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Second post-Newtonian motion in Reissner-Nordstrom spacetime
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We derive the second post-Newtonian solution for the quasi-Keplerian motion of a charged test particle
in the Reissner-Nordstrom spacetime under harmonic coordinates. We formulate the solution in terms of
the test particle’s orbital energy and angular momentum, both of which are constants at the second post-
Newtonian order. The charge effects on the test particle’s motion including the orbital period and perihelion
precession are displayed explicitly. Our results can be applied to the cases in which the test particle has
small charge-to-mass ratio, or the test particle has arbitrary charge-to-mass ratio but the multiplication of
the test particle and the gravitational source’s charge-to-mass ratios is much smaller than 1.
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I. INTRODUCTION

The motion of bodies in gravitational fields is a classical
problem in astronomy and cosmology. For the cases in which
the gravitational fields are not extremely strong, the motion
can be studied in post-Newtonian (PN) approximations. A
large number of analytical PN solutions for the motion of the
binary systems have been obtained, including the first and
higher PN effects of the mass [1-11], the 1.5PN effects of the
spin-orbit coupling effects [12-22] on the general motion,
and the 2PN effects of the mass quadrupole on the circular
motion [23]. When taking the limit of the extreme mass ratio,
the solutions for the motion of the binary systems return to
the solution of the motion of the test particle. Based on these
studies, we have achieved the analytical solutions for the
motion of the test particle under the most generally para-
metrized PN force [24,25] and those in the spacetime of the
classical black holes, including the 2PN effects of the mass in
the Wagoner-Will-Epstein-Haugan representation [26], the
2PN effects of the spin-induced quadrupole on the equatorial
motion in Kerr spacetime [27], and the 2.5PN effects of the
spin-orbit coupling on the general motion in the Kerr
spacetime [28].

The Reissner-Nordstrom metric [29-31] is the unique
spherically symmetric and asymptotically flat solution of the
Einstein-Maxwell equations, which describes the exterior
spacetime around an isolated spherical object of mass and
electric charge. Although the charged astronomical bodies
have not been discovered, the possibility of their existence in
the Universe may not be ruled out. In fact, the charge effects
of the astrophysical black holes and stars have been studied
extensively [32—41]. For example, Ruffini and co-workers
have investigated the circular motion of a charged test
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particle in the field of the Reissner-Nordstrom black hole
[38,39]. In our previous work, we have shown that the black
hole’s electric charge can contribute to the orbital perihelion
precession at 1PN order, but not to the orbital period at the
same order [40]. It is interesting to further explore the effects
of the black hole’s charge on the particle’s motion, including
the orbital perihelion precession and period at higher PN
orders. On the other hand, the electrically charged test
particles are all around in astrophysics, so it is especially
important to discuss the motion of the charged test particles
in the field of the Reissner-Nordstrom black hole.

In this work, we derive the 2PN solution for the quasi-
Keplerian motion of the charged test particle in the Reissner-
Nordstrom spacetime and exhibit the charge effects on the
orbital period and perihelion precession. The solution is
formulated in terms of the test particle’s charge-to-mass
ratio, energy, and angular momentum, as well as the black
hole’s mass and charge-to-mass ratio.

The rest of this paper is organized as follows. Section II
introduces the harmonic metric of the Reissner-Nordstrom
black hole in the 2PN approximations, the geodesic equation
with the Lorentz force, and the corresponding Lagrangian, as
well as the orbital energy and angular momentum. In Sec. I1I
we present a detailed derivation of the 2PN solution for the
charged test particle’s quasi-Keplerian motion. A summary
is given in Sec. IV.

IL. 2PN LAGRANGIAN, ENERGY, AND ANGULAR
MOMENTUM IN REISSNER-NORDSTROM
SPACETIME

The Reissner-Nordstrom black hole’s mass and electric
charge are denoted by M and Q. In the harmonic coor-
dinates, the metric of the Reissner-Nordstrom black hole in
the 2PN approximation can be written as [42]

© 2022 American Physical Society
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2M  2M? 1,  2Mm? 5
goo=—l+—==—5 (1456 +7(1+€o), (1)

A2t dx? dx* . dx

iy 4
a2 P =y, (4)

goi = 0, (2) where I, denotes Christoffel’s symbols that, given by the
derivatives of the chosen metric g,,, 7 is the proper time of
M M2 M? 5\ xix/ the particle along its world line. The electromagnetic

