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Long standing themes in inflation include the issue of large field vs. small field inflation as well as the
question what fraction of phase space leads to sufficient inflation and furthermore is compatible with the
experimental data. In the present paper, these issues are discussed in the context of modular inflation, a
specialization of the framework of automorphic nonlinear σ models associated to homogeneous spaces G=K
in which the continuous shift symmetry groupG is weakly broken to discrete subgroups Γ. The target spaces
of these theories inherit a curved structure from the group G, which in the case of modular invariant inflation
leads to a hyperbolic field space geometry. It is shown that in this class of models the symmetry structure leads
to both large and small field inflationary trajectories within a single modular inflation model. The present
paper analyzes the concrete model of j-inflation, a hyperbolic model with nontrivial inflaton interactions.
It describes in some detail the structure of the initial conditions, including a systematic analysis of several
phenomenological functions on the target space, leading to constraints on the curvature scalar of the field
space by upcoming experiments, as well as a discussion of the scaling behavior of the spectral index, the finite
volume fraction of the field space leading to sufficient inflation, the attractor behavior of j-inflation, and a
comparison of inflaton trajectories vs. target space geodesics. The tensor-ratio analysis shows that j-inflation
is an interesting target for upcoming ground and satellite experiments.
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I. INTRODUCTION

The cosmic microwave background (CMB) experiments
that have been conducted over the past decade have led to
dramaticconstraintsontheparametersof themodels thatmake
up the extensive landscapeof the inflationary theory space [1–
3].Whilemost of the progress has come from satellite probes,
such experiments are currently continued on the ground in
severalobservatoriesaroundtheglobe,theresultsofwhichwill
provide further insight into the theoretical parameter space [4–
6]. While the observables measured or bounded by these
experiments provide constraints strong enough to exclude
whole classes of models at high confidence levels, the
surviving theory space remains large and unstructured. The
amorphous nature of this space can be ameliorated somewhat
by the introduction of symmetry groups into multifield
inflation that are motivated by the fact that they provide an
embedding of the shift symmetry. Shift symmetries are often
introduced as an ad hoc device to ensure the absence of terms
that otherwise might affect the small parameters that enter the

observables of the theory. Embedding these symmetries into a
proper discretegrouphas thebenefit of allowing aquantitative
characterization of the model space by leading to a foliation
structure.
In the framework of automorphic inflation, the groups that

contain the shift symmetry arise from nonlinear sigma
models associated to homogeneous spaces G=K constructed
from reductive groupsG and maximal compact subgroupsK.
The resulting field space is curved with a target space metric
that is determined by the group G [7,8]. The discrete groups
are obtained from potentials that weakly break the continuous
symmetry group GðRÞ to subgroups Γ ⊂ GðZÞ defined over
integers Z. In the simplest case of modular inflation, the
discrete shift symmetry results from the weak breaking of the
continuousMöbius group SLð2;RÞ to congruence subgroups
Γ of the modular group SLð2;ZÞ. This approach was
introduced for the case of level one modularity in [9,10]
and for higher level in [11]. The field space of modular
inflation carries a nontrivial hyperbolic geometry that derives
from the homogeneous space G=K ¼ SLð2;RÞ=SOð2;RÞ,
and it was shown in [9] that this metric has important
implications for the theory in that the geometry induces new
terms in the observables, as compared to a flat theory, that
makes these observables quasimodular, thereby preserving
the modularity but not the underlying holomorphic nature.
This resolves a general issue of modular invariant inflation
that was left open in earlier work in the particular context of
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supergravity. The idea to embed the shift symmetry into the
modular group and to focus on the hyperbolic geometry that
was emphasized after the appearance of [7] also in the papers
[12,13]. Recent discussions concerned with the shift sym-
metry include [14,15].
The concrete models briefly explored in earlier work

include the model of j-inflation at modular level one [7,9]
and the model of h2-inflation at level two [11]. It was
shown in these papers that these models admit inflaton
trajectories that are compatible with the PLANCK data. The
compatibility of j-inflation with experiments thus repre-
sents the first hyperbolic two field inflation model con-
sistent with the current cosmological data. Work prior to [7]
based on hyperbolic field space aimed at models with
single field potentials or effectively single field trajectories,
for example, [16,17]. Subsequent work with a focus on
inflaton orbits often adopted isomorphic versions such as
the Poincaré disk or the Beltrami-Klein models. This
includes, for example, Refs. [18,19] and [20–28].
Inflationary models based on negatively curved target
spaces have also been considered in other recent work
[14,29–34] and have played a role in the discussion of the
conjectures concerned with the swampland [11,26,35].
The goal of the present paper is to give a systematic

analysis of modular inflation by considering in some detail
the slow-roll phase space of j-inflation, relevant for the
observable CMB regime. This analysis leads to a number of
observations that are of relevance beyond the specific model
considered here. One of these concerns is the issue of large
and small field inflation. The distinction between inflaton
fields with values larger or smaller than the Planck mass has
been a recurrent theme and has often been used as a
classification scheme to characterize different types of
inflationary models. In modular inflation, it is possible to
decompose the field space into separate regions, the union of
which gives the total target space. The structures that appear
in these separate regions are then repeated infinitely many
times in the field space. The nontrivial hyperbolic geometry
of these individual regions is given by the metric considered
originallybyLiouville,Riemann,Beltrami, andKlein, hence
is naturally called the Poincaré metric in the literature. This
metric leads to a stretching of the field space as one
approaches the boundary of the space, in particular, when
approaching the origin of the space. This leads to trajectories
with initial values that can approach the origin arbitrarily
close, thus leading to initial field values that become small at
any scale, in particular, compared to the Planck mass. Far
away from the origin, one or both of the inflaton components
canbe large, leading to large field inflation.This shows that in
modular inflation, and more generally in the context of
curved field space inflation, both small and large field
inflation can be realized in the same model.
Modular inflation is a field theory framework with

curved target space geometry; hence, it is of interest to
ask whether the dynamics of the theory imposes constraints

that lead to deviations from the geodesic structure induced
by the metric. It will be shown that while in j-inflation
per se the inflaton trajectories are strongly affected by the
potential, they also show attractor behavior in the sense that
there are certain basins in the target space to which the
trajectories converge.
After the discussion of the modular symmetry and the

comparison of j-inflation trajectories with hyperbolic geo-
desics, the first phenomenological focus of the present
exploration is to identify those regions of the target space
that lead to inflation with a number of e-folds in some
standard range. This first step is similar in spirit to earlier
investigations of other inflationary models such as hybrid
inflation (see, e.g., [36–45]) and other models [46], which
focused on the question of the existence of inflation per se,
implemented as a lower bound on the number of e-folds.
In the context of considering the global scale structure of the
field space, it is of interest that in modular inflation the target
space comes equipped with a finite measure that allows to
quantify the volume in phase space that leads to inflation.
This is possible without the need of a regularization of this
measure, an issue that has afflicted many discussions in this
context [47–52].
In the context of sufficient inflation, the spectral index and

the tensor ratio are left unconstrained. The data obtained by
extending the analysis to these parameters can be used to
address a question that concerns the possible scaling of the
spectral index and the tensor ratio. This was explored for
single field inflation in several papers [53–55], with the aim
of providing a priori constraints in the plane spanned by
these two parameters. The important question is what the
behavior is of these two parameters in multifield inflation.
Finally, given the experimental data obtained from the CMB
satellites, it is of interest to consider how these observational
results constrain the regions of viable initial conditions
beyond those obtained by the e-fold constraint alone.
The outline of this paper is as follows. In Secs. II and

III, multifield inflation and modular inflation are briefly
reviewed to establish the general context and the notation
used here. Section IV describes the global structure of the
potential of j-inflation. Section V discusses the modular
structure of the critical points on the potential surface and
explains the associated existence of both large field and
small field inflation in the framework of modular invariant
sigma models. Section VI shows that in the global target
space there are broad basins of attraction and compares the
resulting inflaton trajectories with the geodesics of the
hyperbolic geometry. Section VII analyzes the behavior of
the e-fold function N� on the target space and shows that a
finite volume fraction of the target space leads to sufficient
inflation, where the volume is obtained from the nontrivial
geometric measure on the field space. Sections VIII and
IX consider the spectral index as a function on the target
space, including a discussion of the scaling behavior of
the spectral index. Section X analyzes the behavior of the
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tensor-to-scalar ratio on the field space. It is shown how
the bounds on r provided by the CMB probes constrain
the curvature scalar of the field space and that j-inflation
presents an interesting target for the upcoming CMB
experiments such as the Simons Observatory, as well as
LightBird and CMB-S4. This leads to a discussion of large
field inflation vs. small values of the tensor ratio, as well
as of the swampland conjectures. Section XI analyzes how
the variation of the mass scale of j-inflation impacts the
constraints of the CMB on the model. Section XII presents
the conclusions.

