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We investigate the predictions of inflation models with a nonminimal coupling to gravity for inflationary
observables such as the spectral index and tensor-to-scalar ratio in a general setting. We argue that,
depending on the relation between the Jordan frame potential and a function characterizing the nonminimal
coupling, one can classify the model into three categories, each of which gives distinctive predictions for
the inflationary observables. We derive general predictions for each class and also investigate some explicit
models to discuss how the general features arise. Our results would be useful to design an inflation model
consistent with observational constraints with a nonminimal coupling to gravity.
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I. INTRODUCTION

Inflation has been a successful paradigm to describe the
very early stage of the Universe. The inflationary expan-
sion is considered to be driven by a scalar field, called the
inflaton, and its perturbations provide primordial density
fluctuations through which we can probe the inflationary
epoch by observing anisotropies of cosmic microwave
background (CMB), large scale structure, and so on.
Indeed, current cosmological observations of CMB such
as Planck satellite [1] have severely constrained the so-
called spectral index ns and the tensor-to-scalar ratio r,
now critically test inflation models. In particular, recent
results from CMB B-mode polarization experiment of
BIECP/Keck 2018 [2], in combination with Planck data,
have put a more stringent constraint on ns and r, which
now excluded chaotic inflation with any power-law
potential and natural inflation models [2].
Although these inflation models are disfavored by

current observational constraints as a model minimally
coupled to gravity, if one introduces a nonminimal
coupling, the inflationary prediction can be modified
and may become consistent with observations. One of
such a famous example is the Higgs inflation [3] (see also
[4–8] for earlier works of this type), in which quartic
chaotic inflation has a nonminimal coupling to gravity.
Although its minimally coupled version has already been
excluded due to too large tensor-to-scalar ratio, it becomes
a viable model when one includes a nonminimal coupling
mainly because the tensor-to-scalar ratio is suppressed in
such models [8]. By introducing a nonminimal coupling,
the predictions for ns and r are in general modified and
one may be able to relax inflation models like in the case
of the Higgs inflation. Such examples include quadratic
chaotic inflation [9–12], power-law inflation and inverse

monomial inflation [13], natural inflation [14,15], and
so on.1

However, one should be cautioned that a nonminimal
coupling does not necessarily modify inflation models in
such a way that the model becomes viable against cosmo-
logical data. For instance, when a negative nonminimal
coupling is assumed for a quadratic chaotic inflation model,
the tensor-to-scalar ratio gets enhanced and it is inconsistent
with the data [10]. It also happens that if one assumes too
large nonminimal coupling, the spectral index and/or the
tensor-to-scalar ratio are modified much and the model
predictions move away from the observationally allowed
region. Therefore it is not trivial whether a model gets
resurrected or not by assuming a nonminimal coupling.
Furthermore, even though many inflation models (inflaton
potential) have been proposed and studied in the context of
the single-field inflation framework, only a handful of
models have been investigated in the nonminimally coupled
version. Besides, the analysis for nonminimal inflation so far
is mostly model-dependent and a systematic study has been
scarcely done regarding what inflation model (inflaton
potential) and what kind of nonminimal coupling give
successful predictions for the inflationary observables such
as ns and r.

1One can also consider a multifield extension to alleviate
models which are excluded by observational constraints. For
example, spectator field models such as the curvaton [16–18],
modulated reheating scenario [19,20] and so on in which another
scalar field other than the inflaton, whose energy density is
negligible during inflation, generates primordial fluctuations,
whereas the inflationary expansion is driven by the inflaton. In
such a model, the predictions for the inflationary parameters are
also modified, and interestingly, some inflation models can
becomes viable even though it is excluded as a single-field
inflation model [21–28].
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In light of these considerations, it would be worthwhile to
investigate general predictions for inflationary observables in
nonminimal inflation models systematically and as model-
independently as possible, which is the main purpose of this
paper. Based on a general setting, we study the inflationary
predictions to see what kind of nonminimal coupling can
relax inflation models even if they are excluded as a
minimally coupled model.
The structure of this paper is as follows. In the next section,

we describe the framework we consider in this paper and give
expressions for the inflationary observables in a model-
independent manner. To discuss how the predictions of
inflation models are modified due to the existence of a
nonminimal coupling, we classify models into three catego-
ries by using the relation between the Jordan frame inflaton
potential and a function specifying how the inflaton is
nonminimally coupled to gravity. Then, in Sec. III, we argue
the general predictions of nonminimal inflation models and
how one can relax the minimally coupled counterpart. The
final section is devoted to discussion and conclusion of
this paper.

II. FRAMEWORK

A. General nonminimal inflation

Here we describe the framework to study the predictions
for inflationary observables in a general setting. We
consider a single-field inflation model nonminimally
coupled to gravity whose Jordan frame action is given as2

SJ ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
−
1

2
AðϕÞM2

plg
μνRμνðΓÞ

þ 1

2
gμνð∂μϕÞð∂νϕÞ − VJðϕÞ

�
; ð2:1Þ

where ϕ is an inflaton, AðϕÞ is a function representing a
nonminimal coupling to gravity and VJðϕÞ is the Jordan
frame potential for ϕ.
By making a Weyl transformation

ĝμν ¼ Ω2ðϕÞgμν; Ω2ðϕÞ ¼ AðϕÞ; ð2:2Þ

the action can be brought into the Einstein frame one:

SE ¼
Z

d4x
ffiffiffiffiffiffi
−ĝ

p �
−
1

2
M2

plĝ
μνR̂μνðΓ̂Þ

þ 1

2
ĝμνð∂μχÞð∂νχÞ − VEðχðϕÞÞ

�
; ð2:3Þ

in which the quantities with a hat represent the one in the
Einstein frame and χ is the Einstein frame field related to ϕ as

dϕ
dχ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2AðϕÞ2
2AðϕÞ þ 3κM2

plðA0ðϕÞÞ2
s

: ð2:4Þ

Here a prime represents the derivative with respect to ϕ, i.e.,
A0ðϕÞ ¼ dA=dϕ. Here κ ¼ 1 corresponds to the case of the
metric formulation, while κ ¼ 0 is for the Palatini case.3

VEðχðϕÞÞ is the potential in the Einstein frame which can be
written as

VEðχðϕÞÞ ¼
VJðϕÞ
A2ðϕÞ ¼

VJðϕÞ
Ω4ðϕÞ : ð2:5Þ

To predict the inflationary observables such as the
spectral index ns and the tensor-to-scalar ratio r, we need
to compute the slow-roll parameters, which are defined in
the Einstein frame as

ϵ ¼ 1

2
M2

pl

�
1

VE

dVE

dχ

�
2

; η ¼ M2
pl

1

VE

d2VE

dχ2
; ð2:6Þ

with which the spectral index ns and the tensor-to-scalar
ratio are given by

ns ¼ 1 − 6ϵþ 2η; r ¼ 16ϵ: ð2:7Þ

We also sometimes use the slow-roll parameters defined for
the Jordan frame potential, denoted as ϵJ and ηJ, which are
given by

ϵJ ¼
1

2
M2

pl

�
1

VJ

dVJ

dϕ

�
2

; ηJ ¼ M2
pl

1

VJ

d2VJ

dϕ2
: ð2:8Þ

By using ϵJ and ηJ, we can express the Einstein frame
slow-roll parameters ϵ and η as

ϵ ¼ P2

�
ϵJ − 2M2

pl
A0

A
V 0
J

VJ
þ 2M2

pl

�
A0

A

�
2
�
; ð2:9Þ

η ¼ P2

�
ηJ − 4M2

pl
A0

A
V 0
J

VJ
þ 6M2

pl

�
A0

A

�
2

− 2M2
pl
A00

A
þM2

pl
P0

P

�
−2

A0

A
þ V 0

J

VJ

��
; ð2:10Þ2One can also include a functional uncertainty for the kinetic

term of ϕ as 1
2
gμνð∂μϕÞð∂νϕÞ → 1

2
BðϕÞgμνð∂μϕÞð∂νϕÞ, which has

been discussed in [29–31]. However, the effects of BðϕÞ are
somewhat degenerate with those of AðϕÞ after the Weyl trans-
formation, and hence we do not consider such additional freedom
for the kinetic term in this paper.

