ruu ¼
1

2
guuguu;rr þ

1

4
gxxgxx;uguu;r −

1

2
gxxgxx;uu

−
1

2
gxxguukxx þ

1

4
ðgxxgxx;uÞ2 þ

1

2
Θðguuguu;r − guu;uÞ:

ð239Þ

Equations (231) and (232) can be easily integrated,
yielding

α ¼ fðrÞG−2 ≡ fðrÞgxx; ð240Þ

where fðrÞ is any function of the coordinate r.
Equation (233) gives the constraint

guu;r þ
�
f0

2f
þ Θ

�
guu −

G;u

G
¼ 0; ð241Þ

in which f0 is the derivative of f. It thus remains to solve
(230), (241), and (234)–(236).
Now, combining (240) with the definition (207) we

obtain

Θ;r þ Θ2 ¼ −fðrÞ;

which is the Ricatti-type equation for the expansion Θ.
Using the substitution Θ ¼ z;r=z, it can be rewritten as the
linear equation z;rr þ fðrÞz ¼ 0. Let us consider here only
the simplest case of a constant f,

f ≡ C2: ð242Þ
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By applying (195) we obtain the explicit solution

ΘðrÞ ¼ C cotðCrÞ; ð243Þ

G ¼ Pðu; xÞ
sinðCrÞ ; ð244Þ

gxx ¼
sin2ðCrÞ
P2ðu; xÞ : ð245Þ

(We have applied the coordinate freedom, namely a trivial
constant shift in the coordinate r, to simplify the expres-
sions.) It is now easily seen that for the particular choice

P ¼ 1; ð246Þ

guu ¼ 0; ð247Þ

Λ ¼ 0; ð248Þ

all the remaining field equations (230), (241), and (234)–
(236) are satisfied because Rxx ¼ 0, Rux ¼ 0, and Ruu ¼ 0.
We have thus obtained a special Robinson-Trautman
solution,

ds2 ¼ sin2ðCrÞdx2 − 2dudr; ð249Þ

with a nonaligned electromagnetic field:

Fr ¼
Cffiffiffiffiffi
κ0

p
G

¼ Cffiffiffiffiffi
κ0

p sinðCrÞ; Fx ¼ 0; Fu ¼ 0;

ð250Þ

that is,

�F ¼ Cffiffiffiffiffi
κ0

p dr: ð251Þ

Using (219)–(221), this is equivalent to

F ¼ Cffiffiffiffiffi
κ0

p sinðCrÞdr ∧ dx; ð252Þ

corresponding to the potential

A ¼ −
1ffiffiffiffiffi
κ0

p cosðCrÞdx: ð253Þ

By rescaling the coordinates r and u the constant C can be
set to C ¼ 1, but we prefer to keep it free because it
represents the value of the electromagnetic field and r is not
dimensionless.
Actually, (249) is the metric 3) on page 133 of [31] for

q ¼ 0, which admits four Killing vectors [see also the
metric (4.1) in [32]].

VIII. FINAL SUMMARY AND REMARKS

In this paper we systematically solved the Einstein-
Maxwell equations with Λ, obtaining all electrovacuum
2þ 1 spacetimes. We identified main geometrically dis-
tinct subclasses, and we explicitly derived the correspond-
ing metrics and electromagnetic fields. In particular:
(1) The metric of any such spacetime can be written in

canonical coordinates in the form (3)

ds2 ¼ G−2dx2 þ 2guxdudx − 2dudrþ guudu2:

ð254Þ

(2) The generic electromagnetic Maxwell 2-form field
and its dual 1-form have three independent compo-
nents (11) and (21), namely

F ¼ Frudr ∧ duþ Frxdr ∧ dxþ Fuxdu ∧ dx;

ð255Þ

�F ¼ GðFrdrþ Fuduþ FxdxÞ; ð256Þ

where Fr¼Frx, Fx¼gxxFru−guxFrx, Fu ¼ guxFru−
Fux − guuFrx.