9ij = (1 T 7) 8ij + 2 (1 - €0> 2 (3)  Faraday tensor F,, is given by
where ¢y = Q/M is the charge-to-mass ratio of the Fy, = 0A,/0x" — 0A,/Ox", (5)

gravitational source. The non-naked singularity of the
Reissner-Nordstrom spacetime requires |eg| < 1. r = |x]|
denotes the distance from the field position x = (x, y, z) to

where A, is the associated electromagnetic potential vector

the black hole located at the coordinate origin. The Ay = — ﬂ <1 N %> —1’ (6)
gravitational constant and the speed of light in vacuum r r

are setas 1 (G = 1 and ¢ = 1). The metric has a signature

of (—+ ++). Latin indices i and j run from 1 to 3. A;=0. (7)

The charged test particle has mass m and electric charge
q. The particle’s charge-to-mass ratio is €; = ¢/m, and its
motion is described by the geodesic equation with the
Lorentz force

Substituting the 2PN metric into Eq. (4), we can obtain
the 2PN equation of motion for the charged test particle as
follows:

dv Mx M 1 M? 27 3
E: —7 |:(1 —6061) _7(4+€(2) —56061) +v2<1 +§€O€l> +7 <9+6€% —76061 —§€8€1>
2M(v-x)? y2 M 1
- (r3 —) (1—6(2))—3(5061+€%)7+§V4€o€1]
M(v-x)v M 1
+7(r3 ) |:(4—€0€1)—7(2+2€%—€0€1)+EV2€0€1:|, (8)

where v denotes the particle’s velocity. When e; = O this equation reduces to the 2PN dynamics of a neutral particle in
Reissner-Nordstrom spacetime.
From the equation of motion (8) and the Euler-Lagrange equation

d oL OL
diy " ox ©)

we can obtain the corresponding 2PN Lagrangian of the charged test particle

1 1 3M 1m? 1M’
L:§v2+ , (1—€0€1)+8V +§—V 2 (1+€0—2€0€1> - (1+€(2)—2€0€1)
1 1 M? ™ 1M2 (v -x)>2
+E +Z7V2(7—€0>+§— +§7 I"2 (1 —6(2)). (10)

Based on this Lagrangian, we can calculate the 2PN energy £ and angular momentum J of the charged test particle as
follows:

1., M 3, 3M 3

1 M? M
5251’2—7(1—6061)—"81’4“‘571’ +§—2(1+€0—2€061) 2?(14‘63—26061)
5 2 21M 1M? (v-x)?
+E 6—}—1—2 2(7 6%)—'—?—1’ 57 }"2 (1— %), (11)
3M 3 1 M? 7
j:|x><v| 1-}-5 2+—+§V4+§—2(7 €%)+§7 2 (12)
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Notice that the mass m of the test particle has been
absorbed in the Lagrangian, the orbital energy, and angular
momentum.

III. THE QUASI-KEPLERIAN MOTION IN THE 2PN
APPROXIMATIONS

We follow the same procedure given by Soffel et al. [2]
to derive the 2PN solution for the quasi-Keplerian motion
of the charged test particle in the Reissner-Nordstrom
spacetime.

Because of the spherical symmetry of the Reissner-
Nordstrom spacetime, we only need to consider the motion
of the charged test particle’s motion in the equatorial plane,
in which the particle’s trajectory can be expressed as

x = r(cos e, + singpe,,), (13)

where ¢ is the azimuthal angle. e, and e, are the unit
vectors of the x and y axes.

The expressions for the orbital energy and angular
momentum in Egs. (11) and (12) can be written as

1 b M 3 | e 3M o M2 M
525(72+72¢)—7(1—6061)+§(72+r2¢ )2+57(72+r2¢)+ﬁ(1+€%—2€o€1) 1—7
5 0 e AM2 o M., Ly M2,
+E(r2+72¢ )3+17(F2+72¢)(7—63)+§7(r2+72¢ )2+FV2(1—€<2))’ (14)
. 1. . 3M 3. . ™ . . 7 M?> 1 2
J2:r4¢2{1+§(r2+r2¢2)—I—T+§(r2+r2¢2)2+§7(r2+r2¢2)+§7 <1—7€%>} , (15)

where the dot denotes the derivative with respect to the time.

