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A number of stability criteria exist for dark energy theories, associated with requiring the absence of
ghost, gradient and tachyonic instabilities. Tachyonic instabilities are the least well explored of these in the
dark energy context and we here discuss and derive criteria for their presence and size in detail. Our
findings suggest that, while the absence of ghost and gradient instabilities is indeed essential for physically
viable models and so priors associated with the absence of such instabilities significantly increase the
efficiency of parameter estimations without introducing unphysical biases, this is not the case for tachyonic
instabilities. Even strong such instabilities can be present without spoiling the cosmological validity of the
underlying models. Therefore, we caution against using exclusion priors based on requiring the absence of
(strong) tachyonic instabilities in deriving cosmological parameter constraints. We illustrate this by
explicitly computing such constraints within the context of Horndeski theories, while quantifying the size
and effect of related tachyonic instabilities.
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I. INTRODUCTION

Theoretical priors are an essential ingredient for the
efficient computation of cosmological dark energy con-
straints. Their usefulness can come in two flavors: They can
increase the efficiency of the computation, by allowing one
to a priori exclude regions of parameter space, which the
data would have otherwise excluded by themselves a pos-
teriori, and/or they allow us to take into account informa-
tion from additional physical requirements that the
computation would otherwise not have been directly
sensitive to. With priors of the first kind we are improving
the efficiency of constraint extraction, while in the second
case we are using complementary physical insights to
inform our understanding of (in the present case) cosmo-
logical dark energy.
Here we will primarily be concerned with theoretical

priors of the first kind. In the context of dynamical dark
energy theories, stability criteria associated with classical
background and linear perturbative evolutions are perhaps
the most straightforward example of such priors. Linear
fluctuations on top of a cosmological background can in
principle display three types of such instabilities: Ghost,
gradient and tachyonic. The first two are the better
understood, with any such instability generically invali-
dating the associated theory. As such, requiring their
absence is frequently incorporated into standard cosmo-
logical parameter analyses as a theoretical prior, e.g., as
part of the hi_class [1] and EFTCAMB [2] Einstein-
Boltzmann solvers—see [1–23] as examples of recent

related cosmological parameter constraints and forecasts
in the dark energy context relevant to this paper. As we will
discuss, since the presence of such instabilities generically
signals unphysical theories, this is typically a safe pro-
cedure, which saves computational time (theories display-
ing such instabilities would otherwise mostly be ruled out
by the data a posteriori) while only introducing minimal
errors (associated to nongeneric cases—see e.g., related
discussions in [3,24]).
Tachyonic instabilities instead are not as clear-cut and in

fact their presence can be observationally required—the
Jeans’ instability in standard Lambda cold dark matter
(ΛCDM) cosmology can be viewed as such a (tachyonic)
instability. However, it has previously been conjectured
(see e.g., discussions in [25–27]) that only mild such
instabilities, which evolve on cosmological timescales
similar to those associated with the Jeans’ instability, lead
to observationally viable theories. Stronger tachyonic
instabilities would then be associated to unphysical
theories. So upon accurately identifying the transition
scale between such mild and strong instabilities, requiring
the absence of strong tachyonic instabilities could be used
as a theoretical prior just as in the case of ghost and
gradient instabilities. In this paper we explore whether this
is possible, i.e., whether a meaningful transition scale
between mild and strong tachyonic instabilities exists,
which can be used to place a theoretical prior on
cosmological parameter estimation that improves its
efficiency.
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II. THE SETUP

A. Horndeski gravity

We will be working within the context of Horndeski
gravity [28,29],1 the most general scalar-tensor theory,
which gives rise to second order equations of motion for
the metric gμν and the additional scalar field ϕ. As such, we
are considering theories where dark energy is described by
a single additional gravitational degree of freedom (d.o.f.).
More specifically, we will consider theories with the
following Lagrangian:

L ¼ G2ðϕ; XÞ −G3ðϕ; XÞ□ϕþ G4ðϕÞRþ Lm; ð1Þ

where the Gi are free functions of the scalar field ϕ and its
derivative via X ¼ − 1

2
∇μϕ∇μϕ and Lm describes the

matter sector for all matter fields, which is minimally
coupled to gravity and hence independent of ϕ (in other
words, here we are working in Jordan frame). Note that (1)
is the subset of theories that give rise to gravitational waves
propagating precisely at the speed of light [31–34]—also
see [35–45] for closely related prior work.

B. Modeling matter

The matter part of the Lagrangian, Lm in (1), in principle
contains several degrees of freedom, all of which comewith
their own individual stability criteria. In practice, however,
these are not modeled individually and so we will follow a
hybrid approach here. At the level of the cosmological
constraint analyses we will present later in this paper, we
will model matter as a mixture of two effective fluids
describing nonrelativistic matter and radiation, respec-
tively. This is the standard approach implemented in the
aforementioned Einstein-Boltzmann solvers. However, for
the analytic derivation of stability priors we will follow the
methodology outlined in [26] and derive stability condi-
tions by working with the following matter scalar
Lagrangian:

Lm ¼ −
1

2
∂μχ∂μχ − VðχÞ; ð2Þ

where χ is a canonical matter scalar and V an arbitrary
potential. Clearly the matter proxy (2) cannot accurately
mimic the full complexity of a cosmological matter fluid
and its components, but following [26] we will assume that
the stability conditions derived with (2) are valid for a
general matter fluid, with the expectation that additional
stability conditions would arise when more fully modeling
all matter degrees of freedom. The conditions derived here
would then be conservative tracers of the full physical set of
stability conditions. We refer to Sec. IV for a more detailed

discussion of how different matter models and components
can lead to different (complementary) stability conditions.