(3) In terms of the Newman-Penrose scalars (25) of
distinct boost weights þ1, 0, −1, the Maxwell field
invariants F2 ≡ FabFab and �F2 ≡ �Fa

�Fa are

1

2
F2 ¼ −�F2 ¼ 2ϕ0ϕ2 − ϕ2

1: ð257Þ

The electromagnetic field is aligned with
k ¼ ∂r ⇔ ϕ0 ¼ 0 ⇔ Frx ¼ 0 ⇔ Fr ¼ 0.
Such an aligned field has only two components,

namely ϕ2 ¼ GFu ≡GðguxFru − FuxÞ and ϕ1 ¼
G2Fx ≡ Fru. In the case when ϕ2 ¼ 0 ⇔ Fu ¼ 0,
the electromagnetic field is non-null, characterized
just by ϕ1 ¼ Fru. Contrarily, when ϕ1 ¼ 0 ⇔
Fx ¼ 0, it is null (radiative), characterized just
by ϕ2 ¼ −GFux.

(4) Evaluating the energy-momentum tensor (34) we
derived that, in terms of these quantities, the
Einstein-Maxwell field equations take a simple
form (38),

Rab ¼ 2Λgab þ κ0G2FaFb; ð258Þ

(equivalent toRab¼2Λgabþκ0
�Fa

�Fb) and (43), (41),

ðGFaÞ;b ¼ ðGFbÞ;a; F½ab;c� ¼ 0: ð259Þ

(5) In the triad (6) of themetric (254), all optical scalars of
a congruence generated by the privileged null vector
field k ¼ ∂r vanish except, possibly, expansion:
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Θ ¼ −ðlnGÞ;r: ð260Þ

There are thus two geometrically distinct classes of
spacetimes to be investigated:
(a) Θ ¼ 0, defining the nonexpanding Kundt class,

with the metric function

G≡ Pðu; xÞ; ð261Þ

(b) Θ ≠ 0, defining the expanding Robinson-Traut-
man class, with the metric function

G≡Gðr; u; xÞ: ð262Þ

(6) Keeping the full generality, we explicitly integrated
the coupled system of the field equations (258) and
(259) both for the Kundt and the Robinson-Traut-
man spacetimes. It turned out that, as in standard
3þ 1 general relativity, the Kundt class only admits
aligned electromagnetic fields while the Robinson-
Trautman class admits both aligned and nonaligned
electromagnetic fields. Therefore, we treated these
three distinct families of spacetimes in three separate
sections of our paper, namely Sec. V, Sec. VI, and
Sec. VII, respectively.

(7) All Kundt spacetimes (Sec. V) with necessarily
aligned electromagnetic fields have the form

ds2 ¼ dx2

P2
þ 2ðeþ frÞdudx − 2dudr

þ
�
aþ brþ

�
Λþ 1

4
P2f2 −

κ0
2
Q2

�
r2
�
du2;

ð263Þ

and

F ¼ Qdr ∧ duþ ðfQr − ξÞdu ∧ dx; ð264Þ

corresponding to the potential

A ¼ Ardrþ Axdx; ð265Þ

where Ar ¼ −
R
Qdu and Ax ¼ r

R
fQdu −

R
ξdu;

see Eqs. (94)–(97). As summarized in Sec. V H, the
functionQðu; xÞ represents the non-null component,
while the function ξðu; xÞ represents the null com-
ponent of the Maxwell field. Their relation to the
metric functions P, e, f and a, b is explicitly given
by the Einstein-Maxwell equations (102)–(106). In
Sec. V H we presented a basic description of these
solutions, separately for two geometrically distinct
subclasses f ¼ 0 and f ≠ 0.
This large family of nonexpanding Kundt space-

times contains many interesting subclasses which
represent electrovacuum universes and also waves

on these cosmological backgrounds. The simplest of
them are gravitational and electromagnetic pp waves
with Λ ¼ 0. These are defined by the condition
ka;b ¼ 1

2
gab;r ¼ 0 which requires f ¼ 0, b ¼ 0,

Q ¼ 0. The field equations (107)–(111) then yield
the explicit metric in the Brinkmann form [33]:

ds2 ¼ dx2

P2
þ 2edudx − 2dudrþ adu2; ð266Þ

and the coupled electromagnetic wave:

F ¼ −
γðuÞ

Pðu; xÞ du ∧ dx; ð267Þ

corresponding to

A ¼ Axdx where Ax ¼ −
Z

γðuÞ
Pðu; xÞ du: ð268Þ

Here γðuÞ is an arbitrary profile function of the
retarded time u, while the metric function aðu; xÞ is
obtained by integrating the only remaining field
equation (111).