From these two expressions, we can obtain

432 2 M ) M 2 2 M
" =T 1 =28 —— (8 = 2epey) +3E + —[34 — 18ege; + €5(2 + 3e7)] + E— (16 — begey) ¢ (16)
r r r

and
B C D E
P=A+—+ 54547, (17)
with
3 2
A=28(1-3E+282). (18)
B =2M[(1 —eye;) — 3E(2 — €pey) + 3E2(3 — 2¢0€,)]. (19)
2 M 2 2 M*E 2 2 2
C=-J%}1-2¢ —|—?[10 — ldege; + €5(1 + 3e7)] — 67[6 — Tegey + €5(1 + 2€7)] +3E% 5, (20)
2 M 2 2y _ 3 2
D = MJT=< (8 —2¢pe;) — E(16 — 6¢€ge ) + 2?[13 —25¢pe1 + €5(5 + 12¢7) — ege1 (3 + 2¢€7)] ¢ (21)
E = =3M*7?[11 — 6¢ge; + €3(1 + €7)]. (22)

Making use of the relation

P = | (23)

|
and plugging Eqs. (16) and (17) into (23), we can write the
radial equation in the form

d(1/r)? B C D FE
T A OV
[dcj)] +r+r2+r3+r4 (24)
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with
— =M™ 5 sae+ae) (28)
Al = 7 1+= 5 (25) =25 €0€1 + €5€7),
2M
B = 7 [(1 —epe) + E(4 — egey) +2E%],  (26)
M2 E'=M*(1-¢}). (29)
C = —{1 7 [6 — 6¢epe; — €5(1 —€7)]
M?E . . . .
—6(2—epe1) — ¢ (27)  Since the right-hand side of Eq. (24) is a fourth-order
J polynomial in 7=, we can further rewrite it as
|
d(1/r)]? 1 1 1 1 C, C3
= |-= C 30
[ d¢ } roa,(1+e)]||a(1—¢,) r 1+ + (30)
Comparing the coefficients between Egs. (24) and (30), we have
M(l—€0€1) 1 7—6061 1 21+€0€1 MZ‘S' 1—62
=+ - 2 4—e)—e ! 31
@ -2& +2 1 — €p€q 4 1 — €p€q + jQ ( 60) 601 — €p€q ’ ( )
2gj2 g 3gj2 (5—6061)
2=1 - 2[6 — 6epe; —€3(1 — €2 e
R ey S (e A G AR TR T ey
N &£ 30 — 36696, — 3eger (3 +€7) + €5(5+ 13€7)  2ET2(40 — 15¢p€; + 2€3€7)
(1 =eer)? (1 —e€pey) M*(1 = pey)?
8M? 5
T [4 = deger + eger — (2 — e)](1 = €ge) ¢ (32)
M? M?E
Ci=1- 7 [6 — 6€pe; — €3(1 —€3)] — 2?(7—63—36061)
4m*
—7[4—46061 + eger — €52 — eD)](1 — eey), (33)
2M3 ) 5
G = e [4 —4epe; + €le; — €5(2 — €1)], (34)
C; = -M*(1-¢€}). (35)
It can be seen from Eq. (30) that r, = a,(1 £ e,) represent af\* c C, Gy 37
the maximal and minimal values for r. Hence, a, and e, can dp) — ! Tt (37)

be regarded as the semimajor axis and the eccentricity of
the quasi-Keplerian orbit.
The solution of Eq. (30) can be written as

ar(l _e%)
=T 7/ 36
l1+e,cosf (36)

with f being the true anomaly for the quasi-Keplerian orbit
and obeying

Substituting Egs. (33)—(36) into Eq. (37), we have

~#{i-

+e3e1(3—€7)]e,cosf—

M4
j4

ar

d¢ [5 86061

— it -3(3-563)
4

j‘/}‘(l €k)e? cos2f} (38)

with
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M? M* [ 1-¢}
F=1- 2j2[6 6ege; —€5(1 —€?)] — E2j2 (1_606()1)2+2(7—6(2)—3€0€1)

4
— 577 138 = 264¢0e, - 6€2(11 — 2862) + e3e; (84 — 36€3) + el (1 — 26€3 + ¢4)). (39)

Integrating Eq. (38), we can obtain

2n Mm* 4 2 . Mm* UL
) o) = =f+—= 7 5 — 8egey — €jer — €5(3 — 5€t) + eje1 (3 — €3)]e, sin f +8—T‘(1 —€j)ersin2f, (40)

with

M? M 1-¢
O = 271'{1 +2—j2[6 — 6ege; — €3(1 — €2)] +52j2 T—ae ) +2(7-€}— 36061)]