C. Linear cosmology

In analyzing and constraining cosmological deviations
from general relativity (GR), we will focus on linear
perturbations around a ΛCDM background. The back-
ground equations then read

H2 ¼ ρtot; _H ¼ −
3

2
ðρtot þ ptotÞ; ð3Þ

where ρtot and ptot are the total energy density and pressure
in the Universe, respectively.2 The freedom of the linear
perturbations of (1) around this ΛCDM background are
then controlled by three functions αi given by [46]

HM2αM ¼ d
dt

M2 ¼ 2 _ϕG4ϕ;

H2M2αK ¼ 2XðG2X þ 2XG2XX − 2G3ϕ − 2XG3ϕXÞ
þ 12 _ϕXHðG3X þ XG3XXÞ;

HM2αB ¼ 2 _ϕðXG3X −G4ϕÞ; ð4Þ

where M is the effective Planck mass and satisfies
M2 ¼ 2G4. The subscript X represents a partial derivative
with respect to X, while a subscript ϕ denotes a partial
derivative with respect to the field ϕ. Here the kineticity αK
describes a contribution towards the kinetic energy term of
the scalar perturbations, the braiding αB signifies the
mixing of the kinetic terms of the scalar and tensor
perturbations and the Planck-mass run rate αM quantifies
the rate of evolution of the effective Planck mass M.
In order to constrain the freedom inherent in the αi

functions, it is useful to choose a parametrization for them.
In this paper, we will primarily show results for one of the
most commonly used such parametrizations

αi ¼ ciΩDE; ð5Þ

a one parameter ansatz where all the αi are proportional to
the fractional density of the dark energy fluid at the
background level. For comparison we will discuss results
for another commonly used ansatz, namely, αi ¼ cia, in the
Appendix B. See [3,4,8,23,46–51] and especially [52] for a
more detailed discussion of the relative merits of different
such parametrizations. Both of the above-mentioned para-
metrizations ensure that any modifications to GR phenom-
enology only become important once dark energy plays a
significant role at the background level, i.e., at late times.

1For the equivalence between the formulations of [28,29],
see [30].

2Note that we are using cosmic linear anisotropy solving
system units, setting 8πG ¼ 1. Also there is a relative factor of 3
in the definitions of densities and pressures used here, when
compared to other frequently used conventions.
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D. Cosmological constraints

We will compute cosmological parameter constraints on
the dark energy/modified gravity ci parameters via aMarkov
chain Monte Carlo (MCMC) analysis, while marginalizing
over the standard ΛCDM parameters Ωcdm;Ωb; θs; As; ns
and τreio. The datasets used are Planck 2015 cosmic micro-
wave background (CMB) temperature, CMB lensing and
low-l polarization data [53–55],3 baryonic acoustic oscilla-
tion (BAO) measurements from SDSS/BOSS [57,58], data
from the SDSSDR4 LRGmatter power spectrum shape [59]
and redshift space distortion (RSD) measurements from
BOSS and 6dF [60,61]. For technical details regarding the
MCMC implementation and for a discussion of related
cosmological parameter constraints (as well as for additional
details on the implementation and use of the data sets
involved) see [3]. Finally note that, while we will see that
αK does impact the form taken by tachyonic instabilities, it is
well known that it is almost unconstrained by observations of
cosmological linear perturbations [4,8],which is linked to the
fact that it is not present in the equation of motion in the
quasistatic approximation [46]. Mimicking the above-men-
tioned previous analyses, we will therefore mostly fix a
fiducial behavior for αK by setting cK ¼ 0.1—see
Appendix A for a detailed discussion of the effect αK
(and hence setting a given fiducial value of cK) has on
tachyonic instabilities.

III. GHOST AND GRADIENT
STABILITY CRITERIA

Of the three instabilitieswewill discuss, ghost and gradient
instabilities are the most well understood. Ghosts are asso-
ciated with a negative kinetic energy term (and, in addition to
triggering classical instabilities, also disastrous when taking
into account quantum fluctuations), gradient instabilities
occurwhen the “sound speed” of fluctuations turns imaginary
(generically resulting in an uncontrollable growth of pertur-
bations) and tachyonic instabilities are associated with an
imaginary effective mass for the fluctuations. For illustration,
consider the following Lagrangian for a (e.g., matter or
Horndeski scalar) fluctuation π on top of a purely time-
dependent Friedmann-Robertson-Walker background:

Sð2Þ ¼
Z

d3kdτ½�ðπ0Þ2 − ðc2sk2 þ μ̃2Þπ2�; ð6Þ

where τ is conformal time, a prime denotes a derivative
with respect to τ and we have canonically normalized the
scalar π up to an overall sign here. Switching to physical
time t this action then becomes

Sð2Þ ¼
Z

d3kdta

�
�ð _πÞ2 −

�
c2sk2

a2
þ μ2

�
π2
�
; ð7Þ

where we have absorbed a factor of a into the redefined
effective mass parameter μ2. If the first term carries a
negative sign, −ð _πÞ2, then a ghost instability is present,
while a gradient instability occurs when c2s < 0. A
tachyonic instability is present whenever μ2 < 0. We will
now first summarize when such ghost and gradient insta-
bilities occur for (1), before discussing conditions for the
presence of tachyonic instabilities in the next section.

A. Ghost instabilities

For (1), requiring the absence of ghost instabilities for
scalar fluctuations amounts to

D≡ 3

2
α2B þ αK > 0: ð8Þ

This condition depends on both αB and αK, so does indeed
imply an implicit constraint on αK in terms of αB. The
aforementioned statement that αK is (a combination of the
Gi and their derivatives that is) effectively “orthogonal” to
the parameter space probed by linear cosmology-related
observations is to be understood as applying after this
implicit constraint is in place. Second, notice that the above
condition is k independent, so if such an instability is
present on some fiducial scale kfid, it will be present at all
scales (i.e., there is no sense in which such a ghost can be
regulated as a small-k ghost [26,62,63]).

B. Gradient instabilities

The speed of sound for scalar perturbations from (1)
satisfies

Dc2s ¼ð2−αBÞ
�
αB
2
þαM−

_H
H2

�
−
3ðρtotþptotÞ

H2M2
þ _αB

H
; ð9Þ

where we recall that D is positive by virtue of requiring the
absence of ghosts. As discussed above, requiring the
absence of gradient instabilities then amounts to c2s ≥ 0.
In Fig. 1 we show the effect of extracting cosmological
parameter constraints with vs without imposing this
requirement as a prior. One can clearly see that there is
excellent overlap between the two regions, signalling that
the data by themselves exclude the vast majority of
parameter space regions a posteriori, if they have not
already been excluded by priors in the analysis. Imposing a
gradient stability prior therefore appears well motivated,

3We note that the most significant difference between the
recent Planck 2018 results [56] and the earlier results from 2015
used here is the shift to a lower value of the optical depth to
reionization, τreion, by approximately 1.5σ. As there are no strong
correlations between the value of τreion and the αi parameters, we
believe that these new constraints will not significantly affect our
conclusions—see [3] for a related discussion. However, more
explicitly analyzing any constraint changes induced by using
more recent and/or additional CMB data will be an interesting
task left for future work here, especially when going beyond
cosmologies with ΛCDM backgrounds as considered here.
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significantly increasing the efficiency of parameter space
estimation (in practice, unstable parameter space regions
take significantly longer to compute than stable ones)
without introducing unphysical artifacts in the eventual
constraints.4 For a discussion of related results see [3].