(8) All Robinson-Trautman spacetimes (Sec. VI) with
aligned electromagnetic fields [for which the metric
function G simplifies to G ¼ Pðu; xÞ=r] can be
written as

ds2¼ r2

P2
ðdxþeP2duÞ2−2dudr

þ
�
μQ2− κ0Q2 ln

����Qr
����þ2ðlnQÞ;urþΛr2

�
du2;

ð269Þ

with

F ¼ QðuÞ
r

dr ∧ du corresponding to

A ¼ QðuÞ ln r
r0
du; ð270Þ

see Eqs. (180)–(182). Here μ is a constant while the
metric functions P and e satisfy the field equa-
tion (178), that is�

Q
P

�
;u
¼ QðePÞ;x: ð271Þ

The dual 1-form Maxwell field reads

�F ¼ Q
P
dxþ ePQdu: ð272Þ

As summarized in Sec. VI H, the function QðuÞ
gives the non-null component ϕ1 ¼ QðuÞ=r of the
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Maxwell field. Somewhat surprisingly, there is also
an additional null (radiative) component ϕ2 ¼ ePQ
when e ≠ 0. However, such Maxwell fields cannot
be purely null because ϕ1 ¼ 0 implies ϕ2 ¼ 0.
The simplest e ≠ 0 solution of the field equa-

tion (271) is P ¼ 1, e ¼ xðlnQÞ;u þ αðuÞ, which
yields the metric (186).
Another interesting subclass (188) arises for fac-

torized P such that P ¼ QðuÞβðxÞ and eP ¼ αðuÞ.
The special case α ¼ 0 and Q ¼ const of these
expanding Robinson-Trautman spacetimes is equiv-
alent to the solution (192), (193),

ds2 ¼ −ΦðrÞdt2 þ dr2

ΦðrÞ þ r2dφ2;

ΦðrÞ ¼ −mþ κ0Q2 ln

����Qr
���� − Λr2; ð273Þ

which is the family of cyclic symmetric, electrostatic
black holes with Λ found in [24] and discussed in
Sec. 11.2 of [6].

(9) The complementary class of Robinson-Trautman
spacetimes with nonaligned electromagnetic fields
is presented in Sec.VII. In thismore complex case, the
metric has the form (254) with a general function
Gðr; u; xÞ; cf. (262). Moreover, the electromagnetic
field now has a nontrivial component ϕ0 ≠ 0 ⇔
Frx ≠ 0 ⇔ Fr ≠ 0, which considerably complicates
the solution of the Einstein-Maxwell equations.
Nevertheless, wewere able to explicitly express the

generic three components of the Maxwell field
separately in terms (of the combination) of themetric
functions as

Fr ¼
ffiffiffiffiffi
α

κ0

r
; Fx ¼

�
β

α
− gux

�
Fr; Fu ¼

γ

α
Fr;

ð274Þ

where the functions α, β, γ are defined in (207)–(209).
Interestingly, α is determined only by gxx, β is
determined by gxx and gux, while the third metric
component guu enters only γ.
We also derived a fully explicit form (216)–(218),

(222) of all four Maxwell equations (259). Finally,
there are three remaining Einstein equations (223)–
(225). This system of seven equations involves only
threemetric functions.After their solution is found, all
components Fr, Fx, Fu of the corresponding electro-
magnetic field are easily obtained using (274). In this
sense,we have achieved a separation of the variables
representing the gravitational and the electromag-
netic field.
Although at present it is not possible for us to

find a general solution to these seven equations, the

formulation of the problempresented here seems to be
useful. This fact has been demonstrated in Sec. VII F,
where we have explicitly identified a particular
solution with nonaligned electromagnetic field

ds2 ¼ sin2ðCrÞdx2 − 2dudr; ð275Þ

with

F ¼ Cffiffiffiffiffi
κ0

p sinðCrÞdr ∧ dx corresponding to

A ¼ −
1ffiffiffiffiffi
κ0

p cosðCrÞdx: ð276Þ

This special exact Robinson-Trautman spacetime
contains electromagnetic field which has only the
nonaligned component Fr ¼ ðC= ffiffiffiffiffi