II. FORMULATION OF GENERAL MULTIFIELD
INFLATION

Automorphic inflation is a multifield inflation frame-
work with fields ϕI; I ¼ 1;…; n and a target space metric
GIJðϕKÞ that leads to a nontrivial kinetic coupling action,

A¼−
Z

d4x
ffiffiffiffiffiffi
−g

p �
1

2
GIJðϕKÞgμν∂μϕ

I∂νϕ
J þVðϕIÞ

�
: ð1Þ

The perturbations relevant in this general context can be
parametrized as ðR; SIJÞ, where R is the comoving
curvature perturbation of Lukash and Bardeen [56,57]
(see also [58]),

R ¼ Hδu − ψ ; ð2Þ

formulated in terms of the spacetime metric perturbation ψ
and δu, obtained from the divergence part of the energy-
momentum tensor perturbation δT0i (see [9] for details),
and SIJ is the tensor of isocurvature perturbations [9],

SIJ ¼ H
_σ
ðσIQJ − σJQIÞ: ð3Þ

Here H ¼ _a=a is the Hubble-Slipher parameter, _σ ¼
ðGIJ

_ϕI _ϕJÞ1=2 is the speed of the background inflaton,
and σI ¼ _ϕI= _σ is the normalized inflaton velocity. The
closed form of the large scale dynamics of the system
ðR; SIJÞ was derived in [9] as

_R ¼ −2HηIKσ
KσJSIJ;

DtSIJ ¼ 2HðηKLσKσL − ϵÞSIJ;

þH

�
ηKLGK½ISJ�L −

ϵ

3
M2

Plσ
½IRJ�

KLMσ
KSLM

�
; ð4Þ

where ϵ ¼ − _H=H2 is the slow-roll parameter,

ηIJ ¼ M2
Pl
V ;IJ

V
; ð5Þ

and V ½IWJ� ¼ VIWJ − VJWI . The covariant derivative Dt

acts on the contravariant tensor SIJ. A more detailed

discussion and the specialization to the two field case
ðR;SÞ can be found in [9].
The parameters considered in the present analysis

include the spectral index nRR of the scalar power spectrum
PRR of R, the tensor ratio, and the number of e-folds,

PRR ¼ ARR

�
k
k�

�
nRR−1

; PT ¼ AT

�
k
k�

�
nT
;

r ¼ PT

PRR
; N� ¼

Z
te

t�
Hdt: ð6Þ

The general expressions in multifield inflation with an
inflaton multiplet ϕI and a curved target space metric GIJ
are given by

nRR ¼ 1 − 3GIJϵIϵJ þ 2
ηIJϵ

IϵJ

GKLϵKϵL
;

r ¼ 8GIJϵIϵJ;

nT ¼ −
r
8
; ð7Þ

where the slow-roll parameters ϵI are defined as

ϵI ¼ MPl
V;I

V
. ð8Þ

The slow-roll dynamics can be written in terms of the
potential as

_ϕI ¼ −
ffiffiffiffi
V
3

r
GIJϵJ: ð9Þ

A systematic analysis of models in such a framework
involves in the first instance the variation of the energy scales
that define the model, as well as a scan of the phase space
of the theory. In the context of the phase space analysis, the
question of a measure arises, a problem that involves
the geometry of the target space. Other questions include
the dichotomy of large vs. small field inflation, an issue that
also turns out to depend on the geometry of the field space.
Finally, one can ask whether the scaling behavior of the
CMB observables observed in simple single field models has
some counter part in the multifield context.

III. STRUCTURE OF MODULAR INFLATION
ON HYPERBOLIC FIELD SPACE

This section briefly outlines the essential structures that
are used in the remainder of this paper. Modular inflation is
a framework of two field inflation that specializes the
multifield theory of automorphic inflation [7,8]. The latter
is based on automorphic functions FðϕIÞ, where the
inflaton multiplet defines the coordinates of quotient spaces
G=K, defined in terms of reductive groups G and maximal
compact subgroups K.
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In the simplest case, the doublet spans the curved target
space geometry given by the upper half planeH, which can
be identified as the homogeneous space,

H ≔ SLð2;RÞ=SOð2;RÞ: ð10Þ

The geometry of this space is determined by the hyperbolic
metric,

GIJ ≔
μ2

ðϕ2Þ2 δIJ; I; J ¼ 1; 2; ð11Þ

where μ is an a priori arbitrary energy scale. This metric of
the upper half plane leads to a space of constant curvature,

R ¼ −
2

μ2
: ð12Þ

Hence, the energy scale μ can be thought of as a measure of
the curvature of the target space. In distinction to the energy
scale Λ, the parameter μ enters all the formulas that
characterize j-inflation. As a result, the analyses below
show that the curvature scalar R is constrained by the CMB
experiments. The hyperbolic modular inflation metric
admits an isometry group that contains the Möbius group
and the transformation τ ↦ ð−τ̄Þ.
In modular inflation, it is convenient to complexify the

inflaton doublet as ϕ ¼ ϕ1 þ iϕ2 and to introduce the
dimensionless inflaton as τ ¼ ϕ=μ. This recovers the so-
called Poincaré metric of Liouville, Beltrami, and Klein as
ds2 ¼ μ2dτdτ̄=ðImτÞ2. An important feature of hyperbolic
geometry is that, while the curvature is constant, the metric
diverges as it approaches the boundary of the space ϕ2 ¼ 0;
hence, the target space in this parametrization is the upper
half plane ϕ2 > 0. The form of the boundary can be
transformed into different shapes if different variables are
used, such as in the Poincare disk model which is obtained
via the Cayley transform and which was considered later in
[12,13]. Other models include the sinh form of the metric
considered more recently in [20,23,27,31]. These related
models of the hyperbolic geometry can be described in terms
of homogeneous spaces based on quotients of the groups
SUð1; 1Þ and SOð2; 1Þ instead of SLð2;RÞ. This setup can
be compared to the metric sometimes considered in axion-
dilaton inflation with a radial field ρ and an angular field θ
with a semiflat metric that depends on the radial field only.
Writing the complex field as ϕ ¼ ρeiθ leads to the modular
inflation metric GIJ ¼ μ2δIJ=ρ2 sin2 θ involving both target
space directions.
Given a hyperbolic metric on the target space with an

associated symmetry group, it is natural to consider poten-
tials that preserve at least some of these symmetries. In
modular inflation, the idea is to break the continuousMöbius
group SLð2;RÞ to an infinite discrete group Γ of the modular
group SLð2;ZÞ that contains the shift symmetry,

SLð2;RÞ!VΓ Γ ⊂ SLð2;ZÞ; ð13Þ

where the potential

VΓ ¼ Λ4jFj2 ð14Þ

is defined in terms of a function F that is constructed from
modular forms in such a way as to be invariant under the
group Γ. This allows for nontrivial potentials in which both
components of the inflaton doublet are coupled in a non-
trivial way. In the present paper, the focus is on the full
modular group Γ ¼ SLð2;ZÞ, in which case modular
invariant inflation potentials can be constructed in terms
of the Eisenstein series modular forms E4, E6, of weight four
and six, respectively, which are defined as

EwðτÞ ¼ 1 −
2w
Bw

X
n≥1

σw−1ðnÞqn; ð15Þ

where q ¼ e2πiτ, the denominators Bw are the Bernoulli
numbers, and σwðnÞ is the divisor function [7,9].
In general modular inflation, the models involve a

modular invariant function FðϕI=μÞ, hence depend in the
formulation given here on the energy scale μ that enters the
potential. As a result, the slow-roll parameters ϵI depend on
μ and can be expressed in the form [9]

ϵI ¼ iI−1
MPl

μ

�
F0

F
þ ð−1ÞI−1 F̄

0

F̄

�
; ð16Þ

leading to

ϵV ¼ 1

2
GIJϵIϵJ ¼ 2

M2
Pl

μ2
ðImτÞ2

����F
0

F

����
2

: ð17Þ

The cosmological parameters considered above can be
shown to be expressed in a quasimodular form via

KF ¼
�
2

����F
0

F

����
2

− Re

�
F00

F0
F̄0

F̄

�
mod

þ π

3
Im

�
Ê2

F̄0

F̄

��
ð18Þ

as [9]

nRR ¼ 1 − 4
M2

Pl

μ2
ðIm τÞ2KF;

r ¼ 32
M2

Pl

μ2
ðIm τÞ2

����F
0

F

����;2

N� ¼
1ffiffiffi
3

p Λ2

MPl

Z
te

t�
dt jFðτðtÞj; ð19Þ

where the quasimodular form Ê2 is defined as
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Ê2ðτÞ ¼ E2ðτÞ −
3

πðIm τÞ : ð20Þ

This shows that the spectral index is a modular invariant
quantity, an issue that was not addressed in the earlier
literature, for example, in the context of supergravity
theories.
The model of j-inflation is defined at level N ¼ 1; i.e., it

is invariant under the full modular group SLð2;ZÞ with
FðτÞ ¼ jðτÞ. This group SLð2;ZÞ contains the shift sym-
metry of the inflaton. The j function is most naturally
defined as the quotient of two modular forms of weight 12,

jðτÞ ≔ E3
4ðτÞ
ΔðτÞ ; ð21Þ

where ΔðτÞ ¼ η24ðτÞ is the Ramanujan modular cusp form
of the full modular group, expressed in terms of the
Dedekind eta function,

ηðτÞ ¼ q1=24
Y
n≥1

ð1 − qnÞ: ð22Þ

The Ramanujan form can be written in terms of the
generators E4, E6 of the space of all modular forms relative
to the modular group SLð2;ZÞ as Δ ¼ ðE3

4 − E2
6Þ=1728.