IV. TACHYONIC INSTABILITIES IN GR

Before considering the full Horndeski case, we would
like to build some intuition by considering tachyonic
instabilities in standard general relativity, here specifically
for ΛCDM cosmologies. In such cosmologies gravita-
tional collapse is associated to the well-known Jeans
instability [64], which can be recast as a tachyonic
instability. Here we will use the GR=ΛCDM example to
elucidate the link and mapping between a tachyonic
instability such as the Jeans instability and the stability
properties derived in this paper using (2). To do so, we will
first look at the standard Jeans instability in an effective
fluid picture for matter and then discuss how such a fluid
Jeans instability is related to a tachyonic instability of an
effective matter scalar (2).

A. Fluid picture

We begin by modeling matter via the following fluid
stress-energy tensor:

Tfluid
μν ¼ gμνpm þ ðρm þ pmÞuμuν þ σμν; ð10Þ

where σ is the anisotropic stress and u is the 4-velocity
defined as u ¼ ð1=að1 −ΨÞ; 1=a2δij∂jvmÞÞ. In addition we
will work in a Friedmann-Robertson-Walker space-time
and in Newtonian gauge for the associated perturbations,
where the line element can be written as

ds2 ¼ −ð1þ 2ΨÞdt2 þ a2ð1 − 2ΦÞδijdxidxj: ð11Þ

The background Friedmann equations (3) as well as the
continuity equation _ρm ¼ −3Hðρm þ pmÞ can then be
obtained from the background Einstein and stress-energy
conservation equations. For the purpose of this paper we set
the anisotropic stress σ to zero, a property that is recovered
by the scalar field matter proxies we will encounter
below.
Linearly perturbing the Einstein equations and consider-

ing the individual components of the resulting δGμν¼δTμν,
the tracefree part of the ij component of the perturbed
Einstein equation then implies thatΨ ¼ Φ (contingent on the
above σ ¼ 0 assumption). Combining the 00 and the 0i
components of this equation, we obtain the Poisson equation

∇2Ψ ¼ 3

2
a2ρmΔ; ð12Þ

where Δ≡ δm þ ð_ρvmÞ=ρ is defined to be the gauge-
invariant comoving density perturbation, here given in terms
of the fractional overdensity δm ¼ δρm=ρm and the peculiar
velocity vm. Complementing the perturbed Einstein equa-
tions we also have the perturbed stress-energy conservation
equation, i.e., δ½∇μTμν� ¼ 0, essentially the equations of
motion of the fluid perturbations. We find

δ_ρmþ3HðδρmþδpmÞþ
ðρmþpmÞ

a2
∇2vm ¼ 3 _ΨðρmþpmÞ;

∇2 _vmþ∇2Ψþ ∇2δpm

ðρmþpmÞ
þ _pm∇2vm
ρmþpm

¼ 0; ð13Þ

so effectively the perturbed continuity and Euler equation.
Combining (the time derivative of) the Poisson equation (12)
with the gradient of the ii component of the perturbed
Einstein equation and (13), we then obtain

Δ̈þ
�
4
_H
H

þ 8H

�
_Δþ

�
20 _H þ 2 _H2

H2
þ 2Ḧ

H
þ 15H2

�
Δ

¼ ∇2δpm

H2a2
; ð14Þ

FIG. 1. Cosmological parameter constraints for the modified
gravity parameters cb and cm, using the parametrization (5) and
CMB, RSD, BAO and matter power spectrum measurements (see
Sec. II for details). Inner (outer) contours correspond to 68%
(95%) confidence levels. Here we contrast constraints obtained
without vs with gradient stability priors (without tachyonic
stability priors in both cases). The constraints are near identical,
although note that even these very minor differences can matter
for specific well-motivated models (see main text for discussion).

4Note, however, that this statement should be interpreted
cautiously. Interesting, albeit small, regions of parameter space
may still (erroneously) be excluded in this way—see [23,24] for a
discussion of such cases and how to remedy these issues.
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wherewe havemade use of a quasistatic approximation, here
specifically d

dtΨ ∼ 0. In matter domination, where _H ¼
− 3

2
H2 and pressure fluctuations are zero, this then finally

reduces to the well-known evolution equation for nonrela-
tivistic matter fluctuations Δ

Δ̈m þ 2H _Δm −
3

2
H2Δm ¼ 0: ð15Þ

Equation (15) neatly illustrates the Jeans instability as
encoded in (the sign of) its final term. This instability here
is of orderH2, so as onewould expect, the Hubble scaleH is
the timescale associated to this instability in ΛCDM. As
discussed above, the Jeans instability can be recast as a
tachyonic instability.5 So the timescale associated with this
instability in ΛCDM is important, as it suggests that
tachyonic instabilities with similar timescales are harmless
in cosmology (and can indeed be required in the context of
structure formation).

B. Stability conditions from scalar tracers

As discussed above, we will now use a canonical
matter scalar (2) to derive a set of stability conditions.
While this will be significantly more involved for the
Horndeski models considered in the following section, the
GR=ΛCDM example discussed here will help to outline a
number of important features. Linearly perturbing (1) and
identifying Lm with (2), we now work in spatially flat
gauge and solve for the auxiliary fields Ψ and B

Ψ¼ _χδχ

2H
;

k2

a2
B¼2_χδ_χHþδχð6_χH2− _χ3þ2HV 0Þ

4aH2
; ð16Þ

where in an abuse of notation we will denote the derivative
of the potential V with respect to its argument by V 0.
Substituting this back into the quadratically perturbed
action, (7) then becomes

Sð2Þ ¼
Z

dx3dta

�
δ_χ2 −

�
k2

a2
þ μ2

�
δχ2

�
: ð17Þ

From this expression we can already see that ghost and
gradient stability conditions are trivially satisfied for χ. The
tachyonic stability is less trivial, however, and the corre-
sponding effective mass μ2 in (17) is equal to

μ2 ¼ −2H2 − _H þ
_H _χ2

2H2
−

_χ4

4H2
−
χ̈ _χ

H
þ _χV 0

H
þ V 00: ð18Þ

As already mentioned above, a tachyonic instability is
present when μ2 < 0. Whether such an instability can be

kept under control depends on its size and evolution time
scale. In order to quantify this, we will find it useful
to follow [65] and define the following dimensionless
parameter:

γ ≡ μ2

H2
: ð19Þ

A tachyonic instability is present when γ < 0 and its
dimensionless amplitude measures the relative strength of
such an instability with respect to the Hubble time scale.6

Armed with this notation, we can now take (18) and
explicitly compute the corresponding γ. Here we emphasize
that (18) was computed with scalar matter proxy (2), which
one can now translate into a condition solely expressed in
terms of an analogous pressure, density, their derivatives
etc. Assuming that this form of the stability condition
faithfully captures (part of) the relevant stability conditions
for a realistic cosmological fluid, we find7

γ ¼ −2þ 2
_H
H2

− 2
_H2

H4
þ 2

Ḧ
H3

−
2⃛HH _H − Ḧ2 þ 6Ḧ _HH

4 _H2H2
:

ð20Þ
where we have used the background equations (3) in the
process. The requirement that γ ≥ 0 would therefore
amount to a theoretical prior demanding the absence of
tachyonic instabilities, whereas requiring γ ≥ −jγcutj is
akin to excluding all instabilities larger than a given
cutoff size.
To develop further intuition for the value of γ and the

corresponding “size” of any would-be tachyonic instabil-
ities, we can evaluate the expression (20) for the expansion
history of a realistic cosmological model (modeled with
matter and radiation fluids rather than any scalar matter
proxies). Doing so in the limits of matter and radiation
domination, we find

γðmatÞ ¼ −1=2; γðradÞ ¼ 0: ð21Þ
To arrive at these expressions, we have used that, from (3),
_H=H2 takes the values of −3=2 and −2 during a matter and

5An interesting related observation is that long wavelength
ghost instabilities can also be recast as tachyonic instabilities and
vice versa [62].

6Note that the Hubble scale is of course the typical timescale
associated with cosmological evolution at large and, in particular
and as discussed above, with the Jeans’ instability.

7The scalar field χ and its potential V are connected to the
matter density and pressure in their usual manner:

ρm ¼ 1

2
_χ2 þ V½χ�; pm ¼ 1

2
_χ2 − V½χ�:

In the derivation of (20) we have assumed that _χ ≠ 0, so also
_H ≠ 0. An equivalent expression is

γ ¼ −2þ 5
_H
H2

− 2
_H2

H4
þ 2

Ḧ
H3

þ V 00ðχÞ
H2

:

This form is more useful e.g., for investigating the de Sitter limit.
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radiation domination phase, respectively. The limiting
expressions in (21) agree well with the full γ evolution
over time, which we plot in Fig. 2.8 So a key observation is
that tachyonic instabilities as measured by γ are at most of
order unity throughout the evolution. Analogous reasoning
has previously led to the conjecture (see discussions in
[25–27]) that instabilities with γ ≳ −Oð1Þ are harmless, but
that theories with significantly stronger tachyonic insta-
bilities are unviable, i.e.9

Conjecture∶ γ ≪ −1 ⇒ theory unviable: ð22Þ

This is based on the intuition that, if any such instability
starts forming too quickly, this would lead to an
uncontrolled growth of perturbations that ultimately
comes into conflict with observational constraints. In this
paper we argue that this does not need to be the case
and that even “strong” tachyonic instabilities do not
generically spoil the validity of the associated theories.
Note that a similar analysis was carried out in [65],
where tachyonic instabilities were investigated in a similar
vein in the context of a generalized cubic covariant
Galileon model [66]. We are therefore probing a different
subset of Horndeski theories (given our choice of back-
ground and αi parametrization), complementing the analy-
sis of [65].

C. Matter modeling and different scalar tracers

In the above we have derived stability conditions using a
canonical scalar field as a matter proxy. By assuming that
these conditions remain valid for a cosmological model
(with many more matter degrees of freedom) we can then
use and evaluate these conditions for a fully fledged
cosmological model involving matter and radiation fluids.
In [26] this mapping of stability conditions was conjec-
tured, but here we would like to more explicitly ask
how robust this procedure is and what happens, if a
different matter proxy is used to derive stability conditions
instead.
The example we will now consider is that of a PðXÞ

scalar field as an alternative proxy for matter. While a single
canonical scalar is known to not be able to capture the

behavior of a general cosmological fluid10 [67–69], a PðXÞ
scalar can do so more accurately,11 mimicking a barotropic
perfect fluid under the assumption that the fluid flow is
irrotational [74]. To establish how robust the stability priors
derived above are, it is therefore instructive to compare
priors derived with a canonical matter scalar vs those
derived using a PðXÞ scalar. Instead of the matter
Lagrangian (2) we now have

Lm ¼ PðXÞ; ð23Þ

FIG. 2. Evolution of the tachyonic instability parameter γ vs
redshift z in standard ΛCDM as derived using two different
matter proxies. γcan (solid line) is derived using a canonical scalar
field as a matter proxy, corresponding to Eq. (20), whereas γPðXÞ
(dashed line) is derived using a k-essence-like PðXÞ scalar as a
matter proxy, corresponding to Eq. (29). For the example shown
we see that the instability condition derived using a canonical
scalar matter proxy is always weaker than that using the more
involved PðXÞ matter proxy, so γcan here acts as a conservative
tracer of the overall instability conditions. In an abuse of notation,
we also define and plot γΔ for comparison (dash-dotted line),
which is defined to be the coefficient of Δ in (14) divided by H2.
In other words, γΔ quantifies the strength of the standard Jeans’
instability. The plot then emphasises that the above three
conditions are not identical (though a precise mapping can be
established)—see Sec. V for a more detailed discussion. The
shaded regions correspond to radiation (right) and dark energy
(left) dominated eras, respectively.

8Note that the late-time de Sitter limit is more subtle. The
limiting value for γ in the de Sitter limit does not smoothly
connect to dark energy dominated cases with even a minimal
contribution from matter. So, while evaluating γ in this limit
yields γðdSÞ ¼ −2, there is no tachyonic instability present in
the dark energy dominated (but not exactly de Sitter) era
in Fig. 2.

9For comparison, note that we start from a slightly differently
defined action than e.g., the one used in [46]: Sð2Þ ¼R
d3kdta3½�ð _πÞ2 − ðc2sk2a2 þ μ2Þπ2�. By redefining the field as

π → 1=aπ, it is possible to connect these two conventions. This
leads to an overall shift in γ̃ ¼ γ þ 2þ _H

H2.