3M4

8J4 [70 — 136¢€pe; — €5(30 — 88e7) + 4eger (9 — 5¢7) + €5(1 — 10e7 + 6‘1‘)}} (41)

Finally, we derive the time dependence of the quasi-Keplerian motion. Combining Egs. (16), (38), and (39), we have

: M M? M?
rzf_J{l—g——(4—€o€1) 2j2[6 6eger — €5(1 —ef)] + &2 + = [9 = Seger + (1 + €7)]
_579—166061 —€3(2-7€3) +263e, (1 +€?) —edet(1 +€7)
J? 2(1 = egey)?
M M? M
+—ﬁ[6 6ege; — €3(1 —€2)](4 —€0€1>+257(2—€061)
M4
— 7w [138 = 26406 — 663(11 - 286F) + el (84— 36¢F) + (1 — 266} + )]
M* M*
~ [5 — 8epey — €ge? — €3(3 — 5€?) + e3e1 (3 — €2)]e, cos f — W(l — €3)e? cos Zf}. (42)

Introducing the post-Newtonian eccentric anomaly u by the ~ and we can formulate the orbit given in Eq. (36) in terms of

relations u as
sinf:(l—e%)%sinu’ cos f = cosu—e,
1 —e,cosu 1 —e,.cosu
r=a,(l—e,cosu). (45)
f = 2arctan I+e tan = (43)
N l—e, 2)°
we have Integrating Eq. (42) and making use of Eqgs. (43)-(45),
we can achieve the final piece of the 2PN solution for the
d f (1=e2)'? du (44) motion in Reissner-Nordstrom spacetime,

dr 1 —e, cosu dt’
|

2 1 _ 2 _ 27 _ 2 _
t<2_7z> —u—e sinu+t 2ME* 1 —e5+2(1 —€geq) (73 € — 3epey) (f —u). (46)
Tu \ —25‘_72 (1 - 6061)
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with T, being the period for the eccentric anomaly u of the
quasi-Keplerian motion

:27[M(1—€0€]) _25(5 €0€1)_§52(7+€0€])
! (=28) 4" (1—eper) 327 (1-epey)
2ME* 1 —€3+2(1 —egey )2(7 — € — 3eper)

’ \/TJ2 (1 —e€gey)? ,
(47)
and e, being the time eccentricity
e, =e, 1+25(4—€0€1) ,36 — 19¢pe; + eZe}
(1 —egey) (1—6061)2
+ 25%24(1 — €o€1) = €5(2 — €7 — egey)
T (1 —egey)
2ME 1 — €} +2(1 —epey)2(7 — €5 — 3epey)
_ \/T.j2 (1 - 6061)3 .
(48)

In the literatures, one usually uses another true anomaly v to
replace the true anomaly f in the formula of the quasi-
Keplerian equation, requiring the sin v contribution in ¢(%{[)
to vanish at each PN order [8,16,43]. Following the same

with
ey =e.(1+ec; +€ecy), (50)

differing from the radial eccentricity e, by some 1PN and
2PN level corrections ¢ and c¢,. Here € only denotes the PN
order and does not have any value. Eliminating u in
Eq. (43) with the help of Eq. (49), we have [43]

2
e, . ’ , €r e, .
= S - - S
f D+€Cle§—1 v+e [(cz Cle%—l)e%—l v
2 2
c er )
+ZIWSIHZU:|. (51)
r

Substituting this result into Eq. (40) and requiring the sino
term to vanish in ¢(2), we can obtain

C :0, (52)

o _25%25 —8epe; —€5(3—5¢t +edel) +ede; (3 —e€7)
=

method given in Ref. [43], we set J? (1 _6061)2 7
(53)

v=2 arctan( R tan %), (49)

~ which leads to

|

e —e, [1 _25@5 — 8ege — (3 = Sef +e%2e%) +ae(-a)| (54)
J (1 —epey)
2n M* 2877

— | =v+—=(1-€)|l +—5+——| sin2v. 55
qb(q)) v+8j4( eo){ +M2(1_€0€1)2 sin 2v (55)

With the true anomaly v, we can reexpress the time dependance of the quasi-Keplerian motion Eq. (46) in the form of

2ME?