The slow-roll parameters ϵI can now be expressed
directly in terms of undifferentiated modular forms as

ϵI ¼ −2πiI
MPl

μ

�
E6

E4

þ ð−1ÞI Ē6

Ē4

�
; ð23Þ

with

ϵV ¼ 8π2
M2

Pl

μ2
ðIm τÞ2

����E6

E4

����
2

; ð24Þ

and the above parameters are given directly in terms of the
Eisenstein series via

Kj ¼
�
8

����E6

E4

����
2

− 3Re

�
E2
4

E6

Ē6

Ē4

�
þ Re

�
Ê2

Ē6

Ē4

��
; ð25Þ

as [7,8]

nRR ¼ 1 −
8π2

3

M2
Pl

μ2
ðIm τÞ2Kj;

r ¼ 128π2
M2

Pl

μ2
ðIm τÞ2

����E6

E4

����
2

;

N� ¼
Λ2ffiffiffi
3

p
MPl

Z
dt jjj: ð26Þ

The slow-roll dynamics takes for j-inflation the form

_ϕI ¼ 2πiIffiffiffi
3

p MPl

μ
Λ2ðIm τÞ2

�
E6

E4

þ ð−1ÞI Ē6

Ē4

�
jjj: ð27Þ

The energy scale Λ does not enter nRR or r, but it does
appear in the differential equation, hence the number of
e-folds associated to inflaton trajectories. It can be expressed
in terms of μ and the amplitude of the primordial CMB
amplitude ARR as

Λ ¼ MPl

�
192π4

M2
Pl

μ2
ARRðIm τÞ2

����E6

E4

����
2 1

jjj2
�

1=4

: ð28Þ

This leaves the parameter μ, and hence the curvature scalar,
to be constrained by the cosmological observables. The
phenomenological analysis now aims to investigate the
target space of j-inflation.
A more detailed foundational formulation of modular

inflation at level one can be found in [7,9], and the
generalization from the full modular group SLð2;ZÞ ¼
Γ0ð1Þ to Hecke congruence subgroups Γ0ðNÞ at higher
level N has been introduced in Ref. [11].

IV. GLOBAL STRUCTURE OF THE POTENTIAL
SURFACE OF j-INFLATION

The aim of the preliminary phenomenological analysis of
j-inflation presented in Ref. [9] was to establish the existence
of inflaton trajectories that are compatible with the known
constraints for the spectral index of the scalar power
spectrum, the bound on the tensor power spectrum via
the tensor ratio, and the number of e-folds. Since the bound
on the tensor ratio r established by the CMB satellite probes
is small, it is clear from the j-inflation expression for r given
in Eq. (26) that viable values for ϕI� can be found in the
neighborhoods UðτsÞ of the zeros of the modular form E6.
One such zero is at τs ¼ i. A close-up view of the
neighborhood UðτsÞ for τs ¼ i, together with the shape of
a typical trajectory, is shown in Fig. 4 of Ref. [9]. The scale
of the saddle point at τs ¼ i is given by the curvature matrix,
which for the j-inflation potential is given by

V;IJðiÞ ¼
3 · 4322Γð1

4
Þ8

π4
Λ4

μ2

�−1 0

0 1

�
: ð29Þ

This curvature matrix immediately gives the mass matrix of
the inflaton perturbations at the critical point. Away from the
saddle point, the mass matrix receives contributions from
terms that depend on the slow-roll parameters. A recent
discussion that aims at a characterization of critical points in
terms of discrete symmetries in a general context that
includes inflationary models can be found in [59].
Attempts have been made to classify single field inflation

models by the curvature V 00 of the potential [60–64].
A natural way to generalize these early discussions would
be by keeping track of the eigenvalue structure of the flat
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curvature matrix V;IJ of the potential or its covariant form
V ;IJ. A simpler structure could alternatively be obtained by
considering the determinant JðVÞ ¼ detðV;IJÞ or its covar-
iant form JcovðVÞ. A more phenomenological, but somewhat
less structural, characterization however might proceed by
the generalization of the single field slow-roll parameter
M2

PlV
00=V. In multifield inflation, the analog of this param-

eter is ηIJϵ
IϵJ=ðGKLϵKϵLÞ, which is not just a rescaled

curvature matrix.
In the present paper, the phenomenological consider-

ations aim at a more global view of the slow-roll phase
space, and the structure of the potential surface away from
the saddle point τs ¼ i becomes of interest. One of the
main motivations for j-inflation is the fact that the shift
symmetry, often introduced as an ad hoc approximate
invariance, is now part of a bona fide symmetry of the
theory. Modular inflation at level one is invariant under
the full modular group SLð2;ZÞ of integral 2 × 2 matrices
of determinant one. This infinite group can be generated
by just two elements, given by

S ¼
�

0 1

−1 0

�
; T ¼

�
1 1

0 1

�
: ð30Þ

The generator T shifts the inflaton multiplet, leading to a
repetitive pattern of the inflaton field space of the upper
half plane τ ∈ H as T shifts by one unit τ → τ þ 1. The
investigation of the behavior of modular inflation models
can therefore be restricted without loss of generality to
bands of width one. In this paper, the focus is on the
vertical band bounded by −1=2 ≤ τ1 < 1=2.
The structure of the potential surface is simple for larger

τ2 but becomes more complicated as one approaches the
region where τ2 → 0. Figure 1 illustrates this with a view
that shows a partial region of the embedded surface. This
graph indicates a canyonlike structure that emerges as one
approaches the boundary of the field space given by the
horizontal axis for ðIm τÞ ¼ 0, with saddle points visible at
τs ¼ i and τs ¼ ð1þ iÞ=2. Further saddle points exist
closer to the boundary but are obscured in this 3D picture.
These become transparent in the contour graphs discussed
further below. In coordinate space, the slopes steepen as
Im τ → 0, but the hyperbolic metric stretches the physical
distances in field space, thereby flattening the potential
surface. This becomes important below in the analysis of
the behavior of the trajectories in j-inflation.
The minimum of the potential is at τmin ¼ e2πi=6, which

is determined by the zero of the Eisenstein series E4 in the
numerator of the inflaton potential, combined with the fact
that at the point τmin the Ramanujan modular form ΔðτÞ
that appears in the denominator of V does not vanish. As
the component ϕ2 of the inflaton doublet increases beyond
the saddle point at τs ¼ i, the j-inflation potential forms
a wall and diverges. This can be seen explicitly from
the definition of the Eisenstein series given in Eq. (15).

As Im τ → ∞, the variable q ¼ e2πiτ vanishes, and the
Eisenstein series approach unity in the normalization
adopted here. Since the Ramanujan form approaches q
in this limit, the j function diverges.
The trajectories of the inflaton evolution considered in

[9] all originated in the neighborhood UðτsÞ of the saddle
point at τs ¼ i. The evolution of those orbits was such that
it lasts long enough to produce sufficient inflation and is
furthermore compatible with the observational results of the
CMB probes. Figure 1 shows that there are other saddle
point regions and that the potential surface of j-inflation
has an intricate structure that the large scale three-dimen-
sional representation of the surface does not display in full
detail. Better insight into the potential surface can be
obtained by representing the 3D potential shown in
Fig. 1 in a contour plot, as in Fig. 2. This graph not only
shows the saddle point region considered in [9], as well as
the structures in Fig. 1, but also shows a number of further
saddle points on both sides of the ridge of the saddle point
τs ¼ i. A zoom of the above contour plot in the lower panel
of Fig. 2 shows that the potential becomes more compli-
cated as one approaches the horizontal axis, i.e., the
boundary of the target space. This structure is reminiscent
of a fractal pattern, but the picture suggested by this graph
has to be complemented by the behavior of the hyperbolic
metric, which diverges as the saddles approach the
real axis.
The precise degree of detail obtained in the plots of the

j-inflation potential depends on the resolution and also on
the accuracy with which the potential is computed. This is
relevant because the modular forms involved in the defi-
nitions of the j function are infinite series which have to be
truncated. An increase of the number of terms increases the
amount of detail that can be seen; thus, the order to which the

FIG. 1. A large scale view of the j-function surface jjj2 (the
energy scale parameter Λ is determined by the CMB amplitude
ARR). The plot shows two of the saddle point regions, one of
which has a mirror on the far side of the graph. The minimum of
the potential is located at τmin ¼ e2πi=6.
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Eisenstein series are computed needs to be adjusted depend-
ing on how close to the real axis the computation should
proceed. An increase of the accuracy of course means longer
CPU times.