10If we were to map a cosmology driven by a canonical matter
scalar to the cosmological fluid picture described above, we
would for instance encounter singularities for Δ and c2s in the
matter domination limit.

11Note that there are, however, still residual singularities in
the mapping between a PðXÞ scalar and a general cosmological
fluid—see [70,71] and references therein. For an alternative
approach based on the Sorkin-Schutz action, that circumvents
some of these issues, see [25,71–73].
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where X ¼ − 1
2
∂μχ∂μχ is the usual kinetic term for χ. The

(matter) stress-energy tensor for this theory is

Tμν ¼ ∂μχ∂νχPX þ gμνP; ð24Þ

where derivatives of P with respect to X are denoted by
subscripts, e.g., PX ≡ d

dX PðXÞ. If ∂μχ is timelike, then the
scalar field gradient acts as a natural four-velocity and we
can define

uμ ≡ ∂μχffiffiffiffiffiffi
2X

p : ð25Þ

Using this definition and (24) we recover the stress-energy
tensor of a perfect fluid

Tμν ¼ ðρþ PÞuμuν þ gμνP; ρ ¼ 2XPX − P; ð26Þ

where ρ and P denote the density and pressure of the
perfect fluid. Notice that we are somewhat abusing notation

here: Since the background value of PðXÞ corresponds to
the background pressure, so we denote both with the same
capital P—any P appearing below will always be evaluated
at the background level, so this distinction will be imma-
terial. Using (23) we then obtain the following ghost and
gradient stability conditions:

D ¼ 2XðPX þ 2XPXXÞ > 0; Dc2s ¼ 2XPX ≥ 0: ð27Þ

Evaluating these expressions using the background equa-
tions of motion, we find

D ¼ 6 _H2H

Ḧ þ 3 _HH
; Dc2s ¼ −2 _H: ð28Þ

Finally, we can evaluate the expression for γ following from
(23), to be compared with (20) (which we recall was
derived using a canonical scalar as a matter proxy). Doing
so we obtain

γ ¼ 1

4H4ðḦ þ 3 _HHÞ2 ð6Ḧ
3H þ Ḧ2ð−3 _H2 þ 62 _HH2 − 53H4Þ

− 3H2ðH::: 2 þ 8H
:::
_H2 þ 24 _H4 − 2H

::::
_HH − 24 _H3H2 þ 24 _H2H4Þ

− 2ḦHð12 _H3 −H
::::
H − 51 _H2H2 þ 51 _HH4 þH

::: ð _H þ 9H2ÞÞÞ: ð29Þ

Before comparing (20) and (29) it is interesting to note
that we can establish a mapping between the fluid and
scalar variables. For example, for the comoving density
contrast Δ in (14) we have the following mapping:

Δ →
2 _Hð _Hδ_χ − _H _χΨ − δχðḦ þ 3 _HHÞÞÞ

_χHðḦ þ 3 _HHÞ ; ð30Þ

so we can relate variables in both formulations and in
particular recover the standard Jeans’ instability using the
above mapping. The equations of motion for χ and Δ, and
hence the associated stability conditions, are therefore
related by the above field redefinition/mapping. Note
that the mapping can be obtained by noticing that
Δ ¼ δ − ð3Hvmðρm þ pmÞÞ=ρm, as before. The mappings
for the density and pressure are given above, while for δm
and vm we have

δm →
2 _H2ðδ_χ − _χΨÞ
_χHðḦ þ 3 _HHÞ ; vm → −

δχ

_χ
: ð31Þ

This also shows that the above mapping, while useful
formally, has its limitations physically and should be used
with care. It diverges in the limit of matter domination

(Ḧ þ 3 _HH and hence the denominator tends to zero then),
which is one of the residual singularities discussed above
one encounters when insisting on a PðXÞ model as a bona
fide matter model. We therefore reemphasize that the
different matter proxies discussed here are proxies used
in order to derive (some of) the relevant stability conditions,
not to fully mimic the dynamical behavior of all matter
fields.
Returning to the stability conditions, there are now three

quantities we would like to compare: (1) γ from (20), i.e., a
tachyonic stability condition derived with (2) as a matter
proxy. We will call this quantity γcan. (2) γ from (29), i.e., a
tachyonic stability condition derived with (23) as a matter
proxy. We will call this γPðXÞ. (3) The coefficient of Δ in
(14) which quantifies the strength of the standard Jeans’
instability and which wewill call γΔ in an abuse of notation.
We plot the evolution of these three terms with redshift in
Fig. 2. There are then two key observations: First, the
stability conditions derived with different matter proxies
are not identical—their relative strength and presence can
vary depending on the matter proxy obtained. In fact we see
that the instability condition derived using a canonical
scalar matter proxy is always weaker than that using a more
involved PðXÞ matter proxy (which, as discussed above, is
known to mimic an overall cosmological fluid more
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accurately). This corroborates our assumption above,
namely that stability conditions derived using (2) are
conservative tracers of the complete set of instability
conditions (which can be enhanced by more accurately
modeling the overall cosmological matter fluid and/or
explicitly modeling additional individual components).
In what follows we will therefore continue to use tachyonic
instability priors derived using (2) with the assumption that
they will continue to work as conservative tracers in this
sense. The second important observation is that, while the
presence of a standard Jeans’ instability (formulated in
terms of Δ) and of tachyonic instabilities associated with a
matter proxy (here formulated in terms of the scalar χ) are
indeed related by a mapping such as (30), the resulting
conditions themselves are not identical. The presence of
one such instability at a given time therefore does not
necessarily imply the presence of the other—as shown in
Fig. 2, the mapping and relationship is more involved. At
this point also note that one can phrase the above analysis,
which was carried out in a consistently gauge-fixed
manner, in a gauge-invariant language, defining a linear
density perturbation δχ as in [75], which then allows to
study tachyonic instabilities along the lines considered here
in a gauge-invariant way. Note that in the matter modeling
context of this section this gauge-invariant quantity δχ
reduces to the fractional overdensity δm ¼ δρm=ρm (as we
used it for the derivation of γΔ) in the Newtonian
gauge.
The above observation serves to illustrate another key