3See, e.g., [32] for an introductory review of the Palatini
formulation.
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where we have defined P ¼ PðϕÞ ¼ dϕ=dχ. The differ-
ence between the metric and Palatini formulation only
appears in the functional expression of PðϕÞ, and hence
Eqs. (2.9) and (2.10) hold for both formulations.
Furthermore, one often provides the analytic formulas

for ns and r in terms of the number of e-folds N, which can
be calculated as

N ¼ 1

M2
pl

Z
ϕ�

ϕend

1

P2

�
V 0
J

VJ
− 2

A0

A

�
−1
dϕ; ð2:11Þ

where ϕ� and ϕend are the values of ϕ at which the reference
scale exited the horizon during inflation and the end of
inflation, respectively.
Up to here, the expressions are quite general. Since the

functional form of AðϕÞ assumed in most works of non-
minimal inflation is given as

AðϕÞ ¼ 1þ ξF ðϕÞ; ð2:12Þ

with ξ being the dimensionless coupling parameter, we take
the above form for AðϕÞ in the rest of this paper. Indeed
in many works, AðϕÞ ¼ 1þ ξðϕ=MplÞn with n being the
power law index is adopted. In particular, AðϕÞ ¼ 1þ
ξðϕ=MplÞ2 is assumed for the Higgs inflation case. In some
works, a cosine form AðϕÞ ¼ 1þ ξð1þ cosðϕ=fÞÞn with f
being a model parameter is assumed for natural inflation as
the Jordan frame potential [14]. Regarding the Jordan frame
potential VJ, one can take an arbitrary form, at least
phenomenologically, however, in most works of nonmini-
mal inflation, rather limited ones have been assumed such
as a power-law type VJ ∝ ϕp with p being a positive
integer, a cosine type VJ ∝ 1þ cosðϕ=fÞ and so on.
In this paper, we discuss the predictions for inflationary

observables such as ns and r in a general setting although
we also take some explicit forms for VJ and F as examples
to present how the general expressions actually work. To
make a systematic analysis, we assume that the Jordan
frame potential satisfies dVJ=dϕ > 0 in which the inflaton
for the minimally coupled case moves from a (positively)
large field value to a (positively) smaller one toward the end
of inflation for the range of ϕ relevant to the inflationary
dynamics. We also assume that the inflation ends by the
violation of slow-roll when ϵ ¼ 1 is satisfied both in
minimally and nonminimally coupled cases.4

It is important to notice that when the nonminimal
coupling exists, the Einstein frame potential VE does not
necessarily satisfy dVE=dχ > 0 even if the original Jordan
frame potential fulfills dVJ=dϕ > 0 for the corresponding

range of ϕ (or χ), which motivates us to classify models
using the forms of AðϕÞ (or F ðϕÞ) and VJðϕÞ. We discuss
this issue in the next section.

B. Classification of models

The derivative of the Einstein frame potential (2.5) with
respect to χ is written as

dVE

dχ
¼ dϕ

dχ

�
VJ

A2

��
V 0
J

VJ
− 2

A0

A

�
: ð2:13Þ

When ξ is sufficiently large, this can be expanded as

dVE

dχ
¼ dϕ

dχ

�
VJ

F 2

��
V 0
J

VJ
− 2

F 0

F

�
1

ξ2
þO

�
1

ξ3

�
: ð2:14Þ

Notice that even if we assume that V 0
J > 0 holds, the

derivative of the Einstein frame potential can be positive,
zero or negative for sufficiently large ξ and χ, depending on
the sign of V 0

J=VJ − 2F 0=F , which is determined by the
functional forms of VJ and F . This motivates us to classify
models into three categories as follows:

V 0
J

VJ
¼ 2

F 0

F
ðAttractor typeÞ; ð2:15Þ

V 0
J

VJ
> 2

F 0

F
ðVJ-dominant typeÞ; ð2:16Þ

V 0
J

VJ
< 2

F 0

F
ðF -dominant typeÞ; ð2:17Þ

which respectively correspond to dVE=dχ ¼ 0; dVE=dχ > 0
and dVE=dχ < 0 at large ξ and χ limit.
For later convenience, here we introduce the paramet-

rization for the relation between VJ and F as

α
V 0
J

VJ
¼ 2

F 0

F
; ð2:18Þ

where we assume α to be constant in the following argument.
Although in general α can depend on ϕ, most models studied
in the literature so far correspond to the case that α is
constant. Moreover during the slow-roll phase and around the
time when the scales of interest exit the horizon, α would not
change much even if it depends on ϕ. Thus the assumption
that α is constant would give a good approximation when we
discuss inflationary observables. By using α, each class given
above can be specified as follows:

α ¼ 0 ðAttractor typeÞ; ð2:19Þ

0 < α < 1 ðVJ-dominant typeÞ; ð2:20Þ
1 < α ðF -dominant typeÞ: ð2:21Þ

4Even when the inflation does not end by the slow-roll
violation in a minimally coupled case, the end of inflation can
be invoked by the slow-roll violation due to the presence of a
nonminimal coupling [13]. However, in this paper, we do not
consider such kinds of models.
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For large values of ξ and χ, the Einstein frame potential
VE for the attractor type exhibits a very flat shape. In the
VJ-dominant type, VE is a monotonically increasing
function at least for the range of ϕ relevant to the infla-
tionary dynamics. In the F -dominant type, VE has an
extremum at some value of χ (or ϕ), which we denote as χex
(or ϕex), for a sufficiently large value of ξ. In the following
discussion, we consider the range of χðϕÞ as χ < χexðϕ <
ϕexÞ in order that χðϕÞ does not run away toward a large
value, which is usually assumed. Actually as ξ gets larger,
the value of χ should be taken to be very close to χex to
realize a sufficient number of e-folds (N ¼ 50–60), which
gives a distinctive feature for F -dominant case. Such kinds
of features will be discussed in Sec. III.

C. Example models

Although the aim of this paper is to give predictions for
the inflationary observables in a general setting, i.e.,
regardless of the forms of the Jordan frame potential
VJðϕÞ and the functional form for nonminimal coupling
F ðϕÞ as much as possible, some explicit examples are
useful to understand the behavior and applicability of our
approach. In this paper, we consider three examples which
are explained in the following.