V. LARGE AND SMALL FIELD INFLATION
IN HYPERBOLIC σ MODELS

One of the longstanding issues in inflation is the
dichotomy between large field and small field inflation,
emphasized, for example, by Lyth in the context of single

field inflation [65]. These discussions revolve around the
relation between the distance covered by the inflaton in
field space and the tensor ratio, mediated by the number of
e-folds during inflation. In multifield inflation, this relation
is less direct because the distance in field space involves not
only changes of the fields ΔϕI but also depends on the
metric GIJ of the target space. It is therefore useful to
separate issues pertaining to the field values from those that
depend on the distance in field space, hence, in general,
involve the metric.
Part of the current discussion that informs the planning

and construction of the next generation experiments aiming
to discover the contribution of inflationary tensor modes to
the CMB is the formulation of significant targets for the
tensor ratio r, which is discussed in detail in Sec. X. Tensor
mode targets that have been identified in recent years have
been motivated by distinguishing between models with
inflaton values that are either super- or sub-Planckian. This
distinction has, in particular, led to the formulation of
classes of single field inflation models along these lines in
the hope that this leads to the identification of more generic
characteristics of inflationary models that might be testable
with CMB data (early work in this direction can be found in
Refs. [60–64]). The demarcation line between these two
classes is not precise, but this lack of precision is not
important for the following. What is of interest is the
common association in the literature of large field inflation
with large r and small field inflation with smaller r. These
discussions raise the question whether a similar behavior
can be identified in multifield inflation, in general.
In j-inflation, there are two aspects that arise in this

context. The first of relevance, in principle, for any multi-
field framework, is that the different components of the
inflaton multiplet can have rather different scales, making
the distinction of sub-Planckian vs. super-Planckian field
values less a feature of the field itself, even though it still
retains its importance for at least some components. This is
the case in j-inflation in neighborhoods UðτsÞ of the saddle
point τs ¼ i. For initial values τ� in UðiÞ, at least one of the
field values is super-Planckian for μ > MPl. Hence, the
vertical component is large ϕ2� ≅ μ, while the horizontal
component ϕ1� can be much smaller, depending on how
close to the saddle point ϕs the initial value ϕ� is. In this
case, the general philosophy can be applied by a slight
change of formulation.
A second feature, specific to the modular inflation

framework, is that modular transformations connect an
infinite number of different regions of the target space. This
also applies more generally to automorphic inflation. The
contour plots in Fig. 2 show sequences of critical points of
the j-inflation potential that form arcs oriented toward the
origin of the τ plane. These saddle point regions can be
mapped with elements of the modular group SLð2;ZÞ,
which is generated by the elements S and T in Eq. (30). The
top arcs in the upper panel of Fig. 2 can be reached, for

FIG. 2. Contour lines of the potential surface modulo the
energy scale. Deep blue indicates the low regions of the potential
in this 2D contour projection, while the lighter colors indicate
higher elevations of the potential. The white regions represent
horizontal cuts beyond which no new saddle points appear, and
the structure of the potential is irrelevant for the present
discussion. This graph shows that there are further saddle point
regions when τ2 ¼ Im τ approaches the boundary of the target
space, determined by τ2 ¼ 0. The ridge toward the top of the
upper panel shows the region around the saddle point τs ¼ i
which was the main focus of Ref. [9].
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example, from the saddle point at τs ¼ i with the sequences
of group elements,

ðTSTÞ�nðiÞ ¼ � n
n2 þ 1

þ i
n2 þ 1

: ð31Þ

These representations of the primary arcs are not unique
because Si ¼ i; hence, these primary sequences can be
obtained with a number of different group elements.
The next sequences of saddle points, both illustrated in

the upper panel, but more clearly visible in the zoom in the
lower panel, can be obtained via

ðTSTÞnTðiÞ ¼ 2nþ 1

2n2 þ 2nþ 1
þ i
2n2 þ 2nþ 1

;

STnðTSTÞðiÞ ¼ −
2nþ 1

2n2 þ 2nþ 1
þ i
2n2 þ 2nþ 1

: ð32Þ

The general picture illustrated by these maps is that
modular invariance of the j potential leads to saddle points
τn obtained by maps γn obtained from elements in the
modular group.
The main feature of these maps γn is that they approach

the origin τ ¼ 0 ever closer as n increases, which is
apparent for the images of the τs in (31) and (32). For more
general τ, this can be illustrated with the sequences γn
obtained, for example, by the iteration of a generating
element γ as γn ¼ γn for the group element γ ¼ TST.
These maps γn send arbitrary points τ to images of the
form

γnðτÞ ¼
τ1 þ njτj2 þ iτ2

1þ 2nτ1 þ n2jτj2 ; ð33Þ

generalizing the sequence (31) of the saddle point τs ¼ i.
For an initial value τ� in a neighborhood of τs ¼ i, this
sequence converges to the origin of the ðτ1; τ2Þ plane, and
in the process, sends both components τI� to ever smaller
field values. The existence of such sequences that
approach the origin of the field space shows that it is
possible to have viable j-inflation trajectories that start
with sub-Planckian field values.
The implication of these sequences of maps γn is that large

field initial values τ� in a neighborhood of the large field
saddle point τs ¼ i with larger tensor ratios rðτ�Þ ≥ 0.01
(which satisfies the PLANCK bound) are mapped into small
field initial values γnðτ�Þ with the same tensor ratio,

rðγnðτ�ÞÞ ¼ rðτ�Þ: ð34Þ

In Sec. X, it is shown that, depending on the parameters of
the model, j-inflation can lead to tensor ratios that reach the
current bound reported by the PLANCK Collaboration but can
also reach down to the target range of upcoming experi-
ments, such as the Simons Observatory and the CMB-S4

experiment. Combined with the discussion above, this shows
that in j-inflation, and eo ipso in multifield inflation, small
field inflation can lead to large tensor ratios, and large field
inflation can lead to small tensor ratios.

VI. j-INFLATION TRAJECTORIES AND
HYPERBOLIC GEODESICS

The analysis discussed in the next section shows that
sufficient inflation takes place in a large volume of the field
space of j-inflation. It is in this context of interest to
investigate in more detail the behavior of the inflaton
trajectories in different regions of the target space. The
geometry and the physics of the orbits depends of course
on the potential surface above the target space. In particular
the structure of the regions with sufficient inflation, or the
existence of attractors, is dependent on the form of the
potential, hence necessitates the consideration of inflaton
trajectories on the potential surface. The inflaton behavior
can also be considered in the field space itself by projecting
the inflaton paths down to the target space, where they can
be compared with the geodesics defined by the target space
metric, in the present case the hyperbolic metric of the
upper half plane. The latter comes in two types, straight
vertical lines and semicircles, and the natural question is
how the inflaton trajectories compare to the geodesic paths.
Naively, one might expect the geodesic motion in the field
space to be irrelevant in slow-roll inflation because it is the
gradient structure of the potential that is important, and the
dynamics of the inflaton itself even along approximately
geodesic paths will depend on the potential. However, it
becomes clear below that sufficient inflation can be
achieved with a family of inflaton orbits that interpolate
between the two types of hyperbolic geodesics.

A. Hyperbolic geodesics and the effect of modular
dynamics

A natural question in the case of curved target spaces is
how the physical geometry of the field space differs from the
purely geometric dynamics, i.e., in what way the inflaton
potentials affect the trajectories projected down to the target
space as compared to the geodesics. This is also of interest in
the context of how the swampland conjectures might relate
to the observational bounds on r because the former are
concerned in part with geodesic distances while the latter
impact the distances along inflaton trajectories. The geodesic
equations for the upper half plane H lead to the coupled
system given by

τ1
00 −

2

τ2
τ1

0
τ2

0 ¼ 0;

τ2
00 þ 1

τ2
ðτ10 Þ2 − ðτ20 Þ2Þ ¼ 0; ð35Þ

where the dimensionless variables τI are used, and the
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primes denote the derivative relative to the dimensionless
time. These equations can be solved in terms of straight
vertical lines τ1 ¼ const as well as by semicircles that
intersect the τ2 ¼ 0 axis vertically, i.e., with centers along
the real axis. Parametric forms of these geodesics can be
obtained in two different ways, using either a group theoretic
parametrization or a formulation in terms of hyperbolic
functions. More precisely, the geodesic solutions can be
given as a combination of a pair of maps of the point τ ¼ i
defined by elements βt; g in the Möbius group as

τgðtÞ ¼ g ∘ βtðiÞ; ð36Þ

where

βt ≔
�
et=2 0

0 e−t=2

�
; g¼

�
a b

c d

�
∈ SLð2;RÞ; ð37Þ

and the action is given as usual by the fractional trans-
formation. The identity g ¼ id leads to vertical geodesics on
the imaginary axis τ ¼ eti, and the shift matrices generate
other vertical lines. This shows that the upper half planeH is
a geodesically complete manifold. The group theoretic
geodesics (37) can be mapped into the hyperbolic function
parametrization that provides an alternative parametrization
of the semicircle geodesics.
In Figs. 3 and 4 inflaton trajectories are shown for initial

values both in the neighborhood of the critical point τs ¼ i
and in a more global region. Figure 4, which will also be
relevant for the attractor discussion of the next subsection,
shows a collection of trajectories in the fundamental strip. It
establishes that for a wide range of initial values the
potential of j-inflation, and hence modular inflation, in
general, has an important effect on the specifics of the
dynamical solutions. Even with the constraint imposed on
the number of e-folds, the j-inflation trajectories form a
continuous family that turns from the vertical line type of
geodesics into the semicircle type of geodesics. For initial
values with large Imτ and Reτ closer to the boundary of the
central vertical band, the trajectories approximate the
vertical geodesics, while for initial values closer to the
saddle point τs ¼ i, they eventually approximate the semi-
circle geodesics. In the process of this interpolation, the
family of trajectories inevitably contains paths that are far
from being of geodesic type.
If one imposes further phenomenological constraints such

as the spectral index and the tensor ratio, the j-inflation
initial values are forced to start closer to the saddle points, as
illustrated by a selection of different trajectories in Fig. 3.
These paths show that during the early phases of j-inflation
even those trajectories that are compatible with the PLANCK

constraints for the spectral index and the tensor ratio can
have interesting dynamical behavior that deviates from the
geodesic. On the other hand, there do exist trajectories in j-
inflation that approach the geodesic very quickly. This

comparison of course only concerns the geometric form
of the paths involved. Physically, the potential surface is still
important even for trajectories that are close to being
geodesic because it is the potential that determines the
timescales of the inflaton dynamics.
Figure 3 also provides another illustration of the attractor

nature of the inflationary trajectories on a more local scale. If
one continues to follow the dynamics along these orbits, they
all converge onto the geodesic path that connects the saddle
point τs ¼ i with the minimum of the j-inflation potential.
This feature is enhanced for trajectories that originate close
to the saddle point.