1 —€(2) +2(1 —6061)2(7 —6% —36'061)

27[) )
t\—|=u—e,sinu -+
(Tu ' V=262

Notice that |ey] <1 and |ege;| < 1 are assumed in the
above derivations, and all the formulas are valid up to 2PN
accuracy.

IV. SUMMARY

Basing on the 2PN metric of the Reissner-Nordstrom
black hole in the harmonic coordinates and the geodesic
equation with the Lorentz force, we first calculate the

(0—u). (56)

(1 —6061)3

[
corresponding Lagrangian, orbital energy, and angular
momentum of the charged test particle. Then, through a
function fitting method, we obtain the orbital parameters.
Finally, we derive the quasi-Keplerian equation of the
charged test particle in the Reissner-Nordstrom space-
time. We obtain two slightly different but equivalent
formulations in the 2PN approximations. The results are
summarized as follows.
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The first formulation can be expressed as

x = r(cos ge, + sin ge,),

r=a,(l—e.cosu),

¢<2ﬂ> f+ Ngsin f + Nysin2f,

D
1
f = 2arctan + ér tan— ,
l—e, 2

2
t(—ﬂ> =u—esinu+ Ny(f —u),
T,

and the second formulation can be expressed as

&

x = r(cos ge, + sin ge,),

r=a,(l —e,cosu),

2
¢<£> — 0+ N, sin20,

1
v = 2 arctan tey tanE ,
1 - €(/, 2

2n .
=) =u—esinu+N,(v—u),
T,

M(1—€0€]){1 +1 7—6061

M*E 1—¢?
{( GO)_01—6061}}

-2& 2 1 —¢ye
267 2 35~72( — €o€1)
=1 - 2[6 — 6¢ge; — €2(1 — €2)] + ——— 2
M (1 = egey)? (1—€o€1)2{ 6= 6ever — 1 = en)] + M? (1 - epey)
N &2 30 + 5€3 — 36epe; — 3eier (3 + €1) + 13e3€? N 2E7%(40 — 15€g€; + 2€3€?)
(1 —eper)? M?(1 = epey)?
8M?
arxe [4 —depe; + ege; — €3(2 — €D)](1 - eoel)}
e, =e, {14_25( — €oe1) 52 — 19€ges + eget 25£24(1_€0€1)—53(2—5%—6061)
' (1—6051) (1—6061)2 (1 —e€pey)
_2ME 1 -5 +2(1 = eper)*(7 — €5 — 3egen)
V267 (1= eger)’
S { _ M5 = Beper =63 = Ser + )+ eper 3 —6?)}
’ T’ (1= coer)? ’
—€(2)

MZ
D= 271'{1 +—[6(1 — €pe;) — €3(1 — €?

27°

1 —epey)

5 +2(7—€§— 36061):|

3Im*
+— e [70 — 136€pe; — €5(30 — 88€?) + 4ejer (9 — 5¢7) + €4(1 — 103 + e‘l‘)]},
4 2877 3
NO j4 [5 86061 636% - 6(%(3 - 56%) + 686‘1 (3 - 6%)} |:1 + ]\42(1—6061)2]
M* 2877
Ni=—(l—e) |1 4l
1 8j4< €0)|: +M2(1—€0€1>2

2ME* 1 —e5+2(1 —eger)* (7T — € —

P Er (1 —eoer)’
_27[M(1 —6061) _% (5—6061)

4 (1 —6051)
2ME? 1 —e5+2(1 —epey )2 (7T — €5 —

=

(—26)

+
V=2ET? (1 —eey)?
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In the formulations, a,, e,, and u can be regarded as the
semimajor axis, eccentricity, and eccentric anomaly of the
quasi-Keplerian motion in the post-Newtonian approxima-
tions. f and v are two slightly different definitions of the true
anomaly. T, denotes the orbital period. The difference
between ® and 27z is the perihelion precession. The effects
of the black hole’s charge on the test particle’s motion,
including perihelion precession and orbital period, are
characterized by the terms containing ¢y, and the effects
of the test particle’s charge are described by the terms
containing €. The achieved 2PN solution can be applied to
the motion of the electrically charged test particles with
small charge-to-mass ratio in the Reissner-Nordstrom space-
time, which has |¢y| < 1 for the non-naked singularity, e.g.,

the typically charged solar mass object in the field of the
charged supermassive black hole. It can also be applied to
the motion of the test particle with arbitrary charge-to-mass
ratio in the field of the weakly charged black hole as long as
|€0€ 1| < 1.
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