1. Chaotic inflation with power-law F ðϕÞ
One of explicit models we consider is the chaotic

inflation in the Jordan frame with a power-law form F
in which the Jordan frame potential and the function F are
respectively given by

VJðϕÞ ¼ V0

�
ϕ

Mpl

�
p
; ð2:22Þ

F ðϕÞ ¼
�

ϕ

Mpl

�
n
; ð2:23Þ

where V0 is a parameter representing the energy scale for
the potential, and p and n are the power-law indices for VJ
and F , respectively. As mentioned in the introduction, the
minimally coupled version of chaotic inflation for any p

has been excluded by the constraints on ns and r from
Planckþ BAOþ BICEP=Keck 2018 [2]. The Jordan
frame slow-roll parameters are given by

ϵJ ¼
p2

2

�
Mpl

ϕ

�
2

; ηJ ¼ pðp − 1Þ
�
Mpl

ϕ

�
2

: ð2:24Þ

From these expressions, one can find that ϵJ and ηJ are
related as

ηJ ¼
2ðp − 1Þ

p
ϵJ; ð2:25Þ

which is used to derive some expressions in the following
section.
Once p and n are given, the α parameter is written as

α ¼ 2n
p
; ð2:26Þ

and then this model can be classified into three types as
follows:

p ¼ 2n ðattractor typeÞ; ð2:27Þ

p > 2n ðVJ-dominant typeÞ; ð2:28Þ

p < 2n ðF -dominant typeÞ: ð2:29Þ

The Higgs inflation corresponds to the case of p ¼ 4 and
n ¼ 2, which is classified as the attractor type.
In Fig. 1, we show the Einstein frame potential for some

combinations of p and n. The case with ðp; nÞ ¼ ð4; 2Þ (left
panel) corresponds to the attractor-type. As seen from the
figure, this type gives a flat shape in the large χ region as ξ
increases. The case with ðp; nÞ ¼ ð4; 1Þ (middle panel)
exhibits the VJ-dominant type, in which the potential is just
a monotonically increasing function as the Jordan frame
one. The case with ðp; nÞ ¼ ð4; 4Þ (right panel) is an
example of F -dominant type in which an extremum
appears at some χ as seen from the figure. Both the metric
and Palatini formulation cases are shown in the figure.
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FIG. 1. Einstein frame potential for VJ ¼ V0ðϕ=MplÞp and F ¼ ðϕ=MplÞn with ðp; nÞ ¼ ð4; 2Þ (left), ðp; nÞ ¼ ð4; 1Þ (middle), and
ðp; nÞ ¼ ð4; 4Þ (right), which correspond to the attractor, VJ-dominant, and F -dominant types, respectively. We take several values of ξ
for each case which are shown in the figure. Solid and dashed lines represent the metric and Palatini formulation cases, respectively.
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2. Natural inflation with cosine-type F ðϕÞ
Another model we consider is the natural inflation in

which the Jordan frame potential and a cosine-type F are
assumed as

VJðϕÞ ¼ V0

�
1 − cos

�
ϕ

f

��
; ð2:30Þ

F ðϕÞ ¼
�
1 − cos

�
ϕ

f

��
n
; ð2:31Þ

where f is a model parameter and n is the power-law index
for F. The case with n ¼ 1 has been discussed in [14]. In
this paper, we consider the model with an arbitrary value
for n. As mentioned in the introduction, the minimally
coupled counterpart has been excluded by the result from
Planckþ BAOþ BICEP=Keck 2018 [2]. The Jordan
frame slow-roll parameters are given by

ϵJ ¼
1

2

�
Mpl

f

�
2

cot2
�
ϕ

2f

�
;

ηJ ¼
�
Mpl

f

�
2 1 − 2 sin2ð ϕ

2fÞ
2 sin2ð ϕ

2fÞ
:

ð2:32Þ

Actually ϵJ and ηJ are related as

ηJ ¼ ϵJ −
1

2

�
Mpl

f

�
2

; ð2:33Þ

which is useful to simplify some expressions in later
discussion.
The α parameter in this model is given by

α ¼ 2n; ð2:34Þ

and then three categories in the classification given in
Sec. II B are specified as

n ¼ 1

2
ðattractor typeÞ; ð2:35Þ

n <
1

2
ðVJ-dominant typeÞ; ð2:36Þ

n >
1

2
ðF -dominant typeÞ: ð2:37Þ

In Fig. 2, the Einstein frame potential in this model is
shown for n ¼ 1=2; 1=4, and 1, which respectively corre-
spond to the attractor, VJ-dominant, and F -dominant types,
for several values of ξ. Since the Jordan frame potential in
this model already has an extremum at ϕex ¼ πf, the
Einstein frame potential also has an extremum for every
category, however, each class gives distinctive features for ns
and r, which will be discussed in the next section.

3. Loop inflation with log-type F ðϕÞ
The other model considered in this paper is the loop

inflation5 where the Jordan frame potential and a log-type
functional form for F are assumed as

VJðϕÞ ¼ V0

�
1þ ah log

�
ϕ

Mpl

��
; ð2:38Þ

F ¼
�
1þ ah log

�
ϕ

Mpl

��
n
; ð2:39Þ

where ah is a model parameter and n is the power-law index
for F. We assume that ah > 0 in order that the inflaton
moves from a large positive value to a small positive one.
The α parameter in this model is given as α ¼ 2n, which is
the same as the one in the natural inflation model with the
cosine-type F and the classification is also given in the
same way as Eqs. (2.35)–(2.37).
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FIG. 2. Einstein frame potential for VJ ¼ V0½1 − cosðϕ=fÞ� and F ¼ ½1 − cosðϕ=fÞ�n with n ¼ 1=2 (attractor type: left), n ¼ 1=4
(VJ-dominant type: middle) and n ¼ 1 (F -dominant type: right) are shown. We take f ¼ Mpl in this figure. Several values of ξ are taken
for each case whose values are written in the figure. Solid and dashed lines represent the metric and Palatini formulation cases,
respectively.

5This model is referred as “loop inflation” in [33] and
“Spontaneously broken SUSY” model in [1].
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To have VJðϕÞ > 0, the field value should satisfy
ϕ=Mpl > e−1=ah . The minimally coupled counterpart of
this model for ah ≲ 0.5 has been excluded by the con-
straints on ns from Planck [1] since it gives a bluer spectral
index than the observational limit. The functional form for
F , i.e., a log-type F , is chosen to keep α constant for the
whole range of χðϕÞ relevant to the inflationary dynamics.
Although this choice is just a phenomenological one, the
trend for the predictions of the inflationary observables
would be similar as far as the value of α is almost the same.
The Jordan frame slow-roll parameters in this model are
given by

ϵJ ¼
1

2

�
Mpl

ϕ

�
2
�

ah
1þ ah logð ϕ

Mpl
Þ

�
2

;

ηJ ¼ −
�
Mpl

ϕ

�
2 ah
1þ ah logð ϕ

Mpl
Þ :

ð2:40Þ

From these expressions, ϵJ and ηJ can be related as

ηJ ¼ −2ϵJ
ah

1þ ah logðϕ=MplÞ
: ð2:41Þ

This relation is useful to derive some expressions in the
next section.
In Fig. 3, the Einstein frame potential for this model is

shown for n ¼ 1=2; 1=4, and 1, which correspond to the
attractor, VJ-dominant and F -dominant types, respectively.
Since the Jordan frame potential is a monotonically
increasing function, the shape of the Einstein frame
potential is basically the same as the ones for the chaotic
inflation with power-law type F discussed above.
Having described the framework and some assumptions

adopted in the analysis, as well as some explicit models to
be considered as an example, then in the next section, we
discuss general predictions and some explicit examples for
each type.

III. PREDICTIONS FOR THE INFLATIONARY
OBSERVABLES

Now in this section, we investigate predictions for infla-
tionary observables, first without specifying the Jordan frame
potential VJ and the nonminimal coupling function F ,
followed by the arguments using some explicit models
presented in the previous section for illustrations. Models
for each type introduced in Eqs. (2.15)–(2.17) give peculiar
predictions for the inflationary observables such as the
spectral index and the tensor-to-scalar ratio, whose features
are discussed in order below.