B. Attractorlike behavior

In the context of the issue of fine-tuning of initial
conditions, it is natural to ask whether inflationary models
show features that are reminiscent of attractor behavior for
inflaton trajectories. The mathematical concept of an
attractor involves large time behavior [66]; hence, strictly
speaking, it is not applicable in models in which inflation
ends after a finite time, whatever the mechanism. It is
nevertheless of interest to ask whether an inflationary
potential has basins into which inflaton trajectories with
quite different initial conditions tend to converge and
whether the trajectories that converge to these basins have
similar physical parameters. For single field inflation,
there is a large amount of literature on this topic, and for a
special class of models, this is discussed briefly in the
recent reviews [67,68] and references therein. In the
framework of multifield inflation, attractors have received
less attention, but a recent analysis can be found in [69].

FIG. 3. An illustration of j-inflation trajectories in the ðτ1; τ2Þ
target space for different energy scales μ. The dashed curve shows
the geodesic that connects the saddle point τs with the minimum
of the j-inflation potential. As before, these j-inflation trajecto-
ries are truncated at the end of inflation, but the geodesic is
tracked to the minimum of the potential.
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In light of these discussions, it is of interest to consider
trajectories in j-inflation.
The illustration of the potential in Fig. 1 shows that it

increases and forms a wall for large imaginary components
of the inflaton doublet. One can ask what the trajectories
are that these initial conditions with sufficient inflation lead
to, and Fig. 4 shows a selection of j-inflation initial values
and their associated trajectories. The paths in this graph all
lead to inflation within the canonical range for the number
of e-folds N� ∈ ½50; 70� adopted in the present paper, and
they are tracked to the end of inflation.
Included in Fig. 4 are also trajectories that start in the

neighborhood of saddle points of the potential that are
closer to the real axis. These trajectories appear to be much
shorter in the coordinate space variables of this graph, but
because of the nontrivial hyperbolic metric of the field
space, the physical lengths of these paths are larger since
they are closer to the horizontal axis. The factor ð1=ImτÞ in
the length ds leads to an ever stronger stretching as Imτ
approaches zero.
The trajectories in Fig. 4 show that sufficient inflation

can be obtained in j-inflation for a wide variety of different
types of trajectories. Along some of these orbits, either of
the two components τI of the inflaton can be approximately
constant, which is an assumption that is sometimes made in
the two field inflation literature. There are however also
trajectories for which both of the components vary con-
siderably; hence, in j-inflation, sufficient inflation can be

obtained along trajectories that represent true two field
inflation.
The paths shown in Fig. 4 also illustrate how the

trajectories that originate close to the saddle point τs ¼ i
serve as attractor basins into which a continuum of
trajectories merge that start away from the saddle point.
This behavior extends even to trajectories that start higher
up the wall region of the potential. Only orbits that
approach the linear type geodesics when projected down
onto the field space approach the minimum in a more direct
way. Their structure approximates vertical geodesics,
which are briefly described above.

VII. SUFFICIENT INFLATION

The question whether a given field theoretic model might
be useful in an inflationary context is usually posed in a first
iteration as a constraint on the lower bound on the number of
e-folds N�. The original motivation for inflation leads to a
rough estimate for N�, and a number of investigations of
different models involving an inflaton doublet have focused
on an analysis of the phase space that leads to sufficient
inflation in this sense. A model that has received particular
attention over the years is hybrid inflation [36], and papers
that report results of such scans include [37–43]. Inflation
must end eventually, and in principle, such scans of the phase
space should impose also an upper bound for N�.
The duration of inflation has received much attention in

the literature, not only because it is the parameter that is most
immediately relevant for the puzzles that initially played an
important role in the introduction of the inflationary frame-
work, but because it has also served as a focal point to
provide more precision to the question of how probable
inflation is, for example, in the formulation of Gibbons and
Turok [49]. It has turned out to be difficult to constrain the
number of e-folds precisely, in part because it depends on the
choices that have to be made to account for the postinfla-
tionary evolution. The main uncertainty in determining a
definite range is the reheating stage, which is poorly con-
strained observationally and which is complicated because
of its preheating phase during the early stages of this process.
Despite much work on issues related to preheating, no clear
estimates for the number of e-folds and the reheat temper-
ature have emerged. Consequently, the range of e-folds that
has been considered in the literature covers a wide range,
reflecting the lack of constraints on the energy scales that are
allowed in this context, reaching from a lower bound given
by the nucleosynthesis scale of some (1–10) MeV, to the
GUT scale of 1016 GeV. Given a choice for the accepted
range of the number of e-folds, i.e., a choice of the
evolutionary scenario, a key issue to address is whether
the given model under discussion provides enough inflation
in the adopted framework. In the absence of better con-
straints on the postinflationary stages, a canonical range for
the number of e-folds N� between horizon crossing and the
end of inflation has emerged that posits that from 50 to 60 is

FIG. 4. j Inflaton trajectories in the ðτ1; τ2Þ target space plane for
τ1 ∈ ½0; 1=2�. The e-folds for these trajectories in field space are all
in the standard rangeN� ∈ ½50; 70�. The hyperbolic metric rescales
the physical length of these paths drawn in the diagram.
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a reasonable minimal value for N�. Such values were, for
example, imposed as a lower bound in the work on hybrid
inflation. In the present analysis of j-inflation, more specific
bounds for the number of e-folds are implemented.

A. Initial conditions in j-inflation for sufficient inflation

In the present paper, a conservative range for the number
of e-folds is chosen as N� ∈ ½50; 70� to define viable
realizations. Using this as a constraint on N�, the existence
of trajectories in j-inflation with enough inflation was
established in [7,9]. (The generalization to higher level
models was considered in [11].) A systematic scan of the
slow-roll phase space is computationally expensive at high
resolutions of the field space, with most of the time spent on
the computation of the number of e-folds N�. A balance
thus has to be found between the resolution of the lattice in
inflaton space as well as the time resolution used in the
determination of the end of inflation te. By choosing the
inflaton resolution δτI ¼ δϕI=μ low enough, it is possible
to scan the central vertical band out to a range of Imτ where
the e-folds fall outside of the adopted range. A typical scan
of the initial values leads to a structure that is reminiscent of
a butterfly, as shown in Fig. 5.
The feelers of the butterfly distribution reflect the intricate

structure of the potential surface as one approaches the
horizontal axis ϕ2 ¼ 0 that defines the boundary of the
modular inflation field space. This structure is indicated in
the 3D plot of Fig. 1 and can be seen more clearly in the
global contour plot of Fig. 2. A discussion of the behavior of
the inflaton trajectories corresponding to these initial values
has been given in the previous section. The structure of the
2D butterfly can be explained by resolving the graph by
adding the number of e-folds N� as a third dimension.
Figure 6 shows that the upper and lower boundaries of the
butterfly structure are determined by the bounds on the
number of e-folds. They are obtained because, when moving

away from of the thoraxlike structure that appears close to
the ridge of the potential along the imaginary axis, the
e-folds produced by the potential are below the lower bound
of the interval N� ∈ ½50; 70� in the lower region of the target
space and above the upper bound in the upper region of the
butterfly wings. Varying the bounds for the e-folds therefore
varies the wing boundaries accordingly.

B. A natural measure on the space of initial conditions

A question often raised in the context of inflation is how
much of the space of initial conditions actually leads to
inflation. The answer to this question involves some kind of
measure that needs to be chosen. For general multifield
inflation with a curved field space, the target space comes
equipped with a natural measure given by the volume
measure ω ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

detGIJ
p Q

K dϕK . Even though, in general,
the volume of a noncompact space will diverge in this
measure, the situation is different in modular inflation,
where the metric measure provides a finite volume for the
fundamental domain of the target space. There are two
features of modular inflation that combine to allow the
computation of a finite fraction of the initial conditions that
lead to sufficient inflation. The first is that the modular
symmetry constructs the full target space as an infinite
number of copies of the irreducible fundamental domain F
of the upper half plane F ⊂ H, given by

F ¼ H=SLð2;ZÞ; ð38Þ

which extends infinitely high along the imaginary axis in
the interval ½−1=2; 1=2Þ. The second feature is that the

FIG. 5. The butterfly graph in the ðτ1; τ2Þ target space in the
fundamental band τ1 ∈ ½−1=2; 1=2�. The butterfly boundaries are
determined by the constraints on the number of e-folds
N� ∈ ½50; 70�. See also Fig. 6 for more detail.