κ0
p Þ sinðCrÞ. It

admits four Killing vectors [31,32,34].
Of course, many questions have remained open. First of

all, it is necessary to find explicit relations to already known
solutions summarized in [6]. Some basic identifications
have already been presented here, namely:

(i) Maximally symmetric backgrounds (Minkowski, de
Sitter, AdS) are contained both in the Kundt and
Robinson-Trautman class of spacetimes (263) and
(269), respectively.

(ii) There are electrovacuum backgrounds in the form of
direct-product geometries, such as the 2þ 1 analog
of the exceptional Plebański-Hacyan metric with
Λ < 0 and uniform Maxwell field (123).

(iii) We identified the complete family of ppwaves in flat
space, which are spacetimes admitting a covariantly
constant null vecor field. In the Brinkmann form
(266) they include the off-diagonal metric terms.

(iv) Within the Robinson-Trautman class with aligned
fields we explicitly identified the cyclic symmetric
charged black holes with any cosmological constant
and electrostatic field (273).

Our main problem now is to identify all other known
classes of solutions in 2þ 1 dimensions by using specific
invariant geometrical characterizations (such as an alge-
braic structure, symmetries, identification of rotation, and
acceleration of the sources, etc.). Subsequently, explicit
coordinate transformation must be found to relate our form
of the solutions to those derived previously.
After identification of new spacetimes, their geometrical

and physical analysis should be performed. Also, a sys-
tematic integration of the field equations for nonaligned
Maxwell fields in the Robinson-Trautman class is desir-
able. However, these tasks are left for future works.
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APPENDIX: CONNECTIONS AND CURVATURE
COMPONENTS IN CANONICAL COORDINATES

The Christoffel symbols for the general nontwisting
spacetime (3) after applying the condition (7) are

Γr
rr ¼ 0; ðA1Þ

Γr
ru ¼ −

1

2
guu;r þ

1

2
grxgux;r; ðA2Þ

Γr
rx ¼ −

1

2
gux;r þ Θgux; ðA3Þ

Γr
uu ¼

1

2

�
−grrguu;r − guu;u þ grxð2gux;u − guu;xÞ

�
; ðA4Þ

Γr
ux ¼

1

2

�
−grrgux;r − guu;x þ grxgxx;u

�
; ðA5Þ

Γr
xx ¼ −Θgrrgxx − guxkx þ

1

2
gxx;u; ðA6Þ

Γu
rr ¼ Γu

ru ¼ Γu
rx ¼ 0; ðA7Þ

Γu
uu ¼

1

2
guu;r; ðA8Þ

Γu
ux ¼

1

2
gux;r; ðA9Þ

Γu
xx ¼ Θgxx; ðA10Þ

Γx
rr ¼ 0; ðA11Þ

Γx
ru ¼

1

2
gxxgux;r; ðA12Þ

Γx
rx ¼ Θ; ðA13Þ

Γx
uu ¼

1

2

�
−grxguu;r þ gxxð2gux;u − guu;xÞ

�
; ðA14Þ

Γx
ux ¼

1

2

�
−grxgux;r þ gxxgxx;u

�
; ðA15Þ

Γx
xx ¼ −Θgrxgxx þ SΓx

xx; ðA16Þ

where

SΓx
xx ≡ 1

2
gxxgxx;x ¼ −

G;x

G
ðA17Þ

is the Christoffel symbol with respect to the only spatial
coordinate x, i.e., coefficient of the covariant derivative on
the transverse one-dimensional space spanned by x.
The nonvanishing Riemann curvature tensor components

are then

Rrxrx ¼ −ðΘ;r þ Θ2Þgxx; ðA18Þ

Rrxru ¼ −
1

2
gux;rr þ

1

2
Θgux;r; ðA19Þ

Rruru ¼ −
1

2
guu;rr þ

1

4
gxxðgux;rÞ2; ðA20Þ

Rrxux ¼
1

2
gux;rkxþ

1

4
ðgux;rÞ2−gxxΘ;u−

1

2
Θðgxx;uþgxxguu;rÞ;