A. Attractor type

The attractor type is specified by the relation

V 0
J

VJ
¼ 2

F 0

F
; ð3:1Þ

from which one can relate VJ and F as

VJ ¼ CF 2; ð3:2Þ

with C being a constant. In this case, the slow-roll
parameters in the large ξ limit for the metric case can be
expanded, at the leading order, as

ϵ ¼ 4

3F 2ξ2
; ð3:3Þ

η ¼ −
4

3Fξ
: ð3:4Þ

The number of e-folds for the large ξ limit is calculated as

N ¼ 1

M2
pl

Z
ϕ�

ϕend

3

4
F 0ξdϕ ≃

3

4
ξF ðϕ�Þ; ð3:5Þ

where we have neglected the contribution from ϕend.
By using Eqs. (3.3), (3.4), and (3.5), one can express ϵ

and η as

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0  1  2  3  4  5

V
E
/V

0

χ/Mpl

ξ = 0
ξ = 1
ξ = 3
ξ = 5

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0  1  2  3  4  5

V
E
/V

0

χ/Mpl

ξ = 0
ξ = 1
ξ = 3
ξ = 5

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0  1  2  3  4  5

V
E
/ V

0

χ/Mpl

ξ = 0
ξ = 1
ξ = 3
ξ = 5

FIG. 3. Einstein frame potential for VJ ¼ V0½1þ ah log ðϕ=MplÞ� and F ¼ ½1þ ah log ðϕ=MplÞ�n with n ¼ 1=2 (attractor type: left),
n ¼ 1=4 (VJ-dominant type: middle), and n ¼ 1 (F -dominant type: right) are shown. We take several values of ξ for each case which are
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ϵ ¼ 3

4N2
; η ¼ −

1

N
; ð3:6Þ

from which the spectral index and the tensor-to-scalar ratio
are given as

ns − 1 ¼ −6 ·
3

4N2
− 2

1

N
≃ −

2

N
; ð3:7Þ

r ¼ 16 ·
3

4N2
¼ 12

N2
: ð3:8Þ

One can see that the predictions for ns and r do not depend
on ξ in the large ξ limit and exhibit the attractor nature of this
type. It should be noted that when the number of e-folds is
N ¼ 50–60 as commonly assumed, the predictions for ns
and r are given by

ns ≃ 0.960 − 0.967; r ≃ 0.0048 − 0.0033; ð3:9Þ

which are well within the current observational bound [2].
An attractor behavior of this type has been discussed in
[34,35] (see also [36,37] for the discussion after the result of
BICEP/Keck 2018 [2]).
On the other hand, the Palatini case gives the following

predictions for the slow-roll parameters in the large ξ limit
at leading order as

ϵ ¼ 2ðF 0Þ2M2
pl

F 3ξ
; ð3:10Þ

η ¼ M2
pl

�
−3

�
F 0

F

�
2

þ 2
F 00

F

�
þ 5ðF 0Þ2M2

pl

F 3ξ
: ð3:11Þ

The number of e-folds for the potential (3.2) is given by

N ¼ 1

M2
pl

Z
ϕ�

ϕend

F
2F 0 dϕ; ð3:12Þ

from which one can see that N in the large ξ limit for the
Palatini case does not depend on ξ.
Actually when one uses the relation (3.1), N can be

rewritten, by using VJ, as

N ¼ 1

M2
pl

Z
ϕ�

ϕend

VJ

V 0
J
dϕ: ð3:13Þ

As shown in Eq. (3.10), when ξ is very large, ϵ decreases
much. On the other hand, with the relation VJ ¼ CF 2, η
can be rewritten as

η ¼ −
5

2
ϵJ þ ηJ: ð3:14Þ

Since ϵ can be neglected in the large ξ limit as mentioned
above, the spectral index is given by

ns − 1 ≃ 2η ¼ −5ϵJ þ 2ηJ: ð3:15Þ

From Eq. (3.10) and by using the relation for the attractor
type (2.15), the tensor-to-scalar ratio can be written, at the
leading order in 1=ξ, as

r ¼ 16ϵJ
Fξ

; ð3:16Þ

from which one can see that r is very suppressed when ξ
becomes large [12,38].
In Figs. 4–6, we respectively show the cases of chaotic

inflation with power-law F for some values of p and n,
natural inflation with cosine-type F for n ¼ 1=2 with
several values of f, loop inflation with log-type of F for
some values of ah, all of which correspond to the attractor
type. In each figure, we show the metric (left panels) and
Palatini cases (right panels) with log-scale (top panels)
and linear-scale (bottom panels) for r. The number of
e-folds is assumed as N ¼ 50–60 for all cases. From
the figures, one can see that all models converge to the
attractor prediction given in Eqs. (3.7) and (3.8) in
the ns − r plane for the metric formulation case although
the trajectories from a small ξ region to the attractor one
(ξ ≫ 1) can be nontrivial in some models, which is not
traceable in the analytic approach here. On the other
hand, in the Palatini case, r just decreases, and ns is given
by Eq. (3.15), which depends on the Jordan frame
potential.
The attractor predictions for ns and r are well within the

current constraint from Planckþ BICEP=Keck 2018 [2],
and thus inflation models can become viable by assuming
a large nonminimal coupling parameter ξ and the func-
tional form of F satisfying the relation (2.15) in the metric
case even if the minimally coupled counterpart is excluded
by the data. Some models can become viable also in the
Palatini case as far as the original Jordan frame potential
gives the spectral index, expressed as Eq. (3.15), con-
sistent with observational bounds. The tensor-to-scalar
ratio is much suppressed in the large ξ limit, and then
eventually becomes consistent with the constraints.

B. VJ-dominant type

Next we discuss the inflationary predictions for the VJ-
dominant type. When ξ is large (ξ ≫ Oð1Þ), we can
approximate AðϕÞ ≃ ξF ðϕÞ. In this case, the slow-roll
parameters can be written as

ϵ ¼ P2

�
ϵJ − 2M2

pl
F 0

F
V 0
J

VJ
þ 2M2

pl

�
F 0

F

�
2
�

¼ P2ϵJð1 − αÞ2; ð3:17Þ
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η¼ P2

�
ηJ − 4M2

pl
F 0

F
V 0
J

VJ
þ 6M2

pl

�
F 0

F

�
2

− 2M2
pl
F 00

F
þM2

pl
P0

P

�
−2

F 0

F
þV 0

J

VJ

��

¼ P2

�
ð1− αÞηJ − 2αð1− αÞϵJ

þ 1

2
αð1− αÞP2ϵJ

�
1

ξF
þ 3κ

�
αϵJ −

α

2
ηJ

���
; ð3:18Þ

and the number of e-folds is given by

N ¼ 1

M2
pl

Z
ϕ�

ϕend

1

P2

�
V 0
J

VJ
− 2

F 0

F

�
−1
dϕ

¼ α

2ð1 − αÞM2
pl

Z
ϕ�

ϕend

1

P2

F
F 0 dϕ; ð3:19Þ

where we have used the relation (2.18). Here P2 is given by,
for ξ ≫ Oð1Þ,

P2 ≃
1

1
ξF þ 3

2
κM2

plðF
0

F Þ2
≡ 1

aðϕÞ þ bðϕÞ : ð3:20Þ

Here we have introduced the functions aðϕÞ and bðϕÞ
which are defined as

aðϕÞ≡ 1

ξF
; bðϕÞ≡ 3

2
κM2

pl

�
F 0

F

�
2

: ð3:21Þ

When we discuss the observables such as ns and r, we fix
the number of e-folds N corresponding to the epoch when
the mode of the reference scale exited the horizon. When ξ is
varied, the Einstein frame potential is modified and then ϕ�
is also changed for a fixed N. Therefore ϕ� implicitly
depends on ξ, which should be kept in mind in the following
argument.
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FIG. 4. Predictions of ns and r in chaotic inflation with power-law F for several values of p and n giving the attractor type whose
values are shown in the figure. Cases for the metric formulation (left column panels) and Palatini formulation (right column panels) are
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To characterize the relative size of aðϕÞ and bðϕÞ, we
also introduce the quantity R defined as