point: The conditions ensuring the absence of ghost and
gradient instabilities we discussed above are clear-cut, i.e.,
there is no convention or formulation dependence in the
way we compute these conditions. However, the definition
of an effective mass μ as in (6) depends on the normali-
zation, i.e., different ways of normalizing the relevant scalar
degree of freedom will yield different effective masses and
hence tachyonic stability conditions [75]. To gain some
intuition for this, note that switching from canonically
normalizing in conformal time (as we do here) to doing so
in physical time can introduce an Oð1Þ shift in the
corresponding γ parameter (see footnote 7). More generally
speaking, performing field redefinitions will generically
alter tachyonic stability conditions, as illustrated by the
above Δ vs δχ example. So indeed tachyonic stability
conditions are not as clear-cut as their ghost and gradient
analogues. Having said this, if a meaningful theoretical
prior can be identified using one self-consistent set of
conventions, then this can easily be mapped into a
corresponding condition when expressed in terms of
another field via the corresponding field redefinition. So
choosing a specific convention here does not affect the
generality of our results, but the precise numerical values
and expressions for effective masses and stability condi-
tions given throughout this paper ought to be understood
within the context of our conventions as detailed above.

V. TACHYONIC STABILITY CRITERIA

Having considered the (benign) nature of tachyonic
instabilities in GR above, we are now in a position to
put the conjecture (22) to the test and consider it for general
dark energy candidates of the form (1). Importantly, while
in GR there was only one propagating scalar mode
associated with the matter degree of freedom χ, in the
dark energy models considered here there is now an
additional propagating scalar mode. Since this second
mode has an associated effective mass term as well, in
analogy to (19) wewill now keep track of the following two
parameters and associated tachyonic instabilities:

γm ≡ μ2m
H2

; γs ≡ μ2s
H2

: ð32Þ

Here γm is associated to the matter d.o.f. that also
propagates in GR, while γs is linked to the new dark
energy d.o.f. This second d.o.f. is also the one linked to the
scalar ghost (8) and gradient instability conditions (9),
while the ghost and gradient stability conditions for matter
d.o.f. are trivially satisfied [26]. Having said this, note that
labeling these d.o.f. and conditions as “matter” and (dark
energy) “scalar” should not be taken too literally, since the
original scalar/matter perturbations get mixed in the proc-
ess of identifying the propagating d.o.f. and deriving their
associated stability criteria. For the technical and explicit
derivation of the μi (and hence γi), we refer the reader to
[25,75], where the mass eigenvalues have been derived for
the first time.
Setup: Ultimately we are interested in whether the

conjecture (22) is true and can therefore be used as a prior
in deriving constraints on the underlying model parameters.
Using (22) as a prior requires a more quantitative definition
of a cutoff for γ, so we will proceed by computing
cosmological parameter constraints with the following
prior:

Prior∶ γ > −jγcutj; ð33Þ

where we will investigate different values of γcut. If for
some such value γ̄cut, constraints derived with this prior
exclude a significant part of parameter space that does not
yield good fits to observations (so the prior does indeed
have a useful effect), while simultaneously not excluding
any regions of parameter space that do yield good fits (i.e.,
we do not want the prior to be overzealous and exclude
perfectly valid regions of parameter space), then (33) with
γcut ¼ γ̄cut is indeed a useful physical prior to implement.
Regarding this second point (avoiding overzealous cuts),
we emphasize that the presence of a tachyonic instability,
no matter how strong, is only a problem if its presence is
correlated to badly behaved perturbations and hence bad
fits to the data. In other words, in our present context (33)
should not be seen as a prior motivated by some other
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underlying and more fundamental reason (that goes beyond
observables).
Also note that we will apply the above prior (33) during

dark energy and matter dominated epochs, so in effect for
redshifts z≲ 3000. While tachyonic instabilities at earlier
times are also of interest, e.g., related to setting well-
defined initial conditions for dark energy scalars in
Einstein-Boltzmann solvers [76], this conservative choice
is partially motivated by the known potential presence of
observationally inconsequential instabilities in the radia-
tion-dominated epoch, where the dark energy d.o.f. is
highly subdominant and where such instabilities can be
a consequence of limitations of the simple parametrization
used (5) rather than of underlying physical issues [23,24].
We leave a more detailed investigation of early Universe
tachyonic instabilities, complementary to the late-time
exploration carried out here, for future work.

A. Tachyonic instabilities and cosmological constraints

Having set up the problem as described above, we now
compute the cosmological evolution and resulting con-
straints on dark energy models as specified by (1), (4) and
(5). In Fig. 3 we show the evolution of γ for several example
models. The instability is always present in the matter
sector, as expected and indeed required—see our discus-
sion regarding the Jeans’ instability in the previous section.
Deep in matter domination γm is effectively identical for
GR and the dark energy cosmologies, since the effect of the
extra degree of freedom is strongly suppressed there, but
upon approaching the dark energy dominated regime, also
γm is modified by the presence of the dark energy scalar and
relatively strong γ < −1 instabilities can be reached easily.
For the scalar dark energy sector (absent in pure GR), Fig. 3

shows that tachyonic instabilities are absent altogether for
some parameter choices, while relatively strong instabilities
can be triggered in the dark energy dominated epoch.12

In Fig. 4 we then show the regions in the ci parameter
space that would be excluded by various γcut priors. For
each point in this parameter space we compute the
evolution of the γi in the way illustrated in Fig. 3 and, if
γ violates the prior (33) at any point in the evolution, we
mark the corresponding region in parameter space as
excluded. Note that we consider cases when the prior is
applied to just the dark energy scalar sector (upper row) in
Fig. 5 as well as for the case when it is applied to both dark
energy scalar and matter sectors, i.e., to both γs and γm
(lower row). Clearly the prior excludes less and less
parameter space as γcut grows, ceasing to have any effect
for the observationally relevant region for γcut ≳ 100. Also
note that the presence of a Jeans-like instability manifests
itself by the fact that the whole region shown for γcut ≤ 1 is
excluded when also applying the prior to γm. That this does
not only happen for γcut ¼ 0, but also for γcut ¼ 1 suggests
that this Jeans-like instability in the matter sector is
generically stronger in the presence of a dark energy scalar
as modeled here than it is in pure ΛCDM. This is not
altogether surprising, since we have worked with a non-
trivial kineticity (setting ck ¼ 0.1) throughout most of
this paper (for a comment on the αk dependence of
the tachyonic instability, see Appendix A). This generically
affects tachyonic instabilities for both scalar and
matter modes, so even when considering the limit

FIG. 3. Evolution of γs and γm, where ck is fixed to 0.1 and cb and cm are varied according to the legend, all other cosmological
parameters were set to their Planck best fit value [77]. Note that our hi_class-based implementation (fainter, broader lines) is in perfect
agreement with the independent analytical cross-checks (solid/dotted/dashed/dashed-dotted lines). The shaded region on the left
corresponds to the dark energy dominated era.