ðA21Þ

Rruux ¼ gu½u;x�;r þ
1

4
grxðgux;rÞ2 −

1

4
gxxgxx;ugux;rþΘ

�
gux;u −

1

2
guu;x −

1

2
guxguu;r

�
; ðA22Þ

Ruxux ¼ −
1

2
ðguuÞkxx þ gux;ukx −

1

2
gxx;uu þ

1

4
grrðgux;rÞ2−

1

2
guu;rexx þ

1

2
guu;xgux;r −

1

2
grxgxx;ugux;r þ

1

4
gxxðgxx;uÞ2

−
1

2
Θgxx½grrguu;r þ guu;u − grxð2gux;u − guu;xÞ�: ðA23Þ

Finally, the components of the Ricci tensor are

Rrr ¼ −ðΘ;r þ Θ2Þ; ðA24Þ

Rrx ¼ −
1

2
gux;rr þ

1

2
Θgux;r þ ðΘ;r þ Θ2Þgux; ðA25Þ

Rru ¼ −
1

2
guu;rr þ

1

2
grxgux;rr þ

1

2
gxxðgux;rkx þ ðgux;rÞ2Þ−Θ;u −

1

2
Θðgxxgxx;u þ grxgux;r þ guu;rÞ; ðA26Þ
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Rxx ¼ −gxxgrrðΘ;r þ Θ2Þ þ 2gxxðΘ;u − grxΘ;xÞ þ 2guxΘ;x − fxx þ Θ½2guxkx þ 2gux;rgux þ gxxðguu;r − 2grxgux;rÞ − 2exx�;
ðA27Þ

Rux ¼ −
1

2
grrgux;rr −

1

2
guu;rx þ

1

2
gux;ru −

1

2
grx

�
gux;rkx þ ðgux;rÞ2

�
þ gxx

�
1

2
gux;rguxkx −

1

2
exxgux;r

�
þ guxΘ;u

þ Θ
�
guxguu;r −

1

2
ðguugux;r − guu;xÞ − gux;u þ

1

2
grxgux;rgux þ

1

2
grxgxx;u

�
; ðA28Þ

Ruu ¼ −
1

2
grrguu;rr − grxguu;rx −

1

2
gxxexxguu;r þ grxgux;ru −

1

2
gxxgxx;uu

þgxx
�
gux;ukx −

1

2
guukxx

�
þ 1

2
ðgrrgxx − grxgrxÞðgux;rÞ2 þ

1

2
gxxgux;rguu;x þ

1

4
ðgxxgxx;uÞ2

þ 1

2
Θ
�
−grxð2gux;u − guu;x − guxguu;rÞ þ guuguu;r − guu;u

�
; ðA29Þ

and the Ricci scalar is

R¼ guu;rr − 2grxgux;rr − 2gxxgux;rkx −
3

2
gxxðgux;rÞ2þ2Θ;rguu þ 4Θ;u þ 2Θ2guu þΘð2guu;r þ 2grxgux;r þ 2gxxgxx;uÞ: ðA30Þ

The symbol k denotes the covariant derivative with respect
to gxx:

guxkx ¼ gux;x − guxSΓx
xx; ðA31Þ

gux;rkx ¼ gux;rx − gux;rSΓx
xx; ðA32Þ

gux;ukx ¼ gux;ux − gux;uSΓx
xx; ðA33Þ

ðguuÞkxx ¼ guu;xx − guu;xSΓx
xx; ðA34Þ

where exx and fxx are convenient shorthand defined as

exx ≡ guxkx −
1

2
gxx;u; ðA35Þ

fxx ≡ gux;rkx þ
1

2
ðgux;rÞ2: ðA36Þ

The expressions (A24)–(A29) of the Ricci tensor enable us
to write explicitly the gravitational field equations for any
D ¼ 3 Kundt or Robinson-Trautman spacetime.
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