R≡ bðϕ�Þ
aðϕ�Þ

¼ 3

2
κξM2

plF
�
F 0

F

�
2
				
ϕ¼ϕ�

; ð3:22Þ

in which R is to be evaluated at ϕ ¼ ϕ� since the observables
or the slow-roll parameters are eventually calculated at the
reference scale. Depending on the size of R, we can
categorize the VJ-dominant type further into two classes:
Case (i) (R > 1) and case (ii) (R < 1). Notice that, by
definition, the Palatini case only includes case (ii) since it
corresponds to κ ¼ 0, and then bðϕÞ ¼ 0.
First we discuss case (i) in which R > 1 holds. In this

case, P2 can be approximated as

P2 ¼ 1
3
2
M2

plðF
0

F Þ2
; ð3:23Þ

where we have neglected aðϕÞ in the denominator in
Eq. (3.20) since aðϕÞ < bðϕÞ, and then ϵ and η are reduced
to the following form:

ϵ ¼ 4

3

�
α − 1

α

�
2

; η ¼ 8

3

�
α − 1

α

�
2

: ð3:24Þ

These expressions are obtained by neglecting the term with
1=ðξF Þ in the last curly bracket in Eq. (3.18). As one can
see from the above formulas, the slow-roll parameters
converge to some certain values as ξ gets large for a fixed α.
One can also notice that ϵ and η are related as

η ¼ 2ϵ: ð3:25Þ

Therefore ns and r are predicted, for sufficiently large ξ, as

ns ¼ 1 −
8

3

�
α − 1

α

�
2

; r ¼ 64

3

�
α − 1

α

�
2

: ð3:26Þ

Interestingly, these expressions lead to the consistency
relation for ns and r:

r ¼ −8ðns − 1Þ: ð3:27Þ

Actually models satisfying this relation have already been
excluded by Planck data. In Fig. 7, this relation is depicted
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with gray dashed line along with a VJ-dominant case
example for chaotic inflation with power-law F. As clearly
seen from the figure, the line is well above the Planck
constraint and thus models of this class are excluded at least
at large ξ. The predictions for chaotic inflation with power-
law F for the VJ-dominant case will be discussed later in
this section.
Next we consider case (ii) in which R < 1 holds. In this

case, P2 can be approximated as

P2 ¼ ξF ; ð3:28Þ

where we have neglected the second term in the denom-
inator of Eq. (3.20). Approximately we can also keep only
the first term in the last curly bracket in Eq. (3.18) for η,
then we obtain the slow-roll parameters in this case as

ϵ ¼ ð1 − αÞ2ϵJFξ; ð3:29Þ

η ¼ Fξ

�
ð1 − αÞηJ −

3

2
αð1 − αÞϵJ

�
: ð3:30Þ

Therefore ns and r in case (ii) are given by

ns − 1 ¼ 3Fξð1 − αÞð2 − αÞϵJ½X − 1�; ð3:31Þ

r ¼ 16ð1 − αÞ2ϵJFξ; ð3:32Þ

where we have defined

X ≡ 2

3ð2 − αÞ
ηJ
ϵJ

: ð3:33Þ

From the expression (3.31), when X > 1, or the inequality

ηJ
ϵJ

>
2

3ð2 − αÞ ð3:34Þ

is satisfied, the spectral index is larger than unity, and hence
such models are excluded by current observations.
Furthermore, the expressions for ns and r give the

following relation:

r ¼ −8ðns − 1Þ AðαÞ
1 − X

; ð3:35Þ

where
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FIG. 6. Same as Fig. 4 but for the case of loop inflation with log-typeF for n ¼ 1=2which corresponds to the attractor type for several
values of ah.
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AðαÞ ¼ 2ð1 − αÞ
3ð2 − αÞ : ð3:36Þ

Notice that ξ does not appear in Eq. (3.35) although the
values of ϵJ and ηJ implicitly depend on ξ since the value
of ϕ� changes as ξ varies when we fix the number of e-
folds as N ¼ 50–60. From the relation (3.35), one can see
that, depending on α and the ratio of the Jordan frame
slow-roll parameters ηJ=ϵJ, some regions in the ns–r
plane cannot be reached for ξ ≫ Oð1Þ.
In Fig. 8, the cases of α ¼ 2=3 and 1=2 are shown. When

α ¼ 2=3, if the Jordan frame slow-roll parameters ηJ is
positive,6 the values of ns and r are always above the line of
r ¼ −ð4=3Þðns − 1Þ, which is represented by blue region in
the left panel of Fig. 8. The figure indicates that this region is
incompatible with the current constraint from Planckþ
BAOþ BICEP=Keck 2018 [2], which means that when α ¼
2=3 and ηJ > 0, the model is excluded for ξ ≫ Oð1Þ for any

models with VJ andF as far as the model is classified as case
(ii) in the VJ-dominant type. We should emphasize that this
argument only depends on the value of α and the sign of ηJ.
For the case of α ¼ 1=2, when ηJ=ϵJ > −1, such models are
not allowed by the current constraint, which can be seen from
the right panel of Fig. 8.
It should be noted that even if ηJ < 0 for α ¼ 2=3, which

is shown by the orange region in Fig. 8, it does not
necessarily indicate that models can become viable for
ξ ≫ Oð1Þ. Since the values of ns and r should be compared
to observational constraints at the reference scales, one needs
to relate the value of N and ϕ�, with which ϵJ, ηJ and F are
evaluated. The number of e-folds in case (ii) is given by

N ¼ α

2ð1 − αÞξM2
pl

Z
ϕ�

ϕend

dϕ
F 0 ; ð3:37Þ

from which one can relate ϕ� and N.
In the following, we consider explicit examples listed in

Sec. II C to discuss the predictions in the VJ-dominant type,
based on the general argument above.
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FIG. 7. Same as Fig. 4 except that the cases of chaotic inflation with power-law F are shown for case (i) (left column) and case
(ii) (right column) of the VJ-dominant type. In the left column, the relation (3.27) for case (i) is also shown. In the right column, the case
(ii) consistency relation given in Eq. (3.42) for N ¼ 50 and 60 are depicted.

6Although the actual condition here is X > 0, since ϵJ is positive
by definition and 0 < AðαÞ < 1=3 holds in the VJ-dominant case,
the condition ηJ > 0 is sufficient in the subsequent argument.
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1. Example: Chaotic inflation with power-law F

In this model, R is given by

R ¼ 3n2ξ
2

�
ϕ�
Mpl

�
n−2

: ð3:38Þ

Since in chaotic inflation model, ϕ� tends to be larger than
Mpl for N ¼ 50–60 even with a nonminimal coupling, and
hence, when n > 2, R is generally larger than 1 for ξ ≫ 1,
which is classified as case (i). On other hand, case (ii) arises
when n < 2, although even with n < 2, R can be larger
than unity for large ξ and classified as case (i), whose
examples are given in the left panel of Fig. 7.
In Fig. 7, the predictions in the ns–r plane for the VJ-

dominant type with the chaotic inflation are shown for
several sets of p and n whose values are given in the figure.
In the left and right panels, models corresponding to case (i)
and (ii) are respectively depicted. As shown in the left
panel, the predictions for ns and r approach some points on
the line corresponding to Eq. (3.27). Although, as already
mentioned, the line represented by Eq. (3.27) is well above
the current constraint, the trajectories in the ns–r plane
followed by varying ξ are somewhat nontrivial, and hence
the model may be allowed by observational constraint at
some intermediate values of ξ. However, this is only
possible in some limited range of ξ, and the general trend
is that models of case (i) would not be viable with respect to
current observational constraints.
For case (ii), the number of e-folds for n ≠ 2 can be

calculated as

N ≃
1

ðp − 2nÞð2 − nÞξ
�
ϕ�
Mpl

�
2−n

: ð3:39Þ

By using this expression, one can rewrite ϕ� as a function
of N, from which ns and r are given by

ns − 1 ¼ 1

ð2 − nÞN ½−pþ 3n − 2�; ð3:40Þ

r ¼ 8ðp − 2nÞ
2 − n

1

N
: ð3:41Þ

Actually, from these expressions, one can derive the
relation between ns and r as

r ¼ −8ðns − 1Þ − 8

N
: ð3:42Þ

This relation holds for any value of n and p, except for the
case with n ¼ 2 since Eq. (3.39) is derived under the
assumption of n ≠ 2. In the right panel of Fig. 7, several
examples for case (ii) are shown along with the line for the
relation (3.42). As seen from the figure, the predictions in
case (ii) approach to the ones given by Eq. (3.42) as ξ
increases. For N ¼ 50–60, the predicted values from
Eq. (3.42) are outside the current constraint, and thus the
chaotic inflation with power-law F cannot become viable for
case (ii) of the VJ-dominant type.