FIG. 6. The 3D function of the e-fold number N� along the
vertical axis on the dimensionless target space ðτ1; τ2Þ for e-folds
in the range [50, 70]. This graph shows that the upper and lower
boundaries of the butterfly wings are determined by the upper and
lower limits adopted for the number of e-folds. Varying these
limits will vary the boundaries of the butterfly.
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metric is given by (11), and while the euclidean area ofF is
infinite, the hyperbolic metric provides a finite area for the
fundamental domain, given by

volðF Þ ¼
Z
F

ffiffiffiffiffiffiffiffiffiffiffi
detG

p
dϕ1dϕ2 ¼ π

3
μ2 ¼ −

2π

3

1

Rfs
: ð39Þ

It becomes clear in the later sections that the CMB data
constrains μ and hence the physical area of the fundamental
domain.
Given that the volume of the fundamental domain F is

finite, it is natural to consider the quotient of the butterfly
volume and the total volume as a measure of the likelihood
of j-inflation with a number of e-folds in the canonical
interval. This quotient can be interpreted as the probability
for j-inflation to produce N� ∈ ½50; 70� e-folds. It can also
be interpreted as the posterior probability by assuming that
the prior probability distribution is constant, which allows
one to cancel it in Bayes’ theorem. As a result, modular
inflation leads to the probability

PðN� ∈ IÞ ¼ volðBF Þ
volðF Þ : ð40Þ

A rough estimate of the volume of BF shows that a large
fraction of the total field space leads to inflation in the range
considered here. In the literature, the probability of inflation
is often discussed by setting a lower cutoff for N�; for
example,N� ≥ 60, see, e.g., papers [37,38,40–42,44], where
the space of initial conditions with N� ≥ 60 is analyzed
for hybrid inflation. The structure of j-inflation is such
that if one lets N� grow unbounded then the probability
approaches one.

C. Finite measures of modular inflation and the
swampland conjectures

In the past, the question of how likely inflation is has often
been phrased in terms of measures that are not normalizable,
leading to regularization issues [47,48,50,51]. It is worth-
while to note here that the conjectures that have been
formulated in the context of the swampland conjectures
place modular inflation in a larger framework in which the
existence of a geometric measure on the target space is
guaranteed by fiat.
The swampland conjectures have been introduced as an

attempt to formulate criteria for effective field theories that
can be embedded in a theory of quantum gravity. For the
most part, it is assumed that this theory is string theory, and
much of the work aimed at providing evidence for the
conjectures has been done within this framework. A review
of recent work can be found in [70], and further work on the
impact of these conjectures on inflation includes [71].
However, the formulation of at least some of the criteria
considered so far takes place within the effective field theory
and does not directly refer to string theoretic features.

Among the earliest constraints imposed were conditions
extrapolated by Ooguri and Vafa [72] from the behavior of
string theory moduli. These can be rephrased in terms of
inflationary scalar fields, independent of any moduli inter-
pretation. The focus of these early considerations was on
the topological and geometric structure of target space of
the scalar fields, in general, a multicomponent field
ϕI; I ¼ 1;…; n. The topological conjecture states that the
target space is noncompact in the sense that there exist
trajectories of infinite length. The precise length of these
trajectories depends on the form of the distance measure
[73], but this does not affect the basic picture of the
topological conjecture. Figure 4 illustrates the existence of
such paths as one increases the imaginary range of the
inflaton doublet indefinitely.
The geometric conjecture posits that despite the non-

compactness the target space has finite volume. What is
assumed implicitly in such statements is that the focus is on
the fundamental domain. In this context, j-inflation, and
more generally modular inflation, are examples of theories
that satisfy the finite volume conjecture [74,75], as dis-
cussed above.
There are further conjectures that are currently under

discussion in the literature. At this time, no consensus has
been reached about the significance of these postulates,
which eventually may pave the way to reformulations of
inflation or alternative models, see, e.g., [76–81].

VIII. SPECTRAL INDEX FUNCTION nRR ON THE
FIELD SPACE

One of the fundamental parameters that has been deter-
mined with a dramatic increase in precision by the post-
COBE satellite experiments is the adiabatic spectral index
nRR of the curvature Lukash-Bardeen perturbation R. The
specific value and uncertainty of the spectral index depends
on the details of the fits. For the most part, the fits that have
been published by the collaborations are aimed at single field
inflation, and the parameter space is correspondingly lower
dimensional. Fits that are aimed at two field inflation usually
adopt special types of parametrizations for the scalar power
spectrum and often make assumptions concerning the
correlations between the adiabatic and the isocurvature
perturbation. Currently, no multifield specific fit of the final
PLANCK data release has been performed, but extended fits
beyond the minimal parameter count have been obtained in
Ref. [82]. In the present paper, bounds are used that are close
to the PLANCK values.
In j-inflation the spectral index nRRðτIÞ is given by the

fairly complicated function in Eq. (26) in terms of the
Eisenstein series. The analytic structure of this function is
not immediately transparent, but its geometry can be
determined numerically and is shown in Fig. 7. The structure
of this surface explains some of the features of the numerical
scans for viable initial conditions that satisfy not only the
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constraint on the number of e-folds but are also consistent
with the results from the CMB probes.

A. nRR scans of the field space

It follows from the j-inflation expressions for the
spectral index and the tensor ratio in Eq. (26) that the
initial values in the neighborhood of the saddle points τs are
good candidates that might lead to viable trajectories. The
region around τs ¼ i was the focus of the phenomenologi-
cal analysis of j-inflation of [9], which established the
existence of viable trajectories. In the present section, the
focus is on the constraints imposed on the target space by
the spectral index as the inflaton ranges over this space for a
fixed energy scale μ. The effect of the variation of μ on the
spectral index is considered later in this paper. The results
of a global scan of the target space is shown in Fig. 8
superimposed on the contour plot of the potential. This
illustrates in some detail the canyonlike structure of the
field space close to the boundary.
This global map indicates a chainlike iterative structure

of saddle points which can be resolved only to a limited
degree in the region very close to the real axis. In order to
obtain a more detailed view it is useful to construct a zoom
for smaller values of the vertical component of the inflaton.
In Fig. 9 the focus is on the region to the right of the ridge,
for which this higher resolution graph shows a more
detailed structure as one approaches the real axis, in
particular, a double sequence of arcs made of saddle point
regions that range from the right boundary of the central
vertical band toward the origin of field space. These regions
come in two different orientations, which are roughly
diagonal and off diagonal. Three different arcs are clearly
visible, and a fourth one is indicated. The amount of detail
visible in such runs depends on the size of the lattice used to
scan the field space, as well as the accuracy with which the
Eisenstein series are computed.

IX. SCALING BEHAVIOR OF THE SPECTRAL
INDEX

A question that has been raised many times in the
inflation literature is whether it is possible to derive
constraints for the amplitude of the gravitational contri-
bution to the CMB background, given some plausible
assumptions. The idea has been to abstract some general
behavior from simple models that allows one to deduce, in
particular, a lower bound for the tensor-to-scalar ratio r
considered by the CMB collaborations [1–3]. One strategy
that has been adopted in single field inflation is to assume
some scaling behavior of the equation of state parameter
and to consider the implications that result [53]. This

FIG. 7. Large scale view of the spectral surface nRRðτIÞ.

FIG. 8. A scan for viable spectral indices on the field space
contour plot of Fig. 2. Here, the target space is again restricted to
the fundamental band. The yellow bands illustrate the regions
with viable nRR values.

FIG. 9. A zoom of the lower region of the right part of Fig. 8.
This shows a highly resolved picture of the Fig. 8 bands that
are swept out by the spectral index constraint on the inflaton
space ðτ1; τ2Þ.
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translates immediately into an assumption for the scaling
behavior of the slow-roll parameters and hence the
spectral index and the tensor ratio. Given the CMB
constraints on the spectral index, this translates into
estimates for r [53,55].
In single field inflation, such a scaling behavior is

immediate in some simple models. In the class of monomial
inflation models [83], the spectral index,

nRR ¼ 1 − 6ϵV þ 2ηV; ð41Þ

simplifies because of the relation ϵV ¼ 2ðp − 1ÞηV=p, with
p the monomial exponent, as well as the fact that the slow-
roll parameter ϵV can be written in terms of the number of
e-folds as ϵV ≅ 1=N. This leads to the scaling relation,

nRR ≅ 1 −
αp
N

; ð42Þ

where αp ¼ ðpþ 2Þ=p. This type of relation also holds
approximately for different classes of models, for exam-
ple, the Starobinsky model [84]. For about N ¼ 60 e-
folds, the resulting spectral index is consistent with the
CMB constraints that have been determined in recent
years by the WMAP and PLANCK satellites. The question
can be raised whether this scaling holds for some range of
N away from the specific value N ¼ 60, often adopted as
the canonical value.
As noted above, such scaling relations were assumed to

hold in attempts to put constraints on the undetermined, but
bounded, tensor-to-scalar ratio r. It was, in particular,
observed by Mukhanov [53] that the observational bounds
obtained by the WMAP satellite for the spectral index [85],
in combination with a relation like (42), allow one to
determine lower bounds on the tensor-to-scalar ratio r (see
also the papers [54,55]). This raises the question whether
such a relation might be valid more generally in the
framework of multifield inflation. In this case, there are,
in general, no analytical formulas for N, and hence, there is
no easy access to analytical scaling relations. However, the
analysis presented above of the behavior of j-inflation
allows one to address this issue.
In order to test whether the above scaling relation for

nRR holds more generally in multifield inflation, it is useful
to define the function

fαðnRR; NÞ ¼ nRR −
�
1 −

α

N

�
ð43Þ

for some constant α and consider the correlation of this
functions with the spectral index. If the scaling relation
above holds, the function fα vanishes. The analysis of the
scaling relation in j-inflation shows that the values of the
function fα for α of order one are small, of the order of a few
percent. This is illustrated by the graph in Fig. 10. While the
function fα is small, the behavior of the tensor ratio r further

above shows that the bounds on r obtained in the framework
of single field inflation are not valid in multifield inflation.