12Note that Fig. 3 also serves as a consistency check, as we
compute the γi both using a hi_class and an independent analytic
implementation.
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FIG. 5. Cosmological parameter constraints for the modified gravity parameters cb and cm, using the parametrization (5). Inner (outer)
contours correspond to 68% (95%) confidence levels. Left: Here we show how constraints change when cuts are imposed on γcut for the
scalar tachyonic stability condition γs only. The full observationally viable region is only recovered for γcut ≳ 100, as expected from
Fig. 4. However, for such a large γcut the prior also does not exclude any of the relevant nonviable regions of parameter space, so setting
this prior then effectively has no effect at all. Right: Here we show how constraints change when cuts are imposed on γcut for the scalar
and for the matter tachyonic stability condition, i.e., for both γs and γm. Again as expected from Fig. 4, including a tachyonic stability
prior for the matter mode excludes all cosmologically viable models when setting γcut ≲ 1 (so no contours are visible for this value), but
only induces fairly minimal changes when γcut ≳ 10.

FIG. 4. Here we show region plots of the parameter space for cm and cb divided in regions where gradient (red), tachyonic (orange-
striped) instabilities or no/soft instabilities (white) are present for different values of γcut. The black contours corresponds to
cosmological parameter constraints generated without tachyonic stability priors as shown in Fig. 1, with inner (outer) contours
corresponding to 68% (95%) confidence levels. Upper row: Here γcut is only applied to γs, i.e., to the dark energy scalar sector. Lower
row: Here the scalar and the matter tachyonic stability condition are applied, thus increasing the amount of parameter space identified as
being affected by tachyonic instabilities. We see that for γcut ¼ 1 nearly the whole parameter space experiences a tachyonic instability.
Note that this is not surprising, since we expect that observationally viable theories can and do experience (at least soft) tachyonic
instabilities of the order of the Jeans instability [i.e., with γm ∼Oð1Þ] in the matter sector. Finally note that the origin does not exactly
correspond to ΛCDM here, since we fix a fiducial ck ¼ 0.1 here.
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fαM → 0; αB → 0g, there is still a nontrivial dependence on
the dark energy scalar and one should therefore not expect
to recover pure ΛCDM behavior here.
In Fig. 5 we then explicitly compute cosmological

parameter constraints for a variety of γcut priors. The
resulting contours neatly match up with the parameter
space regions shown in Fig. 4. We find that the full
observationally acceptable region is recovered only for
γcut ≳ 100. For smaller choices of γcut this new prior always
results in overzealous cuts eliminating perfectly viable
regions of parameter space. Indeed this interestingly
happens particularly for cosmologies with very small ci,
i.e., very close to (but not identical to) GR predictions—so
it is important not to erroneously exclude such regions due
to a hard tachyonic stability prior. In particular note that this
also implies that tachyonic instabilities which are signifi-
cantly “stronger” (as measured by γ) than the Jeans
instability in GR do not spoil the observational validity
of the theory and in fact comfortably sit within the 1σ
region most favored by observational constraints.
Returning to γcut ≳ 100, while the full observationally
viable parameter space is recovered for such priors, a
comparison with Fig. 4 shows that the prior then in fact
does not exclude any relevant regions of parameter space at
all, so it simply is irrelevant in this case. Compare this with
the relevant gradient stability prior as shown in Fig. 1.
There parameter constraints obtained with and without
applying this prior identified the same resulting valid
region, but gradient stability priors helped increase the
efficiency of the sampling by excluding regions a priori
that are in close proximity to the observationally viable
parts of parameter space. In the absence of a gradient
stability prior, these regions would have been extensively
sampled by a MCMC exploration, but would then have
been excluded by the data a posteriori. Placing a gradient
stability prior was therefore useful without biasing the final
result, whereas for the tachyonic stability priors above we
either see strong biasing or no useful impact at all. This
strongly cautions against applying tachyonic stability
priors, showing that the conjecture (22) fails in the setups
considered throughout this paper.

VI. CONCLUSIONS

In this paper we investigated tachyonic instabilities in
dark energy theories and to what extent priors related to
(requiring the absence of) these instabilities can play a
useful and informative role in the extraction of cosmologi-
cal parameter constraints. As discussed in Sec. III, well-
established priors related to ghost and gradient instabilities
significantly increase the efficiency of constraint extraction,
without significantly biasing the eventual result (by which
we here mean: without mistakenly ruling out viable regions
of parameter space). Tachyonic instabilities are signifi-
cantly more subtle in that their mere presence is clearly not
the sign of an underlying sickness in the theory—the Jeans’

instability in GR is a primary example, as discussed in
Sec. IV. Motivated by this, it had been conjectured (see e.g.,
discussions in [25–27]), that the presence of sufficiently
strong tachyonic instabilities (in particular, stronger than
the Jeans’ instability) can be used as a diagnostic to detect
unviable theories. Here we therefore investigated the
evolution of the effective mass of cosmological perturba-
tions and of the closely linked tachyonic instabilities for
general Horndeski gravity theories in detail, attempting to
identify a well-motivated cutoff that demarcates strong
from acceptable tachyonic instabilities. Having computed
cosmological constraints for a range of such candidate
cutoffs, we conclude that the conjecture ultimately fails in
the present context. The cutoff generically is either over-
zealous and excludes perfectly viable regions of parameter
space, or it is so weak that it has next to no effect on the
extraction of cosmological parameter constraints. This
suggests that, while there may be specific examples with
fine-tuned matching priors that can side step these worries,
priors based on excluding cosmologies with sufficiently
strong tachyonic instabilities can be safely ignored for
general dark energy models. Note that our analysis here
complements that of [65], where similar conclusions were
found in the context of a generalized cubic covariant
Galileon model [66].
We close by emphasizing that several complementary