2. Example: Natural inflation with cosine-type F

In this model R parameter is given by

R ¼ 3

2
κM2

plξ

�
Mpl

f

�
2

n2
�
1 − cos

�
ϕ�
f

��
n−2

sin2
�
ϕ�
f

�
:

ð3:43Þ

As ξ increases, the value of ϕ� approaches to πf to obtain
the amount of the e-folds asN ¼ 50–60. By expandingR at
around ϕ�=f ¼ π, one obtains

R ≃
3

2
κM2

plξ

�
Mpl

f

�
2

n22n−2
�
π −

ϕ�
f

�
2

; ð3:44Þ
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FIG. 8. Predictions of ns and r in case (ii) of the VJ-dominant type for α ¼ 2=3 (left) and α ¼ 1=2 (right). 1σ and 2σ constraints from
Planck [1] and Planckþ BAOþ BICEP=Keck 2018 [2] are also depicted with solid and dashed lines, respectively.
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from which one can see that, even when ξ is large, the
suppression due to ðπ − ϕ�=fÞ2 drives R to be less
than unity. Therefore the natural inflation with cosine-
type F in the VJ-dominant case is mostly classified as
case (ii).
In this case, one can write down the spectral index ns and

the tensor-to-scalar ratio r as

ns − 1 ¼ −ξF
�
2ð6n2 − 7nþ 2ÞϵJ þ ð1 − 2nÞ

�
Mpl

f

�
2
�
;

ð3:45Þ

r ¼ 16ð1 − 2nÞ2ξFϵJ: ð3:46Þ

As mentioned above, as ξ increases, ϕ� approaches to the
value at the extremum, ϕ� ∼ fπ, and hence one can write
down the Jordan frame slow-roll parameter ϵJ by expand-
ing around ϕ� ¼ fπ, at the leading order in ϕ�=f − π, as

ϵJ ¼
1

8

�
Mpl

f

�
2

ðϕ�=f − πÞ2: ð3:47Þ

The value of ηJ can be obtained by utilizing the relation
(2.33). Then, we can express ns and r as

ns − 1 ¼ −2nξð1 − 2nÞ
�
Mpl

f

�
2

; ð3:48Þ

r ¼ 2nþ1ð1 − 2nÞ2ξ
�
Mpl

f

�
2

ðϕ�=f − πÞ2: ð3:49Þ

These expressions indicate that the spectral index gets more
red-tilted and the tensor-to-scalar ratio is more suppressed
as ξ increases. In the left column of Fig. 9, the predictions
for ns and r in the natural inflation with cosine-type F are
shown. The behavior in the ns–r plane with varying ξ
matches well with the one indicated by the analytic
expressions (3.48) and (3.49). In some cases, the natural
inflation can become viable in the VJ-dominant type
especially when the minimally coupled counterpart predicts
larger ns and r than the observational bounds. One of such
examples is the case of f ¼ 20Mpl, which is depicted
in Fig. 9.
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FIG. 9. Same as Fig. 4 except that the cases of natural inflation with cosine-type F (left column) and loop inflation with log-type F
(right column) for case (ii) of the VJ-dominant type are shown.

RELAXING INFLATION MODELS WITH NONMINIMAL … PHYS. REV. D 105, 063542 (2022)

063542-13



3. Example: Loop inflation with log-type F

In this case, the parameter R is given by

R ¼ 3

2
κξn2a2h

�
Mpl

ϕ�

�
2
�
1þ ah log

�
ϕ�
Mpl

��
n−2

: ð3:50Þ

Actually, this model is also mostly classified as case (ii) as
we argue below. For case (ii), the number of e-folds is given
by Eq. (3.37), and N can be written in this model as

N≃
1

2ð1−2nÞξah

�
1þah log

�
ϕ�
Mpl

��
1−n

�
ϕ�
Mpl

�
2

; ð3:51Þ

where we have approximated logðϕ=MplÞ as a constant
when we performed the integral and assumed ϕ ≃ ϕ� since
this term is slowly varying. Then R can be rewritten as

R ≃
3κn2

4ð1 − 2nÞN
�

ah
1þ ah logðϕ�=MplÞ

�
: ð3:52Þ

Since 0 < 2n < 1 in the VJ-dominant type, the above
expression indicates that R would be less than unity since
ϕ� > Mpl when ξ is large as can be implied by Eq. (3.51).
Thus this model can also be mostly classified as case (ii) for
the VJ-dominant type.
By using Eq. (3.51), one can express ϵJ with N as

ϵJ ≃
ah

4ð1 − 2nÞξN
�
1þ ah log

�
ϕ�
Mpl

��
−n−1

: ð3:53Þ

Then the spectral index and the tensor-to-scalar ratio can be
written as

ns − 1 ≃ −
1

N

�
ah

1þ ah logðϕ�=MplÞ
�

2

×
�
1þ 3ð1 − nÞ

2

1þ ah logðϕ�=MplÞ
ah

�
; ð3:54Þ

r ≃
4ð1 − 2nÞ

N
ah

1þ ah logðϕ�=MplÞ
: ð3:55Þ

Since the term with logðϕ�=MplÞ increases as ξ gets larger
(although the change is mild), r is suppressed. The spectral
index is also slightly changed, but it reacts weakly against
the change of ξ since ns depends on ξ only indirectly through
logðϕ�=MplÞ. In the right column of Fig. 9, several examples
for the loop inflation with log-type F are shown. As
expected, the changes of ns and r for varying ξ are mild.
Since the minimally coupled version of this model already
gives a small r, the size of r can be consistent with current
observations by suitably choosing the value of ah. However,
the spectral index is somewhat larger than the current bound
for the minimally coupled case. Even if we assume a large
nonminimal coupling, the change of ns is not so significant
in the VJ-dominant type, and thus this model would not
become viable when we choose F categorized as the VJ-
dominant type.