X. THE TENSOR-TO-SCALAR RATIO FUNCTION r
ON THE FIELD SPACE

One of the fundamental phenomenological parameters
that constrain inflation is the power amplitude of primordial
gravitational waves. This is conventionally quantified by
the CMB collaborations in terms of the tensor-to-scalar
ratio r defined in Eq. (6). For j-inflation, this parameter
becomes a function of the energy scale μ that determines
the curvature of the target space and the inflaton field ϕI as
in Eq. (26). This observable r has not yet been determined,
but the bounds of the amplitude of the gravitational
perturbations have dramatically improved since COBE,
and further experiments to constrain r are currently under
construction. The main point of these efforts of course is to
detect primordial gravitational waves and in the process
determine some of the characteristic features of inflation.
However, while the scale of inflation is an important
characteristic, it is not the only information tied to r,
and even in the absence of a detection, the results of future
experiments are important because they provide essential
constraints for inflationary model building. While an
improvement of an order of magnitude in the recent past
has not provided insight into the scale of inflation [65], the
experimental achievements have been strong enough to
exclude an infinite number of models, among them the
class of monomial inflation potentials.

A. Large field inflation and small tensor-to-scalar ratios

One of the issues in which the bounds on r have been
instrumental is the question whether the experimental
target values predicted to be reached in the near future will

0.962 0.964 0.966 0.968 0.970

–0.005

0.005

0.010

FIG. 10. Typical graph for the function fα, plotted along the
vertical axis, in dependence of the spectral index nRR, plotted
along the horizontal axis. This graph is obtained from the initial
values that are consistent with the tensor ratio bound and the
canonical range for the e-folds. The narrowness of this band
establishes that the spectral index does follow quite closely the
scaling behavior of single field monomial inflation.
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be able to exclude certain types of inflationary models. As
noted above, this has already been achieved by the
exclusion of certain sequences of models. A more far
reaching discussion that has been conducted in a large
number of papers, following [65], is concerned with the
question of whether there are bounds that can exclude
large field inflation altogether. In the past, strong bounds
have been suggested based on restricting consideration to
special classes of inflationary models, and some of these
bounds have been used in proposals for new observatories.
It was, in particular, noted early on that a nondetection of r
at the level of 10−2 [86] or 10−3 [87] would rule out large
field inflation, see also [88]. This value was subsequently
reduced somewhat, depending on specific assumptions
made in the analysis. Slightly lower constraints than the
milli-scale mentioned above were obtained in [89,90] in
the context of single field inflation. For a special class of
models, this bound was pushed down further in [91],
where it was argued that large field inflation is only
possible if this ratio is larger than r ≥ 2 × 10−5. In light of
these discussions, it is of interest to analyze the tensor-to-
scalar ratio r in the more general context of multifield
inflation with curved target spaces.
The current experimental bound for r is several mag-

nitudes above the most stringent values just quoted. An
often cited value is the result reported by the PLANCK

experiment, which is reported to be given by r ≤ 0.06
[1,2]. Such bounds depend on the type of fit adopted in the
experimental analysis, and the above value was obtained
by assuming a minimal number of parameters, which is
not appropriate for multifield inflation. Extensions
beyond the standard six parameter fits have been consid-
ered, but at present, no PLANCK based full analysis
appropriate for two field inflation is available in the
literature. In the following, the single field bound will
be therefore adopted as the constraint. Ongoing experi-
ments such as CLASS [6,92] aim to reduce the PLANCK

bound to the level of 10−2, while upcoming and future
ground based experiments such as the Simons
Observatory, the BICEP Array, and the CMB-S4 project
will be able to reduce this by more than an order of
magnitude [4,5,93–96]. The satellite experiment Light
BIRD [97] is designed to reach down to r ¼ 2 × 10−3 at
95% C.L., while the target value of the proposed satellite
experiment PICO [98,99] reaches further down by almost
another order of magnitude to r ¼ 5 × 10−4 at a 5σ
confidence level, with σðrÞ ¼ 1 × 10−4 at r ¼ 0. As noted
already, even a nondetection of the tensor modes at this
level would have significant effects on the current infla-
tionary model landscape, and it would provide a better
perspective on different ad hoc selection rules that have
been used to provide a lower bound on r [100].
The goal in the present section is to analyze the tensor-

to-scalar ratio of j-inflation in light of the experimental
and theoretical bounds discussed above. The systematic

results are of course limited by the resolution of the scans,
but even so, it becomes clear from the analysis below that
the parameter space of j-inflation is constrained by the
PLANCK bounds on r; hence, j-inflation presents a target
for upcoming and planned experiments. It also becomes
clear that there are regions in parameter space in which
the lower bound of r can be pushed below the exper-
imental floor of all upcoming experiments. The r range of
j-inflation, in particular, reaches below the boundary that
has been identified in the literature as the dividing line for
large field inflation in the single field context. The fact
that j-inflation can reach below these proposed large field
boundaries alleviates the concerns expressed in a number
of recent discussions [94,95,98,99,101] that the measure-
ment of an experimental bound for the tensor ratio below
r ≅ 10−3 would force a significant change in our under-
standing of the primordial Universe. The example of j-
inflation shows that the framework of two field inflation is
able to reach below these thresholds.

B. Global r-scan

As in all scans of the target space, the specific results
obtained for the tensor ratio depend on the size of the
fundamental lattice cell as well as the parameter μ that is
not fixed by the CMB amplitude in the formulation
considered here. What does not change is the global
structure of the results. As in the case of the spectral index,
it is useful to consider the shape of the analytical form of
the tensor ratio rðτIÞ of j-inflation as a function on the
target space via Eq. (26). This is shown in Fig. 11.
In Fig. 12, the results are given for a global scan of r

along the central vertical band. The resulting pattern of this
band is repeated in the upper half plane to the left and right
by the shift symmetry τ → τ þ 1 that is part of the modular
group SLð2;ZÞ that leaves the potential invariant. It is this
invariance that is part of the motivation of modular and,
more generally, automorphic inflation [7,8]. The structure
of the central band changes in dependence of the distance to
the real axis. The areas closer to the boundary of the target
space given by Imτ ¼ 0 are distorted in the plot of Fig. 12
because it is drawn by using the euclidean metric. The
hyperbolic metric that describes the actual geometry of the
field space increasingly stretches these domains as the
horizontal boundary is approached because of the factor
1=ðImτÞ2 that enters ds2. This measure leads to finite
volumes of the target space in which the PLANCK bound on
the tensor ratio is satisfied.

C. Effect of the field space curvature Rfs on the tensor
ratio r

Recall from the discussion above that once the energy
scale μ is chosen the overall scale Λ of the potential follows
from the CMB amplitude, making μ the only parameter that
can be varied. This means that the only free parameter in the
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model is the curvature scalar of the target spaceRfs ¼ −2=μ2
determined by the metric, Eq. (12). The tensor ratio in
Eq. (26) shows that r scales like 1=μ2; hence, it scales with
the scalar curvature Rfs of the field space

r ¼ −64π2M2
Pl Rfs ðImτÞ2

����E6

E4

����
2

: ð44Þ

The second ingredient that varies is the inflaton value ϕI� at
horizon crossing, and these two parameters determine the
range of r. The precise boundary values of μ, or Rfs, and ϕI�

depend on the range of the number of e-folds and on the
lattice resolution of the scan.
To be concrete, for a fixed value of the target space

curvature Rfs via a choice of μ the initial values τI� that satisfy
the constraints adopted for r; nRR and N� sweep out a finite
band in the ðnRR; rÞ plane. As the target space curvature is
varied, this band moves up and down along the axis defined
by the tensor ratio r. It is a priori not transparent how the
imposed constraints combine to determine the specific
boundaries and the band in the ðnRR; rÞ plane. This is
illuminated by considering a three-dimensional plot which
adds the number of e-foldsN� to this plane. Figure 13 shows
that doing so explains the boundaries as determined by the
bounds adopted for N�. This lifting of the planar plot shows
that the lower bound on r arises from the upper bound of the
number of e-folds. If the upper limit N� would be increased,
the lower bound on r would decrease for fixed μ. The
degeneracy of the sheet in Fig. 13 along the direction of the
spectral index shows that in j-inflation a scaling relation
exists between the tensor ratio r� and the number of e-folds
N�. Parametrizing the tensor ratio as r ¼ αN−β, one obtains
for β ¼ 1 the monomial class, for β ¼ 2 the Starobinsky
type range of r, and for higher β the range covered by j-
inflation, with increasing suppression obtained for larger
target space curvature Rfs.
The issue of the upper limit for N� has a long history, and

the specific bound N� ≤ 70, while often adopted, is not
sharp. Discussions of the allowed range of the number of
e-folds during inflation can be found in [102,103], and their
implications for trans-Planckian physics have also been
extensively discussed. A review of these issues can be
found in [67].

FIG. 12. Results from a global scan for viable initial values in
the ðτ1; τ2Þ field space along the central fundamental band that are
consistent with the tensor ratio bound. Close to the horizontal
axis, the effect of the hyperbolic metric leads to a stretching of the
Euclidean distances of this plot.