theoretical priors beyond those considered here exist,
which it will be interesting to further explore and include
in future investigations of the interplay between theoretical
priors and observational constraints. Here we have focused
on the relatively well-investigated subset of classical
(ghost, gradient and tachyonic) stability criteria for scalar
modes propagating on cosmological backgrounds.
Interesting complementary classical stability priors come
e.g., from considering the propagation of dark energy
perturbations on backgrounds sourced by binary mergers,
yielding a constraint on the size and presence of gravita-
tional-wave induced dark energy instabilities [78] (also see
the closely related [79,80]). This in turn significantly
further tightens cosmological parameter constraints on dark
energy [23]. In this context also note complementary
constraints tightly linking local solar system constraints
to cosmology [22,81,82]. Similarly, requiring radiative
(rather than just classical) stability can impose additional
constraints on dark energy theories (for more detailed
discussions see [24,83] and references therein), with the
“weakly broken Galileon” [84] (i.e., shift symmetric
Horndeski theories) a well-known example of cosmologi-
cally motivated scalar-tensor theories with parametrically
suppressed radiative corrections. All of the above are
constraints directly diagnosable at the level of the low
energy effective theories describing dark energy at large
scales (such as Horndeski gravity). Demanding that such
theories have a sensible UV completion can constrain them
yet further—see [85–87] and references therein for a
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discussion of how the resulting bounds can affect the
cosmological parameter constraints discussed here. All
these different theoretical priors constrain linear cosmology
(and gravitational physics at large) in a variety of powerful
and orthogonal ways. Exploring additional candidate
(theoretically or observationally motivated) priors in order
to better understand dark energy, as we have done here in
the context of tachyonic instabilities, will therefore play an
essential role in obtaining ever tighter constraints going
forward.
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APPENDIX A: THE αK DEPENDENCE
OF TACHYONIC INSTABILITIES

In the main text we have not explicitly discussed any
dependence of the tachyonic stability prior (33) on αK . We
have done so (and fixed ck to a fiducial value in the process)
for good reason, since it is by now well understood, that
cosmological parameter constraints at most very weakly
depend on αK [4]. This is closely related to the fact that αK
drops out of the dynamics controlling linearized cosmologi-
cal perturbations at leading order in the quasistatic regime
[4,8], which applies on all but the very largest scales (whose
constraining power is weakened by cosmic variance). The
effective mass term μ2 that we have focused on here is of
course subdominant in the quasistatic approximation itself.
So phrased in this way the motivation of the conjecture (22)
was that, despite its subdominant contribution to observable
scales, instabilities linked to the effective mass term would
nevertheless correlate with relevant regions in parameter
space that poorly fit the data. However, we have seen that this
is not the case above and explicitly considering the depend-
ence of tachyonic instabilities on αK will offer a different
perspective on why this is the case.
While αK does not affect the gradient stability condition

linked to (9), it is bounded by the no-ghost condition (8)
and, for our purposes most importantly, does affect the
effective mass term μ2 (nonlinearly) and hence the potential
presence of tachyonic instabilities. Note that αK therefore
affects the shape of the overall parameter space explored by

the MCMC sampler, as pointed out by [7,10]. This aspect
may be relevant in analyzing models without ΛCDM limits
(i.e., models different from the ones explored throughout
this paper). In Fig. 6 we provide a few examples of how the
evolution of μ2 for the dark energy scalar mode (and hence
of γs) is affected by changing αK . Already from these
examples, we see that γs nonlinearly depends on αK . More
specifically, it is not just the size, but more importantly the
presence of a tachyonic instability itself that nonlinearly
depends on αK . Figure 7 then shows that this is not just an
artifact of the specific examples shown before, but that αK
significantly affects the size and presence of tachyonic
instabilities in general. In particular note that, as observed
in Fig. 6 before, for a given point in the αM − αB plane, the
size and/or presence of any would-be tachyonic instability
does not scale linearly with αK . More specifically, by
altering αK , sizeable instabilities can also be triggered and
amplified for mild and observationally viable departures
from GR. Since we know that the value of αK does not
significantly affect observational constraints, this is again in
conflict with the conjecture (22). So, as before, we
conclude that no tachyonic stability prior of the type
discussed here should be applied to a cosmological con-
straint analysis.

APPENDIX B: STABILITY CONSTRAINTS FOR
OTHER PARAMETERIZATIONS

Throughout this paper we have focused on stability
conditions for the αi in terms of a dark energy density
parametrization (5). In the following we show the results of

FIG. 6. Evolution of the parameter γs for three different fiducial
values of ck and fixed cb ¼ 0, cm ¼ 1.0. This clearly shows that
the (fiducial) choice of αK can amplify/reduce the overall size and
evolution of tachyonic instabilities. Especially notice that the
instabilities do not scale linearly with ck.
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the stability constraints analysis for the parametrization
αi ¼ cia. In analogy to Fig. 3, Fig. 8 displays the
comparison of the numerical evolution (fainter, broader
lines) vs the analytical calculation (solid/dashed/dotted
lines) of the parameters γs and γm for different cosmologies.
We see that the code is able to reproduce the analytical
solutions in very good agreement. The cosmology cb ¼ 1,
cm ¼ 0 is not listed, since the code had difficulties to
reproduce the analytical expressions. But in the newest

hi_class version, this cosmology is excluded by the initial
conditions tests (tachyonic instability in the radiation-
dominated era) anyway. In Fig. 9, the parameter space
of cb and cm is plotted for different values of γcut. Since
both parametrizations make sure, that the dark energy
perturbations become important just at late time, Figs. 4
and 9 show an overall similar behavior—see [3] for the
corresponding observational constraints computed for the
αi ¼ cia parametrization.

FIG. 8. Evolution of the dimensionless parameters γs and γm over redshift, where ck is fixed to 0.1 and cb and cm are varied according
to the legend. Unlike in the main text we here choose αi ¼ ci · a as an alternative parametrizations for the α’s. As before, our hi_class-
based implementation (fainter, broader lines) is in excellent agreement with the independent analytical cross-checks (solid/dotted/
dashed/dashed-dotted lines). The shaded region on the left corresponds to the dark energy dominated era. Unlike for the αi ∝ Ω
parametrization shown in Fig. 3, here we do not compute a cosmology with cb ¼ 1, cm ¼ 0 (this is so far from the viable region of
parameter space, no sensible initial conditions can be set for this case).

FIG. 7. Here we show the analogue of Fig. 4, where we only apply γcut ¼ 1 to γs, i.e., to the dark energy scalar sector. As before the
shading denotes the presence of different instabilities: gradient (solid), tachyonic with γs > 1 (striped) or neither of the previous
two cases (no shading). Importantly different choices of ck (and hence αK) significantly affect the presence and size of tachyonic
instabilities.
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