C. F -dominant type

As discussed in Sec. II B, the Einstein frame potential in
the F -dominant type has an extremum even if the mini-
mally coupled counterpart does not have it. When the value
of χ (ϕ) exceed the extremum value χex (ϕex) at which
dVE=dχ ¼ 0 is satisfied, the inflaton runs away to a large
value of χ (ϕ), and hence we do not consider such a case.
When we limit ourselves to the range of χ (ϕ) as χ < χex

(ϕ < ϕex), χ� (ϕ�) needs to be close to χex (ϕex) to obtain a
sufficient amount of e-folds as N ¼ 50–60. Therefore, in
this case, the slow-roll parameter ϵ at χ� can be expanded
around χex as

ϵðχ�Þ¼ ϵðχexÞþ
dϵ
dχ

				
χ¼χex

ðχ�−χexÞþ
1

2

d2ϵ
dχ2

				
χ¼χex

ðχ�−χexÞ2

þOððχ�−χexÞ3Þ: ð3:56Þ

Since χex satisfies dVE=dχ ¼ 0, the first order term in the
above expression vanishes. Furthermore, the second deriva-
tive of ϵ with respect to χ is given by

d2ϵ
dχ2

				
χ¼χex

¼ 1

2

�
2

V2
E

�
d2VE

dχ2

�
2

−
1

V2
E

dVE

dχ
d3VE

dχ3
−

10

V3
E

�
dVE

dχ

�
2 d2VE

dχ2
−

6

V4
E

�
dVE

dχ

�
4
�				

χ¼χex

¼ 1

V2
E

�
d2VE

dχ2

�
2
				
χ¼χex

¼ η2ðχexÞ; ð3:57Þ

where we have used the fact that ϵðχexÞ ¼ 0 since dVE=dχjχ¼χex
¼ 0. Therefore ϵðχ�Þ is written, at the leading order in

χ� − χex, as
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ϵðχ�Þ ¼
1

2
η2ðχexÞðχ� − χexÞ2; ð3:58Þ

which indicates that ϵ is given by the second order in η. In
this case, the tensor-to-scalar ratio becomes

r ≃ 8η2ðχexÞðχ� − χexÞ2: ð3:59Þ

From this expression, one can see that r would be very
suppressed since it is proportional to η2 and ðχ� − χexÞ2, both
of which are the square of a small quantity. Since ϵ is given
by the second order in η, we can write the spectral index as

ns − 1 ≃ 2ηðχexÞ: ð3:60Þ

The extremum we consider here corresponds to the local
maximum where d2VE=dχ2 < 0 holds, and thus ηðχexÞ is
negative, which means that the spectral index becomes red-
tilted. To represent ηðχexÞ by ϕex, first we rewrite Eq. (2.10)
using Eq. (2.18),

ηðϕÞ ¼P2ðϕÞ
�
α

�
3α

ð1þaðϕÞÞ2−
αþ 2

1þaðϕÞ
�
ϵJðϕÞ

þ
�
ηJðϕÞþM2

pl
P0

P
V 0
J

VJ

��
1−

α

1þaðϕÞ
��

; ð3:61Þ

where aðϕÞ is the function defined in Eq. (3.21). At the
extremum,

dVE

dχ
¼ dϕ

dχ
VJ

A2

�
V 0
J

VJ
− 2

A0

A

�
¼ 0 ð3:62Þ

holds, which gives

aðϕexÞ ¼ α − 1; ð3:63Þ

By using this relation, ηJðϕexÞ can be rewritten by a very
simple form:

ηðϕexÞ ¼ −
�
α− 1

α
þ 3

4
κϵJðϕexÞ

�
−1
ðα− 1ÞϵJðϕexÞ: ð3:64Þ

Since α > 1 in the F -dominant type and ϵJ > 0 by
definition, the above expression indicates that ηðϕexÞ < 0
always holds.
The value of χex gets smaller as ξ increases, which can be

seen from the figures of the Einstein frame potential shown
in Figs. 1–3. Since we take that dχ=dϕ > 0, ϕex also
becomes smaller as ξ gets larger. In addition, we assume
that the Jordan frame potential satisfies dVJ=dϕ > 0 for the
range of ϕ relevant to the inflationary dynamics. This
means that, as the value of ϕ becomes smaller, or as ξ
increases, ϵJ becomes larger, which indicates that jηðϕexÞj
gets larger as ξ increases.

From the argument above, one can see that the spectral
index in theF -dominant type, given as Eq. (3.60), becomes
more red-tilted as ξ increases or, as ϕ� approaches to ϕex
(χ� approaches to χex). This tendency is the same both for
the metric and Palatini cases. The tensor-to-scalar ratio,
given in Eq. (3.59), becomes small as ξ increases since χ�
further approaches to χex. [Although ϵJ gets larger as ξ
increases, the factor of ðχ� − χexÞ2 is more important in
Eq. (3.59).] In the following, we discuss how these trends in
the F -dominant type actually appear in explicit models
presented in Sec. II C.

1. Example: Chaotic inflation with power-law F

The slow-roll parameter ϵJ in this models is given in
(2.22). At the extremum of the Einstein potential, aðϕexÞ
satisfies the relation (3.63), from which we obtain

aðϕexÞ ¼ α − 1 ¼ 2n − p
p

: ð3:65Þ

From the condition of the extremum (3.62), ϕex can be
written as

ϕex

Mpl
¼

�
p

ð2n − pÞξ
�

1=n
: ð3:66Þ

By substituting this expression into ϵJ, ηðϕexÞ can be
expressed as

ηðϕexÞ ¼ −np
�
2n − p

p
ξ

�
2=n

×

�
1þ 3κ

4

np2

2n − p

�
2n − p

p
ξ

�
2=n

�−1
: ð3:67Þ

For example, for the metric case with ðn; pÞ ¼ ð2=3; 2=3Þ,
we obtain

ηðϕexÞ ¼ −
4

9

ξ3

1þ ξ3

3

: ð3:68Þ

In Fig. 10, the value of η is plotted as a function of ξ for the
metric case with ðn; pÞ ¼ ð2=3; 2=3Þ along with the cases of
other models. In the figure, η from a numerical calculation is
shown with dots and the analytic formula for large ξ given in
Eq. (3.68) is depicted with a line. As expected, as ξ becomes
relatively large, the analytic formula matches with the
numerically calculated value. One can also see that the
value of η becomes negatively larger as ξ increases, which
confirms the argument given above.
In Fig. 11, the predictions for ns and r for chaotic

inflation with power-law F in the metric case are shown for
several values of n and p, all of which correspond to the
F -dominant type. We do not show the Palatini case since
the results are quite similar to the metric one, particularly
for the range of ξ shown in the figure. One can see that the
spectral index becomes smaller and the tensor-to-scalar
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ratio gets more suppressed as ξ increases. Although the
minimally coupled chaotic inflation with any power-law
index has already been excluded by Planckþ BAOþ
BICEP=Keck 2018 data [2], when the nonminimal cou-
pling is introduced, the model can become viable, when
p≲ 2 by appropriately choosing the function F . As argued
above, by increasing the value of ξ, the spectral index
becomes more red-tilted, and the tensor-to-scalar ratio
gets more suppressed in the F -dominant type. Due to this
feature, even when the minimally coupled version of this
model is excluded by the fact that it predicts a larger ns
and/or larger r, such models can be relaxed by introduc-
ing a nonminimal coupling of the F -dominant type with
some limited range of ξ. It should be also noted that, when

ξ is taken to be relatively large, ns gets too red-tilted, and
then such cases are not compatible with observational
constraints.

2. Example: Natural inflation with cosine-type F

In this model, the slow-roll parameter ϵJ is given in
(2.32) and from Eq. (3.63), aðϕexÞ is related to n as

aðϕexÞ ¼ 2n − 1: ð3:69Þ

Since ϕex is given by

2sin2
�
ϕex

2f

�
¼

�
1

ð2n − 1Þξ
�
1=n

; ð3:70Þ

ηðϕexÞ can be expressed as

ηðϕexÞ ¼−
�
Mpl

f

�
2

nð2fð2n− 1Þξg1=n− 1Þ

×

�
1þ 3

4

n
2n− 1

�
Mpl

f

�
2

ð2fð2n− 1Þξg1=n− 1Þ
�
−1
:

ð3:71Þ

For example, when we take n ¼ 2 and f ¼ 7Mpl, ηðϕexÞ
can be expressed, for the metric case, as