FIG. 13. The N� dependence in the ðnRR; r; NÞ space at fixed
μ: as the number of e-folds grow the tensor ratio r decreases. The
initial values here are required to satisfy the constraints imposed
on the spectral index nRR, the tensor ratio r, and the number of e-
folds N� ∈ ½50; 70�.

FIG. 11. A global 3D graph of the tensor-to-scalar ratio rðτIÞ
along the vertical axis on the field space ðτ1; τ2Þ in the fundamental
band. This illustrates the behavior of rðτIÞ in Eq. (26).
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As noted above, the band swept out in the plane
spanned by nRR and r in dependence of the CMB
constraint on the spectral index and the adopted range
for the number of e-folds depend on the energy scale μ
that determines the field space curvature Rfs. As the
bounds obtained by the PLANCK probe will be improved
by the next generation of experiments currently under
construction, the bound on the curvature scalar will
become stronger. This raises the question of how much
the tensor ratio is affected by a variation of the target space
curvature that remains consistent with the PLANCK bounds
on the spectral index and N�. In Fig. 14, the results for
Rfs ¼ 1=μ2 with μ ¼ 27MPl and μ ¼ 35MPl are shown.
This graph illustrates that the r bands determined by the
target space curvature lie for both energy scales μ within
the confidence region of the PLANCK results. As the
curvature Rfs increases, the band moves lower into the
region targeted by the Simons Observatory [94]. This
shows that the range of the tensor ratio obtained in j-
inflation for different μ contains and extends the region of
the r value obtained within the class of monomial
inflation, as well as that of the Starobinsky model [84].
The latter, in particular, is a prominent model that has
motivated some experimental proposals in the recent past.
The analysis of this section shows that j-inflation

provides an interesting target for experiments that aim to
discover the gravitational contribution of the CMB signal,
or at least to significantly improve the constraints on the

tensor ratio. This includes experiments that are scheduled to
come online in the near future, such as the Simons
Observatory, CMB-S4, as well as the satellite experiment
LightBird. The results from these observations will have an
impact on the size of the field space curvature of the
hyperbolic field space of modular inflation.

XI. EFFECTS OF μ VARIATIONS

Modular inflation as described in Sec. III is parametrized
by the energy scale Λ and the inflaton scale μ needed to
make the inflaton dimensionless. The scaleΛ of the potential
is as usual determined by the amplitude of the CMB power
spectrum measured by the satellite experiments. This leaves
the scale μ as an a priori undetermined parameter of the
theory, which is related to the field space scalar curvature via
Eq. (12). This parameter is constrained however by the CMB
results for the observables, such as the spectral index and the
bound on the tensor ratio. Any scan of the target space is of
course limited by the adopted lattice resolution and other run
parameters that are constrained by CPU resources. The scans
discussed were mostly performed with a fixed μ, and the
question arises of how these change when μ is varied. This is
illustrated for the spectral constraint nRR in Fig. 15, which
represents a compilation of initial inflaton values that satisfy
the PLANCK constraint for the range of μ ∈ ½25; 50�MPl.
The modular symmetry of the j-inflation model implies
that the same structure is repeated along the modular
sequences described in Secs. IV and V, repeating this
pattern indefinitely.
Imposing not only the spectral index but also the tensor-

ratio bound of PLANCK and the constraint on the number of
e-folds N� selects from the distribution of Fig. 15 a subset
of initial values that for the same range of μ values and the
same run parameters produces a region in the target space
of the form of a nutcracker, shown in Fig. 16.
A natural question that can next be raised is how the

tensor-to-scalar ratio r behaves as the energy scale is varied.
In the context of the ðnRR; rÞ plane usually considered by
the CMB collaborations, this has been discussed in Sec. X
and illustrated in Fig. 14. In Fig. 17, this is addressed by
considering the 3D distribution of the parameters
ðnRR; r; N�Þ for three different values of μ. This plot
allows one to extrapolate the structure for the intermediate
values and also allows to infer how the pattern extends
beyond the values shown. The different bands in depend-
ence of μ show that the scaling relation mentioned in the
previous section between r� and N� varies with μ.

XII. CONCLUSIONS

The present paper has conducted an extensive systematic
analysis of the inflaton behavior in modular inflation with
the potential given by the j function. In the process, it has
become apparent that the field space has an interesting
structure that originates from the underlying symmetry,

FIG. 14. The results obtained for two scans of j-inflation at
energy scales μ=MPl ¼ 27, 35, with associated curvature Rfs of
the target space, projected onto the Simons Observatory con-
fidence regions [94]. Here, the number of e-folds for all points
satisfies the constraint N� ∈ ½50; 70�. The results for the larger μ
value (upper band of black points) intersect with the PLANCK

range but not with the target range of the Simons telescope. For
the smaller μ value (lower band of red points), the distribution
intersects with the region described by the Simons Array
Collaboration.
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which allows one to perform a quite complete scan of the
total target space, due in part to the shift symmetry that
defines an element of the modular invariance. The shift
symmetry, in particular, makes it possible to effectively scan
completely the part of the target space constrained by the
PLANCK data because it leads to a decomposition of the target
space into an infinite number of vertical bands that all have
the same field theoretic behavior. Within each of these
bands, the tessellation induced by the modular invariance in
turn leads to an iterative structure that maps large field
regions to regions where the initial field components take
values that are arbitrarily small. This shows that modular
invariant inflation is a framework in which the distinction
between large field and small field inflation into separate
classes no longer holds. As a result, the notion of large field
and small field inflation is not a model characteristic of
general inflationary models.While this has been shown here
in the context of a particular model, the modularity admitted
by this type of geometry generalizes to other models in this
class of theories. In themore general context of automorphic
inflation with an arbitrary number of inflaton components, a
similar symmetry structure arises where the modular groups
are replaced by discrete groups GðZÞ for reductive groups
GðRÞ [7,8]. As a result, the classification of inflation should,
in general, proceed along lines that do not reference the
dichotomy of large field vs. small field inflation. A further
implication of the tessellation of the field space in combi-
nation with the structure of the j-inflation potential is that in
the geometric measure provided by the target space metric
the fraction of the volume of the field space that leads to
sufficient inflation is finite.

A characteristic feature of the potential surface of j-
inflation is a wall-like structure of the potential along the
vertical direction of the inflaton doublet. The motion of the
inflaton along this wall is of geodesic type and is restricted
by the phenomenological constraints. Trajectories that are
compatible with the PLANCK data exist in neighborhoods
around the critical points of the potential, leading to inflaton
orbits that, in general, are different from hyperbolic geo-
desics but can approximate them as the initial values get
closer to these critical points. As a result, while the presence
of the hyperbolic metric in modular inflation has important
implications for the structure of the theory, the dynamics
determined by the potential is crucial for the behavior of the

FIG. 17. Illustration of the μ dependence of the ðnRR; r; N�Þ
distribution for μ ∈ f30; 35; 40g. Here, N� is along the vertical
axis, and ðnRR; rÞ defines the lower plane. This graph shows how
the distribution shown in Fig. 13 for a fixed μ moves from the
right to the left with decreasing μ and that the degeneracy of the
distributions along the direction of the spectral index is inde-
pendent of the choice of μ.

FIG. 16. The nutcracker in the ðτ1; τ2Þ plane obtained
from the constraints nRR ∩ r ∩ N� for the runs in the previous
graph, i.e., μ=MPl ∈ ½25; 50�.

FIG. 15. A compilation of results in the dimensionless field space
ðτ1; τ2Þ for the spectral scalar index for μ=MPl variations between
25 and 50 in the region around the saddle point τs ¼ i.
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inflaton. In particular, the attractor structure of the model is
determined by the potential, as expected. Nevertheless, there
are regions in the target space where the geometry of the
inflaton trajectories follows closely that of the different types
of geodesics that characterize the upper half plane hyper-
bolic target space. In the context of the dynamical structure,
the attractors in the potential surface project down to
trajectories that are close to the two different types of
geodesics that are encountered in hyperbolic geometry.
The phenomenological part of the analysis first shows

that the region of the target space with sufficient inflation in
the canonical range has the shape of a butterfly that covers a
finite fraction the total field space. Imposing further the
CMB constraints on the spectral index and the tensor ratio
leads to initial values for which the spectral index admits an
approximate scaling behavior that is reminiscent of the
scaling behavior of monomial and Starobinsky inflation.
Nevertheless the bounds on r that have been discussed in
the literature in the context of single field inflation are not
satisfied in j-inflation. A detailed analysis of the tensor
ratio on the space of initial values instead shows that
upcoming gravity wave experiments that can reach down to
r ≅ 10−4 and even smaller will not be able to distinguish

between large and small field inflation. These experiments
are nevertheless important even in the absence of a
discovery because they provide essential constraints for
model building. They will, in particular, constrain the
parameter space for j-inflation, which presents a prime
target for future observations.
The CMB constraints that have been obtained since

COBE have established the amplitude of the scalar power
spectrum, leading to a normalization of the overall energy
scale of inflationary models. In j-inflation as described in
the present paper, this leaves the second energy parameter
μ, which is constrained by the phenomenological param-
eters just discussed. This energy scale uniquely determines
the curvature scalar of the field space; hence, these
observational constraints put bounds on how strongly
curved this target space can be.
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