ηðϕexÞ ¼ −2
2

ffiffiffiffiffi
3ξ

p
− 1

49ð1þ 1
98
ð2 ffiffiffiffiffi

3ξ
p

− 1ÞÞ : ð3:72Þ

In Fig. 10, ηðϕexÞ for natural inflation with cosine-type
F is plotted as a function of ξ. As in other cases such as the
chaotic inflation with power-law F, the numerical and
analytic approximation given in Eq. (3.72) well agree for
relatively large values of ξ.
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FIG. 11. Predictions of ns and r for chaotic inflation with power-lawF in the metric formulation with several values for p and n, all of
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In Fig. 12, the predictions of ns and r are shown for the
case of n ¼ 1with several values for f, all of which give the
F -dominant type. As in the case for chaotic inflation with
power-law F, the spectral index becomes more red-tilted
and the tensor-to-scalar ratio gets more suppressed for
relatively large ξ as seen from the figure. However, the
behavior at small ξ depends on the model parameters even
among theF -dominant type. For example, in the cases with
ðn; fÞ ¼ ð1; 10MplÞ and ðn; fÞ ¼ ð1; 7MplÞ in Fig. 12, the
spectral index move from smaller to larger values as ξ
increases when ξ is very small, however, when ξ becomes
relatively large, ns decreases as ξ increases. Although the
behavior at small ξ generally depends on model parameters,
the trend of ns and r at relatively large ξ can be understood
from Eqs. (3.59), (3.60), and (3.64). Since the minimally
coupled version of natural inflation predicts ns comparable
or smaller than the observational bound, and thus even if
we introduce a nonminimal coupling, the F -dominant type
models would not be helpful much to alleviate the model
except some limited range of ξ.

3. Example: Loop inflation with log-type F

The slow-roll parameter ϵJ in this model is given by
(2.40) and aðϕexÞ can be written by n as

aðϕexÞ ¼ 2n − 1; ð3:73Þ

which is the same as the case for natural inflation with
cosine-type F . ϕex can be obtained from the extremum
condition (3.62) as

ϕex

Mpl
¼ exp

�½ð2n − 1Þξ�−1=n − 1

ah

�
: ð3:74Þ

By using this expression, ηðϕexÞ can be given by

ηðϕexÞ ¼−a2hn½ð2n− 1Þξ�2=n exp
�
−2

fð2n− 1Þξg−1=n − 1

ah

�

×

�
1þ 3

4

n
2n− 1

a2h½ð2n− 1Þξ�2=n

×exp

�
−2

fð2n− 1Þξg−1=n − 1

ah

��
−1
: ð3:75Þ

In Fig. 10, the value of η for the case of ðn; ahÞ ¼ ð2; 1Þ
as a function of ξ is shown along with that for other models.
As in other models, η becomes negatively large as ξ
increases. For relatively large ξ, η is given, for the case
of ðn; ahÞ ¼ ð2; 1Þ, by

ηðϕexÞ ¼ −
6 expð−2ð1= ffiffiffiffiffi

3ξ
p

− 1ÞÞξ
1þ 3

2
expð−2ð1= ffiffiffiffiffi

3ξ
p

− 1ÞÞξ : ð3:76Þ

which matches well with numerically calculated one as
seen from the figure.
In Fig. 13, the predictions for ns and r are depicted for

the metric case of n ¼ 2with several values of ah. Since the
minimally coupled counterpart of this model predicts a
larger ns than the observational bound, by assuming the
functional form for F corresponding to the F -dominant
type, ns can become smaller as ξ increases. As mentioned
in Sec. II C, the minimally coupled version of loop inflation
with ah ≲ 0.5 are excluded by current data, however, such
models become viable since the nonminimal coupling
makes ns redder than that for the minimally coupled
counterpart. Like in chaotic inflation case, when the
minimally coupled model is excluded by the current data
because ns is larger than the observational bound, the F -
dominant type model can relax such models.
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type with several values of f.
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IV. CONCLUSION AND DISCUSSION

The power spectrum of primordial fluctuations are now
well measured by cosmological observations such as CMB,
large scale structure and so on. In particular, the spectral
index ns and the tensor-to-scalar ratio r are commonly used
to test inflation models, and the current constraints, espe-
cially from recent BICEP/Keck 2018 results in combination
with Planck and BAO data, have excluded a lot of inflation
models including chaotic inflation with any power-law index
and natural inflation. However, when one introduces a
nonminimal coupling to gravity, the predictions for ns
and r are modified, and even if the minimally coupled
version is excluded by observational constraint, such models
can be relaxed.
In this paper, we have investigated this issue in a general

setting. For this purpose, we have classified nonminimally
coupled inflation models into three categories: the attractor,
VJ-dominant and F -dominant types by the functional
forms of the Jordan frame potential VJ and nonminimal
coupling function F . As we argued, the predictions for ns
and r in each type exhibit different trends, and models in
each category share those general features.
In the attractor type, the values of ns and r approach to

the fixed (attractor) values for the metric case in the large ξ
limit, given by the expressions (3.7) and (3.8), which are
well within the current observational constraint, and thus
any models which satisfy the attractor type relation (2.15)
become viable. Actually this kind of feature has already
been discussed for some particular models, and those can
be categorized as the attractor type in our classification.
In the Palatini case, ns approaches to the value given in
Eq. (3.15) which depends on the Jordan frame potential,
whereas r always gets suppressed as shown in Eq. (3.16).
Therefore in this case, models particularly having been
excluded by too large r can be relaxed although the
resultant spectral index depends on the Jordan frame

potential, which may or may not fall onto the observational
bounds.
The VJ-dominant type can be further divided into case (i)

and (ii). For case (i), the predictions for ns and r approach the
consistency relation given in Eq. (3.27) independently from
the forms of VJ and F . Unfortunately this consistency
relation is already outside the observational constraints in the
ns–r plane. In fact, as illustrated for chaotic inflation with
power-law F model in Fig. 7, the trajectory from small to
large ξ to reach the consistency line is somewhat nontrivial,
the model can become viable at some intermediate, but only
for limited values of ξ. In general, this class of models would
not help to relax (minimally coupled) inflation models. For
case (ii), the general results are illustrated in Fig. 8, from
which one can see that when the Jordan frame slow-roll
parameter ηJ is positive, such models are ruled out for
α > 2=3. Even when ηJ is negative, although some param-
eter space may be relaxed such as in natural inflation case,
this type generally would not be helpful to alleviate inflation
models, which we demonstrated for some explicit ones.
In the F -dominant type, the general prediction would be

that ns gets more red-tilted and r is more suppressed as ξ
increases. Therefore, for minimally coupled models which
predict a larger ns and/or a larger r than the observational
constraints, the introduction of a nonminimal coupling
would help to relax the model by appropriately choosing
the value of ξ. One of such examples is the chaotic inflation,
shown in Fig. 11, in which several models become viable by
assuming some range of ξ. Loop inflation with log-type F
can also be saved since the minimally coupled counterpart
gives a bit bluer ns compared to the observational bound.
However natural inflation would not be relaxed in broad
parameter space since the minimally coupled version of this
model tends to predict too red-tilted spectrum. The F -
dominant type can be helpful to relax inflation models
depending on the predictions for ns and r in the original
(minimally coupled) model.
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FIG. 13. Same as Fig. 11 but for loop inflation with log-type F for the metric case with n ¼ 2 corresponding to the F -dominant type
with several values of ah.
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Our systematic treatment on nonminimal inflation would
be useful to test models with nonminimal coupling from
cosmological data such as CMB and so on, which is the
issue worth studying and is left for future work.
Since cosmological observations are now very precise

and would be more accurate in the future, constraints on
inflation models will become severer and more models
would be excluded. However, by extending the model
framework by introducing a nonminimal coupling to
gravity, which is studied in this paper, the predictions
for ns and r are modified and some models can be viable in

the extended framework. Our study would give a more
opportunity to model building or designing an inflation
model consistent with observational bounds in the frame-
work of nonminimal coupling to gravity.
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